JP5474363B2 - Horizontal swirl type jet mill - Google Patents

Horizontal swirl type jet mill Download PDF

Info

Publication number
JP5474363B2
JP5474363B2 JP2009024762A JP2009024762A JP5474363B2 JP 5474363 B2 JP5474363 B2 JP 5474363B2 JP 2009024762 A JP2009024762 A JP 2009024762A JP 2009024762 A JP2009024762 A JP 2009024762A JP 5474363 B2 JP5474363 B2 JP 5474363B2
Authority
JP
Japan
Prior art keywords
cavity
jet mill
discharge cylinder
cylinder
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009024762A
Other languages
Japanese (ja)
Other versions
JP2010179238A (en
Inventor
一郎 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2009024762A priority Critical patent/JP5474363B2/en
Publication of JP2010179238A publication Critical patent/JP2010179238A/en
Application granted granted Critical
Publication of JP5474363B2 publication Critical patent/JP5474363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)

Description

本発明は、高圧でノズルから噴出する流体に粉体を巻き込み、粒子相互の衝突等によって粉砕を行うジェットミルに関する。より詳細には、飛び込み現象に起因する粗粒を抑え、且つ数μmの大きさに粉砕したとしても超微粒がほとんど含まれない、非常に狭い粒度分布を有する粉砕物を得ることができる水平旋回流型のジェットミルに関する。   The present invention relates to a jet mill in which powder is entrained in a fluid ejected from a nozzle at high pressure and pulverized by collision between particles. More specifically, a horizontal swirl that can suppress coarse particles caused by the phenomenon of jumping in and can obtain a pulverized product having a very narrow particle size distribution that contains almost no ultrafine particles even when pulverized to a size of several μm. The present invention relates to a flow type jet mill.

ジェットミルは、外壁に配置されたノズルから粉砕室の内部に供給される高速の空気流によって、粒径の粗い砕料を粉砕するとともに、旋回する空気流によって分級をも行うものとして良く知られている(例えば、特許文献1)。このジェットミルは、粉砕室の内部の構造が単純であって、粉砕室の上面と下面とを容易に分解・組み立てを行うことが可能であり、使用後の清掃が容易である。ところが、粉砕室の内部で砕料が空気流のみによって粉砕されるので、砕料を所定の粒度に粉砕したり、砕料の粒度のバラツキが小さくなるように管理することが困難である。このため、砕料を所定の粒度にし且つバラツキを小さくするための各種の改良が行われている。   A jet mill is well known as a type that pulverizes coarse pulverized material with a high-speed air flow supplied into the pulverization chamber from a nozzle arranged on the outer wall and classifies the pulverized material with a swirling air flow. (For example, Patent Document 1). This jet mill has a simple structure inside the crushing chamber, and the upper and lower surfaces of the crushing chamber can be easily disassembled and assembled, and cleaning after use is easy. However, since the pulverized material is pulverized only by the air flow inside the pulverization chamber, it is difficult to control the pulverized material to a predetermined particle size or to control the variation in the particle size of the pulverized material. For this reason, various improvements have been made to make the pulverized material a predetermined particle size and to reduce variations.

例えば、特許文献2には、排出部が、空洞室を区画形成している上下壁部のうち、一方壁部に突設されて空洞室を縦方向に横切るよう他方壁部側へ延び、かつ該他方壁部に設けられて空洞室外へ突出している凹部内に排出補助経路及び二次分級用隙間を保って配置されている円筒部を有し、前記粉砕物が分級ゾーンから排出補助経路及び二次分級用隙間を通って該円筒部内に入るようにされたジェットミルが開示されている。   For example, in Patent Document 2, the discharge part is protruded from one of the upper and lower wall parts defining the hollow chamber and extends toward the other wall so as to cross the hollow chamber in the vertical direction, and A cylindrical portion disposed in a recess provided on the other wall and projecting out of the cavity chamber, and having a discharge auxiliary path and a secondary classification gap, the pulverized material from the classification zone and the discharge auxiliary path; A jet mill is disclosed that is adapted to enter the cylindrical portion through a secondary classification gap.

特許文献3には、ミル本体の内部に形成された円盤状の空洞を、複数のエアノズルから供給される高速の空気流によって被粉砕物を粉砕するリング状の粉砕ゾーンと、粉砕ゾーンの内側に配置され、出口の空間に連通し、粉砕ゾーンの内側に位置する、空気流によって被粉砕物を分級するリング状の分級ゾーンとに分割し、粉砕ゾーンと分級ゾーンとの間に、両者を分割するとともに連通するリング状の第1の狭隘路を設け、さらに、分級ゾーンとその内側の出口との間に、分級ゾーンと出口の空間とを分割するとともに連通するリング状の第2の狭隘路を設けたジェットミルが開示されている。   In Patent Document 3, a disk-shaped cavity formed inside a mill body is divided into a ring-shaped pulverization zone for pulverizing an object to be pulverized by a high-speed air flow supplied from a plurality of air nozzles, and an inside of the pulverization zone. Divided into a ring-shaped classification zone that is arranged, communicates with the exit space, is located inside the grinding zone, and classifies the object to be crushed by the air flow, and divides both between the grinding zone and the classification zone And a ring-shaped first narrow narrow passage that communicates and divides the classification zone and the outlet space between the classification zone and the outlet inside thereof, and communicates with the ring-shaped second narrow narrow passage A jet mill is disclosed.

特許文献4および特許文献5には、旋回粉砕室の下面中央に配設されたセンターポールを備え、前記センターポールの頂点と、前記アウトレットの下端面が前記旋回粉砕室の高さ方向の中心線上にある構成を有するジェットミルが開示されている。このような構成とすることによって、旋回粉砕室内の分級ゾーンと粉砕ゾーンとを明確に分けることができ、所定サイズの微粒で且つ粒径分布の狭いものが旋回粉砕室上部のアウトレットから排出されるとともに、粗粒は高速ジェット流により生ずる遠心力によって外周に飛ばされ、高速ジェット流中の原料どうしの衝突依存度を向上させることができるという作用を有すると教示している。   Patent Document 4 and Patent Document 5 include a center pole disposed at the center of the lower surface of the swirl crushing chamber, and the apex of the center pole and the lower end surface of the outlet are on the center line in the height direction of the swirl crushing chamber. There is disclosed a jet mill having a configuration as described below. With such a configuration, the classification zone and the pulverization zone in the swirl crushing chamber can be clearly separated, and fine particles having a predetermined size and a narrow particle size distribution are discharged from the outlet at the top of the swirl crushing chamber. At the same time, it teaches that the coarse particles are blown to the outer periphery by the centrifugal force generated by the high-speed jet flow, and have the effect of improving the collision dependency between the raw materials in the high-speed jet flow.

特開昭52−44450号公報JP 52-44450 A 特開2007−196147号公報JP 2007-196147 A 特開2005−131633号公報JP 2005-131633 A 特開2000−42441号公報JP 2000-42441 A 特開2007−275849号公報JP 2007-275849 A

これら従来のジェットミルでは、例えば、粉砕分級用の高圧旋回流が原料供給用の気流によって乱されることなどに起因し、原料の粉体が粉砕されないまま分級ゾーンに流れ込み、粉砕物と一緒に排出される、いわゆる飛込現象を完全に無くすことは困難であり、そのような飛込現象から粗粒の割合が多くなる。また、これらのジェットミルでは、樹脂や固状有機化合物などの比較的に軟らかい砕料を数μmの大きさに粉砕することは難しく、また数μmの大きさに粉砕できたとしても超微粒(0.45μm以下)の割合が多くなり粒度分布が広いものとなってしまう。   In these conventional jet mills, for example, the high-pressure swirling flow for pulverization / classification is disturbed by the air flow for supplying the raw material, and the powder of the raw material flows into the classification zone without being pulverized, together with the pulverized product. It is difficult to completely eliminate the so-called jumping phenomenon that is discharged, and the ratio of coarse particles increases from such jumping phenomenon. In these jet mills, it is difficult to pulverize relatively soft pulverizers such as resins and solid organic compounds to a size of several μm. Even if they can be pulverized to a size of several μm, ultrafine particles ( 0.45 μm or less) and the particle size distribution becomes wide.

本発明は、飛び込み現象に起因する粗粒を抑え、且つ数μmの大きさに粉砕したとしても超微粒がほとんど含まれない、非常に狭い粒度分布を有する粉砕物を得ることができる水平旋回流型のジェットミルを提供することを目的としている。   The present invention is a horizontal swirling flow that can suppress a coarse particle due to a jumping phenomenon and can obtain a pulverized product having a very narrow particle size distribution that contains almost no ultrafine particles even when pulverized to a size of several μm. It aims to provide a jet mill of the type.

本発明者は上記目的を達成するために鋭意検討した結果、略円盤状の空洞を有するミル本体と、該空洞に砕料を導入するための供給管と、前記空洞から砕料を取り出すための排出筒と、前記空洞に流体を噴出させ旋回流動を生じさせるための噴射手段とを備え、前記排出筒は、前記空洞の上下を区画するミル本体の下壁の略中心に、該筒の上端が前記空洞の上下を区画するミル本体の上壁との間に隙間を保って縦に突設されており、該筒の上端が狭窄孔を有するオリフィス状の板で塞がれており、且つ砕料が該狭窄孔から筒の内腔を通って外部に排出されるようになっている、水平旋回流型ジェットミルを発明するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that a mill main body having a substantially disk-shaped cavity, a supply pipe for introducing the crushed material into the cavity, and for removing the crushed material from the cavity. A discharge cylinder and injection means for generating a swirling flow by injecting fluid into the cavity, and the discharge cylinder is located at the upper center of the lower wall of the mill main body that defines the upper and lower sides of the cavity. Is protruded vertically with a gap between the upper wall of the mill body partitioning the upper and lower sides of the cavity, and the upper end of the cylinder is closed with an orifice-shaped plate having a narrow hole, and The inventors have invented a horizontal swirl type jet mill in which the crushed material is discharged from the narrowed hole through the lumen of the cylinder to the outside.

本発明の水平旋回流型ジェットミルは、ミル本体の略中心に縦に設けた排出筒の上端を狭窄孔を有するオリフィス状の板で塞いだことによって、供給管から噴射導入される砕料が粉砕されないまま排出筒の上端の開口に流れ込んで粉砕物と一緒に排出される飛込現象をほぼ解消することができる。また、既に小さく粉砕された細粒が再び粉砕ゾーンに戻ることがほとんど無いので、数μmの平均粒度に粉砕したとしても、超微粒がほとんど発生しない。本発明の水平旋回流型ジェットミルは、分級精度が大幅に向上しており品質管理を簡易化できる。   In the horizontal swirling jet mill of the present invention, the crushed material injected and introduced from the supply pipe is obtained by closing the upper end of the discharge cylinder provided vertically at the approximate center of the mill body with an orifice-shaped plate having a narrowed hole. It is possible to substantially eliminate the phenomenon of jumping into the opening at the upper end of the discharge cylinder without being pulverized and being discharged together with the pulverized material. In addition, since the finely pulverized fine particles hardly return to the pulverization zone, even if the fine particles are pulverized to an average particle size of several μm, very few fine particles are generated. The horizontal swirling flow jet mill of the present invention has greatly improved classification accuracy and can simplify quality control.

また、前記ミル本体と前記排出筒とによって前記空洞から略円環状の空間が区画され、該空間内に砕料の粉砕を主に行うゾーンと砕料の分級を主に行うゾーンとが形成されると、粗粒は分級ゾーンから粉砕ゾーンに戻され、粒度分布をより狭くすることができる。さらに、高圧ガス室とラバールノズルとからなる噴射手段を備えるものは、粉砕効率が非常に高くなり、粉砕ゾーンから分級ゾーンに移る粗粒の割合が減るので、分級の速度および精度がともに高くなりやすい。   Further, a substantially annular space is defined from the cavity by the mill main body and the discharge cylinder, and a zone for mainly pulverizing the pulverized material and a zone for mainly classifying the crushed material are formed in the space. Then, the coarse particles are returned from the classification zone to the pulverization zone, and the particle size distribution can be narrowed. Furthermore, those equipped with injection means consisting of a high-pressure gas chamber and a Laval nozzle have very high pulverization efficiency, and the ratio of coarse particles transferred from the pulverization zone to the classification zone is reduced. Therefore, both the classification speed and accuracy are likely to increase. .

前記供給管の頭損失が前記排出筒の頭損失より大きくなっていると、供給管への砕料の逆流を防ぎ、砕料を空洞内に効率的に供給できるようになる。そして、前記供給管の出口を排出筒の上方から外れた空洞内に設けることによって、オリフィス状板の上方で乱れの無い旋回流が生じて、分級の速度および精度がともに高くなりやすく、飛び込み現象を減らしつつ砕料を空洞内に効率的に供給できるようになる。   When the head loss of the supply pipe is larger than the head loss of the discharge tube, the backflow of the crushed material to the supply pipe is prevented, and the crushed material can be efficiently supplied into the cavity. And, by providing the outlet of the supply pipe in a cavity off the upper side of the discharge cylinder, an undisturbed swirling flow is generated above the orifice-shaped plate, and both the classification speed and accuracy are likely to be high, and the jumping phenomenon It becomes possible to efficiently supply the pulverized material into the cavity while reducing the amount of slag.

本発明の好適な実施形態を図面を参照しながら示し、本発明をより詳細に説明する。なお、本発明はこれら実施形態に限定されるものではなく、本発明の趣旨および範囲を逸脱しない変更、修正または追加が成されたものを含む。   Preferred embodiments of the present invention will be described with reference to the drawings to describe the present invention in more detail. Note that the present invention is not limited to these embodiments, and includes modifications, modifications, or additions that do not depart from the spirit and scope of the present invention.

〔実施形態1〕
図2は本発明の実施形態1に係るジェットミル(ミル本体の上壁を開いた状態)の一例を示す斜視図、図3は図2に示したジェットミルの横断面図(X方向に見た図)、図4は図2に示したジェットミルの縦断面図(Y方向に見た図)である。
Embodiment 1
2 is a perspective view showing an example of a jet mill according to Embodiment 1 of the present invention (in a state where the upper wall of the mill body is opened), and FIG. 3 is a cross-sectional view of the jet mill shown in FIG. 4 is a longitudinal sectional view of the jet mill shown in FIG. 2 (viewed in the Y direction).

(構造)
図2に示した本発明の水平旋回流型ジェットミルは、略円盤状の主空洞aを有するミル本体1と、該主空洞aに砕料を導入するための供給管30と、前記主空洞aから砕料を取り出すための排出筒2と、前記主空洞aに流体を噴出させ旋回流動を生じさせるための噴射手段とを備えている。
図2に示したジェットミルのミル本体は、背の低い二重円筒の両端を、丸盆状のプレート(上壁10および下壁11)でそれぞれ塞いだような形状をなしている。
(Construction)
The horizontal swirl type jet mill of the present invention shown in FIG. 2 includes a mill body 1 having a substantially disc-shaped main cavity a, a supply pipe 30 for introducing crushed material into the main cavity a, and the main cavity. a discharge cylinder 2 for taking out the crushed material from a, and an injection means for injecting a fluid into the main cavity a to generate a swirling flow.
The mill body of the jet mill shown in FIG. 2 has a shape in which both ends of a short double cylinder are respectively closed by round tray plates (upper wall 10 and lower wall 11).

二重円筒の内筒12と外筒13との間に副空洞b(高圧ガス室)、内筒12の内側に主空洞a(粉砕・分級室)が形成されている。主空洞aは略円盤状をなしており、副空洞bは略円環状をなしている。図2のミル本体は、高圧ガス室として円環状副空洞bを有しているが、高圧ガス室をミル本体とは別に設け、該別途の高圧ガス室からガス管をひいて主空洞aの側壁(内筒)にガス管を直接に繋ぎ、副空洞室を省略した構成とすることができる。   A sub-cavity b (high pressure gas chamber) is formed between the inner cylinder 12 and the outer cylinder 13 of the double cylinder, and a main cavity a (pulverization / classification chamber) is formed inside the inner cylinder 12. The main cavity a has a substantially disc shape, and the sub-cavity b has a substantially annular shape. The mill body in FIG. 2 has an annular sub-cavity b as a high-pressure gas chamber. However, the high-pressure gas chamber is provided separately from the mill body, and a gas pipe is drawn from the separate high-pressure gas chamber to A gas pipe can be directly connected to the side wall (inner cylinder), and the subcavity chamber can be omitted.

ミル本体の上壁10は、後述する排出筒の上方における旋回流を極力乱さない構造であればよく、図4に示すような丸盆状のプレートであってもよいし、図5または図6に示すような排出筒の上方に対応した部分が円筒状に凹んだ構造のものであってもよい。
ミル本体の下壁には後述する排出筒が貫通できるような貫通孔6が設けられている。貫通孔6に通された排出筒2と下壁11との隙間は旋回流がそこから外部に漏れないように封止されている。
The upper wall 10 of the mill body only needs to have a structure that does not disturb the swirling flow above the discharge cylinder, which will be described later, and may be a round tray plate as shown in FIG. The part corresponding to the upper part of the discharge cylinder as shown in FIG.
A through-hole 6 is provided in the lower wall of the mill body so that a discharge cylinder, which will be described later, can pass therethrough. The clearance between the discharge tube 2 and the lower wall 11 passed through the through hole 6 is sealed so that the swirling flow does not leak to the outside.

前記排出筒2は、前記主空洞の上下を区画するミル本体の下壁11の略中心に下壁を貫通して縦に設けられている。
前記排出筒は、ミル本体の主空洞aを、排出筒2とミル本体内筒12との間の略円環状の空間と、排出筒内側の空間(内腔)とに区画している。すなわち、図4に示した水平旋回流型ジェットミルは、ミル本体と排出筒とによって三重円筒をなしていることになる。
The discharge cylinder 2 is provided vertically through the lower wall substantially at the center of the lower wall 11 of the mill body that defines the upper and lower sides of the main cavity.
The discharge cylinder divides the main cavity a of the mill main body into a substantially annular space between the discharge cylinder 2 and the mill main body inner cylinder 12 and a space (a lumen) inside the discharge cylinder. That is, the horizontal swirling flow type jet mill shown in FIG. 4 forms a triple cylinder by the mill body and the discharge cylinder.

該排出筒の上端は、前記主空洞の上下を区画するミル本体の上壁10との間に隙間が保たれている。排出筒の上端とミル本体の上壁との間隔は、特に限定されないが、排出筒2の上端は噴射手段のノズル40の高さよりも極端に低くならないことが好ましい。また、排出筒の上端とミル本体の上壁との間隔が短くなりすぎると、砕料が、該隙間に詰まって分級が困難になることがある。従って、例えば、上壁および下壁が図4に示すような丸盆状のプレートである場合において、噴射手段のノズル40がミル本体下壁からの距離h’と下壁から上壁までの距離Hとの比h’/Hにおいて0.5の位置(上壁および下壁から同距離)にある場合には、排出筒の上端は、ミル本体下壁からの距離hと下壁から上壁までの距離Hとの比h/Hが0.45未満でないことが良く、また詰まりを考慮して0.95を超えないことが良い。すなわち、排出筒は、ミル本体下壁から排出筒上端までの距離hと下壁から上壁までの距離Hとの比h/Hが0.45〜0.95であるのが好ましい。   A gap is maintained between the upper end of the discharge cylinder and the upper wall 10 of the mill body that defines the upper and lower sides of the main cavity. The distance between the upper end of the discharge cylinder and the upper wall of the mill body is not particularly limited, but the upper end of the discharge cylinder 2 is preferably not extremely lower than the height of the nozzle 40 of the injection means. Moreover, when the space | interval of the upper end of a discharge cylinder and the upper wall of a mill main body becomes too short, a crushed material may be clogged in this clearance gap and classification may become difficult. Therefore, for example, in the case where the upper wall and the lower wall are round tray-shaped plates as shown in FIG. 4, the nozzle 40 of the injection means has a distance h ′ from the lower wall of the mill body and a distance from the lower wall to the upper wall. When the ratio h ′ / H with respect to H is 0.5 (the same distance from the upper wall and the lower wall), the upper end of the discharge cylinder is the distance h from the lower wall of the mill body and the lower wall to the upper wall. The ratio h / H with respect to the distance H is preferably not less than 0.45, and preferably not more than 0.95 in consideration of clogging. In other words, the discharge cylinder preferably has a ratio h / H of 0.45 to 0.95 of the distance h from the lower wall of the mill body to the upper end of the discharge cylinder and the distance H from the lower wall to the upper wall.

該排出筒の上端は、狭窄孔51を有するオリフィス状の板5で塞がれており、砕料が該狭窄孔から筒の内部空間を通って外部に排出されるようになっている。
そして、噴射手段から噴出させたガスによって、排出筒2とミル本体内筒12との間の略円環状の空間内に、砕料の粉砕を主に行うゾーンと砕料の分級を主に行うゾーンとが形成される。オリフィス状板の上方でも旋回流が生じ、この旋回流によって、細粒はオリフィス状板の中心にある狭窄孔を通って排出筒の内腔に入り、粗粒はオリフィス状板の外周の外側にはじきだされる。はじき出された粗粒は上記の破砕ゾーンにて再び粉砕され細粒となり、分級ゾーンに戻ってくる。
The upper end of the discharge cylinder is closed by an orifice-shaped plate 5 having a narrowed hole 51 so that the crushed material is discharged from the narrowed hole to the outside through the internal space of the cylinder.
And by the gas ejected from the injection means, in the substantially annular space between the discharge cylinder 2 and the mill main body inner cylinder 12, the zone for mainly pulverizing the crushed material and the classification of the crushed material are mainly performed. A zone is formed. A swirling flow is also generated above the orifice plate, and this swirl flow causes fine particles to enter the lumen of the discharge cylinder through a narrow hole in the center of the orifice plate, and coarse particles to the outside of the outer periphery of the orifice plate. It will start. The coarse particles that are ejected are pulverized again in the crushing zone to become fine particles and return to the classification zone.

オリフィス状の板5は、中心に狭窄孔51があれば、その厚さ、材質、形状は特に限定されない。図示したオリフィス板は、平らな円板の中心に狭窄孔を穿ったものであるが、これに限定されず、例えば、板の外周部が若干上に又は下に湾曲しているものであってもよい。該湾曲した板は、排出筒の上端に上に凸となるよう(傘状)に取り付けてもよいし、下に凸となるよう(漏斗状)に取り付けてもよい。
オリフィス状板の直径(すなわち排出筒の内腔直径)に対する、狭窄孔の大きさ(直径)は、分級精度と、排出量とのバランスを考慮して、適宜に選択することができる。例えば、オリフィス状板の直径(すなわち排出筒の内腔直径)に対する狭窄孔の大きさ(直径)の比を、好ましくは0.3〜0.85に、オリフィス状板の直径(すなわち排出筒の内腔直径)と狭窄孔の大きさ(直径)の差を、好ましくは30mm〜105mmとすることができる。
The orifice-shaped plate 5 is not particularly limited in its thickness, material, and shape as long as it has a narrow hole 51 in the center. The illustrated orifice plate has a narrow hole in the center of a flat disk, but is not limited to this. For example, the outer periphery of the plate is slightly curved upward or downward. Also good. The curved plate may be attached to the upper end of the discharge cylinder so as to be convex (umbrella shape) or may be attached to be convex downward (funnel shape).
The size (diameter) of the constriction hole with respect to the diameter of the orifice plate (that is, the lumen diameter of the discharge cylinder) can be appropriately selected in consideration of the balance between the classification accuracy and the discharge amount. For example, the ratio of the size (diameter) of the narrowed hole to the diameter of the orifice plate (ie, the lumen diameter of the discharge tube) is preferably 0.3 to 0.85, and the diameter of the orifice plate (ie, the discharge tube) The difference between the lumen diameter) and the size (diameter) of the stricture hole can be preferably 30 mm to 105 mm.

原料供給手段は、上壁部10又は内側壁12に対して所定位置及び角度に接続されている供給管30と、該供給管30に連結されたホッパ31と、ノズル32等によって構成されている。そして、砕料は、ホッパ31から供給管30に入ると、ノズル32から圧送される高圧流体とともに主空洞室aの粉砕ゾーンへ噴射供給される。なお、原料供給手段3は、これ以外にも、例えば、高圧流体供給管及び加速管を組み合わせたラバールノズル構成にしたり、原料粉末の物性や供給量等によって複数箇所に設けられる構成を含む。   The raw material supply means includes a supply pipe 30 connected to the upper wall portion 10 or the inner wall 12 at a predetermined position and angle, a hopper 31 connected to the supply pipe 30, a nozzle 32, and the like. . When the crushed material enters the supply pipe 30 from the hopper 31, the crushed material is jetted and supplied to the pulverization zone of the main cavity chamber a together with the high-pressure fluid pumped from the nozzle 32. In addition, the raw material supply means 3 includes, for example, a Laval nozzle configuration in which a high-pressure fluid supply pipe and an acceleration pipe are combined, or a configuration provided at a plurality of locations depending on the physical properties and supply amount of the raw material powder.

供給管の頭損失は、排出筒の頭損失よりも大きくなるように設計することが好ましい。このような頭損失の関係に設計することで、砕料の供給管への逆流を防ぐことができる。また、供給管の出口は排出筒の上方から外れた空洞内に設けることが好ましい。   The head loss of the supply pipe is preferably designed to be larger than the head loss of the discharge tube. By designing in such a head loss relationship, it is possible to prevent back flow of the crushed material to the supply pipe. Further, the outlet of the supply pipe is preferably provided in a cavity that is removed from above the discharge cylinder.

噴射手段4は、副空洞室bと、外部から副空洞室bに高圧流体を導入する給気管41と、内筒12に組み付けられて副空洞室b内の高圧流体を主空洞室aへ噴射するノズル40とにより構成されている。ノズル40は、内筒12の外周面に対し等分した箇所にそれぞれ付設されるとともに、内筒12の直径方向に対し所定角度傾斜した状態に設けられている。   The injection means 4 includes a sub-cavity b, an air supply pipe 41 that introduces high-pressure fluid from the outside into the sub-cavity b, and an inner cylinder 12 that injects the high-pressure fluid in the sub-cavity b into the main cavity a. And a nozzle 40 that performs the above operation. The nozzles 40 are respectively attached to portions equally divided with respect to the outer peripheral surface of the inner cylinder 12 and are provided in a state inclined at a predetermined angle with respect to the diameter direction of the inner cylinder 12.

噴射用ノズル40は、ラバールノズル(De Laval Nozzle)が好ましい。ラバールノズルは、断面積が収縮して広がった形状をしたノズルである。ノズルの入り口であるコンバージェント部ではガスは亜音速だが,断面積の小さいスロート部では圧力は若干下がりガス流は音速になる。ノズルの広がったディバージェント部では圧力は更に下がり,ガス流は超音速となって放出される。ラバールノズルを使用することにより,ガスをより高速に噴射することができる.   The injection nozzle 40 is preferably a Laval nozzle. The Laval nozzle is a nozzle having a shape in which a cross-sectional area contracts and expands. In the convergent part, which is the entrance of the nozzle, the gas is subsonic, but in the throat part where the cross-sectional area is small, the pressure drops slightly and the gas flow becomes sonic. In the divergent part where the nozzle spreads, the pressure further decreases and the gas flow is released at supersonic speed. By using a Laval nozzle, gas can be injected at a higher speed.

噴射手段4は、高圧流体をノズル40から噴射すると、該噴射による旋回流により主空洞室a内にあって、中心から離れる周囲側に粉砕ゾーンを形成し、中央側に分級ゾーンを形成することができる構成であればよく、例えば、副空洞室bを省略して高圧流体を各ノズル40へ直接供給するようにしたものでもよい。粉砕ゾーンでは、砕料が加速されて互いに衝突したり周囲壁面に衝突して粉砕されるが、その場合、特許第3087201号公報に示されているように粉砕ゾーンに粉砕促進用の衝突板や整流板を付設してもよい。分級ゾーンでは、粉砕ゾーンで粉砕された粉砕物のうち、所定粒径ないしは粒度に達したものが粉砕ゾーンから移行し分級された後、排出筒の内腔を通って外部へ排出される。   When the high-pressure fluid is injected from the nozzle 40, the injection means 4 forms a pulverization zone on the peripheral side away from the center and forms a classification zone on the central side in the main cavity chamber a by the swirling flow caused by the injection. For example, the subcavity b may be omitted and the high pressure fluid may be directly supplied to each nozzle 40. In the pulverization zone, the crushed materials are accelerated and collide with each other or collide with the surrounding wall surface, and are pulverized. In this case, as shown in Japanese Patent No. 3087201, the pulverization zone includes an impact plate for promoting pulverization, You may attach a baffle plate. In the classification zone, among the pulverized products pulverized in the pulverization zone, those having reached a predetermined particle size or particle size are transferred from the pulverization zone and classified, and then discharged to the outside through the lumen of the discharge tube.

(作動)
以上のジェットミルにおいて、砕料は、原料供給手段3から主空洞室aに供給される。粗い粒の砕料は、複数のノズル40から噴射させている高圧流体の旋回流のうち、主空洞室aの外周囲側に形成される粉砕ゾーンで加速されて互いに衝突したり内筒12に衝突しながら粉砕される。粉砕された細かい粒の砕料は、主空洞室aの中央側に形成される分級ゾーンへ移動する。
分級ゾーンの旋回流によって排出筒の上方にてさらに分級され、目的の大きさにまで細かくなった砕料は、オリフィス状板の狭窄孔を通って排出筒の内腔に入り、外部に取り出される。目的の大きさにまでなっていない砕料は、旋回流の遠心力によって、主空洞室aの外周部(粉砕ゾーン)に戻され、再び粉砕される。
このジェットミルでは、オリフィス状板が、粉砕されないままの粗粒の排出筒への進入を阻止し、粉砕が確実に行われるようになる。また、十分に粉砕された細粒が排出筒に入らずに分級ゾーンから再び粉砕ゾーンに戻されにくいので、さらに細かな超微粒となってしまうことを阻止できる。
(Operation)
In the above jet mill, the pulverized material is supplied from the raw material supply means 3 to the main cavity chamber a. Coarse particles of coarse particles are accelerated in a crushing zone formed on the outer peripheral side of the main cavity chamber a among the swirling flows of the high-pressure fluid ejected from the plurality of nozzles 40 and collide with each other, or collide with the inner cylinder 12. It is crushed while colliding. The pulverized fine particles are moved to a classification zone formed on the center side of the main cavity chamber a.
The crushed material, which is further classified above the discharge cylinder by the swirling flow in the classification zone and is reduced to the target size, enters the lumen of the discharge cylinder through the narrowed hole of the orifice plate and is taken out to the outside. . The crushed material that does not reach the target size is returned to the outer peripheral portion (grinding zone) of the main cavity chamber a by the centrifugal force of the swirling flow and pulverized again.
In this jet mill, the orifice plate prevents the coarse particles that have not been pulverized from entering the discharge cylinder, and the pulverization is reliably performed. Further, since the finely pulverized fine particles are not easily returned from the classification zone to the pulverization zone without entering the discharge cylinder, it is possible to prevent the fine particles from becoming finer.

〔実施形態2〕
図5は実施形態2のジェットミルの縦断面図である。実施形態2の横断面図および斜視図は図3および図2と同様であるので省略している。
図5はミル本体を構成している上壁110をハット形状にした例である。すなわち、このミル本体では、上壁部110の中央部に貫通孔107を形成するとともに、該貫通孔107を逆凹状の外筒部材108で閉じた構成となっている。貫通孔107は下壁部111の貫通孔106より大径の孔である。外筒部材108は、貫通孔107及び排出筒102と同軸線上に位置するよう配置されることで、上壁部110に対し一体的に結合されている。この構造では、例えば、上壁部110と排出筒102およびオリフィス状板105との間に形成される分級ゾーンが外筒部材108の逆凹状により拡張され、それに起因して分級効率の向上が期待される。
[Embodiment 2]
FIG. 5 is a longitudinal sectional view of the jet mill according to the second embodiment. Since the cross-sectional view and perspective view of the second embodiment are the same as those in FIGS. 3 and 2, they are omitted.
FIG. 5 shows an example in which the upper wall 110 constituting the mill body is hat-shaped. That is, in this mill body, the through hole 107 is formed in the central portion of the upper wall portion 110, and the through hole 107 is closed by a reverse concave outer cylinder member 108. The through hole 107 is a hole having a larger diameter than the through hole 106 of the lower wall portion 111. The outer cylinder member 108 is integrally connected to the upper wall portion 110 by being disposed so as to be coaxial with the through hole 107 and the discharge cylinder 102. In this structure, for example, the classification zone formed between the upper wall portion 110, the discharge cylinder 102, and the orifice plate 105 is expanded by the reverse concave shape of the outer cylinder member 108, and as a result, improvement in classification efficiency is expected. Is done.

〔実施形態3〕
図6は実施形態3のジェットミルの縦断面図である。実施形態3の横断面図および斜視図は図3および図2と同様であるので省略している。
図6は更に外筒部材208が深い逆凹状に形成されるとともに、排出筒202の全寸を長くし、該長くなった筒状延長部を外筒部材208の逆凹状内に突出した構成となっている。すなわち、この排出筒202は下壁部211に突設されて、空洞室2aを縦方向に横切るよう上壁部210側へ延び、かつ該上壁部210に付設されている外筒部材208の逆凹状内に隙間を保って配置されている。このため、粉砕ゾーンで粉砕された粉砕物のうち、空洞室2aの分級ゾーンに入った粉砕物を当該分級ゾーンで分級した後、該隙間を通ることにより精度よく分級して排出筒の延長部から排出可能にする。この構造は、分級ゾーンに入った粉砕物について、分級ゾーンでの一次分級に加え、隙間を通すことにより再度精度よく分級(二次分級)されるようにし、それにより従来構造に比べて装置の簡明化やコンパクト化を損なうことなく粒径又は粒度のバラツキを抑えて分級精度を向上したものである。
[Embodiment 3]
FIG. 6 is a longitudinal sectional view of the jet mill according to the third embodiment. Since the cross-sectional view and perspective view of the third embodiment are the same as those in FIGS. 3 and 2, they are omitted.
FIG. 6 shows a configuration in which the outer cylinder member 208 is further formed in a deep reverse concave shape, the entire length of the discharge cylinder 202 is lengthened, and the elongated cylindrical extension protrudes into the reverse concave shape of the outer cylinder member 208. It has become. That is, the discharge cylinder 202 protrudes from the lower wall portion 211, extends to the upper wall portion 210 side so as to cross the hollow chamber 2 a in the vertical direction, and is connected to the outer cylinder member 208 attached to the upper wall portion 210. It arrange | positions keeping a clearance gap in reverse concave shape. For this reason, among the pulverized products pulverized in the pulverization zone, the pulverized product that has entered the classification zone of the hollow chamber 2a is classified in the classification zone, and then is accurately classified by passing through the gaps. It can be discharged from. In this structure, the pulverized material that has entered the classification zone is classified again with high accuracy (secondary classification) by passing through the gap in addition to the primary classification in the classification zone. Classification accuracy is improved by suppressing variation in particle size or particle size without impairing simplification and compactness.

〔実施形態4〕
図7は実施形態4のジェットミルの横断面図、図8は実施形態4のジェットミルの縦断面図である。
この実施形態4は、図2のジェットミルに対し副空洞室bを省略して、主空洞室3aを区画している環状壁312(この環状壁は図2の内筒12に対応している)に噴射手段304を構成しているノズル装置340を周囲12等分した箇所にそれぞれ設けたものである。各ノズル装置340は、不図示の高圧流体供給部に配管などで接続されて高圧流体を図2のノズル40と同様に噴射する。オリフィス状板は、周囲部が下側や上側に湾曲した傘や皿状であってもよい。
[Embodiment 4]
FIG. 7 is a transverse sectional view of the jet mill according to the fourth embodiment, and FIG. 8 is a longitudinal sectional view of the jet mill according to the fourth embodiment.
In the fourth embodiment, the sub-cavity b is omitted from the jet mill of FIG. 2, and an annular wall 312 that divides the main cavity 3a (this annular wall corresponds to the inner cylinder 12 of FIG. 2). ), The nozzle device 340 constituting the injection means 304 is respectively provided at a portion equally divided into 12 areas. Each nozzle device 340 is connected to a high-pressure fluid supply unit (not shown) by piping or the like, and jets high-pressure fluid in the same manner as the nozzle 40 in FIG. The orifice-shaped plate may be an umbrella or a dish whose peripheral portion is curved downward or upward.

〔実施例〕
本発明の実施形態1に係るジェットミルを用いて粉砕を行った実施例により本発明の有効性を明らかにする。
この実施例において使用したジェットミルは図2〜4に示す構造のものである。このジェットミルは、主空洞室(粉砕室)の内径が646mm、主空洞室の外周部の高さが180mm、排出筒の内径155mm、オリフィス板の狭窄孔の径が75mm、排出筒の高さ(ミル本体の下壁から排出筒の上端までの距離)が154mm、排出筒とミル本体の上壁との間隔が35mm、噴射用ノズルが12個、及び原料供給手段用ノズル(供給管)1個を備えたものである。粉砕条件は、粉砕圧7kg/cm、風量16〜18m/minの設定で行った。砕料としては、トップジンM原末(日本曹達社製、メディアン径44μmのもの)を用いた。
粉砕されたトップジンM原末の粒度分布はレーザー回折粒径測定装置SALD−2100(島津製作所社製)で測定した。その結果を図9に示す。
〔Example〕
The effectiveness of the present invention will be clarified by an example in which pulverization is performed using the jet mill according to Embodiment 1 of the present invention.
The jet mill used in this example has the structure shown in FIGS. In this jet mill, the inner diameter of the main cavity chamber (pulverization chamber) is 646 mm, the height of the outer peripheral portion of the main cavity chamber is 180 mm, the inner diameter of the discharge cylinder is 155 mm, the diameter of the narrow hole of the orifice plate is 75 mm, and the height of the discharge cylinder (Distance from the lower wall of the mill body to the upper end of the discharge cylinder) is 154 mm, the distance between the discharge cylinder and the upper wall of the mill body is 35 mm, 12 injection nozzles, and nozzles for supply means (supply pipe) 1 It has a piece. The pulverization conditions were set at a pulverization pressure of 7 kg / cm 2 and an air volume of 16 to 18 m 3 / min. As the pulverizer, Topgin M raw powder (manufactured by Nippon Soda Co., Ltd., having a median diameter of 44 μm) was used.
The particle size distribution of the crushed Topgin M bulk powder was measured with a laser diffraction particle size analyzer SALD-2100 (manufactured by Shimadzu Corporation). The result is shown in FIG.

〔比較例〕
比較例では、図1に示すジェットミルを用いた。このジェットミルは、排出筒の上端が排出筒の内径と同じ大きさで開口している(オリフィス板で塞がれていない)点を除いて図2〜4に示したジェットミルと同じ構造のものである。実施例と同じ粉砕条件でトップジンM原末(日本曹達社製、メディアン径44μmのもの)を粉砕した。
粉砕されたトップジンM原末の粒度分布はレーザー回折粒径測定装置SALD−2100(島津製作所社製)で測定した。その結果を図10に示す。
[Comparative example]
In the comparative example, the jet mill shown in FIG. 1 was used. This jet mill has the same structure as the jet mill shown in FIGS. 2 to 4 except that the upper end of the discharge cylinder is opened to the same size as the inner diameter of the discharge cylinder (not blocked by the orifice plate). Is. Topgin M bulk powder (manufactured by Nippon Soda Co., Ltd., having a median diameter of 44 μm) was pulverized under the same pulverization conditions as in Examples.
The particle size distribution of the crushed Topgin M bulk powder was measured with a laser diffraction particle size analyzer SALD-2100 (manufactured by Shimadzu Corporation). The result is shown in FIG.

実施例と比較例との対比より明らかなように、ジェットミルの排出筒の上端を狭窄孔を有するオリフィス状板で塞いだ実施例のジェットミルによって2パス粉砕されたものは、平均粒度が2μmを下回るものであるが、0.45μm以下の大きさを有する超微粒がほとんど無く、10μmを超える粗粒もほとんど無く、非常に狭い粒度分布のものである。
一方、オリフィス状板を備えていない比較例のジェットミルによって粉砕されたものは、平均粒度が約3.3μmのものであるが、0.45μm以下の大きさを有する超微粒を少なからず含んでおり、10μmを超える粗粒も多く、広い粒度分布のものである。
As is clear from the comparison between the example and the comparative example, the average particle size is 2 μm when the jet mill of the example in which the upper end of the discharge cylinder of the jet mill is closed with an orifice-like plate having a narrowed hole is pulverized by two passes. However, there are almost no ultrafine particles having a size of 0.45 μm or less, almost no coarse particles exceeding 10 μm, and a very narrow particle size distribution.
On the other hand, the one pulverized by the jet mill of the comparative example not provided with the orifice-shaped plate has an average particle size of about 3.3 μm, but contains not a few ultrafine particles having a size of 0.45 μm or less. In addition, there are many coarse particles exceeding 10 μm, and they have a wide particle size distribution.

本発明の水平旋回流型ジェットミルは、比較的に柔らかな樹脂や固状有機化合物であっても、非常に細かな粒度にまで粉砕することができる。しかも、粉砕によって得られたものは、超微粒や粗粒をほとんど含まず、粒度分布が非常に狭いものである。   The horizontal swirling jet mill of the present invention can be pulverized to a very fine particle size even if it is a relatively soft resin or solid organic compound. In addition, the product obtained by pulverization contains almost no ultrafine particles or coarse particles and has a very narrow particle size distribution.

従来例のジェットミルの縦断面図Vertical section of a conventional jet mill 実施形態1のジェットミル(ミル本体の上壁を開いた状態)の斜視図1 is a perspective view of a jet mill according to Embodiment 1 (in a state where an upper wall of the mill body is opened). 図2に示したジェットミルの横断面図Cross section of the jet mill shown in FIG. 図2に示したジェットミルの縦断面図Longitudinal section of the jet mill shown in FIG. 実施形態2のジェットミルの縦断面図Vertical sectional view of the jet mill of the second embodiment 実施形態3のジェットミルの縦断面図Vertical sectional view of the jet mill of the third embodiment 実施形態4のジェットミルの横断面図Cross section of jet mill of embodiment 4 実施形態4のジェットミルの縦断面図Longitudinal sectional view of the jet mill of the fourth embodiment 実施例のジェットミルによって粉砕された砕料の粒度分布を示す図The figure which shows the particle size distribution of the crushing material grind | pulverized by the jet mill of an Example. 比較例のジェットミルによって粉砕された砕料の粒度分布を示す図The figure which shows the particle size distribution of the crushing material grind | pulverized by the jet mill of the comparative example

1:ミル本体(10と11は上・下壁部、12と13は内筒・外筒)
2、102、202、302、402:排出筒
30、330:供給管
31、331:ホッパ
32:原料供給用ノズル
40、140、240、340、440:噴射ノズル
41、141、241、341、441:給気管
5、105、205、305:オリフィス状板(51:狭窄孔)
51、151、251、351:狭窄孔
6、106、206、306、406:下壁貫通孔
107、207:上壁貫通孔
108、208:外筒部材
a、1a、2a、3a、4a…主空洞(粉砕・分級室)
b、1b、2b、4b:副空洞(高圧ガス室)
H:ミル本体の下壁からミル本体の上壁までの距離
h:排出筒の高さ(ミル本体の下壁から排出筒の上端までの距離)
1: Mill body (10 and 11 are upper and lower wall parts, 12 and 13 are inner and outer cylinders)
2, 102, 202, 302, 402: Discharge tube 30, 330: Supply pipe 31, 331: Hopper 32: Raw material supply nozzle 40, 140, 240, 340, 440: Injection nozzle 41, 141, 241, 341, 441 : Air supply pipe 5, 105, 205, 305: Orifice plate (51: Stenosis hole)
51, 151, 251 and 351: Narrow hole 6, 106, 206, 306, 406: Lower wall through hole 107, 207: Upper wall through hole 108, 208: Outer cylinder member a, 1a, 2a, 3a, 4a ... main Cavity (grinding / classification room)
b, 1b, 2b, 4b: Sub cavity (high pressure gas chamber)
H: Distance from the lower wall of the mill body to the upper wall of the mill body h: Height of the discharge cylinder (distance from the lower wall of the mill body to the upper end of the discharge cylinder)

Claims (5)

略円盤状の空洞を有するミル本体と、該空洞に砕料を導入するための供給管と、前記空洞から砕料を取り出すための排出筒と、前記空洞に流体を噴出させ旋回流動を生じさせるための噴射手段とを備え、
前記排出筒は、前記空洞の上下を区画するミル本体の下壁の略中心に、該筒の上端が前記空洞の上下を区画するミル本体の上壁との間に隙間を保って縦に突設されており、
該筒の上端が狭窄孔を有するオリフィス状の板で塞がれており、且つ
砕料が該狭窄孔から筒の内腔を通って外部に排出されるようになっている、
水平旋回流型ジェットミル。
A mill main body having a substantially disk-shaped cavity, a supply pipe for introducing the crushed material into the cavity, a discharge cylinder for taking out the crushed material from the cavity, and a fluid is ejected into the cavity to generate a swirling flow. And injection means for
The discharge cylinder protrudes vertically at the approximate center of the lower wall of the mill body that defines the upper and lower sides of the cavity, with the upper end of the cylinder maintaining a gap between the upper wall of the mill body that defines the upper and lower sides of the cavity. Has been established,
The upper end of the cylinder is closed with an orifice-shaped plate having a narrow hole, and the crushed material is discharged from the narrow hole through the lumen of the cylinder to the outside.
Horizontal swirl type jet mill.
前記ミル本体と前記排出筒とによって前記空洞から略円環状の空間が区画され、該円環状空間内に砕料の粉砕を主に行うゾーンと砕料の分級を主に行うゾーンとが形成される、請求項1に記載の水平旋回流型ジェットミル。   A substantially annular space is defined from the cavity by the mill body and the discharge cylinder, and a zone for mainly pulverizing the crushed material and a zone for mainly classifying the crushed material are formed in the annular space. The horizontal swirling flow jet mill according to claim 1. 前記供給管の頭損失が前記排出筒の頭損失より大きい、請求項1または2に記載の水平旋回流型ジェットミル。   The horizontal swirling flow jet mill according to claim 1 or 2, wherein a head loss of the supply pipe is larger than a head loss of the discharge cylinder. 前記供給管の出口を排出筒の上方から外れた空洞内に設ける、請求項3に記載の水平旋回流型ジェットミル。   The horizontal swirl type jet mill according to claim 3, wherein an outlet of the supply pipe is provided in a cavity deviated from above the discharge cylinder. 噴射手段は高圧ガス室とラバールノズルとからなるものである、請求項1〜4のいずれか1項に記載の水平旋回流型ジェットミル。   The horizontal swirling flow type jet mill according to any one of claims 1 to 4, wherein the injection means comprises a high-pressure gas chamber and a Laval nozzle.
JP2009024762A 2009-02-05 2009-02-05 Horizontal swirl type jet mill Active JP5474363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009024762A JP5474363B2 (en) 2009-02-05 2009-02-05 Horizontal swirl type jet mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009024762A JP5474363B2 (en) 2009-02-05 2009-02-05 Horizontal swirl type jet mill

Publications (2)

Publication Number Publication Date
JP2010179238A JP2010179238A (en) 2010-08-19
JP5474363B2 true JP5474363B2 (en) 2014-04-16

Family

ID=42761195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009024762A Active JP5474363B2 (en) 2009-02-05 2009-02-05 Horizontal swirl type jet mill

Country Status (1)

Country Link
JP (1) JP5474363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360247B2 (en) 2013-05-28 2016-06-07 Lg Electronics Inc. Airtight container for refrigerator and refrigerator including the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20120635A1 (en) * 2012-04-17 2013-10-18 Micro Macinazione S A EQUIPMENT OF THE JET MILL TYPE FOR THE MICRONIZATION OF A DUSTY OR GENERAL MATERIAL CONTAINING PARTICLES, WITH A NEW SYSTEM FOR SUPPLYING AND DETERMINING THE DUSTY MATERIAL TO BE MICRONIZED, AND CORRESPONDING ITS PROCEDURE
CN108114793B (en) * 2017-12-13 2023-08-29 廊坊新龙立机械制造有限公司 Horizontal fluid bed jet mill
KR102312837B1 (en) * 2021-02-24 2021-10-13 유성운 Outlet structure for horizontal type ultra fine grinding apparatus
KR102312835B1 (en) * 2021-02-24 2021-10-13 유성운 Horizontal type ultra fine grinding apparatus
KR102312836B1 (en) * 2021-02-24 2021-10-13 유성운 Cooling structure for horizontal type ultra fine grinding apparatus
CN117680242B (en) * 2024-02-01 2024-05-24 新乡市大北农农牧有限责任公司 Multifunctional automatic feed grinder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210253A (en) * 1990-12-14 1992-07-31 Fuji Xerox Co Ltd Crushing method by jet mill
JP3831102B2 (en) * 1997-12-25 2006-10-11 日本ニューマチック工業株式会社 Jet crusher
JP4963548B2 (en) * 2006-01-27 2012-06-27 日本曹達株式会社 Jet mill
JP5269404B2 (en) * 2006-12-14 2013-08-21 日本曹達株式会社 Jet mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360247B2 (en) 2013-05-28 2016-06-07 Lg Electronics Inc. Airtight container for refrigerator and refrigerator including the same

Also Published As

Publication number Publication date
JP2010179238A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5474363B2 (en) Horizontal swirl type jet mill
JP3831102B2 (en) Jet crusher
JP6255681B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP3335312B2 (en) Jet mill
JP2007275849A (en) Jet mill and jet pulverizing method
JP4963548B2 (en) Jet mill
JP5790042B2 (en) Crusher and cylindrical adapter
JP4452587B2 (en) Jet mill
JP2012161722A (en) Pulverizing apparatus
JP4739877B2 (en) Jet mill
JP5269404B2 (en) Jet mill
JP5090944B2 (en) Jet mill with built-in classification mechanism
JP2018051474A (en) Dry pulverizer
JP7232662B2 (en) JET MILL AND METHOD OF CRUSTING CRUSHER USING JET MILL
JP2000140675A (en) Pulverizer
JPH07275732A (en) Crusher
JP2005118725A (en) Pulverization nozzle, feed nozzle, and jet mill provided with them, and method of crushing materials to be pulverized using the same
JPH0667492B2 (en) Jet airflow crusher
JP2000140674A (en) Pneumatic pulverizer
KR102312837B1 (en) Outlet structure for horizontal type ultra fine grinding apparatus
JP5267908B2 (en) Jet mill
JPH0649512A (en) Device for producing gas-atomized metal powder
KR20140121686A (en) Jet mill
JP2017176913A (en) Pulverizing device
JP2005296873A (en) Solid-gas mixing ejector and jet mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5474363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250