JP5472695B2 - Neutron shielding material, production method thereof, and neutron shielding material production stock - Google Patents

Neutron shielding material, production method thereof, and neutron shielding material production stock Download PDF

Info

Publication number
JP5472695B2
JP5472695B2 JP2009171091A JP2009171091A JP5472695B2 JP 5472695 B2 JP5472695 B2 JP 5472695B2 JP 2009171091 A JP2009171091 A JP 2009171091A JP 2009171091 A JP2009171091 A JP 2009171091A JP 5472695 B2 JP5472695 B2 JP 5472695B2
Authority
JP
Japan
Prior art keywords
mass
parts
component
neutron shielding
shielding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009171091A
Other languages
Japanese (ja)
Other versions
JP2011027460A (en
Inventor
篤彦 助川
義正 穴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2009171091A priority Critical patent/JP5472695B2/en
Publication of JP2011027460A publication Critical patent/JP2011027460A/en
Application granted granted Critical
Publication of JP5472695B2 publication Critical patent/JP5472695B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は柔軟性を有する耐熱性中性子遮蔽材、その製造方法に関する。   The present invention relates to a heat-resistant neutron shielding material having flexibility and a method for producing the same.

原子力施設、高エネルギー物理研究・医療を含むRI施設においては中性子遮蔽材により中性子の遮蔽が施されている。これら施設から放出される中性子はエネルギーが高く、人体に重大な傷害を与える。そのため、これら中性子を確実に遮蔽することが必要である。   In RI facilities including nuclear facilities and high energy physics research / medicine, neutrons are shielded by neutron shielding materials. Neutrons emitted from these facilities are high in energy and cause serious injury to the human body. Therefore, it is necessary to shield these neutrons reliably.

初期型原子力施設における施設の永年化対策としては、原子炉圧力容器周辺や配管部などの複雑形状部に中性子遮蔽材を追加設置する追加型中性子遮蔽材の使用が有効な対策の一つである。これらの器械、装置は、種類、性能に応じてそれぞれ厳格に放射線遮蔽が施されている。また、これらの装置を収容する管理区域構造体もそれぞれ性能に応じて中性子の遮蔽が施されている。   One of the effective countermeasures against the aging of facilities at the early nuclear facility is the use of an additional neutron shielding material that additionally installs a neutron shielding material around the complex shape of the reactor pressure vessel and piping. . These instruments and devices are rigorously shielded from radiation depending on the type and performance. In addition, each of the management area structures that contain these devices is shielded by neutrons according to performance.

この管理区域構造体の設計にあたり、中性子遮蔽に関しては遮蔽厚、遮蔽材の放射化、スカイシャイン、ダクトストリーミング、迷路・遮蔽扉の検討が重要な条件となっている。   In designing this controlled area structure, regarding neutron shielding, examination of shielding thickness, activation of shielding materials, skyshine, duct streaming, maze / shielding door is an important condition.

上記条件の内、遮蔽厚、遮蔽材の放射化、スカイシャインの条件に関しては一般にポリエチレンや蛇丈岩コンクリート等の十分な設計資料とその資材が有り、ほぼ満足すべき状態である。しかし、ダクトストリーミング及び迷路・遮蔽扉の2条件については現在十分な設計資料及びその資材が乏しい。特に、開閉部ストリーミングは避けられず、高価な2次、3次遮蔽を余儀なくされている。   Among the above conditions, there are generally sufficient design data and materials such as polyethylene and serpentine concrete regarding the shielding thickness, activation of the shielding material, and skyshine conditions, and the conditions are almost satisfactory. However, there are currently few sufficient design materials and materials for duct streaming and maze / shield doors. In particular, opening / closing part streaming is inevitable, and expensive secondary and tertiary shielding is unavoidable.

また、加速器・医療関係では、既存の施設を利用し、限られた空間で加速器の性能向上を図ることが求められており、追加型中性子遮蔽材の使用は有効手段の一つである。   In addition, in the accelerator / medical field, it is required to improve the performance of the accelerator in a limited space using existing facilities, and the use of an additional type neutron shielding material is one of the effective means.

本発明者の一人は、ダイマー酸ジグリシジルエステル系エポキシ樹脂と変性グリシジルエステル系エポキシ樹脂とを混合したエポキシ樹脂混合物と、アミノポリアミド硬化剤と、リチウム含有化合物と、ホウ素含有化合物と、水素含有化合物とを含む組成物を硬化させてなる可撓性中性子遮蔽材を発明し、既に特許出願を行っている(特許文献4)。   One of the inventors is an epoxy resin mixture in which a dimer acid diglycidyl ester epoxy resin and a modified glycidyl ester epoxy resin are mixed, an aminopolyamide curing agent, a lithium-containing compound, a boron-containing compound, and a hydrogen-containing compound. Invented a flexible neutron shielding material obtained by curing a composition containing and has already filed a patent application (Patent Document 4).

この可撓性中性子遮蔽材は、形状を自在に変形させることが可能である。そのため、シール材、ガスケット材、鋳込み用材等、広範囲での使用が可能である。しかし、この可撓性中性子遮蔽材は、常用140℃が限界であり、これよりも高い温度で使用することは出来ない。一方、原子炉の炉心近傍、配管周囲はかなり高温になる。そこで、高温下での使用に耐え、且つ形状を自在に変形させることのできる中性子遮蔽材が求められている。   This flexible neutron shielding material can be freely deformed in shape. Therefore, it can be used in a wide range of materials such as sealing materials, gasket materials, and casting materials. However, this flexible neutron shielding material has a limit of 140 ° C., and cannot be used at a temperature higher than this. On the other hand, the temperature in the vicinity of the reactor core and around the pipes is considerably high. Therefore, there is a need for a neutron shielding material that can withstand use at high temperatures and can be deformed freely.

また、このような中性子遮蔽材であって、施工現場において硬化前の中性子遮蔽材を施工箇所に注入し、その後硬化させることが出来るようにした中性子遮蔽材製造用ストックが求められている。   Further, there is a need for a neutron shielding material manufacturing stock that is such a neutron shielding material and that can be injected at a construction site before the neutron shielding material is cured and then cured.

特開2001−310929号公報JP 2001-310929 A 特開2003−50294号公報JP 2003-50294 A 特開2003−50295号公報JP 2003-50295 A 特願2009−76835号Japanese Patent Application No. 2009-76835

本発明の目的は、施工や加工が容易で、目的に応じて形状を自在に変形させることができ、かつ安価に提供でき、中性子遮蔽効果が高く、耐熱性の高い中性子遮蔽材及びその製造方法を提供することにある。   An object of the present invention is a neutron shielding material that is easy to construct and process, can be freely deformed according to the purpose, can be provided at low cost, has a high neutron shielding effect, and has high heat resistance, and a method for producing the same Is to provide.

本発明の他の目的は、施工現場でストックを混合することにより、上記中性子遮蔽材を製造することが出来る中性子遮蔽材製造用ストックを提供することにある。   Another object of the present invention is to provide a neutron shielding material manufacturing stock capable of producing the neutron shielding material by mixing the stock at a construction site.

本発明者らは上記課題について鋭意検討した結果、従来のエポキシ系の可撓性中性子遮蔽材の耐熱性が低い原因は、水素を補う目的で中性子遮蔽材中に添加する有機系の水素化合物に起因していることを見出した。そこで、この有機系の水素化合物に替るものを検討した。その結果、特定のエポキシ樹脂と特定の硬化剤とを所定割合で配合する樹脂マトリクスに中性子遮蔽成分を分散し、且つ水素化合物として無機物である水酸化アルミニウムを配合すると、中性子遮蔽材の柔軟性が保持されつつも、その耐熱性を向上させることができることを見出し、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have found that the reason for the low heat resistance of the conventional epoxy-based flexible neutron shielding material is the organic hydrogen compound added to the neutron shielding material for the purpose of supplementing hydrogen. I found out that it was caused. Therefore, an alternative to this organic hydrogen compound was examined. As a result, when a neutron shielding component is dispersed in a resin matrix in which a specific epoxy resin and a specific curing agent are blended at a predetermined ratio, and an aluminum hydroxide that is an inorganic substance is blended as a hydrogen compound, the flexibility of the neutron shielding material is increased. It was found that the heat resistance can be improved while being held, and the present invention has been completed.

上記課題を達成する本発明第一の発明は、以下に記載するものである。   The first invention of the present invention that achieves the above object is described below.

〔1〕
(成分A)
下記式(1)

Figure 0005472695
で示される変性グリシジルエステル系エポキシ樹脂(1)を70〜90質量部と、
下記式(2)
Figure 0005472695

で示されるビスフェノールA―エピクロルヒドリン重合物(2)10〜30質量部(但し、nは1〜50の整数である。)とを混合したエポキシ樹脂混合物100質量部と、
(B成分) 前記エポキシ樹脂混合物100質量部に対してアミノポリアミド硬化剤30〜40質量部と、
前記A成分とB成分との総量100質量部に対して
(C成分)リチウム含有化合物をリチウム元素として3〜7質量部と、
(D成分)ホウ素含有化合物をホウ素元素として1〜4質量部と、
(E成分)水酸化アルミニウムを水素元素として1〜5質量部と、
を含む組成物を硬化させる中性子遮蔽材。 [1]
(Component A)
Following formula (1)
Figure 0005472695
70 to 90 parts by mass of the modified glycidyl ester epoxy resin (1) represented by
Following formula (2)
Figure 0005472695

100 parts by mass of an epoxy resin mixture obtained by mixing 10 to 30 parts by mass of the bisphenol A-epichlorohydrin polymer (2) represented by the formula (where n is an integer of 1 to 50);
(Component B) 30 to 40 parts by mass of an aminopolyamide curing agent with respect to 100 parts by mass of the epoxy resin mixture,
3-7 parts by mass of (C component) lithium-containing compound as a lithium element with respect to 100 parts by mass of the total amount of component A and component B,
(Component D) 1-4 parts by mass of boron-containing compound as boron element,
(Component E) 1 to 5 parts by mass of aluminum hydroxide as a hydrogen element,
A neutron shielding material for curing a composition comprising:

本発明第一の発明には、以下に記載する発明も含む。   The first invention of the present invention includes the invention described below.

〔2〕
〔1〕に記載の中性子遮蔽材を含む中性子遮蔽用シート。
[2]
A neutron shielding sheet comprising the neutron shielding material according to [1].

〔3〕
〔1〕に記載の中性子遮蔽材を含む中性子遮蔽用充填材。
[3]
A neutron shielding filler comprising the neutron shielding material according to [1].

本発明第二の発明は、以下の記載するものである。   The second invention of the present invention will be described below.

〔4〕
(成分A)
下記式(1)

Figure 0005472695
で示される変性グリシジルエステル系エポキシ樹脂(1)を70〜90質量部と、
下記式(2)
Figure 0005472695
で示されるビスフェノールA―エピクロルヒドリン重合物(2)10〜30質量部(但し、nは1〜50の整数である。)とを混合してエポキシ樹脂混合物を得、該エポキシ樹脂混合物100質量部に対して、
(B成分)アミノポリアミド硬化剤30〜40質量部と、
前記A成分とB成分との総量100質量部に対して、
(C成分)リチウム含有化合物をリチウム元素として3〜7質量部と、
(D成分)ホウ素含有化合物をホウ素元素として1〜4質量部と、
(E成分)水酸化アルミニウムを水素元素として1〜5質量部と、
を混合後、硬化させる〔1〕に記載の中性子遮蔽材の製造方法。 [4]
(Component A)
Following formula (1)
Figure 0005472695
70 to 90 parts by mass of the modified glycidyl ester epoxy resin (1) represented by
Following formula (2)
Figure 0005472695
Is mixed with 10 to 30 parts by mass of the bisphenol A-epichlorohydrin polymer (2) (where n is an integer of 1 to 50) to obtain an epoxy resin mixture, and 100 parts by mass of the epoxy resin mixture for,
(Component B) 30-40 parts by mass of an aminopolyamide curing agent,
For a total amount of 100 parts by mass of the component A and component B,
(C component) 3-7 parts by mass of lithium-containing compound as lithium element,
(Component D) 1-4 parts by mass of boron-containing compound as boron element,
(Component E) 1 to 5 parts by mass of aluminum hydroxide as a hydrogen element,
The method for producing a neutron shielding material according to [1], wherein the neutron shielding material is cured after mixing.

本発明第三の発明は以下に記載するものである。   The third invention of the present invention is described below.

〔5〕
(成分A)
下記式(1)

Figure 0005472695
で示される変性グリシジルエステル系エポキシ樹脂(1)を70〜90質量部と、
下記式(2)
Figure 0005472695
で示されるビスフェノールA―エピクロルヒドリン重合物(2)を10〜30質量部(但し、nは1〜50の整数である。)とを混合したエポキシ樹脂混合物100質量部とからなる第1ストックと、
(B成分) 前記エポキシ樹脂混合物100質量部に対してアミノポリアミド硬化剤30〜40質量部とからなる第2ストックと、
前記A成分とB成分との総量100質量部に対して
(C成分)リチウム含有化合物をリチウム元素として3〜7質量部と、
(D成分)ホウ素含有化合物をホウ素元素として1〜4質量部と、
(E成分)水酸化アルミニウムを水素元素として1〜5質量部と、
を少なくとも前記第1ストック及び/又は第2ストックに含む中性子遮蔽材製造用ストック。 [5]
(Component A)
Following formula (1)
Figure 0005472695
70 to 90 parts by mass of the modified glycidyl ester epoxy resin (1) represented by
Following formula (2)
Figure 0005472695
A first stock comprising 100 parts by mass of an epoxy resin mixture obtained by mixing 10 to 30 parts by mass (where n is an integer of 1 to 50) of the bisphenol A-epichlorohydrin polymer (2) represented by
(B component) The 2nd stock which consists of 30-40 mass parts of amino polyamide hardening | curing agents with respect to 100 mass parts of said epoxy resin mixtures,
3-7 parts by mass of (C component) lithium-containing compound as a lithium element with respect to 100 parts by mass of the total amount of component A and component B,
(Component D) 1-4 parts by mass of boron-containing compound as boron element,
(Component E) 1 to 5 parts by mass of aluminum hydroxide as a hydrogen element,
A neutron shielding material manufacturing stock containing at least the first stock and / or the second stock.

本発明の中性子遮蔽材は柔軟性に優れており、容易に目的とする形状に成型することが出来る。この中性子遮蔽材は、例えば、遮蔽ブロックや各種の平板等に製造することが容易であり、形状の自由度が大きい。   The neutron shielding material of the present invention is excellent in flexibility and can be easily molded into a desired shape. This neutron shielding material can be easily manufactured, for example, on a shielding block or various flat plates, and has a high degree of freedom in shape.

本発明の中性子遮蔽材は、遮蔽材の水素原子密度を調整し、ボロン及びリチウム等を配合することにより、大きな熱中性子吸収断面積を与えると共に、2次γ線の発生を抑制して多種エネルギーの中性子の遮蔽効果を大きくできる。従って、原子力施設、RI施設、放射線医療施設及び加速器施設等の各施設、また計測機器類の放射線による雑音低減のためのコリメータ等、広範囲の中性子遮蔽材として有効に利用することができる。更に本遮蔽材は、耐熱性に優れるので、遮蔽材の適用環境が高温となる場所でも使用できる。   The neutron shielding material of the present invention provides a large thermal neutron absorption cross section by adjusting the hydrogen atom density of the shielding material and blending boron and lithium, etc. The neutron shielding effect can be increased. Therefore, it can be effectively used as a wide range of neutron shielding materials such as a nuclear facility, an RI facility, a radiation medical facility, an accelerator facility, and other facilities, and a collimator for reducing noise caused by radiation of measuring instruments. Furthermore, since this shielding material is excellent in heat resistance, it can be used in places where the application environment of the shielding material is high.

本遮蔽材は、柔軟性があるので、遮蔽箇所の形状に倣って遮蔽材を変形できる。即ち、物理的に組み合わせるだけで遮蔽材同士を密着させることが出来る。このため、接合剤や溶着作業が不要であり、施工が簡便である。   Since the shielding material is flexible, the shielding material can be deformed following the shape of the shielding part. That is, the shielding materials can be brought into close contact with each other only by physical combination. For this reason, a bonding agent and welding work are unnecessary, and construction is simple.

また、本発明の中性子遮蔽材製造用ストックは、ストックを混合するだけで容易に硬化を開始する。よって、中性子遮蔽材を施工箇所や補修箇所に注入した後に硬化させることにより、遮蔽箇所の形状に倣って中性子遮蔽材を充填することが可能である。   Moreover, the neutron shielding material manufacturing stock of the present invention can be easily cured simply by mixing the stock. Therefore, it is possible to fill the neutron shielding material in accordance with the shape of the shielding part by injecting the neutron shielding material into the construction part or the repairing part and then hardening it.

実施例1で製造した中性子遮蔽材の耐熱性試験の結果を表すグラフである。2 is a graph showing the results of a heat resistance test of a neutron shielding material manufactured in Example 1. FIG.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

〈中性子遮蔽材〉
従来から、中性子遮蔽材としてエポキシ樹脂が用いられている。一般にエポキシ樹脂の水素含有量が低いほど耐熱性が優れ、水素含有量が高いほど耐熱性に劣る傾向がある。
<Neutron shielding material>
Conventionally, an epoxy resin has been used as a neutron shielding material. Generally, the lower the hydrogen content of the epoxy resin, the better the heat resistance, and the higher the hydrogen content, the poorer the heat resistance.

中性子はホウ素によって吸収されるところ、ホウ素が中性子を吸収するためには、中性子が減速されていることが必要である。水素は中性子を減速させる物質として最適である。   Neutrons are absorbed by boron, and in order for boron to absorb neutrons, the neutrons must be decelerated. Hydrogen is the best material to slow down neutrons.

中性子遮蔽材に柔軟性を付与し、且つ耐熱性を高め、水素含有量を増やして中性子を効果的に減速させるためには、エポキシ樹脂と硬化剤と水素化合物との組合せが重要であることを本発明者は見出した。   The combination of epoxy resin, curing agent, and hydrogen compound is important to impart flexibility to neutron shielding materials, increase heat resistance, increase hydrogen content, and effectively slow down neutrons. The inventor found.

本発明の中性子遮蔽材は、少なくとも下記のA〜Eの各成分を原料とし、これらを混合することにより硬化させてなる。本発明においては、下記式(1)、式(2)の2種類のエポキシ樹脂を組合わせ(A成分)、下記式(3)の硬化剤(B成分)と混合することにより、柔軟性のある中性子遮蔽材のマトリクス樹脂が得られる。また、この組合せにより得られるマトリクス樹脂は、水酸化アルミニウムを所要量加えても、得られる中性子遮蔽材の柔軟性が失われない。   The neutron shielding material of the present invention is cured by mixing at least the following components A to E as raw materials. In the present invention, two types of epoxy resins of the following formula (1) and formula (2) are combined (component A) and mixed with a curing agent (component B) of the following formula (3). A matrix resin of a certain neutron shielding material is obtained. Further, the matrix resin obtained by this combination does not lose the flexibility of the obtained neutron shielding material even when a required amount of aluminum hydroxide is added.

また、中性子遮蔽材としてLi化合物(C成分)とホウ素系化合物(D成分)と水素化合物(E成分)とをマトリクス樹脂中に添加する。水素化合物として水酸化アルミニウムを用いることにより、中性子遮蔽材の耐熱性の低下を防ぐ。   Moreover, Li compound (C component), a boron-type compound (D component), and a hydrogen compound (E component) are added in matrix resin as a neutron shielding material. By using aluminum hydroxide as the hydrogen compound, a decrease in heat resistance of the neutron shielding material is prevented.

〈A成分〉
A成分は、本中性子遮蔽材の基材マトリックスを構成するエポキシ樹脂である。A成分は、下記式(1)で示される変性グリシジルエステル系エポキシ樹脂と、下記式(2)で示されるビスフェノールA―エピクロルヒドリン重合物との混合物である。
<A component>
Component A is an epoxy resin that constitutes the base material matrix of the neutron shielding material. The component A is a mixture of a modified glycidyl ester epoxy resin represented by the following formula (1) and a bisphenol A-epichlorohydrin polymer represented by the following formula (2).

Figure 0005472695
Figure 0005472695


Figure 0005472695
Figure 0005472695


式(2)のビスフェノールA−エピクロルヒドリン重合物は、BPAA−ECH型エポキシ骨格中にダイマー酸構造を持つ。nは、1〜50の整数で、2〜30が好ましく、3〜20がより好ましい。   The bisphenol A-epichlorohydrin polymer of the formula (2) has a dimer acid structure in the BPAA-ECH type epoxy skeleton. n is an integer of 1 to 50, preferably 2 to 30, and more preferably 3 to 20.

式(1)の変性グリシジルエステル系エポキシ樹脂と、式(2)のビスフェノールA―エピクロルヒドリン重合物との混合割合は、質量基準で以下の割合である。混合割合は、式(1)のエポキシ樹脂70〜90質量部に対して、式(2)のエポキシ樹脂は10〜30質量部が好ましく、式(1)のエポキシ樹脂75〜85質量部に対して、式(2)のエポキシ樹脂は15〜25質量部がより好ましい。   The mixing ratio of the modified glycidyl ester epoxy resin of the formula (1) and the bisphenol A-epichlorohydrin polymer of the formula (2) is the following ratio on a mass basis. The mixing ratio is preferably 70 to 90 parts by mass of the epoxy resin of the formula (1), preferably 10 to 30 parts by mass of the epoxy resin of the formula (2), and 75 to 85 parts by mass of the epoxy resin of the formula (1). The epoxy resin of formula (2) is more preferably 15 to 25 parts by mass.

〈B成分〉
前記エポキシ樹脂の混合物には、B成分として、この樹脂を硬化させるための硬化剤が配合される。硬化剤としては、下記式(3)で示されるアミノポリアミドを用いる。このアミノポリアミドを用いて上記A成分を硬化させると、得られる中性子遮蔽材が柔軟性を有する。アミノポリアミドは1分子中に水素が多く含まれている。そのため、マトリクス樹脂に水素を補う役割も併せ持つ。
<B component>
The epoxy resin mixture is blended with a curing agent for curing the resin as component B. As the curing agent, an aminopolyamide represented by the following formula (3) is used. When the A component is cured using this amino polyamide, the resulting neutron shielding material has flexibility. Aminopolyamide contains a lot of hydrogen in one molecule. Therefore, it also has a role of supplementing the matrix resin with hydrogen.

硬化剤の配合量は、A成分の100質量部に対して30〜40質量部で、34〜36質量部がより好ましい。   The compounding quantity of a hardening | curing agent is 30-40 mass parts with respect to 100 mass parts of A component, and 34-36 mass parts is more preferable.

Figure 0005472695
Figure 0005472695

〈C成分〉
本中性子遮蔽材は、リチウム含有化合物を、リチウム元素として、A成分とB成分との総量100質量部に対して3〜7質量部、好ましくは4.5〜5.5質量部含有する。リチウム含有化合物を5.5質量部を超えて配合しても良いが、高価な為コスト面で不利となる。
<C component>
This neutron shielding material contains a lithium-containing compound as a lithium element in an amount of 3 to 7 parts by mass, preferably 4.5 to 5.5 parts by mass with respect to 100 parts by mass as a total of component A and component B. The lithium-containing compound may be blended in an amount exceeding 5.5 parts by mass, but is expensive and disadvantageous.

リチウム含有化合物としては、特に制限がないが、水酸化リチウム、水素化リチウム等が例示される。   Although there is no restriction | limiting in particular as a lithium containing compound, Lithium hydroxide, lithium hydride, etc. are illustrated.

一般的に、高速中性子の遮へい方法は、先ず鉄等の非弾性散乱断面積の大きい物質により散乱され、その中性子は中速中性子に減速される。C成分のリチウム含有化合物は、熱中性子に対する吸収断面積が比較的大きいので、この中速中性子を熱中性子までに減速させる為に配合する。   In general, in the fast neutron shielding method, first, a material having a large inelastic scattering cross section such as iron is scattered, and the neutron is decelerated to a medium speed neutron. Since the lithium-containing compound of component C has a relatively large absorption cross section for thermal neutrons, it is blended in order to decelerate the medium speed neutrons to thermal neutrons.

リチウム含有化合物は、どの様な形状であっても良いが、マトリクス樹脂内に均一に分散させて高い遮蔽作用を得るためには粉末形態が好ましい。リチウム含有化合物粉末の平均粒子径は50μm以下が好ましい。   The lithium-containing compound may have any shape, but a powder form is preferable in order to obtain a high shielding action by being uniformly dispersed in the matrix resin. The average particle size of the lithium-containing compound powder is preferably 50 μm or less.

〈D成分〉
本中性子遮蔽材には、中速中性子を減速させた熱中性子を吸収するために、放射捕獲断面積が大きく、且つ2次γ線を出さないか、又は出してもエネルギーの低いホウ素含有化合物を添加する。ホウ素含有化合物としては、ボロンカーバイト(BC)、コレマナイト(Ca11・5HO)、酸化ボロン、珊砂、BORAX(Na・10HOの化学式を主成分とする鉱物)等が好ましく、これらを混合し、又は単独で配合する。
<D component>
This neutron shielding material is made of a boron-containing compound that has a large radiation capture cross section and does not emit secondary γ-rays or has low energy even though it absorbs thermal neutrons decelerated from medium-speed neutrons. Added. The boron-containing compounds, boron carbide (B 4 C), colemanite (Ca 2 B 6 O 11 · 5H 2 O), boron oxide,珊砂, the BORAX (Na 2 B 4 O 7 · 10H 2 O in the formula Minerals as main components) are preferred, and these are mixed or blended alone.

本中性子遮蔽材には、ホウ素含有化合物を、A成分とB成分との総量100質量部に対して、ホウ素元素として1〜4質量部、好ましくは2〜3質量部含有する。1質量部未満では得られる中性子遮蔽材の中性子遮蔽能が低くなる。4質量部を超える配合も可能であるが、有効断面積に効果のあるホウ素含有化合物の割合が実質的に4質量部を超えて配合しても効力は平衡状態に達し、コスト的にも無意味である。   In the present neutron shielding material, the boron-containing compound is contained in an amount of 1 to 4 parts by mass, preferably 2 to 3 parts by mass as a boron element with respect to 100 parts by mass of the total amount of the A component and the B component. If it is less than 1 part by mass, the neutron shielding ability of the obtained neutron shielding material is lowered. A compounding amount exceeding 4 parts by mass is possible, but even if the proportion of the boron-containing compound effective for the effective area is substantially exceeding 4 parts by mass, the efficacy reaches an equilibrium state and there is no cost. Meaning.

上記のホウ素化合物は、どの様な形態であっても良いが、エポキシ樹脂内に均一に分散させて高い遮蔽作用を得るためには粉末形態が好ましい。ホウ素化合物粉末の平均粒子径は50μm以下が好ましい。   The boron compound may be in any form, but a powder form is preferable in order to obtain a high shielding action by uniformly dispersing in the epoxy resin. The average particle size of the boron compound powder is preferably 50 μm or less.

〈E成分〉
本中性子遮蔽材には、水素含有化合物として水酸化アルミニウムを、A成分とB成分との総量100質量部に対して、水素元素として1〜5質量部、好ましくは2.5〜3.5質量部含有する。5質量部を超えて添加すると、硬化前の遮蔽材製造原料の粘度が高くなり、成形が難しくなるので望ましくない。
<E component>
In the present neutron shielding material, aluminum hydroxide is used as a hydrogen-containing compound, and 1 to 5 parts by mass, preferably 2.5 to 3.5 parts by mass as a hydrogen element, with respect to 100 parts by mass as a total of component A and component B. Contains. If the amount exceeds 5 parts by mass, the viscosity of the raw material for producing the shielding material before curing is increased, which makes it difficult to mold.

水素原子は、減速された中性子の中に若干混在する速中性子と、大部分の0.5MeV以下の中、低速中性子を、水素を含む物質中を拡散して行く間に弾性散乱により減速させ、熱中性子にすると共に、水素原子及びその他の元素により中性子を捕獲吸収させる。   Hydrogen atoms decelerate the fast neutrons slightly mixed in the decelerated neutrons and the slow neutrons in the majority of 0.5 MeV or less by elastic scattering while diffusing in the substance containing hydrogen, In addition to thermal neutrons, neutrons are captured and absorbed by hydrogen atoms and other elements.

中性子遮蔽材に添加する水素含有化合物としては、分子内における水素元素含有量が高い水添脂環族系炭化水素樹脂が従来から用いられている。しかし、水添脂環族系炭化水素樹脂を用いると140℃を超える辺りから徐々に水添脂環族系炭化水素樹脂が分解し、中性子遮蔽能が低下していく傾向が見られる。そのため、水添脂環族系炭化水素を用いる中性子遮蔽材は耐熱性が十分なものではなかった。本発明における水素化合物は、中性子遮蔽材の耐熱性を向上させるために、水酸化アルミニウムを用いる。なお、水酸化アルミニウムは中性子に対しても比較的安定である。水酸化アルミニウムはどの様な形状であっても良いが、マトリクス樹脂内に均一に分散させて高い遮蔽作用を得るためには粉末形態が好ましい。水酸化アルミニウム粉末の平均粒子径は50μm以下が好ましい。   As a hydrogen-containing compound added to the neutron shielding material, a hydrogenated alicyclic hydrocarbon resin having a high content of hydrogen element in the molecule has been conventionally used. However, when a hydrogenated alicyclic hydrocarbon resin is used, the hydrogenated alicyclic hydrocarbon resin gradually decomposes from around 140 ° C., and the neutron shielding ability tends to decrease. Therefore, the neutron shielding material using hydrogenated alicyclic hydrocarbons has not been sufficiently heat resistant. The hydrogen compound in the present invention uses aluminum hydroxide in order to improve the heat resistance of the neutron shielding material. Aluminum hydroxide is relatively stable against neutrons. The aluminum hydroxide may have any shape, but a powder form is preferable in order to obtain a high shielding action by uniformly dispersing in the matrix resin. The average particle diameter of the aluminum hydroxide powder is preferably 50 μm or less.

〈中性子遮蔽材の製造方法〉
本発明の中性子遮蔽材は、上記各成分を混合することにより、硬化させて製造される。混合順序は問わない。
<Manufacturing method of neutron shielding material>
The neutron shielding material of the present invention is produced by curing by mixing the above components. The order of mixing does not matter.

具体的には、上記各成分は攪拌混合され、必要により用意された型枠に充填された後、硬化剤の作用で重合反応が開始され、自然に硬化反応が進む。通常20℃の常温で20〜30時間、30℃の下で10〜20時間で硬化する。その後、型枠から離型することにより、製品が得られる。   Specifically, each of the above components is stirred and mixed and, if necessary, filled in a prepared mold, a polymerization reaction is started by the action of a curing agent, and the curing reaction proceeds spontaneously. Usually, it is cured at a room temperature of 20 ° C. for 20 to 30 hours and at 30 ° C. for 10 to 20 hours. Then, a product is obtained by releasing from the mold.

上記工程において、基材マトリックス調製時や、型枠に充填時等に、常法による真空脱泡を行うことが好ましい。   In the above step, it is preferable to perform vacuum defoaming by a conventional method at the time of preparing the base matrix or filling the mold.

離型された製品は必要に応じて切断、開孔、接合等の仕上加工を施し、目的に応じた形状の中性子遮蔽材が得られる。   The released product is subjected to finishing processes such as cutting, opening and joining as necessary, and a neutron shielding material having a shape suitable for the purpose is obtained.

本発明の中性子遮蔽材の具体的製品形態としては、中性子遮蔽用シート、中性子遮蔽用パッキング、中性子遮蔽用充填材、中性子遮蔽用ブロック等が例示される。   Specific product forms of the neutron shielding material of the present invention include a neutron shielding sheet, a neutron shielding packing, a neutron shielding filler, a neutron shielding block, and the like.

本発明の中性子遮蔽材には、上記(A)〜(E)成分が必須であるが、本発明の目的を損なわない範囲で、エポキシ樹脂の硬化促進剤や染料等の各種添加剤が配合されていても良い。   In the neutron shielding material of the present invention, the above components (A) to (E) are essential, but various additives such as epoxy resin curing accelerators and dyes are blended as long as the object of the present invention is not impaired. May be.

〈中性子遮蔽材製造用ストック〉
本発明の、中性子遮蔽材製造用ストックは、
(成分A)
式(1)で示されるエポキシ樹脂(1)を70〜90質量部、好ましくは75〜85質量部と、
式(2)で示されるエポキシ樹脂(2)10〜30質量部、好ましくは15〜25質量部とを混合したエポキシ樹脂混合物からなる第1ストックと、
(B成分)
上記式(1)と式(2)とのエポキシ樹脂混合物100質量部に対して、アミノポリアミド硬化剤30〜40質量部、好ましくは34〜36質量部からなる第2ストックと、
前記A成分とB成分との総量100質量部に対して
(C成分)
リチウム含有化合物を、リチウム元素として3〜7質量部、好ましくは4.5〜5.5質量部と、
(D成分)
ホウ素化合物を、ホウ素元素として1〜4質量部、好ましくは2〜3質量部と、
(E成分)
水酸化アルミニウムを水素元素として1〜5質量部、好ましくは2.5〜3.5質量部と、
を少なくとも前記第1ストック及び/又は第2ストックに含む中性子遮蔽材製造用ストックである。
<Neutron shielding material manufacturing stock>
The neutron shielding material production stock of the present invention is
(Component A)
70 to 90 parts by mass, preferably 75 to 85 parts by mass of the epoxy resin (1) represented by the formula (1),
A first stock comprising an epoxy resin mixture in which 10 to 30 parts by mass, preferably 15 to 25 parts by mass of the epoxy resin (2) represented by the formula (2) is mixed;
(B component)
A second stock consisting of 30 to 40 parts by weight, preferably 34 to 36 parts by weight of an aminopolyamide curing agent, with respect to 100 parts by weight of the epoxy resin mixture of the above formulas (1) and (2);
For 100 parts by mass of the total amount of component A and component B (component C)
3-7 parts by mass of lithium-containing compound as lithium element, preferably 4.5-5.5 parts by mass,
(D component)
1 to 4 parts by mass, preferably 2 to 3 parts by mass of boron compound as boron element,
(E component)
1 to 5 parts by mass, preferably 2.5 to 3.5 parts by mass of aluminum hydroxide as a hydrogen element,
Is a neutron shielding material manufacturing stock containing at least the first stock and / or the second stock.

更に、本ストックは、前記その他の成分を適宜含有していても良い。   Furthermore, this stock may contain the said other component suitably.

A〜E成分は、上述した中性子遮蔽材のA〜E成分と同じ成分、配合量であるので、その説明を省略する。C〜E成分は、第1ストック、又は第2ストックのどちらに配合されていてもよい。または、C〜E成分のそれぞれが第1ストックと第2ストックとの両方に配合されていても良い。   Since the A to E components are the same components and blending amounts as the A to E components of the neutron shielding material described above, the description thereof is omitted. The C to E components may be blended in either the first stock or the second stock. Or each of C-E component may be mix | blended with both the 1st stock and the 2nd stock.

これらのストックは、中性子遮蔽材の製造原料である。A成分とB成分とを混合する、即ち第1ストックと第2ストックとを混合すると硬化を開始する。従って、本ストックは、中性子遮蔽材を製造するときまで、原材料を保存しておく場合に有効である。また、第1ストックと第2ストックとを混合後、硬化が終了するまでの間の未硬化中性子遮蔽材を施工箇所に注入し、その後硬化させる施工方法が可能である。本ストックを用いて中性子遮蔽材を製造する工程は、上記製造方法と同様である。   These stocks are raw materials for producing neutron shielding materials. When the A component and the B component are mixed, that is, when the first stock and the second stock are mixed, curing starts. Therefore, this stock is effective when the raw material is preserved until the neutron shielding material is manufactured. Moreover, after mixing a 1st stock and a 2nd stock, the construction method which inject | pours into a construction location the unhardened neutron shielding material until hardening is complete | finished is possible. The process of manufacturing a neutron shielding material using this stock is the same as the above manufacturing method.

このようにして製造した本発明の中性子遮蔽材は柔軟で弾性を有する。例えば、厚さ8mm、長さ10cm、幅3cmの板状に形成した本遮蔽材は、直径3cmの環状に形成でき、かつ時間の経過と共に元の板状に復元する。   The neutron shielding material of the present invention thus produced is flexible and elastic. For example, this shielding material formed in a plate shape having a thickness of 8 mm, a length of 10 cm, and a width of 3 cm can be formed into a ring shape having a diameter of 3 cm, and is restored to the original plate shape over time.

(実施例1)
A成分としては、式(1)で示される変性グリシジルエステル系エポキシ樹脂(東都化成(株)製、商品名YD−171)80質量部と、式(2)で示されるビスフェノールA―エピクロルヒドリン重合物(東都化成(株)製、商品名YD−118)を20質量部とを混合したエポキシ樹脂混合物を用いた。B成分としては、式(3)で示されるアミノポリアミド(東都化成(株)製、商品名G−625)を用いた。C成分としては水酸化リチウム(LiOH)、D成分としてはコレマナイト(Ca11・5HO)、E成分としては水酸化アルミニウム(Al(OH)・5HO)を用いた。これらのC、D、E成分はいずれも粒子径が直径50μm以下の粉末であった。
Example 1
As component A, 80 parts by mass of a modified glycidyl ester epoxy resin represented by formula (1) (trade name YD-171, manufactured by Toto Kasei Co., Ltd.) and a bisphenol A-epichlorohydrin polymer represented by formula (2) An epoxy resin mixture obtained by mixing 20 parts by mass (trade name YD-118, manufactured by Toto Kasei Co., Ltd.) was used. As the component B, an aminopolyamide represented by formula (3) (manufactured by Toto Kasei Co., Ltd., trade name G-625) was used. C The component of lithium hydroxide (LiOH), D as the component colemanite (Ca 2 B 6 O 11 · 5H 2 O), as the E component using aluminum hydroxide (Al (OH) 3 · 5H 2 O) . All of these C, D, and E components were powders having a particle diameter of 50 μm or less.

A成分42質量部にC成分10質量部、D成分8質量部、E成分25質量部を加えて混練し、B成分15質量部を加えて更に混練した。なお、この配合は、A成分とB成分との総量を100質量部とした場合、C成分はリチウム元素として5.1質量部に相当する。D成分はホウ素元素として2.2質量部に相当する。E成分は水素元素として3.4質量部に相当する。この配合組成物を、厚さ8mm、長さ10cm、幅3cmの板状の型に充填し、30℃で12時間放置し、硬化させることにより中性子遮蔽材aを得た。この厚さ8mm、長さ10cm、幅3cmの板状の中性子遮蔽材aは、直径3cmの環状に形成でき、かつ時間の経過と共に元の板状に復元した。   To 42 parts by mass of A component, 10 parts by mass of C component, 8 parts by mass of D component and 25 parts by mass of E component were added and kneaded, and 15 parts by mass of B component was added and further kneaded. In addition, this mixing | blending is equivalent to 5.1 mass parts as a lithium element, when the total amount of A component and B component is 100 mass parts. The D component corresponds to 2.2 parts by mass as a boron element. The E component corresponds to 3.4 parts by mass as a hydrogen element. The blended composition was filled into a plate-shaped mold having a thickness of 8 mm, a length of 10 cm, and a width of 3 cm, left at 30 ° C. for 12 hours, and cured to obtain a neutron shielding material a. The plate-like neutron shielding material a having a thickness of 8 mm, a length of 10 cm, and a width of 3 cm can be formed into an annular shape having a diameter of 3 cm, and has been restored to the original plate shape over time.

(比較例1)
樹脂マトリクス成分(実施例1のA成分に相当)としては、式(4)で示される変性グリシジルエステル系エポキシ樹脂(東都化成(株)製、商品名YD−171)70質量部と、式(2)で示されるビスフェノールA―エピクロルヒドリン重合物(東都化成(株)製、商品名YD−118)を30質量部とを混合したエポキシ樹脂混合物を用いた。
(Comparative Example 1)
As a resin matrix component (corresponding to the component A in Example 1), 70 parts by mass of a modified glycidyl ester epoxy resin represented by formula (4) (trade name YD-171, manufactured by Tohto Kasei Co., Ltd.) An epoxy resin mixture obtained by mixing 30 parts by mass of the bisphenol A-epichlorohydrin polymer (trade name YD-118, manufactured by Toto Kasei Co., Ltd.) shown in 2) was used.

この樹脂マトリクス成分100質量部に、硬化剤(実施例1のB成分に相当)として、式(3)で示されるアミノポリアミド(東都化成(株)製、商品名G−625)を45質量部、中性子遮蔽成分(実施例1のC〜E成分に相当)として、水酸化リチウム(LiOH)を20質量部、コレマナイト(Ca11・5HO)を25質量部、水添脂環族炭化水素(ペンテングリコール(丸善石油化学(株)製 水添マルカレッツ))を24質量部を加えた。他に水酸化アルミニウム(Al(OH)・5HO)25質量部を加えて、混練機で混練した。この配合組成物を、厚さ8mm、長さ10cm、幅3cmの板状の型に充填し、室温で12時間放置し、硬化させることにより中性子遮蔽材bを得た。この中性子遮蔽材bは、140℃でほぼ分解し、不適当であった。
To 100 parts by mass of this resin matrix component, 45 parts by mass of aminopolyamide represented by formula (3) (trade name G-625, manufactured by Tohto Kasei Co., Ltd.) as a curing agent (corresponding to component B of Example 1). , as a neutron shielding component (corresponding to C~E ingredients of example 1), 20 parts by weight of lithium hydroxide (LiOH), colemanite (Ca 2 B 6 O 11 · 5H 2 O) and 25 parts by weight, of water添脂24 parts by mass of a cyclic hydrocarbon (pentene glycol (hydrogenated Marcaretz manufactured by Maruzen Petrochemical Co., Ltd.)) was added. In addition, 25 parts by mass of aluminum hydroxide (Al (OH) 3 .5H 2 O) was added and kneaded with a kneader. The blended composition was filled into a plate-shaped mold having a thickness of 8 mm, a length of 10 cm, and a width of 3 cm, and allowed to stand at room temperature for 12 hours and cured to obtain a neutron shielding material b. This neutron shielding material b was unsuitable because it almost decomposed at 140 ° C.

Figure 0005472695
Figure 0005472695


得られた中性子遮蔽材aは下記の通り評価した。   The obtained neutron shielding material a was evaluated as follows.

(耐熱性試験)上記のように製造した中性子遮蔽材の耐熱温度の目安として、熱重量・示差熱同時分析(TG/DTA)法により分解点を求めた。結果を図1に示す。  (Heat resistance test) As a measure of the heat resistance temperature of the neutron shielding material produced as described above, the decomposition point was determined by the thermogravimetric / differential thermal analysis (TG / DTA) method. The results are shown in FIG.

温度を徐々に上げながら、熱分解による中性子遮蔽樹脂材の重量減少を測定した。測定結果から、分解開始点は200℃で、変曲点の接線を延長させた交点(分解点)は281℃であった。   While gradually raising the temperature, the weight loss of the neutron shielding resin material due to thermal decomposition was measured. From the measurement results, the decomposition start point was 200 ° C., and the intersection (decomposition point) obtained by extending the tangent of the inflection point was 281 ° C.

(耐放射線試験)日本原子力開発機構の研究用原子炉JRR−3で照射試験(中性子束4.7×1013n/cmsec、照射時間30sec)を行ったところ、柔軟性、耐熱性は変化しなかった。 (Radiation resistance test) When an irradiation test (neutron flux 4.7 × 10 13 n / cm 2 sec, irradiation time 30 sec) was performed in the research reactor JRR-3 of the Japan Atomic Energy Agency, flexibility and heat resistance were It did not change.

(長期耐熱性試験)熱重量・示差熱同時分析法により、温度250℃で3ヶ月間の長期耐熱性試験を行ったところ、30質量%の減少がみられた。  (Long-term heat resistance test) When a long-term heat resistance test was carried out at a temperature of 250 ° C. for 3 months by the simultaneous thermogravimetric / differential thermal analysis method, a decrease of 30% by mass was observed.

(実施例2)
原料として実施例1と同じものを用いて中性子遮蔽材製造用シートを調製した。A成分42質量部にC成分10質量部、D成分8質量部、E成分25質量部を加えて混練し、B成分15質量部を加えて更に混練した。この配合組成物を、型に充填し、室温で12時間放置し、硬化させることにより、300×300×5mmのシート状の中性子遮蔽材cを得た。この中性子遮蔽材cは実施例1の中性子遮蔽材aと比較して耐熱性、柔軟性及び長期耐熱性は何ら異ならなかった。
(Example 2)
A sheet for producing a neutron shielding material was prepared using the same raw material as in Example 1. To 42 parts by mass of A component, 10 parts by mass of C component, 8 parts by mass of D component and 25 parts by mass of E component were added and kneaded, and 15 parts by mass of B component was added and further kneaded. The blended composition was filled into a mold, left at room temperature for 12 hours, and cured to obtain a sheet-like neutron shielding material c of 300 × 300 × 5 mm. This neutron shielding material c was not different from the neutron shielding material a of Example 1 in heat resistance, flexibility and long-term heat resistance.

(実施例3)
原料として実施例1と同じものを用いて中性子遮蔽材製造用ストックを調製した。まず、A成分42質量部にC成分10質量部、D成分8質量部、E成分25質量部を加えて混練して第1ストックを得た。B成分15質量部を第2ストックとした。この第1ストックと第2ストックとをそれぞれ室温で密閉保管したところ、少なくとも6月間は実質的に性状が変化しなかった。この第1ストックと第2ストックとを上記割合で混練して均一とした後、型に充填し、室温で12時間放置し、硬化させることにより、中性子遮蔽材dを得た。この中性子遮蔽材dは実施例1の中性子遮蔽材aと比較して耐熱性、柔軟性及び長期耐熱性は何ら異ならなかった。
(Example 3)
A neutron shielding material production stock was prepared using the same raw material as in Example 1. First, 10 parts by mass of C component, 8 parts by mass of D component, and 25 parts by mass of E component were added to 42 parts by mass of A component and kneaded to obtain a first stock. 15 parts by mass of component B was used as the second stock. When the first stock and the second stock were stored sealed at room temperature, the properties did not change substantially for at least 6 months. The first stock and the second stock were kneaded at the above ratio to be uniform, then filled in a mold, left at room temperature for 12 hours, and cured to obtain a neutron shielding material d. This neutron shielding material d was not different from the neutron shielding material a of Example 1 in heat resistance, flexibility and long-term heat resistance.

(実施例4)
実施例3で得た第1ストックと第2ストックとを実施例1の割合で混練して均一とし、中性子遮蔽用充填材を得た。この中性子遮蔽充填材を2枚の硬質の中性子遮蔽板の継目に充填した後、室温で12時間放置して硬化させた。この中性子遮蔽用充填材は実施例1の中性子遮蔽材aと比較して耐熱性、柔軟性及び長期耐熱性は何ら異ならなかった。
Example 4
The first stock and the second stock obtained in Example 3 were kneaded and uniformed at the ratio of Example 1 to obtain a neutron shielding filler. The neutron shielding filler was filled in the seam of two hard neutron shielding plates, and then allowed to harden for 12 hours at room temperature. This neutron shielding filler was not different from the neutron shielding material a of Example 1 in heat resistance, flexibility and long-term heat resistance.

Claims (5)

(成分A)
下記式(1)
Figure 0005472695
で示される変性グリシジルエステル系エポキシ樹脂(1)を70〜90質量部と、
下記式(2)
Figure 0005472695
で示されるビスフェノールA―エピクロルヒドリン重合物(2)10〜30質量部(但し,nは1〜50の整数である。)とを混合したエポキシ樹脂混合物100質量部と、
(B成分) 前記エポキシ樹脂混合物100質量部に対してアミノポリアミド硬化剤30〜40質量部と、
前記A成分とB成分との総量100質量部に対して
(C成分)リチウム含有化合物に含有されるリチウム元素の配合量として3〜7質量部と、
(D成分)ホウ素含有化合物に含有されるホウ素元素の配合量として1〜4質量部と、
(E成分)水酸化アルミニウムに含有される水素元素の配合量として1〜5質量部と、
を含む組成物を硬化させる中性子遮蔽材。
(Component A)
Following formula (1)
Figure 0005472695
70 to 90 parts by mass of the modified glycidyl ester epoxy resin (1) represented by
Following formula (2)
Figure 0005472695
100 parts by mass of an epoxy resin mixture obtained by mixing 10 to 30 parts by mass of the bisphenol A-epichlorohydrin polymer (2) represented by the formula (where n is an integer of 1 to 50);
(Component B) 30 to 40 parts by mass of an aminopolyamide curing agent with respect to 100 parts by mass of the epoxy resin mixture,
3-7 parts by mass as the amount of lithium element contained in the lithium-containing compound (component C) with respect to 100 parts by mass of the total amount of component A and component B,
(D component) 1-4 mass parts as a compounding quantity of the boron element contained in a boron containing compound,
(Component E) 1 to 5 parts by mass as the amount of hydrogen element contained in the aluminum hydroxide,
A neutron shielding material for curing a composition comprising:
請求項1に記載の中性子遮蔽材を含む中性子遮蔽用シート。     A neutron shielding sheet comprising the neutron shielding material according to claim 1. 請求項1に記載の中性子遮蔽材を含む中性子遮蔽用充填材。     A neutron shielding filler comprising the neutron shielding material according to claim 1. (成分A)
下記式(1)
Figure 0005472695
で示される変性グリシジルエステル系エポキシ樹脂(1)を70〜90質量部と、
下記式(2)
Figure 0005472695
で示されるビスフェノールA―エピクロルヒドリン重合物(2)10〜30質量部(但し,nは1〜50の整数である。)とを混合してエポキシ樹脂混合物を得、該エポキシ樹脂混合物100質量部に対して、
(B成分)アミノポリアミド硬化剤30〜40質量部と、
前記A成分とB成分との総量100質量部に対して、
(C成分)リチウム含有化合物に含有されるリチウム元素の配合量として3〜7質量部と、
(D成分)ホウ素含有化合物に含有されるホウ素元素の配合量として1〜4質量部と、
(E成分)水酸化アルミニウムに含有される水素元素の配合量として1〜5質量部と、
を混合後、硬化させる請求項1に記載の中性子遮蔽材の製造方法。
(Component A)
Following formula (1)
Figure 0005472695
70 to 90 parts by mass of the modified glycidyl ester epoxy resin (1) represented by
Following formula (2)
Figure 0005472695
Is mixed with 10 to 30 parts by mass of the bisphenol A-epichlorohydrin polymer (2) (where n is an integer of 1 to 50) to obtain an epoxy resin mixture, and 100 parts by mass of the epoxy resin mixture for,
(Component B) 30-40 parts by mass of an aminopolyamide curing agent,
For a total amount of 100 parts by mass of the component A and component B,
(Component C) 3-7 parts by mass as the amount of lithium element contained in the lithium-containing compound,
(D component) 1-4 mass parts as a compounding quantity of the boron element contained in a boron containing compound,
(Component E) 1 to 5 parts by mass as the amount of hydrogen element contained in the aluminum hydroxide,
The method for producing a neutron shielding material according to claim 1, wherein the neutron shielding material is cured after mixing.
(成分A)
下記式(1)
Figure 0005472695
で示される変性グリシジルエステル系エポキシ樹脂(1)を70〜90質量部と、
下記式(2)
Figure 0005472695
で示されるビスフェノールA―エピクロルヒドリン重合物(2)を10〜30質量部(但し,nは1〜50の整数である。)とを混合したエポキシ樹脂混合物100質量部とからなる第1ストックと、
(B成分) 前記エポキシ樹脂混合物100質量部に対してアミノポリアミド硬化剤30〜40質量部とからなる第2ストックと、
前記A成分とB成分との総量100質量部に対して
(C成分)リチウム含有化合物に含有されるリチウム元素の配合量として3〜7質量部と、
(D成分)ホウ素含有化合物に含有されるホウ素元素の配合量として1〜4質量部と、
(E成分)水酸化アルミニウムに含有される水素元素の配合量として1〜5質量部と、
を少なくとも前記第1ストック及び/又は第2ストックに含む中性子遮蔽材製造用ストック。

(Component A)
Following formula (1)
Figure 0005472695
70 to 90 parts by mass of the modified glycidyl ester epoxy resin (1) represented by
Following formula (2)
Figure 0005472695
A first stock comprising 100 parts by mass of an epoxy resin mixture obtained by mixing 10 to 30 parts by mass (where n is an integer of 1 to 50) of the bisphenol A-epichlorohydrin polymer (2) represented by
(B component) The 2nd stock which consists of 30-40 mass parts of amino polyamide hardening | curing agents with respect to 100 mass parts of said epoxy resin mixtures,
3-7 parts by mass as the amount of lithium element contained in the lithium-containing compound (component C) with respect to 100 parts by mass of the total amount of component A and component B,
(D component) 1-4 mass parts as a compounding quantity of the boron element contained in a boron containing compound,
(Component E) 1 to 5 parts by mass as the amount of hydrogen element contained in the aluminum hydroxide,
A neutron shielding material manufacturing stock containing at least the first stock and / or the second stock.

JP2009171091A 2009-07-22 2009-07-22 Neutron shielding material, production method thereof, and neutron shielding material production stock Expired - Fee Related JP5472695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171091A JP5472695B2 (en) 2009-07-22 2009-07-22 Neutron shielding material, production method thereof, and neutron shielding material production stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171091A JP5472695B2 (en) 2009-07-22 2009-07-22 Neutron shielding material, production method thereof, and neutron shielding material production stock

Publications (2)

Publication Number Publication Date
JP2011027460A JP2011027460A (en) 2011-02-10
JP5472695B2 true JP5472695B2 (en) 2014-04-16

Family

ID=43636391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171091A Expired - Fee Related JP5472695B2 (en) 2009-07-22 2009-07-22 Neutron shielding material, production method thereof, and neutron shielding material production stock

Country Status (1)

Country Link
JP (1) JP5472695B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057821A1 (en) * 2015-10-01 2017-04-06 대우조선해양 주식회사 Radiation shielding tube, and shielding device and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147399A (en) * 1987-12-02 1989-06-09 Kuraray Co Ltd Fiber-reinforced neutron shielding mortar concrete
JP2002356541A (en) * 2001-05-31 2002-12-13 Hitachi Chem Co Ltd Neutron shielding material
JP3643798B2 (en) * 2001-08-08 2005-04-27 三菱重工業株式会社 Neutron shielding material composition, shielding material and container
JP4592232B2 (en) * 2001-08-08 2010-12-01 三菱重工業株式会社 Neutron shielding material composition, shielding material and container
JP4592234B2 (en) * 2001-08-24 2010-12-01 三菱重工業株式会社 Neutron shielding material composition, shielding material, container
JP4115299B2 (en) * 2002-03-01 2008-07-09 三菱重工業株式会社 Cask, composition for neutron shield, and method for producing neutron shield
JP4779029B2 (en) * 2009-03-26 2011-09-21 義正 穴山 Flexible neutron shielding material, stock for producing flexible neutron shielding material, neutron shielding tape, neutron shielding packing, and neutron shielding filler

Also Published As

Publication number Publication date
JP2011027460A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
Chang et al. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding
CN105482225B (en) A kind of anti-nuclear radiation rare earth composite material and preparation method thereof
Castley et al. Computational and experimental comparison of boron carbide, gadolinium oxide, samarium oxide, and graphene platelets as additives for a neutron shield
US6517743B2 (en) Epoxy resin composition having high neutron shielding ability, and a transparent shielding materials for neutron obtained by curing said epoxy resin composition
Abdulrahman et al. Introduction to neutron-shielding materials
CN103183928A (en) High-temperature resisting shielding material with neutron shielding effect
Cinan et al. Gamma irradiation, thermal conductivity, and phase change tests of the cement‐hyperbranched poly amino‐ester‐block‐poly cabrolactone‐polyurathane plaster‐lead oxide and arsenic oxide composite for development of radiation shielding material
JP4779029B2 (en) Flexible neutron shielding material, stock for producing flexible neutron shielding material, neutron shielding tape, neutron shielding packing, and neutron shielding filler
JP5472695B2 (en) Neutron shielding material, production method thereof, and neutron shielding material production stock
CN102504371B (en) Lead-free rubber-based elastic compound shielding material and preparation method thereof
CN109161203A (en) A kind of radiation hardness job that requires special skills graphene compounded rubber and preparation method
JPH06148388A (en) Composition for neutron shield material
JP2011007510A (en) Radiation shield, radiation shield storage employing the same, and molded product of radiation shield
CN108148351B (en) Radiation protection material
EP1713089A1 (en) Composition for neutron shield material, shield material and container
Liao et al. B4C/NRL flexible films for thermal neutron shielding
JP3643798B2 (en) Neutron shielding material composition, shielding material and container
Hamisu et al. The use of nanomaterial polymeric materials as ionizing radiation shields
Liao et al. Preparation and characterization of Bi2O3/XNBR flexible films for attenuating gamma rays
JP4592232B2 (en) Neutron shielding material composition, shielding material and container
JP4883808B2 (en) Radiation shielding material and method for producing the same, preservation solution set for production of radiation shielding material
KR101132322B1 (en) Neutron shielding material having excellent shield property, high strength and non-frammable and method for manufacturing the same
JP4592234B2 (en) Neutron shielding material composition, shielding material, container
KR100843807B1 (en) Composition for neutron shield material, shield material and container
JP2024018156A (en) Radiation shielding material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees