JP5471047B2 - Light diffusion film - Google Patents

Light diffusion film Download PDF

Info

Publication number
JP5471047B2
JP5471047B2 JP2009134658A JP2009134658A JP5471047B2 JP 5471047 B2 JP5471047 B2 JP 5471047B2 JP 2009134658 A JP2009134658 A JP 2009134658A JP 2009134658 A JP2009134658 A JP 2009134658A JP 5471047 B2 JP5471047 B2 JP 5471047B2
Authority
JP
Japan
Prior art keywords
light
polyamide
light diffusing
laminated
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009134658A
Other languages
Japanese (ja)
Other versions
JP2010281986A (en
Inventor
亮 崎本
達也 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009134658A priority Critical patent/JP5471047B2/en
Publication of JP2010281986A publication Critical patent/JP2010281986A/en
Application granted granted Critical
Publication of JP5471047B2 publication Critical patent/JP5471047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は、光散乱性材料に関し、さらに詳しくは、照明カバー、照明看板、各種ディスプレイ、あるいは透過型スクリーン等、光の拡散を目的とする部材に好適に用いることができる光拡散層を有する光拡散フィルムに関するものである。   The present invention relates to a light scattering material, and more specifically, light having a light diffusion layer that can be suitably used for a member intended to diffuse light, such as a lighting cover, a lighting signboard, various displays, or a transmission screen. It relates to a diffusion film.

従来から、照明カバー、照明看板、各種ディスプレイ、あるいは透過型スクリーン等において、光源の光を均一に広げ視認性を高めるために光拡散層を有する光拡散フィルムが用いられている。例えば、パーソナルコンピューターや携帯電話、デジタルカメラなどに装備されている液晶ディスプレイ装置においては、バックライトと液晶表示素子の間に光拡散フィルムを配置することにより、バックライトの光をディスプレイ全体に均一に広げている。   Conventionally, a light diffusing film having a light diffusing layer has been used in a lighting cover, a lighting signboard, various displays, a transmissive screen, and the like to uniformly spread light from a light source and enhance visibility. For example, in a liquid crystal display device equipped in a personal computer, a mobile phone, a digital camera, etc., a light diffusion film is arranged between the backlight and the liquid crystal display element, so that the light of the backlight is uniformly distributed over the entire display. It is spreading.

一例として図1に、液晶ディスプレイ装置のバックライト周辺の一般的な構成を示す。光源2から照射された光は、導光板3および反射板4を経て、光拡散フィルム1によって面方向に均一に拡散通過され、拡散フィルム上方に配備された液晶表示素子部5に導かれる。   As an example, FIG. 1 shows a general configuration around a backlight of a liquid crystal display device. The light emitted from the light source 2 passes through the light guide plate 3 and the reflection plate 4 and is uniformly diffused and passed in the plane direction by the light diffusion film 1 and guided to the liquid crystal display element unit 5 disposed above the diffusion film.

図2に一般的な光拡散フィルムの構成を示す。透明な基材6の片面に、光拡散剤7と、透明バインダー樹脂8とからなる光拡散層が積層される(たとえば特許文献1)。基材6としてはポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、アクリル樹脂、アセチルセルロースなどの透明樹脂からなる樹脂フィルム、あるいはガラスなどの透明無機物質が用いられる。また、光拡散剤としてはガラス、アクリル樹脂、スチレン樹脂、MS樹脂(スチレン/メタクリル酸メチル共重合体)、シリコーン樹脂などからなる微粒子が、バインダーとしてはアクリルやポリエステル樹脂、シリコーン樹脂、エポキシ樹脂などが用いられる。通常、光拡散フィルムは、光拡散層が積層されていない面が光源側の面となるよう配置される。   FIG. 2 shows a configuration of a general light diffusion film. A light diffusion layer composed of a light diffusing agent 7 and a transparent binder resin 8 is laminated on one side of a transparent substrate 6 (for example, Patent Document 1). As the substrate 6, a resin film made of a transparent resin such as polyethylene terephthalate, polycarbonate, polystyrene, acrylic resin, acetyl cellulose, or a transparent inorganic material such as glass is used. The light diffusing agent is fine particles made of glass, acrylic resin, styrene resin, MS resin (styrene / methyl methacrylate copolymer), silicone resin, etc. The binder is acrylic, polyester resin, silicone resin, epoxy resin, etc. Is used. Usually, a light diffusion film is arrange | positioned so that the surface where the light-diffusion layer is not laminated | stacked turns into the surface at the side of a light source.

また、光拡散フィルムのもう一方の面には、いくつかの目的で積層体9が形成される。具体的には、導光板からの光の反射を防ぐ反射防止層(特許文献2)や、導光板との密着を防ぐブロッキング防止層(特許文献3、4、5)、導光板の傷つきを妨げる傷つき防止層(特許文献6)などがある。   Moreover, the laminated body 9 is formed on the other surface of the light diffusion film for several purposes. Specifically, an antireflection layer (Patent Document 2) that prevents reflection of light from the light guide plate, an anti-blocking layer (Patent Documents 3, 4, and 5) that prevents adhesion with the light guide plate, and prevents damage to the light guide plate. There is a damage prevention layer (Patent Document 6).

近年、液晶ディスプレイのバックライト用光拡散フィルムや有機EL照明における光取出し層に用いられるフィルムなどには、光の高透過率と高拡散率の両立が要求されている。しかし、光の透過率(全光線透過率)を高めようとすると、光拡散剤の量を低減せざるを得ない事から光拡散率が低下し、逆に光拡散率を高めようとすると光拡散剤の添加量を増量せざるをえず、この結果として全光線透過率が低下する。   In recent years, a light diffusion film for a backlight of a liquid crystal display, a film used for a light extraction layer in organic EL illumination, and the like are required to have both high light transmittance and high diffusion rate. However, when trying to increase the light transmittance (total light transmittance), the amount of light diffusing agent has to be reduced, so the light diffusivity decreases. The addition amount of the diffusing agent must be increased, and as a result, the total light transmittance is lowered.

特開2008−250129号公報JP 2008-250129 A 特開平10−239504号公報JP-A-10-239504 特開2006−126822号公報JP 2006-126822 A 特開2007−286166号公報JP 2007-286166 A 実用新案2529650号公報Utility Model No. 2529650 国際公開第03/032074号パンフレットInternational Publication No. 03/032074 Pamphlet

本発明は、光透過率と光拡散率が共に優れ、各種ディスプレイの光源装置や照明用途などに好適に用いることができる光拡散フィルムを提供することを目的とする。   An object of the present invention is to provide a light diffusing film which is excellent in both light transmittance and light diffusivity, and can be suitably used for a light source device of various displays, illumination use, and the like.

本発明は、透明基材上に、ポリアミド多孔質粒子からなる光拡散剤を含む光拡散層を積層した光拡散フィルムであって、光拡散層における光拡散剤の含有量が25〜60重量%、次式で定義される全光線透過率の変化率ΔT%が1以上、かつ、ヘイズの変化率ΔH%が0.5以上であることを特徴とする光拡散フィルムである。

Figure 0005471047
Figure 0005471047

(ただし、TF→B、HF→Bは光拡散層を積層した面から光を入射したときの全光線透過率TおよびヘイズHをそれぞれ表し、TB→F、HB→Fは光拡散層を積層した面の裏側から光を入射したときの全光線透過率TおよびヘイズHをそれぞれ表す。) The present invention is a light diffusing film in which a light diffusing layer containing a light diffusing agent comprising polyamide porous particles is laminated on a transparent substrate, and the content of the light diffusing agent in the light diffusing layer is 25 to 60% by weight. The light diffusion film is characterized in that the change rate ΔT% of the total light transmittance defined by the following formula is 1 or more and the change rate ΔH% of the haze is 0.5 or more.
Figure 0005471047
Figure 0005471047

(Where T F → B and H F → B represent the total light transmittance T and haze H when light is incident from the surface on which the light diffusion layers are laminated, respectively, and T B → F and H B → F represent light. The total light transmittance T and haze H when light is incident from the back side of the surface on which the diffusion layers are laminated are shown.)

本発明に用いるポリアミド多孔質粒子は、ポリアミドを溶解させる良溶媒中にポリアミドを溶解させたポリアミド溶液(A)とポリアミドを溶解させることができない非溶媒(B)とを混合して一時的に均一な混合溶液を形成し、その後静置する方法で製造された、結晶化度が40%以上のポリアミド多孔質粒子であるのが好ましい。   The polyamide porous particles used in the present invention are temporarily uniform by mixing a polyamide solution (A) in which polyamide is dissolved in a good solvent in which polyamide is dissolved and a non-solvent (B) in which polyamide cannot be dissolved. It is preferable to use polyamide porous particles having a crystallinity of 40% or more produced by a method in which a mixed solution is formed and then allowed to stand.

本発明の光拡散フィルムは、光拡散層を積層した面を光源側に配置することにより、光の透過率と拡散率が共に優れた光拡散フィルムとして用いることができる。また、本発明の光拡散フィルムは導光板との密着を防ぐ効果も有する。   The light diffusing film of the present invention can be used as a light diffusing film excellent in both light transmittance and diffusivity by disposing the surface on which the light diffusing layer is laminated on the light source side. The light diffusion film of the present invention also has an effect of preventing adhesion with the light guide plate.

本発明の光拡散フィルムは、透明な基材の片面に、光拡散剤および透明バインダー樹脂からなる光拡散層を積層することで作成する。図3に本発明の構成を示す。本発明の光拡散フィルムは、通常の光拡散フィルムと異なり、光拡散層を積層した面を光源側(導光板側)に配置して使用する光拡散フィルムである。   The light diffusing film of the present invention is prepared by laminating a light diffusing layer comprising a light diffusing agent and a transparent binder resin on one side of a transparent substrate. FIG. 3 shows the configuration of the present invention. Unlike a normal light diffusion film, the light diffusion film of the present invention is a light diffusion film that is used by arranging a surface on which a light diffusion layer is laminated on the light source side (light guide plate side).

本発明に用いられる光拡散剤は多孔質粒子からなるものであればよく、具体的には、多孔質シリカ粒子、多孔質アクリル粒子およびポリアミド多孔質粒子などが挙げられる。このうちシリカのような無機材料からなる多孔質粒子は導光板を傷つけやすいため、有機材料からなる多孔質粒子のほうが好ましい。特に、透明バインダー樹脂としてよく用いられるアクリル樹脂に対する屈折率差が大きく、光散乱性が高くなるポリアミド多孔質粒子が好ましい。   The light diffusing agent used in the present invention is only required to be composed of porous particles, and specific examples include porous silica particles, porous acrylic particles, and polyamide porous particles. Of these, porous particles made of an inorganic material such as silica tend to damage the light guide plate, and therefore porous particles made of an organic material are preferred. In particular, porous polyamide particles that have a large refractive index difference with respect to an acrylic resin often used as a transparent binder resin and have high light scattering properties are preferred.

多孔質粒子を構成するポリアミドとしては、公知の種々のものを用いることができる。例えば、ε−カプロラクタム、ω−ラウロラクタム等の環状アミドの開環重合、またはε−アミノカプロン酸、ω−アミノドデカン酸、ω−アミノウンデカン酸などのアミノ酸の重縮合で得られるポリアミドを挙げることができる。また、蓚酸、アジピン酸、セバシン酸、テレフタル酸、イソフタル酸、1,4−シクロヘキシルジカルボン酸などのジカルボン酸またはその誘導体と、エチレンジアミン、ヘキサメチレンジアミン、1,4−シクロヘキシルジアミン、m−キシリレンジアミン、ペンタメチレンジアミン、デカメチレンジアミンなどのジアミンを重縮合して得られるポリアミドを挙げることもできる。   As the polyamide constituting the porous particles, various known ones can be used. Examples include polyamides obtained by ring-opening polymerization of cyclic amides such as ε-caprolactam and ω-laurolactam, or polycondensation of amino acids such as ε-aminocaproic acid, ω-aminododecanoic acid, and ω-aminoundecanoic acid. it can. In addition, dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, 1,4-cyclohexyldicarboxylic acid or derivatives thereof, ethylenediamine, hexamethylenediamine, 1,4-cyclohexyldiamine, m-xylylenediamine And polyamides obtained by polycondensation of diamines such as pentamethylenediamine and decamethylenediamine.

用いるポリアミドの融点は110〜320℃であるのが好ましい。特に、140〜280℃であるのが好ましい。融点が110℃より低いと、加工時の熱安定性に問題が生じる場合がある。   The melting point of the polyamide used is preferably 110 to 320 ° C. In particular, the temperature is preferably 140 to 280 ° C. If the melting point is lower than 110 ° C., there may be a problem in thermal stability during processing.

具体的なポリアミドとして、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド610、ポリアミド66/6T(Tはテレフタル酸成分を表す)、ポリアミド46、ポリアミド9Tなどを挙げることができるが、ポリアミド6またはポリアミド66が好ましい。また、これらポリアミドは二種類以上を混合して用いることもできるし、共重合体として用いることもできる。   Specific examples of the polyamide include polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610, polyamide 66 / 6T (T represents a terephthalic acid component), polyamide 46, and polyamide 9T. Or polyamide 66 is preferred. These polyamides can be used as a mixture of two or more kinds, and can also be used as a copolymer.

本発明に用いられる多孔質粒子の形状に制限はなく、球状、略球状、勾玉(C型)状、もしくはダンベル状などの任意の形状のものを用いることができるが、70重量%以上、好ましくは80重量%以上、さらに好ましくは90重量%以上が一種類の粒子形状で構成された均一な粒子であることが望ましい。   There is no limitation on the shape of the porous particles used in the present invention, and any shape such as a spherical shape, a substantially spherical shape, a sloping ball (C-type) shape, or a dumbbell shape can be used, preferably 70% by weight or more. It is desirable that 80% by weight or more, more preferably 90% by weight or more is uniform particles composed of one kind of particle shape.

多孔質粒子の数平均粒子径は0.1〜30μmが好ましく、より好ましくは1〜20μmである。数平均粒子径が0.1μmより小さいと可視光のレイリー散乱領域となるため前方散乱効果が低くなるため好ましくない。また数平均粒子径が30μmより大きいと光拡散層の厚みが厚くなるため好ましくない。   The number average particle diameter of the porous particles is preferably 0.1 to 30 μm, more preferably 1 to 20 μm. If the number average particle diameter is smaller than 0.1 μm, it becomes a Rayleigh scattering region of visible light and the forward scattering effect is lowered, which is not preferable. Moreover, since the thickness of a light-diffusion layer will become thick when a number average particle diameter is larger than 30 micrometers, it is unpreferable.

また、粒子径分布において、数平均粒子径(または数基準平均粒子径)に対する体積平均粒子径(または体積基準平均粒子径)の比が1〜2.5であることが好ましい。数平均粒子径に対する体積平均粒子径の比(粒度分布指数PDI)が2.5より大きいと、粉体としての取り扱いが悪くなる。   In the particle size distribution, the ratio of the volume average particle size (or volume reference average particle size) to the number average particle size (or number reference average particle size) is preferably 1 to 2.5. When the ratio of the volume average particle diameter to the number average particle diameter (particle size distribution index PDI) is larger than 2.5, the handling as a powder becomes worse.

多孔質粒子のBET比表面積は、3〜120m/gであることが好ましい。比表面積が3m/gより小さいと内部散乱効果が少なくなり好ましくない。また比表面積が120m/gより大きくなると粉体の表面エネルギーが高く凝集しやすくなるため、光拡散層形成時に均一な分散層が作りにくくなるので好ましくない。 The BET specific surface area of the porous particles is preferably 3 to 120 m 2 / g. When the specific surface area is less than 3 m 2 / g, the internal scattering effect is decreased, which is not preferable. On the other hand, if the specific surface area is larger than 120 m 2 / g, the surface energy of the powder is high and the particles are likely to aggregate, which makes it difficult to form a uniform dispersion layer when forming the light diffusion layer.

また、平均細孔径は、0.01〜0.8μmであることが好ましい。平均細孔径が0.01μmより小さければ、細孔内に樹脂バインダー等が十分に入り込めないことから、気泡が残り形成した光拡散層に散乱ムラが生じることがある。また、平均細孔径が0.8μmより大きければ、可視光の波長領域以上の大きさを持つことにより、散乱特性が落ちることがある。   Moreover, it is preferable that an average pore diameter is 0.01-0.8 micrometer. If the average pore diameter is smaller than 0.01 μm, the resin binder or the like cannot sufficiently enter into the pores, so that scattering unevenness may occur in the light diffusion layer formed by remaining bubbles. Further, if the average pore diameter is larger than 0.8 μm, the scattering characteristics may be deteriorated due to having a size larger than the wavelength region of visible light.

多孔質粒子の多孔度指数(RI)は、5〜100が好ましい。ここで多孔度指数(RI)とは、同じ直径の平滑な球状粒子の比表面積(Sp)に対する、多孔質の球状粒子の比表面積(Sp)の比(Sp/Sp)と定義する。多孔度指数が5より小さければ、細孔体積が小さいために光の多重散乱特性が失われて、散乱性が落ちることがある。多孔度が100より大きいと、取り扱いづらくなる。 The porosity index (RI) of the porous particles is preferably 5 to 100. Here, the porosity index (RI) is defined as the ratio (Sp / Sp 0 ) of the specific surface area (Sp) of the porous spherical particles to the specific surface area (Sp 0 ) of the smooth spherical particles having the same diameter. If the porosity index is less than 5, the pore volume is small and the multiple scattering characteristic of light is lost, and the scattering property may be lowered. When the porosity is greater than 100, it becomes difficult to handle.

本発明に用いられるポリアミド多孔質粒子は、DSCで測定された結晶化度が40%以上であることが好ましい。結晶化度は、X線解析より求める方法、DSC測定法により求める方法、密度から求める方法があるが、DSC測定法により求める方法が好適である。結晶化度が40%より低いと、多孔質粒子を熱加工する際に溶融しやすくなり好ましくない。   The polyamide porous particles used in the present invention preferably have a crystallinity measured by DSC of 40% or more. There are a method for obtaining crystallinity by X-ray analysis, a method for obtaining by a DSC measurement method, and a method for obtaining from a density, and a method for obtaining it by a DSC measurement method is preferred. When the degree of crystallinity is lower than 40%, it is not preferable because the porous particles are easily melted when thermally processed.

ポリアミド多孔質粒子は、相分離法などの公知の方法で製造することができる。例えば、室温付近においてポリアミドを溶解させる良溶媒中にポリアミドを溶解させたポリアミド溶液(A)に、室温付近でポリアミドを溶解させることができない非溶媒(B)を混合することでポリアミドの溶解度を低下させて析出させる方法を用いて製造することができる。特に、溶液(A)と非溶媒(B)とを混合して一時的に均一な混合溶液を形成し、その後静置する方法で製造することが好ましい。この方法により表面積が大きく、粒子系分布が狭く、結晶化度が高い多孔質ポリアミド粒子が得られる。この粒子は単一粒子そのものが球晶構造を有した多孔質粒子となり、本発明の光拡散剤として好適に使用できる。   The polyamide porous particles can be produced by a known method such as a phase separation method. For example, the solubility of polyamide is reduced by mixing non-solvent (B) that cannot dissolve polyamide near room temperature into polyamide solution (A) in which polyamide is dissolved in a good solvent that dissolves polyamide near room temperature. It can manufacture using the method of making it precipitate. In particular, it is preferable to produce by a method in which the solution (A) and the non-solvent (B) are mixed to temporarily form a uniform mixed solution and then left to stand. By this method, porous polyamide particles having a large surface area, a narrow particle distribution and a high crystallinity can be obtained. The single particles themselves become porous particles having a spherulite structure and can be suitably used as the light diffusing agent of the present invention.

「単一粒子そのものが球晶構造」であるとは、一つの単独粒子の中心付近の単数または複数のコアから高分子フィブリルが三次元等方あるいは放射状に成長して形成した結晶性高分子特有の球晶構造であることを意味する。   “Single particles themselves have a spherulite structure” means that the polymer fibrils are three-dimensionally or radially grown from one or more cores near the center of a single particle. It means that the spherulite structure.

本発明に用いられる透明バインダー樹脂としては、アクリル樹脂やポリエステル樹脂、シリコーン樹脂、エポキシ樹脂、環状ポリオレフィン樹脂、スチレン樹脂、MS樹脂およびそれらのオリゴマーやモノマー混合物などを挙げることができる。   Examples of the transparent binder resin used in the present invention include acrylic resins, polyester resins, silicone resins, epoxy resins, cyclic polyolefin resins, styrene resins, MS resins, oligomers and monomer mixtures thereof.

本発明に用いられる透明な基材の材質としては、透明樹脂であるポリエチレンテレフタレートやポリカーボネート、ポリスチレン、アクリル樹脂、アセチルセルロースからなる樹脂フィルム、あるいはガラスなどの透明無機物質のシートなどを挙げることができる。   Examples of the material of the transparent substrate used in the present invention include a transparent resin such as polyethylene terephthalate, polycarbonate, polystyrene, acrylic resin, a resin film made of acetyl cellulose, or a sheet of transparent inorganic material such as glass. .

本発明の光拡散フィルムの光拡散層は、まず透明バインダー樹脂および溶媒、さらに必要に応じて、重合開始剤や酸化防止剤、光安定化剤、帯電防止剤などを配合した溶液組成物と、多孔質粒子からなる光拡散剤とを分散機や攪拌によって均一分散スラリー体とし、次いでこのスラリー体を透明基板上に塗布して硬化させることで積層する事ができる。このとき、前記溶液組成物の代わりに市販の透明性塗料を用いても良い。   The light diffusing layer of the light diffusing film of the present invention includes a transparent binder resin and a solvent, and a solution composition containing a polymerization initiator, an antioxidant, a light stabilizer, an antistatic agent, etc. The light diffusing agent composed of the porous particles can be made into a uniformly dispersed slurry by a dispersing machine or stirring, and then the slurry can be applied on a transparent substrate and cured to be laminated. At this time, a commercially available transparent paint may be used instead of the solution composition.

具体的には、前記均一分散スラリー体をスプレー法、ディッピング法、カーテンフロー法、ロールコーター法、印刷法等の手段を用いて透明基板の表面に均一に塗布し、紫外線照射又は加熱で硬化させる方法が用いられる。また、多孔質粒子からなる光拡散剤を直接透明性基板に接着剤等で接着してもよい。   Specifically, the uniformly dispersed slurry is uniformly applied to the surface of the transparent substrate using means such as a spray method, a dipping method, a curtain flow method, a roll coater method, and a printing method, and is cured by ultraviolet irradiation or heating. The method is used. Further, a light diffusing agent made of porous particles may be directly bonded to the transparent substrate with an adhesive or the like.

本発明の光拡散フィルムは、次式で定義される全光線透過率の変化率ΔT%が1以上、かつ、ヘイズの変化率ΔH%が0.5以上であることが好ましい。より好ましくはΔT%が2以上、かつ、ヘイズの変化率ΔH%が0.7以上、特にΔT%が3以上、かつ、ヘイズの変化率ΔH%が1以上であるのが好ましい。

Figure 0005471047
Figure 0005471047
(ただし、TF→B、HF→Bは光拡散層を積層した面から光を入射したときの全光線透過率TおよびヘイズHをそれぞれ表し、TB→F、HB→Fは光拡散層を積層した面の裏側から光を入射したときの全光線透過率TおよびヘイズHをそれぞれ表す。) The light diffusion film of the present invention preferably has a total light transmittance change rate ΔT% defined by the following formula of 1 or more and a haze change rate ΔH% of 0.5 or more. More preferably, ΔT% is 2 or more, haze change rate ΔH% is 0.7 or more, particularly ΔT% is 3 or more, and haze change rate ΔH% is 1 or more.
Figure 0005471047
Figure 0005471047
(Where T F → B and H F → B represent the total light transmittance T and haze H when light is incident from the surface on which the light diffusion layers are laminated, respectively, and T B → F and H B → F represent light. The total light transmittance T and haze H when light is incident from the back side of the surface on which the diffusion layers are laminated are shown.)

上記において、ΔT%およびΔH%が0以上であれば本発明の効果である、光透過性および光拡散性の両者が向上していることを示し、数値が大きければ大きいほど、光透過性または光拡散性が優れていると判断できる。   In the above, if ΔT% and ΔH% are 0 or more, it indicates that both the light transmittance and the light diffusibility, which are the effects of the present invention, are improved. The larger the numerical value, the more light transmittance or It can be judged that the light diffusibility is excellent.

本発明における光拡散フィルムの光拡散層中の多孔質粒子の含有量は、膜厚にもよるが25〜60重量%が好ましい。さらに好ましくは、30〜50重量%である。含有量が20重量%未満では、本発明の効果が発現しないことがある。一方、60重量%を超えると、光拡散層の厚みを均一にするのが困難となるので好ましくない。光散乱層の膜厚は、通常、5〜100μmである。好ましくは、8〜50μmの範囲である。   The content of the porous particles in the light diffusion layer of the light diffusion film in the present invention is preferably 25 to 60% by weight, although it depends on the film thickness. More preferably, it is 30 to 50% by weight. If the content is less than 20% by weight, the effects of the present invention may not be exhibited. On the other hand, if it exceeds 60% by weight, it is difficult to make the thickness of the light diffusion layer uniform. The film thickness of the light scattering layer is usually 5 to 100 μm. Preferably, it is the range of 8-50 micrometers.

以上のようにして製造することができる本発明の光拡散フィルムは、光拡散層を積層した面を光源側に配置した場合に光の透過率と拡散率が共に優れ、照明カバー、照明看板、各種ディスプレイ、透過型スクリーン等の光源装置に好適に用いることができる。また、LEDや有機EL照明など光拡散光が必要な種々の用途に適用する事ができる。特に、液晶表示装置用バックライトユニットを構成する光拡散フィルムとして利用するのに好適である。   The light diffusing film of the present invention that can be produced as described above is excellent in both light transmittance and diffusivity when the surface on which the light diffusing layer is laminated is disposed on the light source side, a lighting cover, a lighting signboard, It can be suitably used for light sources such as various displays and transmission screens. Moreover, it can be applied to various uses such as LED and organic EL lighting that require light diffusion light. In particular, it is suitable for use as a light diffusion film constituting a backlight unit for liquid crystal display devices.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また結晶化度、粒子径、平均細孔径、空孔率、比表面積、全光線透過率、ヘイズなどの測定は次のように行なった。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. The crystallinity, particle diameter, average pore diameter, porosity, specific surface area, total light transmittance, haze, and the like were measured as follows.

(結晶化度)結晶化度は、DSC(示差走査熱量計)で測定した。具体的には、流速40ml/min窒素気流中で、昇温速度5℃/min、温度範囲120〜230℃の吸熱ピークの面積から求めた結晶融解熱と、既知のポリアミドの結晶融解熱量との比(下式)から求めた。なお、ポリアミド6の融解熱は、 R.Viewegら、kunststoffeIV polyamide、218頁、Carl Hanger Verlag、1966年の記載により、45cal/gとした。

Figure 0005471047
χ ;結晶化度(%)
ΔHobs;サンプルの融解熱 (cal/g)
ΔH;ポリアミドの融解熱 (cal/g) (Crystallinity) The crystallinity was measured by DSC (differential scanning calorimeter). Specifically, in a nitrogen stream at a flow rate of 40 ml / min, the heat of crystal fusion determined from the area of the endothermic peak at a heating rate of 5 ° C./min and a temperature range of 120 to 230 ° C. and the heat of crystal fusion of a known polyamide It calculated | required from ratio (the following formula). The heat of fusion of polyamide 6 is It was set to 45 cal / g according to the description of Vieweg et al., Kunststoffe IV polyamide, page 218, Carl Hanger Verlag, 1966.
Figure 0005471047
χ: Crystallinity (%)
ΔH obs ; heat of fusion of sample (cal / g)
ΔH m : heat of fusion of polyamide (cal / g)

(平均粒子径)平均粒子径および粒子径分布は、電子顕微鏡(走査型電子顕微鏡 SEM)を用いて、微粒子100個の平均値として測定した。数平均粒子径、体積平均粒子径および粒子径分布指数(PDI)は次式で表される。
数平均粒子径:

Figure 0005471047
体積平均粒子径:
Figure 0005471047
粒子径分布指数:
Figure 0005471047
ここで、Xi;個々の粒子径、nは測定数である。 (Average particle size) The average particle size and particle size distribution were measured as an average value of 100 fine particles using an electron microscope (scanning electron microscope SEM). The number average particle size, volume average particle size, and particle size distribution index (PDI) are expressed by the following equations.
Number average particle size:
Figure 0005471047
Volume average particle size:
Figure 0005471047
Particle size distribution index:
Figure 0005471047
Here, Xi: individual particle diameter, n is the number of measurements.

(比表面積)比表面積は、窒素吸着によるBET法で3点測定をおこなった。 (Specific surface area) The specific surface area was measured at three points by the BET method using nitrogen adsorption.

(平均細孔径・空孔率)平均細孔径は、水銀ポロシメータにより測定した。測定範囲は、0.0036から14μmの範囲で平均細孔径を求めた。ポリアミド多孔質微粒子の空孔率は、1個の粒子中のポリアミドの体積と空間体積の割合を表す。ここで、ポリアミドの密度をρとして、空孔率(porousity)を次式で表すことができる。ここで、
Vp;粒子内空孔体積、
Vs;粒子内ポリマー体積とする。

Figure 0005471047
即ち、粒子内累積細孔容積(P)とすると
Figure 0005471047
で表される。
細孔径に対する累積細孔容積の図から、粒子内累積細孔容積を算出し、下式に従って、粒子内空孔率を算出する。このときポリアミド微粒子の密度ρは、DSCで求めた結晶化度χと結晶密度ρc、非晶密度ρaから求めた。ここでポリアミド6の結晶密度(ρc)は1.23cm/g、非晶密度(ρa)は1.09cm/gとした。
Figure 0005471047
(Average pore diameter / porosity) The average pore diameter was measured with a mercury porosimeter. The average pore diameter was determined in the measurement range of 0.0036 to 14 μm. The porosity of the polyamide porous fine particles represents the ratio of the volume of polyamide to the volume of space in one particle. Here, the density of polyamide can be represented by ρ, and the porosity can be expressed by the following equation. here,
Vp: pore volume in the particle,
Vs: Intraparticle polymer volume.
Figure 0005471047
That is, when the cumulative pore volume (P 1 ) in the particle
Figure 0005471047
It is represented by
From the graph of the cumulative pore volume with respect to the pore diameter, the intra-particle cumulative pore volume is calculated, and the intra-particle porosity is calculated according to the following equation. At this time, the density ρ of the polyamide fine particles was obtained from the crystallinity χ, the crystal density ρc, and the amorphous density ρa obtained by DSC. Here, the crystal density (ρc) of the polyamide 6 was 1.23 cm 3 / g, and the amorphous density (ρa) was 1.09 cm 3 / g.
Figure 0005471047

ポリアミド多孔質微粒子の多孔質度(RI)は、同一粒子径で真球状微粒子を仮定したときの比表面積値Spと多孔質微粒子の場合のBET比表面積Spの比で表すことができる。また、 The degree of porosity (RI) of the polyamide porous fine particles can be represented by the ratio of the specific surface area value Sp 0 when assuming true spherical fine particles with the same particle diameter and the BET specific surface area Sp in the case of porous fine particles. Also,

Figure 0005471047
Figure 0005471047

Figure 0005471047
で求められる。dは粒子の直径、ρは密度である。
Figure 0005471047
Is required. d is the diameter of the particle and ρ is the density.

全光線透過率(T)、およびヘイズ(H)は日本電色工業製のヘイズメーターNDH5000を用い、JIS K7361−1およびJIS K7136に準拠して測定した。   The total light transmittance (T) and haze (H) were measured according to JIS K7361-1 and JIS K7136 using a Nippon Denshoku Industries haze meter NDH5000.

(参考例1)
ポリアミド6(宇部興産社製、「1010X1」、数平均分子量8000)100gを70℃でフェノール810gに完全に溶解した後、イソプロピルアルコールを90g加えて攪拌しながら徐冷し、ポリアミド濃度10重量%のフェノール/イソプロピルアルコール溶液を得て、常温で保持した。イソプロピルアルコール4kgと水2.5kgからなる混合液6.5kgを5℃で作成し、前記ポリアミド溶液と混合して、溶液が均一になった時点で攪拌を停止して静置し、ポリアミド6粒子を析出させた。2時間静置後、析出した粒子をろ紙を用いてろ別し、ろ紙上で25℃のイソプロピルアルコール10000mlで5回洗浄を行なった。次に、熱風乾燥機を用いて温度60℃で8時間乾燥した。さらに真空乾燥機を用いて温度60℃で8時間乾燥した。乾燥した粒子10gを保温付きソックスレー抽出器に充填し、抽出器内でイソプロピルアルコールを10時間還流した後、粒子を水10重量%スラリーにして、180℃にて噴霧乾燥を行い、ポリアミド6からなるポリアミド多孔質粒子を得た。得られた粒子を走査型電子顕微鏡で観察したところ、数平均粒子径5.1μm、体積平均粒子径6.3μmの多孔質球晶状粒子であった。PDIは1.23であった。BET比表面積は28.2m/g、平均細孔径は、0.130μm、結晶化度は57%であった。
(Reference Example 1)
100 g of polyamide 6 (manufactured by Ube Industries, “1010X1”, number average molecular weight 8000) was completely dissolved in 810 g of phenol at 70 ° C., then 90 g of isopropyl alcohol was added, and the mixture was slowly cooled with stirring to obtain a polyamide concentration of 10% by weight. A phenol / isopropyl alcohol solution was obtained and kept at room temperature. A mixture of 6.5 kg of isopropyl alcohol and 2.5 kg of water was prepared at 5 ° C. and mixed with the polyamide solution. When the solution became homogeneous, stirring was stopped and the mixture was allowed to stand, and polyamide 6 particles Was precipitated. After standing for 2 hours, the precipitated particles were filtered off using filter paper, and washed 5 times with 10000 ml of isopropyl alcohol at 25 ° C. on the filter paper. Next, it dried for 8 hours at the temperature of 60 degreeC using the hot air dryer. Furthermore, it dried for 8 hours at the temperature of 60 degreeC using the vacuum dryer. 10 g of dried particles are filled into a heat-insulated Soxhlet extractor, and isopropyl alcohol is refluxed for 10 hours in the extractor. Then, the particles are made into a 10 wt% water slurry and spray-dried at 180 ° C. to form polyamide 6. Polyamide porous particles were obtained. When the obtained particles were observed with a scanning electron microscope, they were porous spherulite particles having a number average particle size of 5.1 μm and a volume average particle size of 6.3 μm. The PDI was 1.23. The BET specific surface area was 28.2 m 2 / g, the average pore diameter was 0.130 μm, and the crystallinity was 57%.

(実施例1)
参考例1で作成したポリアミド多孔質粒子5重量部にMS樹脂15重量部およびトルエン80重量部を分散させて、均一分散スラリー体を作成した。このスラリー体を市販のトリアセチルセルロース樹脂フィルム(膜厚80μm)上にバーコーターを用いてコーティングし、その後加熱処理し光拡散層を積層した。このときの光拡散層の厚みは8μmであった。このフィルムの光拡散層を積層した面から光を入れたとき、およびその反対の面から光を入れたときの全光線透過率およびヘイズ値を測定した。結果を表1に示した。
Example 1
A uniformly dispersed slurry was prepared by dispersing 15 parts by weight of MS resin and 80 parts by weight of toluene in 5 parts by weight of polyamide porous particles prepared in Reference Example 1. This slurry was coated on a commercially available triacetyl cellulose resin film (film thickness 80 μm) using a bar coater, and then heat-treated to laminate a light diffusion layer. At this time, the thickness of the light diffusion layer was 8 μm. The total light transmittance and the haze value were measured when light was applied from the surface of the film on which the light diffusion layers were laminated and when light was applied from the opposite surface. The results are shown in Table 1.

(実施例2)
ポリアミド多孔質粒子の重量を15重量部、MS樹脂の重量を20重量部にした以外は、実施例1と同様にして光拡散フィルムを作成した。結果を表1に示した。
(Example 2)
A light diffusion film was prepared in the same manner as in Example 1 except that the weight of the polyamide porous particles was 15 parts by weight and the weight of the MS resin was 20 parts by weight. The results are shown in Table 1.

(比較例1)
ポリアミド多孔質粒子の代わりに積水化成品工業製テクポリマーMBX−5(5μm)を5重量部配合した以外は、実施例1と同様にして光拡散フィルムを作成した。結果を表1に示した。
(Comparative Example 1)
A light diffusion film was prepared in the same manner as in Example 1 except that 5 parts by weight of Sekisui Chemical Co., Ltd. Techpolymer MBX-5 (5 μm) was blended in place of the polyamide porous particles. The results are shown in Table 1.

(実施例3)
参考例1で作成したポリアミド多孔質粒子30重量部にウレタンアクリレート系オリゴマー(日本合成化学製UV−7600B)50重量部、光重合開始剤1−ヒドロキシ−シクロヘキシルフェニルケトン(和光純薬製)0.8重量部およびトルエン50重量部を均一分散させて、スラリー体を作成した。このスラリー体を無アルカリガラス(t=1mm)にバーコーターにてコーティング後、UV照射(850mJ/cm)により硬化、乾燥処理をおこない、光拡散層を積層したフィルムを作成した。結果を表1に示した。
(Example 3)
30 parts by weight of polyamide porous particles prepared in Reference Example 1 and 50 parts by weight of urethane acrylate oligomer (UV-7600B manufactured by Nippon Gosei Kagaku), photopolymerization initiator 1-hydroxy-cyclohexyl phenyl ketone (manufactured by Wako Pure Chemical Industries) 8 parts by weight and 50 parts by weight of toluene were uniformly dispersed to prepare a slurry body. This slurry was coated on non-alkali glass (t = 1 mm) with a bar coater, cured by UV irradiation (850 mJ / cm 2 ), and dried to prepare a film in which a light diffusion layer was laminated. The results are shown in Table 1.

(実施例4)
ポリアミド多孔質粒子の重量を25重量部とした以外は、実施例3と同様にして光拡散フィルムを作成した。結果を表1に示した。
Example 4
A light diffusion film was prepared in the same manner as in Example 3 except that the weight of the polyamide porous particles was 25 parts by weight. The results are shown in Table 1.

(実施例5)
ポリアミド多孔質粒子の重量を20重量部とした以外は、実施例3と同様にして光拡散フィルムを作成した。結果を表1に示した。
(Example 5)
A light diffusion film was prepared in the same manner as in Example 3 except that the weight of the polyamide porous particles was 20 parts by weight. The results are shown in Table 1.

(比較例2)
ポリアミド多孔質粒子の重量を15重量部とした以外は、実施例3と同様にして光拡散フィルムを作成した。結果を表1に示した。
(Comparative Example 2)
A light diffusion film was prepared in the same manner as in Example 3 except that the weight of the polyamide porous particles was 15 parts by weight. The results are shown in Table 1.

(比較例3)
ポリアミド多孔質粒子の重量を10重量部とした以外は、実施例3と同様にして光拡散フィルムを作成した。結果を表1に示した。
(Comparative Example 3)
A light diffusion film was prepared in the same manner as in Example 3 except that the weight of the polyamide porous particles was 10 parts by weight. The results are shown in Table 1.

(参考例2)
ポリアミド6(宇部興産社製、1011FK、分子量11,000)100gを、70℃にてフェノール溶液810gに溶解し、イソプロピルアルコールを90g加えて攪拌しながら徐冷し、ポリアミド濃度10重量%のフェノール/イソプロピルアルコール溶液を得て、常温で保持した。この溶液に、攪拌しながら、2−プロパノール5kgと水3kgからなる混合液8kgを常温で15秒かけて投入した。溶液が均一になった時点で攪拌を停止して静置し、ポリアミド6粒子を析出させた。30分静置後、析出した粒子をろ紙を用いてろ別し、ろ紙上で25℃の2−プロパノール1000mlで5回洗浄を行ない、真空乾燥機を用いて温度60℃で8時間乾燥した。次に、乾燥した粒子を保温付きソックスレー抽出器に充填し、抽出器内で2−プロパノールを10時間還流した後、イオン交換水10重量%スラリーにして、180℃にて噴霧乾燥を行い、ポリアミド6からなるポリアミド多孔質粒子を得た。得られた粒子を走査型電子顕微鏡で観察したところ、数平均粒子径10.4μm、体積平均粒子径11.2μmの多孔質球晶状粒子であった。PDIは1.08であった。比表面積は9.8m2/g、平均細孔径は、0.124μm、結晶化度は50%であった。
(Reference Example 2)
100 g of polyamide 6 (manufactured by Ube Industries, Ltd., 1011FK, molecular weight: 11,000) was dissolved in 810 g of a phenol solution at 70 ° C., 90 g of isopropyl alcohol was added, and the mixture was slowly cooled with stirring. An isopropyl alcohol solution was obtained and kept at room temperature. While stirring, 8 kg of a mixed solution consisting of 5 kg of 2-propanol and 3 kg of water was added to this solution at room temperature over 15 seconds. When the solution became homogeneous, stirring was stopped and the mixture was allowed to stand to precipitate polyamide 6 particles. After standing for 30 minutes, the precipitated particles were filtered off using filter paper, washed 5 times with 1000 ml of 2-propanol at 25 ° C. on the filter paper, and dried at 60 ° C. for 8 hours using a vacuum dryer. Next, the dried particles are filled into a heat-insulated Soxhlet extractor, 2-propanol is refluxed in the extractor for 10 hours, and then a 10% by weight slurry of ion-exchanged water is spray-dried at 180 ° C. to obtain polyamide. Polyamide porous particles consisting of 6 were obtained. When the obtained particles were observed with a scanning electron microscope, they were porous spherulite particles having a number average particle size of 10.4 μm and a volume average particle size of 11.2 μm. The PDI was 1.08. The specific surface area was 9.8 m 2 / g, the average pore diameter was 0.124 μm, and the crystallinity was 50%.

(実施例6)
参考例2で作成したポリアミド多孔質粒子50重量部にウレタンアクリレート系オリゴマー(日本合成化学製UV−7600B)100重量部、光重合開始剤1−ヒドロキシ−シクロヘキシルフェニルケトン(和光純薬製)0.8重量部およびトルエン100重量部を均一分散させて、スラリー体を作成した。これらをポリエチレンテレフタレート樹脂フィルム(t=100μm)にバーコーターにてコーティング後、UV照射(850mJ/cm)により硬化、乾燥処理をおこない、光拡散層を積層したフィルムを作成した。結果を表1に示した。
(Example 6)
50 parts by weight of polyamide porous particles prepared in Reference Example 2, 100 parts by weight of urethane acrylate oligomer (UV-7600B manufactured by Nippon Synthetic Chemical), photopolymerization initiator 1-hydroxy-cyclohexyl phenyl ketone (manufactured by Wako Pure Chemical Industries) 8 parts by weight and 100 parts by weight of toluene were uniformly dispersed to prepare a slurry body. These were coated on a polyethylene terephthalate resin film (t = 100 μm) with a bar coater, cured by UV irradiation (850 mJ / cm 2 ), and dried to produce a film in which a light diffusion layer was laminated. The results are shown in Table 1.

(実施例7)
ポリアミド多孔質粒子100重量部にした以外は実施例6と同様にした。結果を表1に示した。
(Example 7)
The same procedure as in Example 6 was performed except that the polyamide porous particles were changed to 100 parts by weight. The results are shown in Table 1.

Figure 0005471047
Figure 0005471047

表1より、本発明のポリアミド多孔質粒子からなる光拡散剤を含む光拡散層を光源側の面に積層した光拡散フィルムは、全光線透過率の変化率ΔT%、ヘイズの変化率ΔH%ともに優れることが分かる。   From Table 1, the light diffusion film in which the light diffusion layer comprising the light diffusing agent comprising the polyamide porous particles of the present invention is laminated on the light source side surface has a total light transmittance change rate ΔT% and a haze change rate ΔH%. Both are excellent.

液晶ディスプレイ装置のバックライト近傍部の一般的な構成を示した分解図である。It is the exploded view which showed the general structure of the backlight vicinity part of a liquid crystal display device. 光拡散フィルムの一般的な構成の一例を示した断面図である。It is sectional drawing which showed an example of the general structure of a light-diffusion film. 本発明の光拡散フィルムの構成を示した断面図である。It is sectional drawing which showed the structure of the light-diffusion film of this invention.

1 光拡散フィルム
2 光源
3 反射板
4 導光板
5 液晶表示素子部
6 透明性基板
7 光拡散剤
8 透明バインダー樹脂
9 積層体
DESCRIPTION OF SYMBOLS 1 Light diffusing film 2 Light source 3 Reflecting plate 4 Light guide plate 5 Liquid crystal display element part 6 Transparent substrate 7 Light diffusing agent 8 Transparent binder resin 9 Laminate

Claims (2)

透明基材上に、ポリアミド多孔質粒子からなる光拡散剤を含む光拡散層を積層した光拡散フィルムであって、光拡散層における光拡散剤の含有量が25〜60重量%、次式で定義される全光線透過率の変化率ΔT%が1以上、かつ、ヘイズの変化率ΔH%が0.5以上であり、光拡散層が光源側に配置されることを特徴とする光拡散フィルム。
Figure 0005471047
Figure 0005471047
(ただし、TF→B、HF→Bは光拡散層を積層した面から光を入射したときの全光線透過率TおよびヘイズHをそれぞれ表し、TB→F、HB→Fは光拡散層を積層した面の裏側から光を入射したときの全光線透過率TおよびヘイズHをそれぞれ表す。)
A light diffusing film in which a light diffusing layer containing a light diffusing agent composed of polyamide porous particles is laminated on a transparent substrate, wherein the content of the light diffusing agent in the light diffusing layer is 25 to 60% by weight, being defined rate of change [Delta] T% of the total light transmittance of 1 or more, and state, and are change rate [Delta] H% 0.5 or more haze, light diffusion, wherein a light diffusing layer is disposed on the light source side the film.
Figure 0005471047
Figure 0005471047
(Where T F → B and H F → B represent the total light transmittance T and haze H when light is incident from the surface on which the light diffusion layers are laminated, respectively, and T B → F and H B → F represent light. The total light transmittance T and haze H when light is incident from the back side of the surface on which the diffusion layers are laminated are shown.)
透明基材上に、ポリアミド多孔質粒子からなる光拡散剤を含む光拡散層を積層した光拡散フィルムであって、光拡散層における光拡散剤の含有量が25〜60重量%、次式で定義される全光線透過率の変化率ΔT%が1以上、かつ、ヘイズの変化率ΔH%が0.5以上であり、
上記ポリアミド多孔質粒子が、ポリアミドを溶解させる良溶媒中にポリアミドを溶解させたポリアミド溶液(A)とポリアミドを溶解させることができない非溶媒(B)とを混合して一時的に均一な混合溶液を形成し、その後静置する方法で製造された、結晶化度が40%以上のポリアミド多孔質粒子であることを特徴とする光拡散フィルム。
Figure 0005471047
Figure 0005471047
(ただし、T F→B 、H F→B は光拡散層を積層した面から光を入射したときの全光線透過率TおよびヘイズHをそれぞれ表し、T B→F 、H B→F は光拡散層を積層した面の裏側から光を入射したときの全光線透過率TおよびヘイズHをそれぞれ表す。)
A light diffusing film in which a light diffusing layer containing a light diffusing agent composed of polyamide porous particles is laminated on a transparent substrate, wherein the content of the light diffusing agent in the light diffusing layer is 25 to 60% by weight, The change rate ΔT% of the total light transmittance defined is 1 or more, and the change rate ΔH% of haze is 0.5 or more,
The polyamide porous particles are mixed temporarily with a polyamide solution (A) in which polyamide is dissolved in a good solvent in which polyamide is dissolved, and a non-solvent (B) in which polyamide cannot be dissolved, so that the mixture is temporarily uniform. forming a light diffusing film you characterized by subsequently produced by the method of standing, the degree of crystallinity is 40% or more of the polyamide porous particles.
Figure 0005471047
Figure 0005471047
(Where T F → B and H F → B represent the total light transmittance T and haze H when light is incident from the surface on which the light diffusion layers are laminated, respectively, and T B → F and H B → F represent light. The total light transmittance T and haze H when light is incident from the back side of the surface on which the diffusion layers are laminated are shown.)
JP2009134658A 2009-06-04 2009-06-04 Light diffusion film Expired - Fee Related JP5471047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134658A JP5471047B2 (en) 2009-06-04 2009-06-04 Light diffusion film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134658A JP5471047B2 (en) 2009-06-04 2009-06-04 Light diffusion film

Publications (2)

Publication Number Publication Date
JP2010281986A JP2010281986A (en) 2010-12-16
JP5471047B2 true JP5471047B2 (en) 2014-04-16

Family

ID=43538763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134658A Expired - Fee Related JP5471047B2 (en) 2009-06-04 2009-06-04 Light diffusion film

Country Status (1)

Country Link
JP (1) JP5471047B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265595A (en) * 2018-07-17 2019-01-25 北京化工大学 A kind of porous crosslinked polystyrene light diffusing agent and PC light diffusing sheet and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871597B2 (en) * 2011-02-21 2016-03-01 三菱樹脂株式会社 Polyester film for optical film
JP6597306B2 (en) * 2014-07-31 2019-10-30 東レ株式会社 Polyester film
JP6133522B1 (en) * 2015-06-15 2017-05-24 Jxtgエネルギー株式会社 Transparent screen and video projection system having the same
DE102016105290A1 (en) * 2016-03-22 2017-09-28 Schott Ag Glass or glass-ceramic articles with improved visibility for electro-optical display elements and method for its production
JP2019184841A (en) * 2018-04-11 2019-10-24 アルパイン株式会社 Display device
JP7055784B2 (en) * 2018-12-13 2022-04-18 キヤノン化成株式会社 Surface anti-reflection paint and surface anti-reflection coating for atomization coating

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080629A (en) * 2000-06-14 2002-03-19 Ube Ind Ltd Polyamide porous spherical particle and process for preparing it
JP2004348000A (en) * 2003-05-23 2004-12-09 Sekisui Chem Co Ltd Light diffusion sheet
JP2006119318A (en) * 2004-10-21 2006-05-11 Asahi Glass Co Ltd Light diffusing layer, transmissive screen, coating liquid for forming light diffusing layer, and method for manufacturing transmission type screen
JP2007219183A (en) * 2006-02-17 2007-08-30 Ube Ind Ltd Light scattering material
KR101346089B1 (en) * 2006-03-30 2013-12-31 우베 고산 가부시키가이샤 Optical Filter
JP5347215B2 (en) * 2006-08-17 2013-11-20 宇部興産株式会社 Optical screen and projection image display system
US8497953B2 (en) * 2007-08-28 2013-07-30 Dic Corporation Prism sheet, and backlight unit and liquid crystal display device using prism sheet
JP5397589B2 (en) * 2008-10-14 2014-01-22 宇部興産株式会社 Laminated body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265595A (en) * 2018-07-17 2019-01-25 北京化工大学 A kind of porous crosslinked polystyrene light diffusing agent and PC light diffusing sheet and preparation method thereof
CN109265595B (en) * 2018-07-17 2021-02-19 北京化工大学 Porous crosslinked polystyrene light diffusant, PC light diffusion plate and preparation method thereof

Also Published As

Publication number Publication date
JP2010281986A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5471047B2 (en) Light diffusion film
TWI289687B (en) Light-diffusing sheet having voids for TFT-LCD
TWI326782B (en) Light diffuser with excellent optical properties and high thermal resistance and anti-moisture absorptivity
KR100447671B1 (en) Optical seat and method for manufacturing the same
TWI360661B (en) Method for producing anti-glare film
CN101458343B (en) Optical laminates, polarizing plates and image display devices
JP6624184B2 (en) White polyester film for liquid crystal display, method for producing the same, and backlight for liquid crystal display
TW201003130A (en) Anti-glare film, method for manufacturing the same, and display device using the same
TWI287115B (en) Brightness enhancement film
TW200809137A (en) White reflective film
TW201000969A (en) Optical film having non-spherical particles
TW201137411A (en) Anti-glare film, manufacturing method for same, polarizing plate and image display device
TW200909943A (en) Thin film bulk and surface diffuser
JPWO2007119592A1 (en) Light filter
TW201033644A (en) Light diffusion plate, planar light source apparatus, and transmission type image display apparatus
CN102834742A (en) Light-diffusing film for led lamp
WO2012073437A1 (en) Optical film, image display device, and image display device comprising touch panel
TWI679119B (en) Polyester film
JP5817165B2 (en) White laminated polyester film for reflector and backlight device
JP5347215B2 (en) Optical screen and projection image display system
JP2007219183A (en) Light scattering material
KR20130141967A (en) Anti-glare coating composition and anti-glare film using the same
JP2014503855A (en) Brightness enhancement film and backlight unit including the same
JP5388505B2 (en) Reflective film for liquid crystal display
JP2014038171A (en) Anisotropic light-diffusing laminate and projector screen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees