JP5466153B2 - Novel additive for treatment of molten steel baths containing lead and / or lead alloys - Google Patents

Novel additive for treatment of molten steel baths containing lead and / or lead alloys Download PDF

Info

Publication number
JP5466153B2
JP5466153B2 JP2010510854A JP2010510854A JP5466153B2 JP 5466153 B2 JP5466153 B2 JP 5466153B2 JP 2010510854 A JP2010510854 A JP 2010510854A JP 2010510854 A JP2010510854 A JP 2010510854A JP 5466153 B2 JP5466153 B2 JP 5466153B2
Authority
JP
Japan
Prior art keywords
lead
molten steel
additive
core wire
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010510854A
Other languages
Japanese (ja)
Other versions
JP2010529297A (en
Inventor
プーラリヨン,アンドレ
ジェラルディン,セバスティヤン
Original Assignee
アフィヴァル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アフィヴァル filed Critical アフィヴァル
Publication of JP2010529297A publication Critical patent/JP2010529297A/en
Application granted granted Critical
Publication of JP5466153B2 publication Critical patent/JP5466153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、高い鉛含有量の鋼を得るために溶鋼浴を処理するための、フラックスコアワイヤー(flux−cored wire)の形態での添加剤に関する。   The present invention relates to an additive in the form of a flux-cored wire for treating a molten steel bath to obtain a high lead content steel.

鉛は、鋼に不溶であるため、潤滑剤として働き、圧延鋼の機械加工の間に旋盤加工の切断性を高める外因性の鉛異物(ノジュール)を形成するので、鋼の機械加工性の改善に関してよく知られている。しかし、鉛の使用は、その毒性、(溶鋼の密度よりも大きな)高密度、及び低融点のせいでいくつかの深刻な欠点を有する。鉛は、浸漬ノズルを通してビーズ又はショットを注入することにより溶鋼浴中に導入されるか、又は更にフラックスコアワイヤーの形態で溶鋼浴中に導入され、この後者の技法は、より融通がきき、より信頼が置けるものとして一般的に認識されている。   Since lead is insoluble in steel, it acts as a lubricant and forms exogenous lead foreign matter (nodules) that enhances the lathe cutability during machining of rolled steel, thus improving the machinability of steel Is well known for. However, the use of lead has some serious drawbacks due to its toxicity, high density (greater than the density of molten steel), and low melting point. Lead is introduced into the molten steel bath by injecting beads or shots through an immersion nozzle, or even introduced into the molten steel bath in the form of a flux core wire, this latter technique being more flexible and more It is generally recognized as trustworthy.

伝統的なフラックスコアワイヤーを用いて現在得られる累積収率では、かなりの量の毒ガスが発生し、職員の衛生状態及び安全性に関してかなりの欠点がもたらされるので、多量の鉛を加えることが出来ない。   Cumulative yields currently available with traditional flux core wires generate a significant amount of poisonous gas, resulting in significant drawbacks with regard to staff hygiene and safety, so large amounts of lead can be added. Absent.

欧州特許第0316921号の文献は、金属被覆、並びに、石灰を含有し溶鋼浴の温度で二酸化炭素(CO)を放出する材料と金属の鉛及び/又は鉛合金とを含有する微細に分割された充填材料から構成されるフラックスコアワイヤーの形態で、鋼浴のための鉛を含有する添加剤を開示する。COの鋼浴中への放出は、フラックスコアワイヤーの周りに強い乱流を作り出し、鉛粒子が溶鋼中にブレンドされる原因となり、浴内部での鉛粒子の移動を促し、従って溶鋼浴中における鉛粒子の分布を改善する。更に、この添加剤の使用は、排出される毒ガスの量を制限し、添加工程を良く制御することを可能にし、一方で、以前に観察されたものと比較して、その累積収率を増加させる。 The document of European Patent No. 0316921 is finely divided into metal coatings and materials containing lime and releasing carbon dioxide (CO 2 ) at the temperature of the molten steel bath and metallic lead and / or lead alloys. An additive containing lead for a steel bath in the form of a flux core wire composed of a filled material is disclosed. The release of CO 2 into the steel bath creates strong turbulence around the flux core wire, causing the lead particles to blend into the molten steel, facilitating the movement of the lead particles inside the bath and thus in the molten steel bath To improve the distribution of lead particles. In addition, the use of this additive limits the amount of toxic gas emitted and allows for better control of the addition process, while increasing its cumulative yield compared to that observed previously. Let

しかし、この種類の添加剤の使用は、溶鋼浴の内部で、その溶融の間にわたって鉛異物の一様な分布を達成できないことが見出された。加えて、この添加剤を使用して得られる目的の鋼製品は、鉛異物の均一な分布を有さない。更に、溶鋼浴中の鉛の累積収率は、依然として70%より低いままである。   However, it has been found that the use of this type of additive cannot achieve a uniform distribution of lead foreign matter within the molten steel bath during its melting. In addition, the intended steel product obtained using this additive does not have a uniform distribution of lead foreign matter. Furthermore, the cumulative yield of lead in the molten steel bath remains below 70%.

欧州特許第0316921号European Patent No. 0316921

本発明の目的は、非常に具体的なサイズ及び粒子サイズ分布を有し、溶鋼浴中の鉛の均一な分布を提供し得る化合物と組み合わせられる金属の鉛粉末及び/又は鉛合金粉末を含む新規な添加剤を提案することによって、これらの欠点を克服することである。   The object of the present invention is a novel comprising metal lead powder and / or lead alloy powder combined with a compound having a very specific size and particle size distribution and capable of providing a uniform distribution of lead in the molten steel bath It is to overcome these drawbacks by proposing new additives.

発明を解決するための手段Means for Solving the Invention

この目的のために、第一の態様に従うと、本発明は、金属の鉛及び/又は鉛合金を含む溶鋼浴を処理するための添加剤に関し、前記添加剤は金属被覆及び微細に分割された充填材料から構成されるフラックスコアワイヤーの形態であり、その充填材料は金属の鉛粉末及び/又は鉛合金粉末と、溶鋼に関して不活性である気体を溶鋼浴の温度で放出可能な化合物の粉末とから形成され、前記添加剤は、前記金属の鉛粉末及び/又は鉛合金粉末が200μm〜500μmの間の粒子サイズ割合Gからなる点、及び前記粒子サイズ割合Gが以下の特徴:
200μmのふるいを通過:G≦5%;
300μmのふるいを通過:90%≧G≧10%;
400μmのふるいを通過:40%≦G≦100%;
500μmのふるいを通過:100%≧G≧90%;
を有する点で特徴付けられる。
To this end, according to a first aspect, the present invention relates to an additive for treating a molten steel bath containing metallic lead and / or a lead alloy, said additive being metallized and finely divided. It is in the form of a flux core wire composed of a filler material, the filler material being a metallic lead powder and / or a lead alloy powder, and a compound powder capable of releasing a gas which is inert with respect to the molten steel at the temperature of the molten steel bath. is formed from the additive, that lead powder and / or a lead alloy powder of said metal consists of a particle size ratio G R between 200Myuemu~500myuemu, and the particle size ratio G R the following features:
Pass through a 200 μm sieve: G R ≦ 5%;
Pass through 300 μm sieve: 90% ≧ G R ≧ 10%;
Pass through a 400 μm sieve: 40% ≦ G R ≦ 100%;
Pass through a 500 μm sieve: 100% ≧ G R ≧ 90%;
It is characterized by having

第二の態様に従うと、本発明は、金属の鉛及び/又は一つ以上の鉛合金を含む添加剤を用いて溶鋼浴を処理するための方法に関し、この方法は、金属被覆及び微細に分割された充填材料から構成されるフラックスコアワイヤーの形態で添加剤を前記鋼浴に添加する工程を含み、その充填材料は金属の鉛粉末及び/又は鉛合金粉末と、溶鋼に関して不活性である気体を溶鋼浴の温度で放出可能な化合物の粉末とから形成され、前記金属の鉛粉末及び/又は鉛合金粉末は、200μm〜500μmの間の粒子サイズ割合Gからなり、以下の特徴:
200μmのふるいを通過:G≦5%;
300μmのふるいを通過:90%≧G≧10%;
400μmのふるいを通過:40%≦G≦100%;
500μmのふるいを通過:100%≧G≧90%;
を有する。
According to a second aspect, the present invention relates to a method for treating a molten steel bath with an additive comprising metallic lead and / or one or more lead alloys, the method comprising metal coating and finely divided Adding an additive to the steel bath in the form of a flux core wire composed of a filled filler material, the filler material being a metallic lead powder and / or a lead alloy powder and a gas which is inert with respect to the molten steel the formed from a powder of releasable compound at a temperature of the molten steel bath, lead powder and / or a lead alloy powder of said metal consists particle size ratio G R between 200Myuemu~500myuemu, the following features:
Pass through a 200 μm sieve: G R ≦ 5%;
Pass through 300 μm sieve: 90% ≧ G R ≧ 10%;
Pass through a 400 μm sieve: 40% ≦ G R ≦ 100%;
Pass through a 500 μm sieve: 100% ≧ G R ≧ 90%;
Have

第三の態様に従うと、本発明は、金属の鉛及び/又は一つ以上の鉛合金を含む溶鋼浴の処理のための上述の添加剤の使用に関する。
第四の態様に従うと、本発明はまた、既に述べた方法によって得られ、その鉛のノジュールが100μmよりも小さい点、及び、図3に示すように、80%に等しいそれらの大部分が圧延鋼の内部にランダムに分布している点で特徴付けられる、高い鉛含有量を有する任意の圧延鋼製品に関する。この分布は、圧延鋼に最適な機械加工特性を与える。
According to a third aspect, the invention relates to the use of the above-mentioned additive for the treatment of a molten steel bath comprising metallic lead and / or one or more lead alloys.
According to a fourth aspect, the present invention is also obtained by the method already described, the lead nodules being less than 100 μm and most of them equal to 80% rolled as shown in FIG. It relates to any rolled steel product having a high lead content, characterized by being randomly distributed within the steel. This distribution gives optimum machining properties for rolled steel.

この新規な添加剤の使用は、非常に有意なやり方で鉛の累積収率の改善を可能にし、従って、衛生状態及び安全性に関して申し分の無い条件の下で、より多量に添加する可能性を提供する。この使用はまた、固体の鋼の内部で、鉛のノジュールのより良い最終的な分布を達成することを可能にし、一方で、残留磁気の発生や、これらの鋼を処理するために用いる浴の難燃性材料の汚染の発生を減少させる。これらの鋼を生産するコストは、従って改善される。   The use of this novel additive allows an improvement in the cumulative yield of lead in a very significant manner, and therefore the possibility of adding higher amounts under perfect conditions with regard to hygiene and safety. provide. This use also makes it possible to achieve a better final distribution of lead nodules within the solid steel, while generating residual magnetism and the bath used to process these steels. Reduce the occurrence of contamination of flame retardant materials. The cost of producing these steels is therefore improved.

本発明のその他の特徴及び利点は、以下の詳細な説明及び実施態様を読み、添付の図面を見ることにより明らかとなるだろう。   Other features and advantages of the present invention will become apparent upon reading the following detailed description and embodiments, and upon viewing the accompanying drawings.

図1は、粒子サイズ割合Gのサイズ及び粒子サイズ分布の特性を示す。Figure 1 shows the characteristics of size and particle size distribution of the particle size ratio G R. 図2は、鋼浴一トン当たりに添加されたフラックスコアワイヤーの長さとして表された、鋼浴に添加された添加剤の量の関数として、鉛の収率の変動を示す。FIG. 2 shows the variation in lead yield as a function of the amount of additive added to the steel bath, expressed as the length of the flux core wire added per ton of steel bath. 図3は、目的の製品としての固体の鋼の内部における、異なった種類の鉛のノジュールの分布に関する概略図を示す。FIG. 3 shows a schematic diagram of the distribution of different types of lead nodules within the solid steel as the target product. 図4は、最も近接した鉛のノジュールへの最小距離の計算を可能にするダイヤグラムである。FIG. 4 is a diagram that allows the calculation of the minimum distance to the closest lead nodule.

本発明は、高い鉛含有量の鋼を得るために溶鋼浴を処理するための、金属の鉛及び/又は一つ以上の鉛合金を含む新規な添加剤に関する。知られているように、この添加剤は金属被覆及び微細に分割された充填材料から構成されるフラックスコアワイヤーの形態であり、その充填材料は金属の鉛粉末及び/又は鉛合金粉末と、溶鋼に関して不活性である気体を溶鋼浴の温度で放出可能な化合物の粉末とから形成される。   The present invention relates to a novel additive comprising metallic lead and / or one or more lead alloys for treating a molten steel bath to obtain a high lead content steel. As is known, this additive is in the form of a flux core wire composed of a metal coating and a finely divided filler material, which is composed of metallic lead powder and / or lead alloy powder, and molten steel. Is formed from a compound powder capable of releasing a gas which is inert with respect to the temperature of the molten steel bath.

有利には、前記金属の鉛粉末及び/又は鉛合金粉末は200μm〜500μmの間の粒子サイズ割合Gからなる。この粒子サイズ割合Gは、好ましくは、小さな粒、又は非常に微細なビーズの形態である。 Advantageously, lead powder and / or a lead alloy powder of said metal consists of particle size ratio G R between 200Myuemu~500myuemu. The particle size ratio G R is preferably in the form of small grains, or very fine beads.

典型的な場合には、前記粒子サイズ割合Gは以下の特徴:
200μmのふるいを通過:G≦5%;
300μmのふるいを通過:90%≧G≧10%;
400μmのふるいを通過:40%≦G≦100%;
500μmのふるいを通過:100%≧G≧90%;
を有する。
In a typical case, the particle size ratio G R the following characteristics:
Pass through a 200 μm sieve: G R ≦ 5%;
Pass through 300 μm sieve: 90% ≧ G R ≧ 10%;
Pass through a 400 μm sieve: 40% ≦ G R ≦ 100%;
Pass through a 500 μm sieve: 100% ≧ G R ≧ 90%;
Have

これらの粒子サイズ特性を、添付の図1に概略的に示す。
(図1に示す領域の内部に含有される)この粒子サイズ分布は、フラックスコアワイヤーに最適な充填特性を与え、結果として効果的な溶鋼浴の治金処理を生ずる。この種類の粒子サイズ分布の選択は、伝統的な鉛粉末から生産されるフラックスコアワイヤーについて観察されるよりも大きく低下した残余の多孔度のレベルを保証する。多孔度は、従って5%から最大で20%の間であり、一方この値は伝統的なワイヤーの場合には一般的に15〜40%の間である。
These particle size characteristics are schematically illustrated in the accompanying FIG.
This particle size distribution (contained within the region shown in FIG. 1) provides optimum filling properties for the flux core wire, resulting in effective metallurgy treatment of the molten steel bath. The choice of this type of particle size distribution ensures a residual porosity level that is significantly lower than that observed for flux core wires produced from traditional lead powder. The porosity is thus between 5% and at most 20%, while this value is generally between 15 and 40% for traditional wires.

添加剤を囲む金属被覆は、望ましくない構成物を浴中に導入すること無く前記添加剤の放出を可能にするのに十分に早い速度で鋼浴に溶解可能な材料から形成される。好ましくは、金属被覆は合金化されていない軟鋼から作られる。0.1〜1mmの間の厚みであり、好ましくは0.2〜0.6mmの厚みである。   The metal coating surrounding the additive is formed from a material that is soluble in the steel bath at a rate fast enough to allow release of the additive without introducing undesirable components into the bath. Preferably, the metal coating is made from unalloyed mild steel. The thickness is between 0.1 and 1 mm, preferably 0.2 to 0.6 mm.

更に、本発明に従ったフラックスコアワイヤーの直径は、5〜20mmの間であり、好ましくは9〜15mmの間である。
本発明に従った添加剤は、ワイヤー1メートル当たり100〜1000gの鉛を含有するフラックスコアワイヤーの形態である。
Furthermore, the diameter of the flux core wire according to the invention is between 5 and 20 mm, preferably between 9 and 15 mm.
The additive according to the invention is in the form of a flux core wire containing 100 to 1000 g of lead per meter of wire.

溶鋼に関して不活性な気体を溶鋼浴の温度(およそ1550〜1650℃の間)で自発的に放出可能な化合物の粉末に関しては、これもまた微細に分割された形態であり、1mmより小さな粒子サイズ、好ましくは0.5mmよりも小さな粒子サイズを有する。   For powders of compounds that are capable of spontaneously releasing an inert gas with respect to the molten steel at the temperature of the molten steel bath (between approximately 1550-1650 ° C.), this is also a finely divided form with a particle size of less than 1 mm Preferably having a particle size of less than 0.5 mm.

有利には、溶鋼浴中への気泡の放出は、本発明に従った粒子サイズ割合から形成された鉛異物のとてもランダムな分布を導く上昇流を作り出し、それ故に、結果として溶鋼浴の内部において前記異物の一様な分布を生ずる。   Advantageously, the release of bubbles into the molten steel bath creates an upward flow that leads to a very random distribution of lead foreign matter formed from the particle size proportions according to the present invention, and thus results in the interior of the molten steel bath. This produces a uniform distribution of the foreign matter.

特定的な実施態様においては、溶鋼に関して不活性な気体を自発的に放出可能な化合物は、石灰石(炭酸カルシウム)又は焼成されていないドロマイトなどの無機化合物(mineral compound)であり、溶鋼に関して不活性な前記気体は二酸化炭素である。この場合には、無機化合物を、使用される金属の鉛及び/又は鉛合金の重さを基準として、3〜30重量%の量で用いる。   In a particular embodiment, the compound capable of spontaneously releasing a gas that is inert with respect to the molten steel is a mineral compound such as limestone (calcium carbonate) or uncalcined dolomite and inert with respect to the molten steel. The gas is carbon dioxide. In this case, the inorganic compound is used in an amount of 3 to 30% by weight, based on the weight of the lead metal and / or lead alloy used.

第二の態様に従うと、本発明は、金属の鉛及び/又は一つ以上の鉛合金を含む添加剤を用いて溶鋼浴を処理するための方法に関し、この方法は、上述の、フラックスコアワイヤーの形態で添加剤を前記鋼浴に添加する工程を含む。   According to a second aspect, the present invention relates to a method for treating a molten steel bath with an additive comprising metallic lead and / or one or more lead alloys, the method comprising a flux core wire as described above. Adding an additive to the steel bath in the form of

この種類の粉末を含有するフラックスコアワイヤーは、伝統的なワイヤーを用いて得られる収率、また欧州特許第0316921号の文献に開示されているワイヤーを用いて得られる収率よりさえも高い溶鋼浴内部における鉛の収率を得ることを可能にする。   Flux core wire containing this type of powder is a molten steel that is higher in yield than can be obtained with traditional wires, and even with the wire disclosed in the document EP 0 316 921. It makes it possible to obtain the yield of lead inside the bath.

図2は、添加された量の関数として、鉛の収率に関する工業的な結果を示す(鋼浴に添加された添加剤の量の関数としての鉛の収率における変動は、鋼1トン当たりのフラックスコアワイヤーの長さとして表される)。   FIG. 2 shows the industrial results on the yield of lead as a function of the amount added (the variation in the yield of lead as a function of the amount of additive added to the steel bath is Expressed as the length of the flux core wire).

鉛の収率は、以下の式:
Pb=(C−C)/C
によって定義される。
The yield of lead is the following formula:
Y Pb = (C F −C I ) / C A
Defined by

この等式において、
は、溶鋼浴中の初期鉛含有量である。
は、溶鋼浴中に得られる最終的な鉛含有量である。
In this equation,
C I is the initial lead content in the molten steel bath.
C F is the final lead content obtained in the molten steel bath.

は、溶鋼浴中の望ましい鉛含有量である。
Pbは、鉛の累積収率である。
粒子サイズがこの発明中に記載された要求と合致する鉛粉末及び/又は鉛合金を含有するフラックスコアワイヤーは、伝統的な粉末を用いて得られる収率よりも高い鉛の収率を得ることを可能にする。このフラックスコアワイヤーはまた、溶鋼浴中に注入されたワイヤーの長さに関わり無く、非常にむらが無く一貫した収率を得ることを可能にする。このばらつきのより大きな減少は、それ故に、目的の鋼中に望ましい鉛の量を得る見込みを非常に有意に増加させることを可能にする。
C A is the desired lead content in the molten steel bath.
YPb is the cumulative yield of lead.
Flux core wires containing lead powder and / or lead alloys whose particle size meets the requirements described in this invention will obtain a higher lead yield than that obtained using traditional powders. Enable. This flux core wire also makes it possible to obtain a very uniform and consistent yield regardless of the length of the wire injected into the molten steel bath. This greater reduction in variability therefore makes it possible to increase the chances of obtaining the desired amount of lead in the target steel very significantly.

高い収率のおかげで、溶鋼浴の処理の間の衛生状態及び安全性に関する条件もまた、かなり改善される。より少ない毒ガスが浴の上方に放出される。浴の底部における鉛の沈殿の発生、及び浴の難燃性壁の汚染の発生も、大きく減少する。   Thanks to the high yield, the hygiene and safety requirements during the treatment of the molten steel bath are also considerably improved. Less toxic gas is released above the bath. The occurrence of lead precipitation at the bottom of the bath and the occurrence of flame retardant wall contamination of the bath is also greatly reduced.

本発明に従った添加剤を、鋳造の前に溶鋼浴に添加する。最終的な望ましい鉛含有量に依存して、処理すべき溶鋼1トン当たり0.1〜10kgの範囲の量の添加剤をフラックスコアワイヤーの形態で添加する。フラックスコアワイヤーは鋼浴の内部で、50〜200m/分、好ましくは100〜150m/分の範囲の速度でほぐされる。   The additive according to the invention is added to the molten steel bath before casting. Depending on the final desired lead content, an amount of additive in the range of 0.1-10 kg per ton of molten steel to be treated is added in the form of a flux core wire. The flux core wire is loosened inside the steel bath at a speed in the range of 50 to 200 m / min, preferably 100 to 150 m / min.

以下の二つの実施例は、本発明に従った新規な添加剤を用いることによって鉛の収率に関して得られた高い値を実証する。   The following two examples demonstrate the high values obtained for lead yield by using the novel additive according to the present invention.

実施例1
外径13.6mmのフラックスコアワイヤー
0.35〜0.40mmの間の厚みのストリップ
混合物中の炭酸カルシウムの量:6.3重量%
1メートル当たりのワイヤーの重量:970g/m
注入レート:120m/分
浴中の溶鋼の重量:95トン
望ましい鉛含有量:0.260%
処理後に得られた鉛含有量:0.248%
フラックスコアワイヤーにおいて得られた鉛の累積収率:71.8%
実施例2
外径13.6mmのフラックスコアワイヤー
0.35〜0.40mmの間の厚みのストリップ
混合物中の炭酸カルシウムの量:5.8重量%
注入されたワイヤーの長さ:334m
ワイヤーの注入レート:150m/分
浴中の溶鋼の重量:115トン
望ましい鉛含有量:0.200%
溶鋼浴中の初期鉛含有量:0.009%
処理後に得られた鉛含有量:0.191%
フラックスコアワイヤーにおいて得られた鉛の累積収率:72.0%
フラックスコアワイヤーに含有される鉛粒子の粒子サイズが200μm〜500μmの非常に小さい範囲内で選択されたので、溶鋼に不溶な鉛異物は、浴全体に均一に分布する。
Example 1
13.6 mm outer diameter flux core wire Strip with a thickness between 0.35 and 0.40 mm Amount of calcium carbonate in the mixture: 6.3 wt%
Weight of wire per meter: 970 g / m
Injection rate: 120 m / min Weight of molten steel in bath: 95 tons Desirable lead content: 0.260%
Lead content obtained after treatment: 0.248%
Cumulative yield of lead obtained in flux core wire: 71.8%
Example 2
13.6 mm outer diameter flux core wire Strip with a thickness between 0.35 and 0.40 mm Amount of calcium carbonate in the mixture: 5.8% by weight
Length of injected wire: 334m
Wire injection rate: 150 m / min Weight of molten steel in bath: 115 tons Desired lead content: 0.200%
Initial lead content in molten steel bath: 0.009%
Lead content obtained after treatment: 0.191%
Cumulative yield of lead obtained in flux core wire: 72.0%
Since the particle size of the lead particles contained in the flux core wire is selected within a very small range of 200 μm to 500 μm, the lead foreign matter insoluble in the molten steel is uniformly distributed throughout the bath.

有利には、鉛異物の小さなサイズは、浴の底部におけるそれらの沈殿を有意に減少させることを可能にする。これは、浴の流出を開始してから鋳造工程が終わるまでの溶鋼浴中のむらの無い鉛の含有量につながる。固化した製品は、それ故に、これから鋳造される溶鋼の量に関わり無く、鉛の含有量がより均一となる。これは以下の実施例において実証される。   Advantageously, the small size of the lead foreign bodies makes it possible to significantly reduce their precipitation at the bottom of the bath. This leads to an even lead content in the molten steel bath from the start of the bath flow to the end of the casting process. The solidified product will therefore have a more uniform lead content regardless of the amount of molten steel to be cast. This is demonstrated in the examples below.

実施例3
外径13.6mmのフラックスコアワイヤー
0.35〜0.40mmの間の厚みのストリップ
混合物中の炭酸カルシウムの量:6.5重量%
フラックスコアワイヤーによって注入された粉末の量:297kg
ワイヤーの注入レート:120m/分
浴重量:95トン
望ましい鉛含有量:0.260%
最初のブルーム鋳造で得られた鉛含有量:0.252%
浴の中間におけるブルームで得られた鉛含有量:0.245%
一度浴を流出させたブルームで得られた鉛含有量:0.249%
用語「ブルーム」は、一式の固化した鋼(環状、長方形状、又は多角形状の断面を有する鋼のインゴット)を意味する。
Example 3
13.6 mm outer diameter flux core wire Strip with a thickness between 0.35 and 0.40 mm Amount of calcium carbonate in the mixture: 6.5% by weight
Amount of powder injected by flux core wire: 297 kg
Wire injection rate: 120 m / min Bath weight: 95 tons Desirable lead content: 0.260%
Lead content obtained in the first bloom casting: 0.252%
Lead content obtained in bloom in the middle of the bath: 0.245%
Lead content obtained in bloom once drained bath: 0.249%
The term “bloom” means a set of solidified steel (steel ingot having an annular, rectangular or polygonal cross section).

更に、本発明に従った微細に分割された鉛粉末を含有するフラックスコアワイヤーの使用は、高い鉛含有量を有する溶鋼を生産するために用いられる浴の洗浄を減少させることを可能にする。浴の難燃性材料は、かなりの鉛の侵食による汚染が減少する。鉄鋼メーカーは、ネジ穴を開け閉めするために用いられる装置内や、耐火粘土のレンガの接合部に残る鉛が少なくなることを観察するだろう。   Furthermore, the use of a flux core wire containing finely divided lead powder according to the invention makes it possible to reduce the cleaning of the bath used to produce molten steel with a high lead content. The flame retardant material of the bath reduces contamination due to significant lead erosion. Steelmakers will observe that less lead remains in equipment used to open and close screw holes and in refractory clay brick joints.

高い鉛含有量を有する鋼から作られた廃棄圧延製品(バー)の量は、本発明中に開示されている粒子サイズの鉛粉末及び/又は鉛合金粉末を含有する添加剤を使用することで大きく減少する。もし鉛のノジュールのサイズ及び分布が鉄鋼メーカーの顧客によって取り決められた仕様に一致しないと、バーは不良品とされる。本発明に従った添加剤のおかげで、100%のバーがこれらの仕様に合致し、一方で伝統的な鉛粉末を含有するフラックスコアワイヤーは、30%までの廃品割合の原因となり得る。   The amount of scrap rolled product (bar) made from steel with high lead content can be achieved by using the additives containing particle size lead powder and / or lead alloy powder disclosed in the present invention. Decrease significantly. If the size and distribution of the lead nodules do not match the specifications negotiated by the steel manufacturer's customer, the bar is rejected. Thanks to the additive according to the invention, 100% bars meet these specifications, while flux core wires containing traditional lead powder can account for up to 30% waste.

小さい上に、鉛のノジュールは圧延製品の内部により効果的に分布し、それ故に機械加工の特性を高める。我々が積層製品中における鉛製品の群の分布を性格付けるための基準を特に開発しているのは、積層製品中における鉛のノジュールの分布を特徴付けるための標準的な又は国際的な方法が現在存在しないためである。   Besides being small, lead nodules are more effectively distributed inside the rolled product and therefore enhance the machining properties. We are developing standards specifically to characterize the distribution of groups of lead products in laminated products because standard or international methods for characterizing the distribution of lead nodules in laminated products are currently being developed. This is because it does not exist.

この理由の為に、出願人は、積層製品中における鉛のノジュールの群の分布を性格付けるための基準を特に開発した。出願人は、従って、実験的測定のための条件と同様、分布指標及び関連する基準を定義した。   For this reason, the applicant has developed in particular a standard for characterizing the distribution of the lead nodules group in the laminated product. Applicants have therefore defined distribution indices and associated criteria, as well as conditions for experimental measurements.

図3に示す異なった分布をモデリングする数値シミュレーションを用いた包括的な研究のおかげで、出願人はこれらの分布を性格付けることを可能にする関連指標を明らかにしている。出願人はまた、これらの指標のそれぞれと関係のある閾値を決定した。この方法において、1.4%よりも大きい分布指標Iは、99%の許容差で、ランダムな分布とその他の種類の分布とを区別可能であることが判明している。 Thanks to a comprehensive study using numerical simulation modeling the different distributions shown in FIG. 3, the applicant has revealed relevant indicators that make it possible to characterize these distributions. Applicants have also determined thresholds associated with each of these indicators. In this method, 1.4% greater distribution index I R than is the tolerance of 99%, have been found to be distinguishable to the distribution of random distribution and other types.

指標Iは以下の式: Index I R is the following formula:

で定義され、式中、
:分布指標
D:分析領域の対角
:鉛のノジュール間(最も近接したノジュール−図4)の最小距離
NI:最小距離を伴う鉛のノジュールの個数
が1.4%よりも大きい場合には、鉛のノジュールはランダムに分布している(それ故に機械加工性が高い)。
Where
I R: distribution index D: diagonal D i of the analysis region: between lead nodules (closest nodules - 4) minimum distance NI: than the number I R of nodules of lead with minimal distance 1.4% If it is too large, lead nodules are randomly distributed (hence high machinability).

この指標Iは、鉛のノジュールの数が多い場合にのみ意味をなす。この個数は500に固定された。具体的な分析方法がそれ故に開発された。
鉛のノジュールは、40mmより大きな径を有する積層された鋼のバーの中間から取られたサンプルの表面上で特徴付けられ、積層方向で観察された。取られたサンプルの表面を、1μmのシートとなるまで磨く。
The index I R makes sense only if the number of nodules of lead is large. This number was fixed at 500. A specific analytical method was therefore developed.
Lead nodules were characterized on the surface of the sample taken from the middle of a laminated steel bar having a diameter greater than 40 mm and were observed in the lamination direction. The surface of the sample taken is polished until it becomes a 1 μm sheet.

鉛のノジュールは、画像検出器と接続された後方散乱型電子検出器を備えた走査電子顕微鏡(SEM−BSE)を用いてサンプルの表面を観察することによって同定され、特徴付けられる。この観察方法を用いることと、化学コントラスト(chemical contrast)とによって、鉛のノジュールは、鋼の組織の色及びその他の種類の異物(硫化物、酸化物、窒化物など)の色よりもかなり暗い灰色の形状で示され、これはこれらのノジュールが容易に区別でき、孤立出来ることを意味する。   Lead nodules are identified and characterized by observing the surface of the sample using a scanning electron microscope (SEM-BSE) equipped with a backscattered electron detector connected to an image detector. By using this observation method and chemical contrast, lead nodules are much darker than the color of steel texture and other types of foreign matter (sulfides, oxides, nitrides, etc.) Shown in gray shape, this means that these nodules can be easily distinguished and isolated.

この測定方法は、バーの中間における中央の正方形領域内部の少なくとも25mmの表面を観察することを伴う。2ミクロンよりも大きな小さいフェレー径(Feret diameter)を有する全ての鉛のノジュールが含まれ、測定される。500より多くの鉛のノジュールが含まれることになる。これらのノジュールのそれぞれに関して、位置パラメータ(X及びYは検査した領域の参照の点の内部で調節する)及び主な形態学的パラメータ(ノジュール、表面、フェレー径など)が結果のファイルに記録される。 This measurement method involves observing a surface of at least 25 mm 2 inside the central square area in the middle of the bar. All lead nodules with small ferret diameters greater than 2 microns are included and measured. More than 500 lead nodules will be included. For each of these nodules, the positional parameters (X and Y adjust within the reference point of the examined area) and the main morphological parameters (nodules, surface, ferret diameter, etc.) are recorded in the resulting file. The

次いで、製品の機械加工特性の最適化を可能にする鉛のノジュールの分布を明らかにするために、分布パラメータを計算する。添付の図3を参照して、ランダム(図3a)、クラスター(図3b)、ストリップ状(図3c)、又は格子型(図3d)などの多くの種類の分布を考慮に入れる。高い鉛含有量を有し、伝統的なフラックスコアワイヤーを用いて処理された積層鋼に関して知られるよりも十分に高度な機械加工適性を得るために、ランダムに分布するノジュールの量は出来るだけ大きく、好ましくは少なくとも80%に等しくなければならないと実証されている。   The distribution parameters are then calculated to reveal the distribution of lead nodules that allows optimization of the machining properties of the product. Referring to the attached FIG. 3, many types of distributions are considered, such as random (FIG. 3a), clusters (FIG. 3b), strips (FIG. 3c), or lattice (FIG. 3d). The amount of randomly distributed nodules is as large as possible in order to obtain a sufficiently high machinability than is known for laminated steels with high lead content and processed using traditional flux core wires. It has proven to be preferably at least equal to 80%.

図1に定義されるような粒子サイズの鉛粉末を含有するフラックスコアワイヤーの形態での添加剤の使用は、100μmよりも小さな、非常に小さい、大部分がランダムに分布した鉛のノジュールを含有する均一な圧延鋼から作られる製品を得ることを可能にする。この分布により、機械加工特性が、従来のフラックスコアワイヤー又は欧州特許第0316921号の文献に開示されているフラックスコアワイヤーを用いて処理された鋼に関して得られる特性と比較して改善される。   The use of the additive in the form of a flux core wire containing particle size lead powder as defined in FIG. 1 contains very small, mostly randomly distributed lead nodules smaller than 100 μm. Makes it possible to obtain products made from uniform rolled steel. This distribution improves the machining properties compared to the properties obtained for steels treated with conventional flux core wires or with flux core wires disclosed in the document EP 0316921.

高い鉛含有量を有する鋼を得るための、本発明に従った金属の鉛及び/又は鉛合金を含む溶鋼浴の処理のための新規な添加剤の使用は、数多くの利点を有し、一般的に:
溶鋼浴中の鉛の累積収率の改善;
高い鉛含有量を有する鋼を生産し、処理するための条件の改善、より具体的には、累積収率の増加は毒ガスの排出の減少を可能にし、それ故に結果として製鋼工のための衛生状態及び安全性に関する条件を改善する;
鋳造の開始から浴が完全に流出するまででさえ鋼の鉛含有量を維持することを可能にする溶鋼中の鉛異物の分布及び微細性の著しい改善;
浴の底部における鉛の沈殿を著しい減少、それ故に、ネジ穴を開け閉めするために用いられる装置内や、耐火粘土のレンガの接合部に残る鉛がほぼ消失すること;
圧延鋼中の鉛のノジュールのより良い分布のおかげによる圧延鋼製品の最終的な機械加工特性の改善、この分布は大部分がランダムであり、国際標準の方法が無いことを補償するために特に開発された革新的な方法によって特徴付けられる;
大きな、望ましくない鉛のノジュールの存在及び/又は圧延鋼製品の内部に非効果的に分布した鉛のノジュールの存在によって生ずる内部欠陥のせいで不良品となる圧延製品の量の著しい減少;
をもたらす。
The use of novel additives for the treatment of molten steel baths containing metallic lead and / or lead alloys according to the invention to obtain steels with a high lead content has numerous advantages, In fact:
Improving the cumulative yield of lead in the molten steel bath;
Improved conditions for producing and processing steel with a high lead content, more specifically, an increase in cumulative yield allows a reduction in the emission of toxic gases and thus results in hygiene for steelmakers. Improve condition and safety conditions;
A significant improvement in the distribution and fineness of lead contaminants in the molten steel, which makes it possible to maintain the lead content of the steel even from the start of casting until the bath has completely drained;
Significantly reduced lead precipitation at the bottom of the bath, and therefore almost disappearance of the lead left in the equipment used to open and close the screw holes and in the refractory clay brick joints;
Improved final machining properties of rolled steel products thanks to a better distribution of lead nodules in the rolled steel, this distribution is largely random, especially to compensate for the lack of international standard methods Characterized by innovative methods developed;
Significant reduction in the amount of rolled product that becomes defective due to the presence of large, undesirable lead nodules and / or internal defects caused by the presence of lead nodules distributed ineffectively inside the rolled steel product;
Bring.

Claims (16)

金属の鉛及び/又は一つ以上の鉛合金を含む、溶鋼浴を処理するための添加剤であって、前記添加剤は金属被覆及び微細に分割された充填材料から構成されるフラックスコアワイヤーの形態であり、該充填材料は金属の鉛粉末及び/又は鉛合金粉末と、該溶鋼に関して不活性である気体を該溶鋼浴の温度で放出可能な材料を含有する粉末とから形成され、前記添加剤は、前記金属の鉛粉末及び/又は鉛合金粉末の粒子サイズ割合 以下の特徴:
200μmのふるいを通過:G≦5%;
300μmのふるいを通過:90%≧G≧10%;
400μmのふるいを通過:40%≦G≦100%;
500μmのふるいを通過:100%≧G≧90%;
を有する点で特徴付けられる、前記添加剤。
An additive for treating a molten steel bath comprising a metallic lead and / or one or more lead alloys, said additive comprising a metallization and a flux core wire composed of finely divided filler material The filler material is formed from a metallic lead powder and / or a lead alloy powder and a powder containing a material capable of releasing a gas which is inert with respect to the molten steel at the temperature of the molten steel bath; agent, the metal lead powder and / or a lead alloy powder of particle size ratio G R the following features:
Pass through a 200 μm sieve: G R ≦ 5%;
Pass through 300 μm sieve: 90% ≧ G R ≧ 10%;
Pass through a 400 μm sieve: 40% ≦ G R ≦ 100%;
Pass through a 500 μm sieve: 100% ≧ G R ≧ 90%;
Said additive, characterized in that it has
該金属被覆が合金化されていない軟鋼から作られる、請求項1に記載の添加剤。   The additive according to claim 1, wherein the metal coating is made from unalloyed mild steel. 該金属被覆が0.1〜1mmの厚さである、請求項1又は請求項2のいずれかに記載の添加剤。   Additive according to any of claims 1 or 2, wherein the metal coating is 0.1 to 1 mm thick. 該金属被覆が0.2〜0.5mmの厚さである、請求項1から請求項3のいずれかに記載の添加剤。   The additive according to any one of claims 1 to 3, wherein the metal coating has a thickness of 0.2 to 0.5 mm. 該フラックスコアワイヤーが5〜20mmの直径を有する、請求項1〜4のいずれか1項に記載の添加剤。   The additive according to any one of claims 1 to 4, wherein the flux core wire has a diameter of 5 to 20 mm. 該フラックスコアワイヤーが9〜15mmの直径を有する、請求項1〜5のいずれか1項に記載の添加剤。   The additive according to any one of claims 1 to 5, wherein the flux core wire has a diameter of 9 to 15 mm. 該充填材料が1mmを超えない粒子サイズを有する、請求項1〜6のいずれか1項に記載の添加剤。   The additive according to any one of claims 1 to 6, wherein the filling material has a particle size not exceeding 1 mm. 該フラックスコアワイヤーが1メートル当たり100〜1000gの鉛を含有する、請求項1〜7のいずれか1項に記載の添加剤。   The additive according to any one of claims 1 to 7, wherein the flux core wire contains 100 to 1000 g of lead per meter. 溶鋼に関して不活性である気体を放出可能な該材料が、石灰石(炭酸カルシウム)又は焼成されていないドロマイトから形成される無機化合物であり、放出される該気体が従って二酸化炭素である、請求項1〜8のいずれか1項に記載の添加剤。   2. The material capable of releasing a gas which is inert with respect to molten steel is an inorganic compound formed from limestone (calcium carbonate) or uncalcined dolomite and the released gas is therefore carbon dioxide. The additive of any one of -8. 該無機化合物が、使用される鉛又は鉛合金(一つ又は複数)の重量を基準として、3〜30重量%の量で存在する、請求項9に記載の添加剤。   The additive according to claim 9, wherein the inorganic compound is present in an amount of 3 to 30% by weight, based on the weight of the lead or lead alloy (s) used. 金属の鉛及び/又は一つ以上の鉛合金を含む添加剤を用いて溶鋼浴を処理するための方法であって、該方法は、金属被覆及び微細に分割された充填材料から構成されるフラックスコアワイヤーの形態で添加剤を前記鋼浴に添加する工程を含み、該充填材料は金属の鉛粉末及び/又は鉛合金粉末と、該溶鋼に関して不活性である気体を該溶鋼浴の温度で放出可能な材料の粉末とから形成され、前記金属の鉛粉末及び/又は鉛合金粉末の粒子サイズ割合G 、以下の特徴:
200μmのふるいを通過:G≦5%;
300μmのふるいを通過:90%≧G≧10%;
400μmのふるいを通過:40%≦G≦100%;
500μmのふるいを通過:100%≧G≧90%;
を有する、前記方法。
A method for treating a molten steel bath using an additive comprising metallic lead and / or one or more lead alloys, the method comprising a flux comprising a metal coating and a finely divided filling material Adding an additive to the steel bath in the form of a core wire, the filler material releasing metallic lead powder and / or lead alloy powder and a gas which is inert with respect to the molten steel at the temperature of the molten steel bath possible materials are formed from a powder, lead powder and / or a lead alloy powder of particle size ratio G R of the metal is one or more of the following characteristics:
Pass through a 200 μm sieve: G R ≦ 5%;
Pass through 300 μm sieve: 90% ≧ G R ≧ 10%;
Pass through a 400 μm sieve: 40% ≦ G R ≦ 100%;
Pass through a 500 μm sieve: 100% ≧ G R ≧ 90%;
Said method.
処理される溶鋼1トン当たり0.1〜10kgのフラックスコアワイヤーを添加する、請求項11に記載の方法。   The method according to claim 11, wherein 0.1 to 10 kg of flux core wire is added per ton of molten steel to be treated. 該フラックスコアワイヤーを、50〜200m/分の速度で溶鋼浴に添加する、請求項11又は請求項12のいずれかに記載の方法。   The method according to claim 11 or 12, wherein the flux core wire is added to the molten steel bath at a speed of 50 to 200 m / min. 該フラックスコアワイヤーを、100〜150m/分の速度で溶鋼浴に添加する、請求項11から請求項13のいずれかに記載の方法。   The method according to claim 11, wherein the flux core wire is added to the molten steel bath at a rate of 100 to 150 m / min. 請求項1〜10のいずれか1項に記載の金属の鉛及び/又は一つ以上の鉛合金を含む添加剤の、溶鋼浴を処理するための使用。   Use of an additive comprising a metallic lead and / or one or more lead alloys according to any one of claims 1 to 10 for treating a molten steel bath. 請求項11〜13のいずれか1項に記載の方法によって得られる、高い鉛含有量を有し、100μmよりも小さい鉛のノジュールを含有する圧延鋼製品であって、該ノジュールの分布が以下の式
(式中:
:分布指標
D:分析領域の対角
:最も近接した鉛のノジュール間の最小距離
NI:最小距離を伴う鉛のノジュールの個数)
に従って定義される時に、Iが1.4%よりも大きい点で特徴付けられる、該圧延鋼製品。
A rolled steel product obtained by the method according to any one of claims 11 to 13, having a high lead content and containing lead nodules smaller than 100 µm, wherein the nodule distribution is as follows: formula
(Where:
I R: distribution index D: diagonal D i of the analysis region: nearest minimum distance between nodules lead NI: number of nodules of lead with minimum distance)
When defined according, characterized in that I R is greater than 1.4%, the rolling steel products.
JP2010510854A 2007-06-05 2008-06-04 Novel additive for treatment of molten steel baths containing lead and / or lead alloys Active JP5466153B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0755486 2007-06-05
FR0755486A FR2917096B1 (en) 2007-06-05 2007-06-05 NOVEL ADDITIVE COMPRISING LEAD AND / OR LEAD ALLOY FOR TREATING LIQUID STEEL BATHS.
PCT/FR2008/050989 WO2008152328A1 (en) 2007-06-05 2008-06-04 Novel additive comprising lead and/or a lead alloy for treating baths of liquid steel

Publications (2)

Publication Number Publication Date
JP2010529297A JP2010529297A (en) 2010-08-26
JP5466153B2 true JP5466153B2 (en) 2014-04-09

Family

ID=38657783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010510854A Active JP5466153B2 (en) 2007-06-05 2008-06-04 Novel additive for treatment of molten steel baths containing lead and / or lead alloys

Country Status (7)

Country Link
US (1) US20100172787A1 (en)
EP (1) EP2152918B1 (en)
JP (1) JP5466153B2 (en)
ES (1) ES2392736T3 (en)
FR (1) FR2917096B1 (en)
MX (1) MX2009013264A (en)
WO (1) WO2008152328A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329916A (en) * 2011-05-03 2012-01-25 首钢贵阳特殊钢有限责任公司 Method for feeding lead compound core spun yarn
CN106756635A (en) * 2016-12-30 2017-05-31 山西太钢不锈钢股份有限公司 A kind of preparation method containing tellurium steel and its steel containing tellurium

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB520072A (en) * 1938-04-30 1940-04-12 Inland Steel Co A method of adding lead to steel
US2151255A (en) * 1939-01-03 1939-03-21 Lufkin Rule Co Spring nut
US2259342A (en) * 1940-04-17 1941-10-14 Inland Steel Co Method of adding lead to steel
FR1537717A (en) * 1967-05-05 1968-08-30 Transformation Des Plastiques Bodyguard
US4056387A (en) * 1974-08-14 1977-11-01 Inland Steel Company Leaded steel bar free of lead macroinclusions
US4122771A (en) * 1977-04-13 1978-10-31 General Dynamics Squeegee holder
JPS5992151A (en) * 1982-11-18 1984-05-28 Sumitomo Metal Ind Ltd Production of free-cutting lead steel by continuous casting method
JPS59157215A (en) * 1983-02-26 1984-09-06 Nippon Steel Corp Manufacture of molten steel containing lead by utilizing calcium carbonate
JPS613822A (en) * 1984-06-19 1986-01-09 Nippon Kokan Kk <Nkk> Method for adding alloy element of which vapor pressure is increased by temperature of molten steel to molten steel
DE3739154A1 (en) * 1987-11-19 1989-06-01 Sueddeutsche Kalkstickstoff LEADING ADDITIVE FOR STEEL MELTING
JP2572807B2 (en) * 1988-04-25 1997-01-16 新日本製鐵株式会社 Manufacturing method of lead free-cutting steel by continuous casting method
JPH03134111A (en) * 1989-10-19 1991-06-07 Nippon Steel Corp Filling wire for treating molten metal treatable at a constant depth
JPH04308021A (en) * 1991-04-04 1992-10-30 Kobe Steel Ltd Production of lead-containing steel
JPH06198490A (en) * 1993-01-08 1994-07-19 Nippon Steel Weld Prod & Eng Co Ltd Production of additive cored wire
US5458060A (en) * 1993-05-03 1995-10-17 Sony Electronics Inc. Screen printing squeegee system
US5695842A (en) * 1996-04-23 1997-12-09 Pawling Corporation Entrance grating
JP2000328132A (en) * 1999-05-19 2000-11-28 Namariichi Kagaku Kogyo Kk Additive for adding lead into molten steel
JP4228901B2 (en) * 2003-12-08 2009-02-25 住友金属工業株式会社 Method for continuous casting of molten metal
JP4179180B2 (en) * 2004-02-04 2008-11-12 住友金属工業株式会社 Method and apparatus for continuous casting of molten metal
FR2871477B1 (en) * 2004-06-10 2006-09-29 Affival Sa Sa WIRE FOURRE
JP4770616B2 (en) * 2006-07-13 2011-09-14 住友金属工業株式会社 Method for continuous casting of molten metal and immersion lance for continuous casting
JP4844376B2 (en) * 2006-12-11 2011-12-28 住友金属工業株式会社 Method for continuous casting of molten metal

Also Published As

Publication number Publication date
MX2009013264A (en) 2010-02-18
WO2008152328A1 (en) 2008-12-18
FR2917096B1 (en) 2011-03-11
EP2152918A1 (en) 2010-02-17
ES2392736T3 (en) 2012-12-13
EP2152918B1 (en) 2012-08-15
US20100172787A1 (en) 2010-07-08
FR2917096A1 (en) 2008-12-12
JP2010529297A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
US5143564A (en) Low porosity, fine grain sized strontium-treated magnesium alloy castings
SE430904B (en) STAINLESS, FERRIT-AUSTENITIC STEEL MADE OF POWDER
JP5466153B2 (en) Novel additive for treatment of molten steel baths containing lead and / or lead alloys
JP5954483B2 (en) Lead free cutting steel
US9707664B2 (en) Zinc-based alloy shot
JP2009035766A (en) HIGH-FATIGUE-STRENGTH Al ALLOY AND PRODUCTION METHOD THEREFOR
JP6123549B2 (en) Manufacturing method of continuous cast slab
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
KR102074715B1 (en) Hot Forging Steels and Hot Forgings
JP2007275903A (en) Method for casting stainless steel or high alloy steel
JP2005059096A (en) Continuous casting method of low-carbon sulfur-based free cutting steel
KR20170003669A (en) Method for continuous casting of steel
Carluccio et al. Selective laser melting Fe and Fe-35Mn for biodegradable implants
JP2018035417A (en) Hot forging steel and hot-forged product
Wang et al. Improvement of center segregation in high-carbon steel billets using soft reduction
JP2010133017A (en) B-added austenitic stainless cast steel having excellent hot workability, and method for producing the same
Gerrard Inclusions and hydrogen and their effects on the quality of direct chill cast and flat rolled aluminium alloys for aerospace applications
CN113329832B (en) Mold powder and mold coating
JP5044981B2 (en) Steel continuous casting method
JP4203483B2 (en) Magnesium alloy material recycling method and recycling system
KR101764993B1 (en) STEEL IN WHICH Cu-Sn COEXIST, AND METHOD FOR MANUFACTURING SAME
Jacobi The MIDAS Technique for Detection of Macroscopic Inclusions in CC‐Material: Fundamentals and Practical Applications
Raviraj et al. Artificial Inclusion Environments—Replicating Industry in the Laboratory
RU2369643C1 (en) Method of producing sorbitized high-duty rod
Michalek et al. Evaluation of the chemical composition and microcleanliness of the steel samples from the heavy forging ingot

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5466153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250