JP5465924B2 - Optical analysis method for heterogeneous materials - Google Patents

Optical analysis method for heterogeneous materials Download PDF

Info

Publication number
JP5465924B2
JP5465924B2 JP2009119151A JP2009119151A JP5465924B2 JP 5465924 B2 JP5465924 B2 JP 5465924B2 JP 2009119151 A JP2009119151 A JP 2009119151A JP 2009119151 A JP2009119151 A JP 2009119151A JP 5465924 B2 JP5465924 B2 JP 5465924B2
Authority
JP
Japan
Prior art keywords
light
substance
component
scattering
heterogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009119151A
Other languages
Japanese (ja)
Other versions
JP2010266377A (en
Inventor
宜彦 水島
Original Assignee
宜彦 水島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宜彦 水島 filed Critical 宜彦 水島
Priority to JP2009119151A priority Critical patent/JP5465924B2/en
Publication of JP2010266377A publication Critical patent/JP2010266377A/en
Application granted granted Critical
Publication of JP5465924B2 publication Critical patent/JP5465924B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、物質内部が不均一な領域に分かれていて、それぞれ異なる成分構成を持つ領域からなる不均一物質の、各領域の成分構成を定量的または定性的に分析可能な不均一物質の光分析方法に関する。   The present invention relates to a heterogeneous substance that can be analyzed quantitatively or qualitatively for a heterogeneous substance that is divided into nonuniform areas inside the substance and that has areas with different component structures. It relates to the analysis method.

例えば生体物質について考えてみると、複雑な組織器官を含み、決して光学的に一様な物質ではない。従来、このように不均一領域が混在している不均一物質を分析(解析)する場合、単一で均一組成の物質と同様な式を用いて分析している。   For example, when considering a biological material, it is not an optically uniform material, including complex tissue organs. Conventionally, when analyzing (analyzing) a heterogeneous material in which heterogeneous regions are mixed in this way, the analysis is performed using a formula similar to that for a single material having a uniform composition.

しかしながら、単一で均一組成の物質と同様な式を用いて不均一物質を分析した場合、不均一物質の内部の散乱により各領域間の光のやり取りが異なっていると、内部を通過する光は、一様な減衰ないし散乱を受けるような単純な光分布を示さない。そのため、現実に内部の各領域間の相互散乱による特別な光分布を考慮することが必要である。しかし、あまりにも状況が複雑なので、取り扱うことができず、このような困難な事情は無視されてきた。結果として、誤った分析結果に甘んじているのが実情である。しかも、不均一物質を光学的に分析するための分析方法に関する文献は存在しないのである。   However, when analyzing a heterogeneous material using a formula similar to that of a single, uniform composition material, if the light exchange between the regions differs due to scattering inside the heterogeneous material, Does not exhibit a simple light distribution that is subject to uniform attenuation or scattering. Therefore, it is necessary to actually consider a special light distribution due to mutual scattering between the internal regions. However, the situation is so complicated that it cannot be handled, and such difficult circumstances have been ignored. As a result, the fact is that we are dissatisfied with the erroneous analysis results. In addition, there is no literature regarding analytical methods for optically analyzing heterogeneous substances.

本発明は、このような事情に鑑みてなされたもので、その目的は、物質内部が不均一な領域に分かれている不均一物質であっても、その各領域を理論的に正確に分析することが可能な不均一物質の光分析方法を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to analyze each region theoretically and accurately even if it is a heterogeneous material in which the inside of the material is divided into non-uniform regions. It is an object of the present invention to provide an optical analysis method for heterogeneous substances.

かかる課題を解決すべく、本発明のうち請求項1に記載の発明は、複数の構成物質の混合体である被検物質体に波長を選択して測定光を照射し得る光源装置と、入射光とこれらの透過光及び反射光を測定できる検出器とを備え、前記検出器で測定された測定光量に基づいて、tを空気との界面を通過するときの実効透過率としたときに、下記数1によって媒介変数ρとλを求める手順1と、必要に応じ複数の波長で測定してそれぞれの測定値から前記数1によりρとλを求めると共に、構成物質のそれぞれの吸収係数と散乱係数からなる光学特性係数を決定して成分を同定し、前記各構成物質の成分濃度を求める手順2と、を備えることを特徴とする。 In order to solve this problem, the invention according to claim 1 of the present invention includes a light source device capable of selecting a wavelength and irradiating measurement light on a test substance body that is a mixture of a plurality of constituent substances, and an incident light A light and a detector capable of measuring the transmitted light and the reflected light, and based on the measured light quantity measured by the detector, t is an effective transmittance when passing through the interface with air , Procedure 1 for obtaining the parameters ρ and λ according to the following equation 1, and measurement at a plurality of wavelengths as necessary, and obtaining ρ and λ from the respective measured values according to the equation 1, and the respective absorption coefficients and scattering of the constituent materials And a step 2 of determining an optical characteristic coefficient composed of a coefficient to identify a component and obtaining a component concentration of each constituent material.

Figure 0005465924
Figure 0005465924

本発明によれば、手順1で数1により媒介係数ρとλを求め、さらに手順2により決定した光学系係数で複数の構成物質の各物質の成分濃度を求めるため、物質内部が不均一な領域に分かれている不均一物質であっても、その各領域を理論的に正確に分析することが可能となる。   According to the present invention, since the mediation coefficients ρ and λ are obtained by the equation 1 in the procedure 1, and the component concentrations of each of the plurality of constituent materials are obtained by the optical system coefficient determined by the procedure 2, the inside of the substance is not uniform. Even if a heterogeneous substance is divided into regions, each region can be analyzed theoretically and accurately.

物質の第1領域xと第2領域yの関係を模式的に示す図The figure which shows typically the relationship between the 1st area | region x and the 2nd area | region y of a substance.

以下、本発明を実施するための最良の形態について詳細に説明する。
本発明に係わる光分析方法を実施可能な分析装置は、必要により適切な波長を選択して被検物質体に照射可能な光源装置と、該光源装置から照射された光の入射光、これらの透過光及び散乱光を測定できる検出器を備えている。なお、前記反射光の投光及び受光については、光源装置(投光器)要素と受光器(検出器)要素とを複数個隣接させて束ねて使用することが好ましい。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
An analysis apparatus capable of performing the optical analysis method according to the present invention includes a light source device capable of irradiating a test substance with an appropriate wavelength if necessary, incident light of light emitted from the light source device, and A detector capable of measuring transmitted light and scattered light is provided. In addition, regarding the projection and reception of the reflected light, it is preferable to use a bundle of a plurality of light source device (projector) elements and light receiver (detector) elements adjacent to each other.

光を用いて物質の成分を分析することは、対象物に損傷を与えることなく物質内部を検査できるので、有用な検査方法である。この光分析方法には、種々の方法があるが、本件特許は、前記光源装置から光を照射し、その反射光、透過光を前記検出器で測定し、これらの数値から後述する全く新規な数式1を使用して内部の成分濃度を定性的、及び定量的に決定するものである。   Analyzing the components of a substance using light is a useful inspection method because the inside of the substance can be inspected without damaging the object. Although there are various methods for this optical analysis, the present patent irradiates light from the light source device, measures the reflected light and transmitted light with the detector, and based on these numerical values, is completely new as will be described later. The internal component concentration is qualitatively and quantitatively determined using Equation 1.

そして、この目的のためには、物質の特性的な吸収係数と散乱係数とが、使用する波長範囲の各スペクトルデータとして判っていれば、測定値と比較することで内部の物質の濃度を決定ないし同定又は定量分析が可能となる。   For this purpose, if the characteristic absorption coefficient and scattering coefficient of the substance are known as each spectral data in the wavelength range to be used, the concentration of the substance inside is determined by comparing with the measured value. In addition, identification or quantitative analysis is possible.

しかし、一般の物質は必ずしも単一の組成成分から成り立っているわけではなく、複数の異なる成分ないし領域や部分から成り立っていることが多い。特に、媒質中では光は散乱されて他の不均質領域部分にも入り込み、それぞれの領域において異なる吸収係数、散乱係数に支配される。すなわち、不均一物質では、散乱によって光は流れの方向を変えて他の成分領域に散乱され、またそこから散乱されて元に戻るものもあるため、被検物質体の中での光分布は決して一様に流れているわけではない。それぞれの成分の物質特性に応じて散乱されたり吸収されたりするので、結果として光分布は対象物質内部で再分布を起こし、不均一な流れになる。   However, general substances are not necessarily composed of a single composition component, and are often composed of a plurality of different components, regions, or parts. In particular, in the medium, light is scattered and enters other inhomogeneous regions, and is governed by different absorption coefficients and scattering coefficients in the respective regions. In other words, in non-uniform materials, light is scattered to other component regions by changing the direction of flow due to scattering, and some of them are scattered back to the original, so the light distribution in the test substance body is It doesn't flow uniformly. Since the light is scattered or absorbed depending on the material characteristics of each component, the light distribution redistributes within the target material, resulting in a non-uniform flow.

また、出力光は複雑な相互多重散乱の影響を混成したものとなるため、物質内部での光分布は、それぞれ特殊な再分布の形をとる。それにもかかわらず、従来は単一成分と同様に考え、単純な単一物質の吸収と散乱の式だけに当てはめようとすると、何を測っているのか判らなくなり、分析は不可能となる。   In addition, since the output light is a mixture of the effects of complex mutual multiple scattering, the light distribution inside the substance takes a special redistribution form. Nonetheless, if we think of it as a single component and apply it only to the simple absorption and scattering formulas of a single substance, it is impossible to know what is being measured and analysis is impossible.

前記不均一状態とは、複数の異物質が被検物質体中で別々の領域を占め、それらが混合した状態をさす。いわゆる混合物で一様でない組成や組織を持っている物質は全てこの範疇に入る。粉体、粒状物などは、その物質粒と空気の混合物であり、食品は、種々の組織物質と水分との混合物である。植物や動物の生態内には、種々の組織器官があるので不均一物質である。   The heterogeneous state refers to a state in which a plurality of different substances occupy different regions in the test substance body and are mixed. Any substance with a non-uniform composition or structure in a so-called mixture falls into this category. Powders, granules and the like are a mixture of the substance particles and air, and foods are a mixture of various tissue substances and moisture. Since there are various tissue organs in the ecology of plants and animals, they are heterogeneous substances.

例えば、大気中の雲や霞は、波長の短い光に対しては混合物として挙動するが、波長の長い電波に対しては一様物質と考えて良い。これから判るように、光の平均自由行程が当該領域の大きさと比べて十分に長ければ、平均された一様物質とみなしても良いが、そうでなければ、複数物質の領域のそれぞれのサイズが無視できず、不均一物質というべきである。光の平均自由行程に比べて各領域の大きさが小さくない場合は、すべて本発明の適用範囲ではあるが、この大きさとは、吸収散乱係数によって異なり一定でなく、またそれらに反比例するので、場合によっては異なり複雑である。   For example, clouds and soot in the atmosphere behave as a mixture with respect to light having a short wavelength, but may be considered as a uniform substance with respect to radio waves having a long wavelength. As can be seen, if the mean free path of light is sufficiently long compared to the size of the region, it can be considered as an averaged uniform material, but if not, the size of each of the regions of multiple materials is It should not be ignored and should be a heterogeneous material. If the size of each region is not small compared to the mean free path of light, it is all within the scope of the present invention, but this size varies depending on the absorption scattering coefficient and is not constant, and is inversely proportional to them. It is different and complicated in some cases.

従来、こう言う場合に対処できる測定方法は存在しなかった。この分析についての過去の基本的な理論は、全て媒質が均一であることを前提としたものであり、媒質が不均一の場合はその理論の困難性のゆえに全く試みられたことがない。散乱効果の研究はあっても、複数成分領域が不均一に混在しているときに、各成分を分離して算出できる理論を建てることは困難で、公知文献的には全く前例がなかった。ただ数値計算的には、具体的な構造や物質を配置して一々シュミレーションするような、いわゆるモンテカルロ法と言われるような数値解しかできなかったのである。これは内部の物質領域構造が判っていなければできないことであって、自己矛盾であり一般的な分析にはならない。   Conventionally, there has been no measurement method that can cope with such a case. All previous basic theories for this analysis are based on the assumption that the medium is uniform, and if the medium is non-uniform, it has never been attempted due to the difficulty of the theory. Even though there are studies of the scattering effect, it is difficult to build a theory that can calculate each component separately when a plurality of component regions are mixed unevenly, and there is no precedent in the public literature. However, in terms of numerical calculations, only a numerical solution called the so-called Monte Carlo method, in which specific structures and materials are arranged and simulated one by one, could be achieved. This is something that can only be done if the internal structure of the material region is known. It is self-contradictory and not a general analysis.

不均一物質では、光散乱による再分配が起こり、各構成部分の内部の光分布が乱されてしまっているため、外部から出射光を測定するだけでは、平均的な量が判るだけで、各構成成分の光量が実質的には変化し、各成分の性質が他の部分によって影響を受け、光は単一物質の場合とは違った挙動をするので、内部物質成分が何であるのか決定できなくなる。本発明は、不均一媒質でも、それぞれの各個の内部構成成分の性質を分離して定量的に求める画期的な手法を提供するものである。   In non-uniform materials, redistribution due to light scattering occurs, and the light distribution inside each component is disturbed, so just measuring the emitted light from the outside only gives the average amount. The amount of light in a component changes substantially, the properties of each component are affected by other parts, and the light behaves differently than in a single substance, so you can determine what the internal substance component is. Disappear. The present invention provides an epoch-making method for quantitatively determining the properties of each individual internal component even in a non-uniform medium.

ここで、本発明にかかわる光分析方法の具体例について説明する。被検物質体(試片)は、好ましくは、その上下を平行平面で囲まれた板状であるとする。ただし、後述するように外形形状には厳密な要求はない。以下では被検物質体中の各物質の不均一混合領域における分布状態は、ランダムであり、特に場所によってムラなどなく、その意味では「一様」に不均一であると考える。   Here, a specific example of the optical analysis method according to the present invention will be described. The test substance body (specimen) preferably has a plate shape whose upper and lower sides are surrounded by parallel planes. However, there is no strict requirement for the outer shape as will be described later. In the following, it is considered that the distribution state of each substance in the test substance body in the heterogeneous mixed region is random, and there is no particular unevenness depending on the location, and in that sense, it is “uniformly” nonuniform.

照射光は、単一波長でインコヒーレントであるとする。これを被検物質体の平面に対して上方から垂直に照射することにより背面から透過光を受ける。また、被検物質体と同じ上面の垂直方向から反射光を受ける。被検物質体中の散乱は、簡単のために等方性散乱であるとする。つまり、被検物質体は特別な結晶異方性ないし偏光性を持たないとする。この仮定は、もし等方性散乱が強いならば、散乱によって偏光性が抑制されるので、必ずしも必要ではなくなるからである。   The irradiation light is assumed to be incoherent at a single wavelength. This is irradiated perpendicularly from above with respect to the plane of the test substance body to receive transmitted light from the back surface. Further, the reflected light is received from the vertical direction on the same upper surface as the test substance body. The scattering in the test substance is assumed to be isotropic scattering for the sake of simplicity. That is, it is assumed that the test substance has no special crystal anisotropy or polarization. This assumption is not necessary if the isotropic scattering is strong because the polarization is suppressed by the scattering.

もし、被検物質体の厚さhが大きくて透過光を得られない場合には、同一入射表面上で、光入射点より横方向にずれた点をおいて反射光を測定し、これを等価的な透過光とみすことができる。入射した光は、散乱によって逆行して元の入射表面に戻る成分が発生するが、そのとき、その軌跡はバナナ状(ないしヘアピン状)になるので、このバナナの沿長を等価的に透過光の軌跡長に換算すれば良い。この補正係数は、本発明の最も適切な適用例である人体においてのモンテカルロ・ショミレーションによれば、入射点と出射点との直線距離の1.05倍程度と見なせば良いことか判っている。これらの軌跡は、入射点から出射(反射)点に直行する成分は、外部の損失のためほとんど存在せず、また内部では、長距離を走るほど光量が減るので、結果としてそれらの中間的な状況であるバナナ状の軌跡が優勢になるからである。本発明が適用されるような、平均自由行程と組織領域のサイズとが著しくかけ離れていない限り、通常の物質の場合ならこの補正係数は1.15を超えることはない。 If the thickness h of the test substance is large and transmitted light cannot be obtained, the reflected light is measured at a point shifted laterally from the light incident point on the same incident surface. It can be regarded as equivalent transmitted light. The incident light generates a component that reverses due to scattering and returns to the original incident surface. At that time, the locus becomes a banana shape (or hairpin shape). What is necessary is just to convert into the locus length. According to Monte Carlo simulation in the human body, which is the most appropriate application example of the present invention, it is understood that this correction coefficient should be regarded as about 1.05 times the linear distance between the incident point and the outgoing point. Yes. In these trajectories, there is almost no component that goes straight from the incident point to the outgoing (reflecting) point due to external loss, and internally, the light amount decreases as the distance travels longer, resulting in an intermediate between them. This is because the banana-like trajectory that is the situation becomes dominant. As long as the mean free path and the size of the tissue region are not significantly different as the present invention is applied, this correction factor will not exceed 1.15 for normal materials.

以下に、2種類の物質の混合状態を扱う。もし3種類以上あるときは、求めたい第1種と他の種類と2種類に分けて擬似的に2種とみなして次々に未知数を分離して扱えば良い。ただしこの場合は、纏められた第2番目の物質種の物性は未知の物質に相当するから、未知数が増える場合がある。したがって後述のように、測定すべき実験数を増やして、連立方程式の数を増やして解く必要がある。   In the following, the mixed state of two types of substances will be handled. If there are three or more types, the first type to be obtained and the other types may be divided into two types and regarded as two types in a pseudo manner, and the unknowns may be separated and handled one after another. However, in this case, since the physical properties of the collected second substance species correspond to unknown substances, the number of unknowns may increase. Therefore, as described later, it is necessary to increase the number of experiments to be measured and increase the number of simultaneous equations.

光の流れのモデルとしては、図1に示すようにz方向から物質に照射する一様な光により被検物質体内部での定常的な光の流れを考える。x、yを2種類の物質領域の名称およびそれぞれ内部に存在する光量とし、添字f、bをそれぞれ順方向、逆方向への光とする。また、a、sをそれぞれ各物質の特性吸収係数、散乱係数とする。Xをx領域のから散乱された光が元の領域内ないし他のx領域に到達して終端する光とする。すなわちy領域に終端するものは1−Xとなる。Yについても同様に定義する。   As a model of the light flow, a steady light flow inside the test substance body is considered by uniform light irradiating the substance from the z direction as shown in FIG. Let x and y be the names of the two types of substance regions and the amount of light present in each, and the subscripts f and b be the light in the forward and reverse directions, respectively. Further, a and s are the characteristic absorption coefficient and scattering coefficient of each substance, respectively. Let X be the light that is scattered from the x region and terminates in the original region or in another x region. That is, what ends in the y region is 1-X. Y is defined similarly.

したがって、X+Y=1の関係が成立する。このx、yとX、Yの関係が図1に示されている。これらの定義を用い、z方向に流れる定常的な流れについて、次式(数2)が得られる。   Therefore, the relationship X + Y = 1 is established. The relationship between x, y and X, Y is shown in FIG. Using these definitions, the following equation (Equation 2) is obtained for a steady flow flowing in the z direction.

Figure 0005465924
Figure 0005465924

ここで、1/2の係数は、dz方向に対して垂直方向成分を持って散乱される部分を纏めて積分平均することから生じる。上式を解き、また、次式(数3)を定義する。   Here, the factor of 1/2 is generated by integrating and averaging the portions scattered with a vertical direction component with respect to the dz direction. The above equation is solved and the following equation (Equation 3) is defined.

Figure 0005465924
Figure 0005465924

以上の式から若干の計算をすると、以下のような実用計算式が導かれる。
1.分析に使用されるべき測定光量は3種類であって、それぞれ照射光量をI、透過光量をT、反射光量をRとする。しかし、計算で取り扱った量は物質内部における値なので、外部で測れる量すなわち入射光I、透過光T、反射光Rとは物質界面を通過する際の屈折率差に起因する損失分だけ異なる。これを考慮する際には、界面通過率をtとすると、一方を空気、物質の平均屈折率をn(ただしn>1)とし、次式(数4)が得られる。
When some calculations are performed from the above formulas, the following practical formulas are derived.
1. There are three types of measurement light amounts to be used for analysis, where the irradiation light amount is I, the transmitted light amount is T, and the reflected light amount is R. However, since the quantity handled in the calculation is a value inside the substance, the quantity that can be measured outside, that is, the incident light I 0 , the transmitted light T 0 , and the reflected light R 0 is a loss due to a difference in refractive index when passing through the substance interface. Only different. In consideration of this, assuming that the interface transmittance is t, one is air and the average refractive index of the substance is n (where n> 1), and the following equation (Equation 4) is obtained.

Figure 0005465924
Figure 0005465924

このtを含めて計算する場合には、測定値から次式(数5)の量を換算する。   When calculating including this t, the quantity of following Formula (Formula 5) is converted from a measured value.

Figure 0005465924
Figure 0005465924

また、t=1と仮定できるときには、上記と等価の次式(数6)の簡略式でも良い。   Further, when it can be assumed that t = 1, a simplified expression of the following expression (Expression 6) equivalent to the above may be used.

Figure 0005465924
Figure 0005465924

上記の式を解いてρとλとを決定することができる。tには想定される値を代入し、結果によって順次修正した値を使用すれば良い。以下では、こうして決定したρ及びλを使って、各成分のa、xまた濃度cを求める手順について説明する。   By solving the above equation, ρ and λ can be determined. An assumed value is substituted for t, and a value sequentially corrected according to the result may be used. Hereinafter, a procedure for obtaining a, x and density c of each component using ρ and λ determined in this way will be described.

2.分析せんとする対象が2成分系であるときの例として、x、yをそれぞれの成分を表す添字とし、cをその中のそれぞれの成分濃度とする。さらに、これから次の方法でaとsあるいは各成分濃度などを求めるには次のようにする。   2. As an example when the object to be analyzed is a two-component system, x and y are subscripts representing the respective components, and c is the concentration of each component therein. Further, to obtain a and s or each component concentration by the following method, the following is performed.

一般に、A、Xを想定する成分要素物資の特性吸収係数、散乱係数とする。これらは単位濃度あたりの特性値として、また波長の関数として、データハンドブックなどの文献に記載されている特性物質係数である。すなわち測定される吸収係数と散乱係数とは、それぞれがA、Sと濃度cを介して比例関係にあり、次式で表される。以後の計算は代数計算なので、必要により適当に処理することができ、手段は公知である。以下に示すものはそのうちの若干の例示である。
=a/A=s/S
=a/A=s/Sy
In general, A and X are assumed to be the characteristic absorption coefficient and scattering coefficient of component element materials. These are characteristic substance coefficients described in literatures such as data handbooks as characteristic values per unit concentration and as a function of wavelength. That is, the measured absorption coefficient and scattering coefficient are proportional to each other via A and S and the concentration c, and are expressed by the following equations. Since the subsequent calculation is an algebraic calculation, it can be appropriately processed if necessary, and means are known. The following are some examples.
c x = a x / A x = s x / S x
c y = a y / A y = s y / S y

さらに、次式に計算により求められたρとλを代入すれば、c、cが求められる。
2ρ=c +(c X)AX+c +(c Y)A
未知数がc、c、c X、c Yの4個と看做せば、4個の波長を選んでの測定を繰り返し、その結果から4個の方程式を決めることができる。また、
I/λ=c+(cX)S+c+(cY)S
ならば、未知数はc、c、cX、xYの4個である。
前述した測定波長としては、想定される物質の特性スペクトルがピークを示すような、特異点の波長を選ぶことが重要である。
Further, by substituting ρ and λ obtained by calculation into the following equations, c x and cy are obtained.
2 = c x 2 X x 2 + (c x 2 X) A x X + cy 2 A y 2 + ( cy 2 Y) A y S y
If the unknowns are considered to be c x , c y , c x 2 X, and c y 2 Y, measurement can be repeated with four wavelengths selected, and four equations can be determined from the results. . Also,
I / λ = c x A x + (c x X) S x + cy A y + (cy y ) S y
Then, there are four unknowns: c x , c y , c x X, and xy Y.
As the aforementioned measurement wavelength, it is important to select a wavelength at a singular point where the characteristic spectrum of the assumed substance shows a peak.

前記の連立方程式は、線形なので容易に解くことができ、以下同様にして、それぞれ必要な量を組み合わせて解を求めることができる。簡単な例として、もし全てのSが等しく、S=S=Sならば、必要な測定波長は3個となり、以下のように簡単になる。この場合、未知数は、(c、c、X)の3個であり、3個の波長について測定すれば、連立方程式が得られる。例えば、濃度は、次式(数7)で表現される。添字はそれぞれの波長で、添字1、2、3は、3種の波長を示す。 Since the above simultaneous equations are linear, they can be easily solved, and in the same manner, solutions can be obtained by combining necessary amounts. As a simple example, if all S are equal and S x = S y = S, then three measurement wavelengths are required, which is simplified as follows. In this case, there are three unknowns (c x , c y , X), and simultaneous equations can be obtained by measuring three wavelengths. For example, the concentration is expressed by the following equation (Equation 7). Subscripts are the respective wavelengths, and subscripts 1, 2, and 3 indicate the three wavelengths.

Figure 0005465924
Figure 0005465924

同様にして代数計算で他の量も求められる。この例のように、各物質の特徴や場合などによって適当に式を立てて解けば良い。それらの簡便方法が見つからなければ、未知数の数だけ波長を変えて測定を繰り返しデータを集めれば、それらの連立方程式は線形代数の範囲内で必ず解けることは自明である。   Similarly, other quantities can be obtained by algebraic calculation. As in this example, an appropriate formula may be established and solved depending on the characteristics and cases of each substance. If these simple methods are not found, it is obvious that these simultaneous equations can always be solved within the range of linear algebra if data are collected by repeating measurement by changing the wavelength by the number of unknowns.

もちろん、X、Yの情報が既知ならばそれを使用しても良いし、上記の比例関係に限らず、必要な連立方程式の数が足りれば、任意の未知数を求めることができる。また、背景雑音ないし混入光があるときは、その背景量としては、予め測った実験値、または理論的に予測される量、あるいは既知法則に従う量を決め、測定信号から差し引くことは、計算上は未知数が増えた場合と等価として処理することができる。   Of course, if the information of X and Y is known, it may be used, and it is not limited to the above-described proportional relationship, and an arbitrary unknown can be obtained if the number of necessary simultaneous equations is sufficient. In addition, when there is background noise or mixed light, the background amount is determined in advance by experimentally measured values, theoretically predicted amounts, or amounts according to known laws, and subtracting from the measured signal Can be treated as equivalent to increasing unknowns.

また、生体物質においては、皮膚組織などの表面層が存在することがある。このようなときには上皮層の特性係数は一般的に既知なので、それらをあらかじめ計算により除外しておき、内部だけ取り扱うのがよい。さもないときには、該上皮層と求めた内部との中間の界面で連立方程式を接続すれば良い。要すれば最小二乗法を用いる。   In addition, a surface layer such as skin tissue may exist in a biological material. In such a case, since the characteristic coefficient of the epithelial layer is generally known, it is better to exclude them by calculation in advance and handle only the inside. Otherwise, simultaneous equations may be connected at the interface between the epithelial layer and the determined interior. Use the least squares method if necessary.

このように本発明にかかわる光分析方法によれば、不均一物質であっても代数計算で分析を進めることが可能であるというすぐれた特徴がある。具体的には、数1により媒介係数ρとλを求める手順と、光学系係数と各物質の成分濃度を決定する手順とにより、物質内部が不均一な領域に分かれている不均一物質であっても、その各領域を理論的に正確に分離して抽出し分析することが可能となる。その結果、従来全く手段がなかった不均一複合混合物質、例えば生体物質の非侵襲的な分析のために、光学的に分析する手法を始めて提供することができ、産業技術応用上極めて有用な発明である。   As described above, the optical analysis method according to the present invention has an excellent feature that even an inhomogeneous substance can be analyzed by algebraic calculation. Specifically, it is a heterogeneous substance in which the inside of the substance is divided into non-uniform areas by the procedure for obtaining the mediation coefficients ρ and λ by Equation 1 and the procedure for determining the optical system coefficient and the component concentration of each substance. However, each region can be extracted and analyzed in a theoretically accurate manner. As a result, it is possible to provide for the first time an optical analysis method for non-invasive analysis of heterogeneous complex mixed materials, for example, biological materials, for which there has been no means in the past, and it is an extremely useful invention for industrial technical applications. It is.

なお、前記数1により誘導され得る(すなわち数1と数学的に等価な)数式は、もともと前記数2により直接に導かれるものなので、当然に数1と等しいことは明白である。このことは、数6から数7に至るすべての数式についても同様であって、おのおのから数学的に誘導される数式は、すべて数1と数3とから直接の演算される結果と同等であるから、それぞれもとの式とに数学的に等価である。そのような表現式を使用する方法も本発明に含まれるものとする。また、以上述べた代数計算は、十分に速く計算できるので、いったん目的の成分を示すスペクトルを決めれば、この光量を時間的に追跡することが可能である。例えば特定の生体物質などが時間的に変化してゆく様子を監視追跡してゆくこともできる。このような時間的な分析も当然に本発明に含まれる。   It is obvious that the mathematical formula that can be derived by the formula 1 (that is, mathematically equivalent to the formula 1) is directly derived by the formula 2 and is naturally equal to the formula 1. This is the same for all the mathematical formulas from the mathematical formula 6 to the mathematical formula 7, and the mathematical formulas derived mathematically from them are all equivalent to the results directly calculated from the mathematical formulas 1 and 3. Therefore, each is mathematically equivalent to the original expression. A method of using such an expression is also included in the present invention. In addition, since the algebra calculation described above can be calculated sufficiently quickly, once the spectrum indicating the target component is determined, the amount of light can be traced over time. For example, it is possible to monitor and track how a specific biological material changes over time. Such temporal analysis is naturally included in the present invention.

本発明は、生体物質などに限らず、全ての不均一物質の光分析に利用できる。   The present invention is not limited to biological materials and can be used for optical analysis of all heterogeneous materials.

x・・・物質領域、X・・・x領域からの散乱光がxに終端する確率、y・・・物質領域、Y・・・y領域からの散乱光がyに終端する確率。     x... the substance region, X... probability that the scattered light from the x region terminates in x, y... the substance region, Y... the probability that the scattered light from the y region terminates in y.

Claims (1)

複数の構成物質の混合体である被検物質体に波長を選択して測定光を照射し得る光源装置と、入射光とこれらの透過光及び反射光を測定できる検出器とを備え、
前記検出器で測定された測定光量に基づいて、tを空気との界面を通過するときの実効透過率としたときに、数1によって媒介変数ρとλを求める手順1と、
必要に応じ複数の波長で測定してそれぞれの測定値から前記数1によりρとλを求めると共に、構成物質のそれぞれの吸収係数と散乱係数からなる光学特性係数を決定して成分を同定し、前記各構成物質の成分濃度を求める手順2と、
を備えることを特徴とする不均一物質の光分析方法。
Figure 0005465924
A light source device that can irradiate measurement light by selecting a wavelength to a test substance body that is a mixture of a plurality of constituent substances, and a detector that can measure incident light and transmitted and reflected light thereof
Procedure 1 for determining parameters ρ and λ according to Equation 1, where t is the effective transmittance when passing through the interface with air , based on the amount of light measured by the detector,
If necessary, measure at a plurality of wavelengths and obtain ρ and λ from the respective measured values according to the above formula 1, determine the optical characteristic coefficient consisting of the absorption coefficient and the scattering coefficient of each constituent material, and identify the component, Procedure 2 for determining the component concentration of each constituent material,
A method for optical analysis of heterogeneous material, comprising:
Figure 0005465924
JP2009119151A 2009-05-15 2009-05-15 Optical analysis method for heterogeneous materials Expired - Fee Related JP5465924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009119151A JP5465924B2 (en) 2009-05-15 2009-05-15 Optical analysis method for heterogeneous materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119151A JP5465924B2 (en) 2009-05-15 2009-05-15 Optical analysis method for heterogeneous materials

Publications (2)

Publication Number Publication Date
JP2010266377A JP2010266377A (en) 2010-11-25
JP5465924B2 true JP5465924B2 (en) 2014-04-09

Family

ID=43363475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119151A Expired - Fee Related JP5465924B2 (en) 2009-05-15 2009-05-15 Optical analysis method for heterogeneous materials

Country Status (1)

Country Link
JP (1) JP5465924B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3662376B2 (en) * 1996-05-10 2005-06-22 浜松ホトニクス株式会社 Internal characteristic distribution measuring method and apparatus
WO2000065330A1 (en) * 1999-04-21 2000-11-02 Hamamatsu Photonics K.K. Method for optically analyzing inhomogeneous medium
AU2002361113A1 (en) * 2001-12-26 2003-07-15 Hamamatsu Photonics K.K. Optical analysis method for heterogeneous medium
JP3730927B2 (en) * 2002-03-20 2006-01-05 株式会社日立製作所 Absorbing substance concentration spatial distribution imaging device
JP2005221488A (en) * 2004-02-09 2005-08-18 Japan Science & Technology Agency Component information identifying method, component information identifying device, program, and storage medium

Also Published As

Publication number Publication date
JP2010266377A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
Gobrecht et al. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer–Lambert law absorbance of highly scattering materials
Qin et al. Monte Carlo simulation for quantification of light transport features in apples
Keller et al. Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis
Shi et al. Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)
JP2015519556A5 (en)
KR20090060418A (en) Ultraviolet radiation protective effect evaluation method and device
CN107923859B (en) Fluorescent x-ray analyzer
JP6101678B2 (en) Method, system and computer program product for determining the absorption coefficient of opaque media
Thennadil et al. Empirical preprocessing methods and their impact on NIR calibrations: a simulation study
Seo et al. Radiative transport in the delta‐approximation for semi‐infinite turbid media
CN105334204B (en) One kind is based on Fourier transform-Raman spectroscopy analysis method
JP6894088B2 (en) Scatterer concentration measuring device and its method
US6975401B2 (en) Method of calculating optical path distribution inside scattering absorber
JP5465924B2 (en) Optical analysis method for heterogeneous materials
JP3902999B2 (en) Optical scattering characteristic estimation apparatus and operation method thereof
Lu et al. Determination optical properties of tissue-like phantoms using diffuse reflectance and transmittance spectroscopy
RU2377540C1 (en) Photometry method for scattering media and photometric module realising said method
Leger Alleviating the effects of light scattering in multivariate calibration of near-infrared spectra by path length distribution correction
Wang et al. Application of multi-wavelength dual-position absorption spectrum to improve the accuracy of leukocyte spectral quantitative analysis based on “M+ N” theory
RU2413930C1 (en) Method of determining optical characteristics of homogeneous scattering substance
Esposito et al. A new method for depth profiling reconstruction in confocal microscopy
Zhang et al. Reduction of package-induced error for the composition analysis of in-package liquid products based on transmission spectrum
JP2010071982A (en) Asbestos identifying method by attenuation factor comparison of laser-induced fluorescence intensity
JP6688205B2 (en) Sample analyzer and sample analysis program
RU2371703C1 (en) Photometre

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Ref document number: 5465924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees