JP5465478B2 - Negative electrode for alkaline storage battery, alkaline storage battery, and method for producing alkaline storage battery - Google Patents

Negative electrode for alkaline storage battery, alkaline storage battery, and method for producing alkaline storage battery Download PDF

Info

Publication number
JP5465478B2
JP5465478B2 JP2009158418A JP2009158418A JP5465478B2 JP 5465478 B2 JP5465478 B2 JP 5465478B2 JP 2009158418 A JP2009158418 A JP 2009158418A JP 2009158418 A JP2009158418 A JP 2009158418A JP 5465478 B2 JP5465478 B2 JP 5465478B2
Authority
JP
Japan
Prior art keywords
layer
storage battery
alkaline storage
negative electrode
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009158418A
Other languages
Japanese (ja)
Other versions
JP2010108910A (en
Inventor
潤 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009158418A priority Critical patent/JP5465478B2/en
Priority to CN200910178535A priority patent/CN101714626A/en
Priority to US12/588,015 priority patent/US20100081053A1/en
Publication of JP2010108910A publication Critical patent/JP2010108910A/en
Application granted granted Critical
Publication of JP5465478B2 publication Critical patent/JP5465478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • H01M4/385Hydrogen absorbing alloys of the type LaNi5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)
  • Secondary Cells (AREA)

Description

本発明は、水素吸蔵合金を用いたアルカリ蓄電池用負極、このアルカリ蓄電池用負極を用いたアルカリ蓄電池及びこのアルカリ蓄電池の製造方法に係り、特に、上記のアルカリ蓄電池用負極に、CaCu5型以外の結晶構造を有する水素吸蔵合金を用いた場合において、この水素吸蔵合金を改善し、低温環境下における出力特性及び充放電サイクル特性を十分に向上させるようにした点に特徴を有するものである。 The present invention relates to an alkaline storage battery negative electrode using a hydrogen storage alloy, an alkaline storage battery using the alkaline storage battery negative electrode, and a method for producing the alkaline storage battery, and particularly to the alkaline storage battery negative electrode other than the CaCu 5 type. In the case of using a hydrogen storage alloy having a crystal structure, this hydrogen storage alloy is improved, and the output characteristics and the charge / discharge cycle characteristics under a low temperature environment are sufficiently improved.

従来、アルカリ蓄電池としては、ニッケル・カドミウム蓄電池が広く使用されていたが、近年においては、ニッケル・カドミウム蓄電池に比べて高容量で、またカドミウムを使用しないため環境安全性にも優れているという点から、負極に水素吸蔵合金を用いたニッケル・水素蓄電池が注目されるようになった。   Conventionally, nickel-cadmium storage batteries have been widely used as alkaline storage batteries, but in recent years they have a higher capacity than nickel-cadmium storage batteries and are superior in environmental safety because they do not use cadmium. Therefore, nickel-hydrogen storage batteries using a hydrogen storage alloy for the negative electrode have come to attract attention.

そして、近年においては、このようなニッケル・水素蓄電池からなるアルカリ蓄電池が、各種のポータブル機器やハイブリッド型電気自動車などに使用されるようになり、様々な環境条件下において、このアルカリ蓄電池の各種の特性をさらに向上させることが期待されている。   In recent years, alkaline storage batteries composed of such nickel-hydrogen storage batteries have come to be used in various portable devices, hybrid electric vehicles, and the like. It is expected to further improve the characteristics.

ここで、このようなアルカリ蓄電池においては、その負極に使用する水素吸蔵合金として、CaCu5 格子の結晶を主相とする希土類−ニッケル系水素吸蔵合金や、ラーベス型のAB2格子の結晶を主相とする水素吸蔵合金等が一般に使用されている。 Here, in such an alkaline storage battery, as a hydrogen storage alloy used for the negative electrode, a rare earth-nickel-based hydrogen storage alloy having a CaCu 5 type lattice crystal as a main phase, or a Laves type AB 2 lattice crystal is used. A hydrogen storage alloy or the like as a main phase is generally used.

しかし、上記のような水素吸蔵合金は、水素吸蔵能力が必ずしも十分であるとはいえず、アルカリ蓄電池を高容量化させることが困難であると共に、低温条件下において、十分な出力特性や充放電サイクル特性が得られないという問題があった。   However, hydrogen storage alloys such as those described above do not necessarily have sufficient hydrogen storage capacity, and it is difficult to increase the capacity of alkaline storage batteries, and sufficient output characteristics and charge / discharge can be achieved under low temperature conditions. There was a problem that cycle characteristics could not be obtained.

また、従来においては、特許文献1,2等に示されるように、上記の希土類−ニッケル系水素吸蔵合金にMg等を含有させたCaCu5型以外の結晶構造を有する希土類−Mg−Ni系水素吸蔵合金を用い、またこの水素吸蔵合金の表面近傍におけるNi量を、水素吸蔵合金内部のバルク相よりも多くすることが提案されている。 Conventionally, as shown in Patent Documents 1 and 2, etc., rare earth-Mg—Ni-based hydrogen having a crystal structure other than CaCu 5 type in which Mg or the like is contained in the rare earth-nickel-based hydrogen storage alloy described above. It has been proposed to use a storage alloy and to increase the amount of Ni in the vicinity of the surface of the hydrogen storage alloy more than the bulk phase inside the hydrogen storage alloy.

ここで、上記のような希土類−Mg−Ni系水素吸蔵合金は、上記のCaCu5型格子の結晶を主相とする希土類−ニッケル系水素吸蔵合金に比べて水素吸蔵能力が高く、また一般にクラックが生じやすくて、反応性の高い新しい面が放電反応に寄与するため、低温での放電特性や、高率放電時における放電容量は比較的良好であった。 Here, the rare earth-Mg-Ni-based hydrogen storage alloy as described above has a higher hydrogen storage capacity than the rare-earth-nickel-based hydrogen storage alloy whose main phase is the crystal of the CaCu 5 type lattice, and generally has cracks. Since a new surface with high reactivity contributes to the discharge reaction, the discharge characteristics at low temperatures and the discharge capacity at high rate discharge were relatively good.

また、従来においては、特許文献3に示されるように、水素吸蔵合金の表面に水素吸蔵合金内部のバルク相よりもNiが多く含まれる表面層を設けると共に、この表面層におけるNi粒子の粒径を10〜50nmの範囲にし、アルカリ蓄電池における低温放電特性や高率放電特性を向上させるようにしたものが提案されている。   Conventionally, as shown in Patent Document 3, a surface layer containing more Ni than the bulk phase inside the hydrogen storage alloy is provided on the surface of the hydrogen storage alloy, and the particle size of Ni particles in the surface layer Has been proposed to improve the low-temperature discharge characteristics and high-rate discharge characteristics in alkaline storage batteries.

しかし、上記のように、合金表面層におけるNi量を増やしたり、また、合金表面層におけるNi粒子の粒径を制御した水素吸蔵合金を用いた場合においても、依然として、低温条件下における出力特性や充放電サイクル特性を十分に向上させることができず、極めて低温の環境条件での使用が要求されるハイブリッド型電気自動車や電動工具などの電源として好適に使用することは困難であった。   However, as described above, even when the amount of Ni in the alloy surface layer is increased or a hydrogen storage alloy in which the particle size of Ni particles in the alloy surface layer is controlled is used, the output characteristics under low temperature conditions are still The charge / discharge cycle characteristics cannot be sufficiently improved, and it has been difficult to suitably use the battery as a power source for a hybrid electric vehicle or a power tool that is required to be used in an extremely low temperature environment.

特開2000−80429号公報JP 2000-80429 A 特開2002−69554号公報JP 2002-69554 A 特開2007−87886号公報JP 2007-87886 A

本発明は、アルカリ蓄電池における上記のような問題を解決することを課題とするものであり、アルカリ蓄電池の負極に、CaCu5型以外の結晶構造を有する水素吸蔵合金を用いた場合において、この水素吸蔵合金を改善し、低温環境下における出力特性及び充放電サイクル特性を十分に向上させて、ハイブリッド型電気自動車や電動工具などの電源として好適に使用できるアルカリ蓄電池を提供することを課題とするものである。 This invention makes it a subject to solve the above problems in an alkaline storage battery. In the case where a hydrogen storage alloy having a crystal structure other than CaCu 5 type is used for the negative electrode of an alkaline storage battery, this hydrogen is used. An object of the present invention is to provide an alkaline storage battery that can be suitably used as a power source for hybrid electric vehicles, electric tools, etc. by improving the storage alloy, sufficiently improving the output characteristics and charge / discharge cycle characteristics in a low temperature environment It is.

本発明のアルカリ蓄電池用負極においては、上記のような課題を解決するため、一般式Ln1-xMgxNiy-a-bAlab(式中、Lnは、Yを含む希土類元素、Zr、Tiから選択される少なくとも1種の元素、Mは、V、Nb、Ta、Cr、Mo、Mn、Fe、Co、Ga、Zn、Sn、In、Cu、Si、P、Bから選択される少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす。)で示される水素吸蔵合金を用いたアルカリ蓄電池用負極において、上記の水素吸蔵合金のバルク相の表面に第1層〜第3層の3つの層が積層されてなり、バルク相に近い第1層は、この第1層の上に位置する第2層よりも含有される酸素の量が多く、アルカリ溶液に可溶な元素が10原子%以上含まれ、またこの第1層の上に位置する第2層は、Niの含有率が上記のバルク相よりも高く、またこの第2層の上に位置する第3層は、NiOの含有率が上記の第2層におけるNiOの含有率よりも高くなっている。 In the negative electrode for alkaline storage batteries of the present invention, in order to solve the above-described problems, the general formula Ln 1-x Mg x Ni yab Al a M b (where Ln is a rare earth element including Y, Zr, Ti At least one element selected from: M is at least one selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, and B It is a seed element and satisfies the following conditions: 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9. In the negative electrode for an alkaline storage battery using the hydrogen storage alloy shown, three layers of the first layer to the third layer are laminated on the surface of the bulk phase of the hydrogen storage alloy, and the first layer close to the bulk phase is The amount of oxygen contained in the alkaline solution is larger than that in the second layer located on the first layer. The second layer containing 10 atomic% or more of a soluble element and located on the first layer has a higher Ni content than the bulk phase and is located on the second layer. The third layer has a higher NiO content than the NiO content in the second layer.

ここで、上記のアルカリ蓄電池用負極においては、上記の第3層にNiOと金属Niとが存在することが好ましい。このように金属Niの他にNiOが存在すると、金属Ni相互が結合するのが抑制され、充放電反応の触媒として作用する金属Niの反応面積が低下するのが防止されるようになる。   Here, in the alkaline storage battery negative electrode, it is preferable that NiO and metal Ni exist in the third layer. Thus, if NiO is present in addition to metal Ni, bonding of metal Ni to each other is suppressed, and a reduction in the reaction area of metal Ni that acts as a catalyst for charge / discharge reaction is prevented.

そして、この第3層におけるNiOの量が少ないと、金属Ni相互が結合するのを十分に抑制することができなくなるため、NiOと金属Niとの合計のNi量に対するNiOにおけるNi量の比率を20%以上にすることが好ましく、より好ましくは40%以上になるようにする。一方、第3層におけるNiOの量が多くなりすぎると、充放電反応の触媒として作用する金属Niの量が少なくなるため、NiOと金属Niとの合計のNi量に対するNiOにおけるNi量の比率を99%以下にすることが好ましい。   If the amount of NiO in the third layer is small, it becomes impossible to sufficiently suppress the bonding of metal Ni to each other. Therefore, the ratio of the amount of Ni in NiO to the total amount of Ni of NiO and metal Ni is set as follows. It is preferably 20% or more, more preferably 40% or more. On the other hand, if the amount of NiO in the third layer is too large, the amount of metal Ni that acts as a catalyst for the charge / discharge reaction decreases, so the ratio of the amount of Ni in NiO to the total amount of Ni of NiO and metal Ni is It is preferable to make it 99% or less.

また、上記の第3層においては、上記のNiOや金属Ni以外の元素が多く含まれると、充放電反応が低下するおそれがあるため、第3層中における酸素とNiとの合計量が90原子%以上であることが好ましい。   Further, in the third layer, if a large amount of elements other than the NiO and the metal Ni is included, the charge / discharge reaction may be lowered. Therefore, the total amount of oxygen and Ni in the third layer is 90. It is preferably at least atomic percent.

また、上記の第3層の層厚が薄いと、水素吸蔵合金のバルク相がアルカリ電解液によって腐食されるのを十分に抑制することができなくなる一方、第3層の層厚が厚くなりすぎると、常温付近での放電性能が低下するため、この第3層の層厚を10nm以上100nm以下にすることが好ましく、より好ましくは40nm以上70nm以下にする。   Further, if the layer thickness of the third layer is thin, the bulk phase of the hydrogen storage alloy cannot be sufficiently prevented from being corroded by the alkaline electrolyte, while the layer thickness of the third layer becomes too thick. Since the discharge performance near normal temperature is reduced, the thickness of the third layer is preferably 10 nm or more and 100 nm or less, and more preferably 40 nm or more and 70 nm or less.

また、上記の第3層に存在する結晶粒子の粒径が大きいと、充放電反応の触媒として作用する反応面積が低下するため、上記の結晶粒子の粒径が7nm以下であることが好ましく、より好ましくは5nm以下である。但し、第3層に存在する結晶粒子の粒径が小さくなりすぎると、充放電反応に対する触媒作用が低下するため、結晶粒子の粒径が2nm以上のものを用いることが好ましい。   Moreover, since the reaction area which acts as a catalyst for the charge / discharge reaction decreases when the particle size of the crystal particles present in the third layer is large, the particle size of the crystal particles is preferably 7 nm or less, More preferably, it is 5 nm or less. However, if the particle size of the crystal particles present in the third layer becomes too small, the catalytic action for the charge / discharge reaction is lowered, and therefore it is preferable to use a crystal particle having a particle size of 2 nm or more.

一方、上記の第2層に存在する結晶粒子の粒径が小さいと、電荷の移動がスムーズに行われなくなるため、この第2層に存在する結晶粒子の粒径が、上記の第3層に存在する結晶粒子の粒径よりも大きいことが好ましく、10nm以上の粒径のものを含むことが好ましい。但し、この第2層に存在する結晶粒子においても、その粒径が大きくなりすぎると、充放電反応の触媒として作用する反応面積が低下すると共に、プロトンの移動が制限されて反応性が低下するため、結晶粒子の粒径が50nm以下のものを用いることが好ましい。   On the other hand, if the particle size of the crystal particles existing in the second layer is small, the movement of charges is not smoothly performed. Therefore, the particle size of the crystal particles existing in the second layer is reduced in the third layer. It is preferably larger than the particle size of the existing crystal particles, and preferably includes particles having a particle size of 10 nm or more. However, even in the crystal particles existing in the second layer, if the particle size becomes too large, the reaction area acting as a catalyst for the charge / discharge reaction is reduced, and the movement of protons is restricted and the reactivity is lowered. Therefore, it is preferable to use a crystal particle having a particle size of 50 nm or less.

また、上記の第1層に含まれるアルカリ溶液に可溶な元素としては、上記の一般式に示すLnとAlとMgとが含まれ、このようなアルカリ溶液に可溶な元素が上記のように10原子%以上含まれると、この第1層がアルカリ電解液による腐食を受けるが、この第1層によってその下に位置するバルク相がアルカリ電解液によって腐食されるのが抑制されるようになる。特に、上記のような第3層が存在すると、この第1層がアルカリ電解液によって腐食されるのも抑制され、バルク相がアルカリ電解液によって腐食されるのがさらに抑制されて、バルク相の耐久性が大きく向上する。   The elements soluble in the alkaline solution contained in the first layer include Ln, Al, and Mg represented by the above general formula, and such elements soluble in the alkaline solution are as described above. When the content of the first layer is 10 atomic% or more, the first layer is corroded by the alkaline electrolyte, but the bulk layer located below the first layer is prevented from being corroded by the alkaline electrolyte. Become. In particular, the presence of the third layer as described above prevents the first layer from being corroded by the alkaline electrolyte, and further suppresses the bulk phase from being corroded by the alkaline electrolyte. Durability is greatly improved.

なお、上記の水素吸蔵合金を負極に使用するにあたり、水素吸蔵合金の粒径が大きくなると、反応性に富む表面積が小さくなるため、体積平均粒径が70μm以下のものを用いることが好ましい。   In addition, when using said hydrogen storage alloy for a negative electrode, since the surface area which is rich in reactivity will become small if the particle size of a hydrogen storage alloy becomes large, it is preferable to use a thing with a volume average particle diameter of 70 micrometers or less.

そして、本発明におけるアルカリ蓄電池においては、その負極に上記のような水素吸蔵合金を用いたアルカリ蓄電池用負極を使用するようにした。   And in the alkaline storage battery in this invention, the negative electrode for alkaline storage batteries which used the above hydrogen storage alloys for the negative electrode was used.

ここで、上記のような水素吸蔵合金を用いたアルカリ蓄電池用負極を得るにあたっては、上記の一般式Ln1-xMgxNiy-a-bAlabで示される水素吸蔵合金を酸化処理して、この水素吸蔵合金の表面にNiOを含む酸化物層を形成した後、この水素吸蔵合金を充放電反応させて、水素吸蔵合金の表面に上記の第1層〜第3層を形成させることができる。 Here, in obtaining a negative electrode for an alkaline storage battery using the above hydrogen storage alloy, the hydrogen storage alloy represented by the above general formula Ln 1-x Mg x Ni yab Al a M b is oxidized, After forming the oxide layer containing NiO on the surface of the hydrogen storage alloy, the hydrogen storage alloy can be charged and discharged to form the first layer to the third layer on the surface of the hydrogen storage alloy. .

なお、上記のようなアルカリ蓄電池を効率よく製造するためには、上記のように表面にNiOを含む酸化物層が形成された水素吸蔵合金を用いた負極をアルカリ蓄電池内において充放電させて、上記の水素吸蔵合金の表面に上記の第1層〜第3層を形成させるようにすることが好ましい。   In order to efficiently produce the alkaline storage battery as described above, the negative electrode using the hydrogen storage alloy in which the oxide layer containing NiO is formed on the surface as described above is charged and discharged in the alkaline storage battery, It is preferable to form the first to third layers on the surface of the hydrogen storage alloy.

また、上記のように一般式Ln1-xMgxNiy-a-bAlabで示される水素吸蔵合金を酸化処理して、この水素吸蔵合金の表面にNiOを含む酸化物層を形成するにあたっては、上記の水素吸蔵合金を酸素が存在する雰囲気中で加熱処理して酸化させるようにすると良い。 Also, a hydrogen storage alloy represented as above by the general formula Ln 1-x Mg x Ni yab Al a M b by oxidizing, in forming the oxide layer containing NiO on the surface of the hydrogen-absorbing alloy The hydrogen storage alloy may be oxidized by heat treatment in an atmosphere containing oxygen.

ここで、上記のように水素吸蔵合金を酸素が存在する雰囲気中で加熱処理して酸化させるにあたり、雰囲気中における酸素濃度や加熱処理する温度が低いと、水素吸蔵合金を適切に酸化させることが困難になるため、酸素濃度が1%以上の雰囲気中において150℃以上の温度で加熱処理することが好ましい。但し、加熱処理する温度が高くなりすぎると、水素吸蔵合金の表面が必要以上に酸化されるため、加熱処理する温度を300℃以下にすることが好ましい。   Here, when the hydrogen storage alloy is oxidized by heat treatment in an atmosphere where oxygen is present as described above, the oxygen storage alloy can be appropriately oxidized if the oxygen concentration in the atmosphere or the temperature of the heat treatment is low. Since it becomes difficult, heat treatment is preferably performed at a temperature of 150 ° C. or higher in an atmosphere having an oxygen concentration of 1% or higher. However, if the temperature for the heat treatment becomes too high, the surface of the hydrogen storage alloy is oxidized more than necessary, so the temperature for the heat treatment is preferably 300 ° C. or lower.

本発明のアルカリ蓄電池において、その負極における水素吸蔵合金として、上記の一般式Ln1-xMgxNiy-a-bAlabで示される水素吸蔵合金のバルク相の表面に、上記のような第1層〜第3層の3つの層が積層されたものを用いると、水素吸蔵合金の最表面に位置する上記の第3層においては、NiOが存在するために、金属Ni相互が結合するのが抑制されて、充放電反応の触媒として作用する金属Niの反応面積が増大すると共に、この第3層の下に位置する第2層によって電荷の移動がスムーズに行われるようになり、低温での充放電反応がスムーズに行われるようになる。 In the alkaline storage battery of the present invention, as the hydrogen storage alloy in its negative electrode, the above-mentioned general formula Ln 1-x Mg x Ni yab Al a M b surface of the bulk phase of the hydrogen-absorbing alloy represented by, the above-mentioned 1 When a layer in which three layers of the third layer to the third layer are stacked is used, in the third layer located on the outermost surface of the hydrogen storage alloy, NiO is present, so that the metal Ni bonds to each other. As a result, the reaction area of the metal Ni that acts as a catalyst for the charge / discharge reaction is increased, and the second layer located under this third layer allows the charge to move smoothly, and at low temperatures. The charge / discharge reaction is performed smoothly.

また、水素吸蔵合金の最表面に位置する上記の第3層及びバルク相の上に位置するアルカリ溶液に可溶な元素が10原子%以上含まれる第1層により、水素吸蔵合金のバルク相がアルカリ電解液によって腐食されるのが抑制され、充放電によって水素吸蔵合金が劣化するのが防止されるようになる。   Moreover, the bulk layer of the hydrogen storage alloy is formed by the third layer located on the outermost surface of the hydrogen storage alloy and the first layer containing 10 atomic% or more of an element soluble in the alkaline solution located on the bulk phase. Corrosion by the alkaline electrolyte is suppressed, and deterioration of the hydrogen storage alloy due to charge / discharge is prevented.

この結果、本発明のアルカリ蓄電池においては、低温環境下における出力特性及び充放電サイクル特性が十分に向上されて、ハイブリッド型電気自動車や電動工具などの電源として好適に使用できるようになる。   As a result, the alkaline storage battery of the present invention has sufficiently improved output characteristics and charge / discharge cycle characteristics in a low-temperature environment, and can be suitably used as a power source for hybrid electric vehicles, electric tools, and the like.

本発明の実施例1、比較例1及び比較例2において作製したアルカリ蓄電池の概略断面図である。It is a schematic sectional drawing of the alkaline storage battery produced in Example 1, Comparative example 1, and Comparative example 2 of this invention. 実施例1のアルカリ蓄電池における水素吸蔵合金の断面状態を示した図である。2 is a diagram showing a cross-sectional state of a hydrogen storage alloy in the alkaline storage battery of Example 1. FIG. 比較例1のアルカリ蓄電池における水素吸蔵合金の断面状態を示した図である。6 is a view showing a cross-sectional state of a hydrogen storage alloy in an alkaline storage battery of Comparative Example 1. FIG. 比較例2のアルカリ蓄電池における水素吸蔵合金の断面状態を示した図である。It is the figure which showed the cross-sectional state of the hydrogen storage alloy in the alkaline storage battery of the comparative example 2. 本発明の実施例1a〜4a及び比較例1aにおいて作製した試験セルの概略説明図である。It is a schematic explanatory drawing of the test cell produced in Examples 1a-4a and Comparative Example 1a of this invention.

以下、本発明の実施例に係るアルカリ蓄電池用負極及びこのアルカリ蓄電池用負極を用いたアルカリ蓄電池及びその製造方法について説明すると共に、比較例を挙げ、本発明の実施例に係るアルカリ蓄電池用負極を用いたアルカリ蓄電池においては、低温環境下における出力特性及び充放電サイクル特性が十分に向上されることを明らかにする。なお、本発明におけるアルカリ蓄電池用負極及びアルカリ蓄電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the negative electrode for an alkaline storage battery according to an embodiment of the present invention, an alkaline storage battery using the negative electrode for an alkaline storage battery, and a method for producing the same will be described, a comparative example will be given, and the negative electrode for an alkaline storage battery according to an embodiment of the present invention will be described. In the used alkaline storage battery, it is clarified that the output characteristics and charge / discharge cycle characteristics under a low temperature environment are sufficiently improved. In addition, the negative electrode for alkaline storage batteries and alkaline storage battery in this invention are not limited to what was shown to the following Example, In the range which does not change the summary, it can implement suitably.

(実施例1)
実施例1においては、アルカリ蓄電池を作製するにあたり、下記のようにして作製した負極と正極とを用いるようにした。
Example 1
In Example 1, when producing an alkaline storage battery, a negative electrode and a positive electrode produced as described below were used.

[負極の作製]
負極を作製するにあたっては、LaとSmとMgとNiとAlとを所定の合金組成になるように混合し、この混合物を高周波誘導溶解炉により溶融させ、その後、これを冷却させて水素吸蔵合金のインゴットを得た。
[Production of negative electrode]
In preparing the negative electrode, La, Sm, Mg, Ni, and Al are mixed so as to have a predetermined alloy composition, the mixture is melted in a high-frequency induction melting furnace, and then cooled to obtain a hydrogen storage alloy. Got the ingot.

そして、このインゴットを熱処理して均質化した後、不活性雰囲気中において粉砕し、これを分級して、質量積分50%にあたる平均粒径が20μmになった水素吸蔵合金の粉末を得た。なお、この水素吸蔵合金の組成を高周波プラズマ分光分析法(ICP)によって分析した結果、組成はLa0.60Sm0.30Mg0.10Ni3.70Al0.10になっていた。 The ingot was heat-treated and homogenized, and then pulverized in an inert atmosphere and classified to obtain a hydrogen storage alloy powder having an average particle diameter corresponding to 50% by mass integral of 20 μm. In addition, as a result of analyzing the composition of this hydrogen storage alloy by high frequency plasma spectroscopy (ICP), the composition was La 0.60 Sm 0.30 Mg 0.10 Ni 3.70 Al 0.10 .

次いで、上記の水素吸蔵合金の粉末を空気雰囲気中において150℃の温度で2時間加熱した後、さらに空気雰囲気中において200℃の温度で1時間加熱処理して、水素吸蔵合金の表面にNiOを含む酸化物層を形成した。なお、水素吸蔵合金の表面に形成されたNiOを含む酸化物層の層厚は約50nmになっていた。   Subsequently, the hydrogen storage alloy powder is heated in an air atmosphere at a temperature of 150 ° C. for 2 hours, and further heated in an air atmosphere at a temperature of 200 ° C. for 1 hour to form NiO on the surface of the hydrogen storage alloy. A containing oxide layer was formed. Note that the thickness of the oxide layer containing NiO formed on the surface of the hydrogen storage alloy was about 50 nm.

そして、上記の水素吸蔵合金の粉末100質量部に対して、結着剤のスチレン・ブタジエン共重合ゴム(SBR)0.5質量部と水とを加え、これらを混練させて負極合剤スラリーを得た。   Then, with respect to 100 parts by mass of the hydrogen storage alloy powder, 0.5 part by mass of a styrene / butadiene copolymer rubber (SBR) as a binder and water are added, and these are kneaded to prepare a negative electrode mixture slurry. Obtained.

次いで、この負極合剤スラリーを、パンチングメタルからなる導電性芯体の両面に均一に塗布し、これを乾燥させてプレスした後、これを所定の寸法に切断して負極を作製した。なお、この負極における負極合剤の充填密度は5.0g/cm3であった。 Next, this negative electrode mixture slurry was uniformly applied to both surfaces of a conductive core made of punching metal, dried and pressed, and then cut into predetermined dimensions to produce a negative electrode. The filling density of the negative electrode mixture in this negative electrode was 5.0 g / cm 3 .

[正極の作製]
正極を作製するにあたっては、多孔度が約85%の多孔性ニッケル焼結基板を硝酸ニッケルと硝酸コバルトをニッケルとコバルトの原子比が10:1になるように混合させた比重1.75の硝酸塩溶液に浸漬させて、この多孔性ニッケル焼結基板の孔内にニッケル塩とコバルト塩とを保持させた後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム水溶液中に浸漬させて、上記のニッケル塩とコバルト塩とをそれぞれ水酸化ニッケルと水酸化コバルトとに転換させ、孔内に水酸化ニッケルと水酸化コバルトとを保持させた。次いで、このように孔内に水酸化ニッケルと水酸化コバルトとが保持された多孔性ニッケル焼結基板を十分に水洗してアルカリ溶液を除去し、これを乾燥させた。
[Production of positive electrode]
In producing the positive electrode, a nitrate having a specific gravity of 1.75, in which a porous nickel sintered substrate having a porosity of about 85% is mixed with nickel nitrate and cobalt nitrate so that the atomic ratio of nickel to cobalt is 10: 1. After immersing in the solution to hold the nickel salt and cobalt salt in the pores of the porous nickel sintered substrate, the porous nickel sintered substrate is immersed in a 25% by mass aqueous sodium hydroxide solution. The nickel salt and cobalt salt were converted into nickel hydroxide and cobalt hydroxide, respectively, and nickel hydroxide and cobalt hydroxide were retained in the pores. Subsequently, the porous nickel sintered substrate in which the nickel hydroxide and the cobalt hydroxide were held in the holes as described above was sufficiently washed with water to remove the alkaline solution and dried.

そして、このように孔内に水酸化ニッケルと水酸化コバルトとが保持された多孔性ニッケル焼結基板を、上記の硝酸塩溶液に浸漬させた後、上記の水酸化ナトリウム水溶液に浸漬させ、これを洗浄し、乾燥させる充填プロセスを6回繰り返し、多孔性ニッケル焼結基板の孔内に正極活物質の水酸化ニッケルを充填させた。   Then, after immersing the porous nickel sintered substrate in which the nickel hydroxide and the cobalt hydroxide are held in the holes in the above-described nitrate solution, the porous nickel-sintered substrate is immersed in the aqueous sodium hydroxide solution. The filling process of washing and drying was repeated 6 times, and the positive electrode active material nickel hydroxide was filled into the pores of the porous nickel sintered substrate.

そして、このように孔内に水酸化ニッケルからなる正極活物質を充填させた多孔性ニッケル焼結基板を室温で乾燥させた後、所定の寸法に切断して正極を作製した。なお、この正極における正極活物質の充填密度は2.5g/cm3であった。 And after drying the porous nickel sintered board which filled the positive electrode active material which consists of nickel hydroxide in the hole in this way at room temperature, it cut | disconnected to the predetermined dimension and produced the positive electrode. The packing density of the positive electrode active material in this positive electrode was 2.5 g / cm 3 .

そして、セパレータとして、ポリプロピレン製不織布を使用し、またアルカリ電解液として、30質量%の水酸化カリウム水溶液を使用し、図1に示すような円筒型で設計容量が6000mAhのアルカリ蓄電池を作製した。   Then, a polypropylene non-woven fabric was used as the separator, and a 30% by mass potassium hydroxide aqueous solution was used as the alkaline electrolyte. A cylindrical storage battery having a design capacity of 6000 mAh as shown in FIG. 1 was produced.

ここで、上記のアルカリ蓄電池を作製するにあたっては、図1に示すように、上記の正極1と負極2との間に上記のセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させ、正極1を正極リード5を介して正極蓋6に接続させると共に、負極2を負極リード7を介して電池缶4に接続させ、この電池缶4内に上記のアルカリ電解液を注液させた後、電池缶4と正極蓋6との間に絶縁パッキン8を介して封口し、上記の絶縁パッキン8により電池缶4と正極蓋6とを電気的に分離させた。また、上記の正極蓋6に設けられたガス放出口6aを閉塞させるようにして、この正極蓋6と正極外部端子9との間にコイルスプリング10によって付勢された閉塞板11を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて、電池内部のガスが正極外部端子9に形成されたガス抜き孔を介して大気中に放出されるようにした。なお、アルカリ電解液の量は電池容量1Ah当たり2.5gになるようにした。   Here, in producing the alkaline storage battery, as shown in FIG. 1, the separator 3 is interposed between the positive electrode 1 and the negative electrode 2, and these are wound in a spiral shape in the battery can 4. The positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5 and the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7, and the alkaline electrolyte is poured into the battery can 4. After letting it liquid, the battery can 4 and the positive electrode lid 6 were sealed with an insulating packing 8 therebetween, and the battery can 4 and the positive electrode lid 6 were electrically separated by the insulating packing 8. Further, a closing plate 11 urged by a coil spring 10 is provided between the positive electrode cover 6 and the positive electrode external terminal 9 so as to close the gas discharge port 6a provided in the positive electrode cover 6, and the battery When the internal pressure of the battery rose abnormally, the coil spring 10 was compressed so that the gas inside the battery was released into the atmosphere through the vent hole formed in the positive electrode external terminal 9. The amount of alkaline electrolyte was 2.5 g per battery capacity 1 Ah.

次いで、このように作製したアルカリ蓄電池を25℃の温度雰囲気中において、6000mAの電流で1時間12分間充電させた後、1時間休止し、次いで70℃の温度雰囲気中において24時間放置した後、45℃の温度雰囲気中において、6000mAの電流で電池電圧が0.3Vになるまで放電させ、これを1サイクルとして2サイクルの充放電を行って活性化させ、実施例1のアルカリ蓄電池を得た。   Next, the alkaline storage battery thus produced was charged in a temperature atmosphere of 25 ° C. at a current of 6000 mA for 1 hour and 12 minutes, rested for 1 hour, and then allowed to stand in a temperature atmosphere of 70 ° C. for 24 hours. In an atmosphere of 45 ° C., the battery was discharged at a current of 6000 mA until the battery voltage became 0.3 V, and this was used as one cycle for two cycles of charge / discharge to activate, thereby obtaining an alkaline storage battery of Example 1. .

(比較例1)
比較例1においては、上記の実施例1における負極の作製において、上記の水素吸蔵合金の粉末を加熱処理せず、水素吸蔵合金の表面にNiOを含む酸化物層を形成しないようにし、それ以外は、上記の実施例1と同様にしてアルカリ蓄電池を作製すると共に、このように作製したアルカリ蓄電池を上記の実施例1のアルカリ蓄電池と同様に充放電させて活性化させ、比較例1のアルカリ蓄電池を得た。
(Comparative Example 1)
In Comparative Example 1, in the production of the negative electrode in Example 1 above, the above-mentioned hydrogen storage alloy powder was not heat-treated, and an oxide layer containing NiO was not formed on the surface of the hydrogen storage alloy. In the same manner as in Example 1 above, an alkaline storage battery was produced, and the alkaline storage battery thus produced was activated by charging and discharging in the same manner as in the alkaline storage battery in Example 1 above. A storage battery was obtained.

(比較例2)
比較例2においては、水素吸蔵合金の粉末を塩酸溶液を使用して酸処理し作製した負極を用いてアルカリ蓄電池を作製した。具体的には、以下の段落0045から段落0052に示すように、比較例2のアルカリ蓄電池を作製した。
(Comparative Example 2)
In Comparative Example 2, an alkaline storage battery was produced using a negative electrode produced by acid treatment of a hydrogen storage alloy powder using a hydrochloric acid solution. Specifically, as shown in the following paragraphs 0045 to 0052, an alkaline storage battery of Comparative Example 2 was produced.

[負極の作製]
負極を作製するにあたっては、希土類元素のLa,Pr及びNdと、Zrと、Mgと、Niと、Alとを所定の合金組成になるように混合し、この混合物を高周波誘導溶解炉により溶融させ、その後、これを冷却させて、水素吸蔵合金のインゴットを得た。
[Preparation of negative electrode]
In producing the negative electrode, the rare earth elements La, Pr, and Nd, Zr, Mg, Ni, and Al are mixed so as to have a predetermined alloy composition, and the mixture is melted in a high frequency induction melting furnace. Thereafter, this was cooled to obtain a hydrogen storage alloy ingot.

そして、この水素吸蔵合金のインゴットを熱処理して均質化させた後、この水素吸蔵合金のインゴットを不活性雰囲気中において粉砕し、これを分級して、体積平均粒径が30μmになった水素吸蔵合金の粉末を得た。なお、この水素吸蔵合金の組成を高周波プラズマ分光分析法(ICP)によって分析した結果、この水素吸蔵合金の組成は(La0.20Pr0.39Nd0.40Zr0.010.84Mg0.16Ni3.15Al0.20になっていた。 Then, the hydrogen storage alloy ingot is heat treated and homogenized, and then the hydrogen storage alloy ingot is pulverized in an inert atmosphere and classified to obtain a hydrogen storage alloy having a volume average particle size of 30 μm. An alloy powder was obtained. As a result of analyzing the composition of the hydrogen storage alloy by high frequency plasma spectroscopy (ICP), the composition of the hydrogen storage alloy was (La 0.20 Pr 0.39 Nd 0.40 Zr 0.01 ) 0.84 Mg 0.16 Ni 3.15 Al 0.20 . .

次いで、上記のようにして得た水素吸蔵合金粉末2.0kgを、2リットルの塩酸溶液(pH1)中に浸漬させて、pH7に達するまで約6分間酸処理を行って、アルカリ蓄電池用水素吸蔵合金の粉末を得た。   Next, 2.0 kg of the hydrogen storage alloy powder obtained as described above was immersed in 2 liters of hydrochloric acid solution (pH 1) and subjected to acid treatment for about 6 minutes until pH 7 was reached. An alloy powder was obtained.

そして、上記のように酸処理した水素吸蔵合金の粉末100重量部に対して、結着剤のポリエチレンオキシドを0.5重量部、ポリビニルピロリドンを0.6重量部加え、これらを混練させて負極合剤スラリーを得た。   Then, 0.5 parts by weight of polyethylene oxide as a binder and 0.6 parts by weight of polyvinyl pyrrolidone are added to 100 parts by weight of the acid-treated hydrogen storage alloy powder as described above. A mixture slurry was obtained.

そして、この負極合剤スラリーをパンチングメタルからなる導電性芯体の両面に均一に塗布し、これを乾燥させてプレスした後、所定の寸法に切断して、負極を作製した。なお、この負極における負極合剤の充填密度は5.0g/cm3であった。 And this negative mix slurry was apply | coated uniformly on both surfaces of the electroconductive core which consists of punching metals, and after drying and pressing this, it cut | disconnected to the predetermined dimension and produced the negative electrode. The filling density of the negative electrode mixture in this negative electrode was 5.0 g / cm 3 .

[正極の作製]
正極を作製するにあたっては、正極活物質の水酸化ニッケル100重量部に対して、0.2重量%のヒドロキシプロピルセルロース水溶液を50重量部加え、これらを混合させて正極スラリーを調整した。そして、この正極スラリーをニッケル発泡体に充填し、これを乾燥させて圧延させた後、所定の寸法に切断して、非焼結式ニッケル極からなる正極を作製した。この正極における正極活物質の充填密度は2.5g/cm3であった。
[Preparation of positive electrode]
In preparing the positive electrode, 50 parts by weight of a 0.2% by weight hydroxypropylcellulose aqueous solution was added to 100 parts by weight of nickel hydroxide as the positive electrode active material, and these were mixed to prepare a positive electrode slurry. Then, this positive electrode slurry was filled in a nickel foam, dried and rolled, and then cut into a predetermined size to produce a positive electrode composed of a non-sintered nickel electrode. The packing density of the positive electrode active material in this positive electrode was 2.5 g / cm 3 .

また、アルカリ電解液としては、KOHとNaOHとLiOH・H2Oとが8:0.5:1の重量比で含まれ、これらの総和が30重量%になったアルカリ水溶液を使用し、図1に示すような円筒型で設計容量が3000mAhのアルカリ蓄電池を作製した。 Further, as the alkaline electrolyte, an alkaline aqueous solution containing KOH, NaOH, and LiOH.H 2 O at a weight ratio of 8: 0.5: 1 and the sum of which is 30% by weight is used. A cylindrical storage battery having a design capacity of 3000 mAh as shown in FIG.

次に、上記のようにして作製したアルカリ蓄電池を、25℃の温度条件下において、300mAの電流で16時間充電させた後、600mAの電流で電池電圧が1.0Vになるまで放電させ、次いで、300mAの電流で16時間充電させた後、3000mAの電流で電池電圧が1.0Vになるまで放電させた。さらに、上記のアルカリ蓄電池を3000mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させて、0.5時間放置した後、9000mAの電流で電池電圧が1.0Vになるまで放電させ、これを3サイクル行って活性化させ、比較例2のアルカリ蓄電池を得た。   Next, the alkaline storage battery produced as described above was charged at a current of 300 mA for 16 hours under a temperature condition of 25 ° C., and then discharged at a current of 600 mA until the battery voltage reached 1.0 V. The battery was charged for 16 hours at a current of 300 mA, and then discharged at a current of 3000 mA until the battery voltage reached 1.0 V. Furthermore, after the battery voltage reaches the maximum value at a current of 3000 mA, the alkaline storage battery is charged until it decreases by 10 mV, left for 0.5 hours, and then the battery voltage reaches 1.0 V at a current of 9000 mA. The battery was discharged and activated by performing 3 cycles to obtain an alkaline storage battery of Comparative Example 2.

そして、このように充放電させて活性化させた実施例1、比較例1及び比較例2の各アルカリ蓄電池を解体して、各負極における水素吸蔵合金を取り出し、取り出した各水素吸蔵合金を洗浄してアルカリ電解液や結着剤を除去し、これらを乾燥させた後、各水素吸蔵合金の断面サンプルを作製し、各水素吸蔵合金の断面構造を透過型電子顕微鏡TEM(日本電子製:JEM−2010F型)によって観察し、上記の実施例1のアルカリ蓄電池における水素吸蔵合金の状態を図2に、上記の比較例1のアルカリ蓄電池における水素吸蔵合金の状態を図3に、上記の比較例2のアルカリ蓄電池における水素吸蔵合金の状態を図4に示した。   Then, the alkaline storage batteries of Example 1, Comparative Example 1 and Comparative Example 2 activated by charging and discharging in this manner are disassembled, the hydrogen storage alloy in each negative electrode is taken out, and the taken out hydrogen storage alloys are cleaned. After removing the alkaline electrolyte and the binder and drying them, a cross-sectional sample of each hydrogen storage alloy was prepared, and the cross-sectional structure of each hydrogen storage alloy was measured with a transmission electron microscope TEM (manufactured by JEOL: JEM). -2010F type), the state of the hydrogen storage alloy in the alkaline storage battery of Example 1 is shown in FIG. 2, the state of the hydrogen storage alloy in the alkaline storage battery of Comparative Example 1 is shown in FIG. The state of the hydrogen storage alloy in the alkaline storage battery 2 is shown in FIG.

この結果、実施例1のアルカリ蓄電池における水素吸蔵合金においては、図2に示すように、そのバルク相Bの上に、結晶粒子を確認することができない層厚が20〜40nmの第1層S1と、結晶粒子サイズが約10nmで層厚が80〜150nmの第2層S2と、結晶粒子サイズが約5nmで層厚が約50nmの第3層S3との3つの層が積層された状態になっていた。   As a result, in the hydrogen storage alloy in the alkaline storage battery of Example 1, as shown in FIG. 2, on the bulk phase B, the first layer S1 having a layer thickness of 20 to 40 nm in which crystal particles cannot be confirmed. And a third layer S2 having a crystal grain size of about 10 nm and a layer thickness of 80 to 150 nm, and a third layer S3 having a crystal grain size of about 5 nm and a layer thickness of about 50 nm. It was.

一方、比較例1のアルカリ蓄電池における水素吸蔵合金においては、図3に示すように、そのバルク相Bの上に、結晶粒子を確認することができない層厚が20〜40nmの第1層S1と、結晶粒子サイズが約10nmで層厚が80〜150nmの第2層S2との2つの層が積層されただけの状態になっていた。   On the other hand, in the hydrogen storage alloy in the alkaline storage battery of Comparative Example 1, as shown in FIG. 3, on the bulk phase B, the first layer S1 having a layer thickness of 20 to 40 nm in which crystal particles cannot be confirmed; The second layer S2 having a crystal grain size of about 10 nm and a layer thickness of 80 to 150 nm was simply laminated.

また、比較例2のアルカリ蓄電池における水素吸蔵合金においては、図4に示すように、そのバルク相Bの上に、結晶粒子を確認することができない層厚が20〜50nmの第1層S1と、結晶粒子サイズが10〜15nmで層厚が50〜80nmの第2層S2との2つの層が積層されただけの状態になっていた。   Moreover, in the hydrogen storage alloy in the alkaline storage battery of Comparative Example 2, as shown in FIG. 4, on the bulk phase B, the first layer S1 having a layer thickness of 20 to 50 nm in which crystal particles cannot be confirmed; The two layers of the second layer S2 having a crystal grain size of 10 to 15 nm and a layer thickness of 50 to 80 nm were simply stacked.

なお、上記の各水素吸蔵合金においては、第1層と第2層との境界が明確でなく、結晶粒子サイズが第1層から第2層に向かって徐々に増加するため、結晶粒子を明確に判断できない部分を第1層とし、明確に判断できる部分を第2層とした。   In each of the above hydrogen storage alloys, the boundary between the first layer and the second layer is not clear, and the crystal grain size gradually increases from the first layer toward the second layer. The portion that could not be determined was the first layer, and the portion that could be clearly determined was the second layer.

また、上記の実施例1のアルカリ蓄電池における水素吸蔵合金について、バルク相及び上記の第1層〜第3層における構成元素の比率を、TEM−EDS測定装置(NORAN社製:UTW型Si(Li)半導体検出器)によって求めると共に、上記の第2層及び第3層について、構成元素の酸素量から、NiOと金属Niとの合計のNi量に対するNiOにおけるNi量の比率を求め、その結果を下記の表1に示した。具体的には、希土類及びNi以外の金属元素は、全て、層中の酸素と酸化物を形成し、残りの酸素は全てNiOを形成するとして、各層における上記比率を算出した。   Moreover, about the hydrogen storage alloy in the alkaline storage battery of Example 1 above, the ratio of the constituent elements in the bulk phase and the first to third layers described above was determined using a TEM-EDS measuring device (NORAN, UTW Si (Li ) For the second layer and the third layer, the ratio of the Ni amount in NiO to the total Ni amount of NiO and metal Ni is determined for the second and third layers, and the result is The results are shown in Table 1 below. Specifically, the above ratios in each layer were calculated on the assumption that all metal elements other than rare earth and Ni form oxides with oxygen in the layers, and all the remaining oxygen forms NiO.

この結果、実施例1のアルカリ蓄電池における水素吸蔵合金においては、第2層及び第3層において、Ni以外の金属成分がほとんど存在せず、第1層はアルカリ溶液に可溶な希土類元素、Al,Mgが合金のバルク相に近い状態であった。また、第1層〜第3層における酸素の量は、第1層及び第3層において多く、中間に位置する第2層において少なくなっており、第2層に対する第1層の酸素量は約1.5倍になっていた。   As a result, in the hydrogen storage alloy in the alkaline storage battery of Example 1, there is almost no metal component other than Ni in the second layer and the third layer, and the first layer is a rare earth element soluble in an alkaline solution, Al. Mg was close to the bulk phase of the alloy. Further, the amount of oxygen in the first layer to the third layer is large in the first layer and the third layer, and is small in the second layer located in the middle. The amount of oxygen in the first layer with respect to the second layer is about It was 1.5 times.

また、電子線回折より、上記の第2層においては主として金属Niが、第3層においては主としてNiOが存在していることがわかった。そして、第2層におけるNiOと金属Niとの合計のNi量に対するNiOにおけるNi量の比率は13.9%であったのに対して、第3層における比率は52.1%になっており、第3層におけるNiOの含有率は、上記の第2層におけるNiOの含有率よりも高かった。   Electron diffraction revealed that mainly the metal Ni was present in the second layer and the NiO was mainly present in the third layer. The ratio of the Ni amount in NiO to the total Ni amount of NiO and metal Ni in the second layer was 13.9%, whereas the ratio in the third layer was 52.1%. The NiO content in the third layer was higher than the NiO content in the second layer.

また、比較例1及び比較例2についても、上記のTEM−EDS測定装置を用いて構成元素の比率を求めたところ、比較例1のアルカリ蓄電池における水素吸蔵合金については、第1層は、合金のバルク相に近い状態で、第2層は、希土類及びNi以外の金属元素が減少していた。また、比較例2のアルカリ蓄電池における水素吸蔵合金については、第1層は合金のバルク相に近い状態で、第2層は、希土類及びNi以外の金属元素が比較例1の場合よりも減少していた。また、電子線回折より、比較例1及び比較例2の第2層におけるNiは、主として金属Niとして存在していることがわかった。   Moreover, also about the comparative example 1 and the comparative example 2, when the ratio of a structural element was calculated | required using said TEM-EDS measuring apparatus, about the hydrogen storage alloy in the alkaline storage battery of the comparative example 1, the 1st layer is an alloy. In the state close to the bulk phase, the second layer had reduced metal elements other than rare earth and Ni. Moreover, about the hydrogen storage alloy in the alkaline storage battery of Comparative Example 2, the first layer is in a state close to the bulk phase of the alloy, and the second layer has a metal element other than rare earth and Ni, which is smaller than that in Comparative Example 1. It was. Moreover, it turned out that Ni in the 2nd layer of the comparative example 1 and the comparative example 2 exists mainly as metal Ni from the electron beam diffraction.

次に、上記のように充放電させて活性化させた実施例1及び比較例1の各アルカリ蓄電池を、それぞれ25℃の温度雰囲気中において、6000mAの充電電流で30分間充電し、1時間休止させた。   Next, the alkaline storage batteries of Example 1 and Comparative Example 1 that were activated by charging and discharging as described above were charged with a charging current of 6000 mA for 30 minutes in a temperature atmosphere of 25 ° C., respectively, and rested for 1 hour. I let you.

その後、上記の各アルカリ蓄電池を、それぞれ−30℃の温度雰囲気中において、1800mAの電流で20秒間充電させ、30分間休止した後、4200mAの電流で10秒間放電させ、30分間休止し、次いで、4200mAの電流で20秒間充電させ、30分間休止した後、7800mAの電流で10秒間放電させ、30分間休止し、次いで、6000mAの電流で20秒間充電させ、30分間休止した後、12000mAの電流で10秒間放電させ、30分間休止し、次いで、7800mAの電流で20秒間充電させ、30分間休止した後、16200mAの電流で10秒間放電させ、30分間休止し、次いで、10200mAの電流で20秒間充電させ、30分間休止した後、19800mAの電流で10秒間放電させ、各放電電流で放電させた10秒後における電池電圧を測定し、各放電電流と電池電圧とをプロットして、−30℃の温度雰囲気中における上記の各アルカリ蓄電池の放電I−V特性を求めた。   Thereafter, each of the alkaline storage batteries described above was charged for 20 seconds at a current of 1800 mA in a temperature atmosphere of −30 ° C., paused for 30 minutes, discharged for 10 seconds at a current of 4200 mA, paused for 30 minutes, and then Charge for 20 seconds at a current of 4200 mA, pause for 30 minutes, then discharge for 10 seconds at a current of 7800 mA, pause for 30 minutes, then charge for 20 seconds at a current of 6000 mA, pause for 30 minutes, and then at a current of 12000 mA Discharge for 10 seconds, pause for 30 minutes, then charge for 20 seconds at a current of 7800 mA, pause for 30 minutes, then discharge for 10 seconds at a current of 16200 mA, pause for 30 minutes, then charge for 20 seconds at a current of 10200 mA After 30 minutes of rest, the battery was discharged at a current of 19800 mA for 10 seconds. In the battery voltage at 10 seconds after discharged was measured and plotted with each discharge current and the battery voltage to determine the above-mentioned discharge the I-V characteristic of the alkaline storage batteries in the ambient temperature range from -30 ° C..

そして、上記の放電I−V特性に基づき、−30℃の温度雰囲気中における各アルカリ蓄電池の0.9V時点の放電電流を求めて、各アルカリ蓄電池の−30℃の低温下における低温放電出力を求め、比較例1のアルカリ蓄電池における低温放電出力を低温放電出力特性100として、実施例1のアルカリ蓄電池における低温放電出力特性を算出し、その結果を下記の表2に示した。   And based on said discharge IV characteristic, the discharge current at the time of 0.9V of each alkaline storage battery in a temperature atmosphere of −30 ° C. is obtained, and the low temperature discharge output of each alkaline storage battery at a low temperature of −30 ° C. is obtained. The low temperature discharge output in the alkaline storage battery of Example 1 was calculated using the low temperature discharge output in the alkaline storage battery of Comparative Example 1 as the low temperature discharge output characteristic 100, and the results are shown in Table 2 below.

また、前記のように充放電させて活性化させた実施例1及び比較例1の各アルカリ蓄電池を、それぞれ25℃の温度雰囲気中において、6000mAの充電電流で30分間充電し、1時間休止させた。   In addition, each of the alkaline storage batteries of Example 1 and Comparative Example 1 activated by charging and discharging as described above was charged with a charging current of 6000 mA for 30 minutes in a temperature atmosphere of 25 ° C. and rested for 1 hour. It was.

その後、上記の各アルカリ蓄電池を、それぞれ25℃の温度雰囲気中において、2400mAの電流で20秒間充電させ、30分間休止した後、10200mAの電流で10秒間放電させ、30分間休止し、次いで、10200mAの電流で20秒間充電させ、30分間休止した後、19800mAの電流で10秒間放電させ、30分間休止し、次いで、15000mAの電流で20秒間充電させ、30分間休止した後、30000mAの電流で10秒間放電させ、30分間休止し、次いで、19800mAの電流で20秒間充電させ、30分間休止した後、40200mAの電流で10秒間放電させ、30分間休止し、次いで、25200mAの電流で20秒間充電させ、30分間休止した後、49800mAの電流で10秒間放電させ、各放電電流で放電させた10秒後における電池電圧を測定し、各放電電流と電池電圧とをプロットして、25℃の温度雰囲気中における上記の各アルカリ蓄電池の放電I−V特性を求めた。   Thereafter, each alkaline storage battery described above was charged at a current of 2400 mA for 20 seconds in a temperature atmosphere of 25 ° C., rested for 30 minutes, discharged for 10 seconds at a current of 10200 mA, rested for 30 minutes, and then 10200 mA. The battery was charged for 20 seconds, and rested for 30 minutes, then discharged for 10 seconds at a current of 19800 mA, rested for 30 minutes, then charged for 20 seconds at a current of 15000 mA, rested for 30 minutes, and then 10 seconds at a current of 30000 mA. Discharged for 30 seconds, paused for 30 minutes, then charged for 20 seconds at a current of 19800 mA, paused for 30 minutes, discharged for 10 seconds at a current of 40200 mA, paused for 30 minutes, and then charged for 20 seconds at a current of 25200 mA , After resting for 30 minutes, discharged at 49800 mA for 10 seconds, The battery voltage at 10 seconds after discharged at a discharge current is measured and plotted with each discharge current and the battery voltage to determine the above-mentioned discharge the I-V characteristic of the alkaline storage batteries in the ambient temperature range from 25 ° C..

そして、上記の放電I−V特性に基づき、25℃の温度雰囲気中における各アルカリ蓄電池の0.9V時点の放電電流を求めて、各アルカリ蓄電池の25℃における放電出力IPxを算出した。   And based on said discharge IV characteristic, the discharge current at the time of 0.9V of each alkaline storage battery in a 25 degreeC temperature atmosphere was calculated | required, and discharge output IPx in 25 degreeC of each alkaline storage battery was computed.

次に、上記の実施例1及び比較例1のIPxを測定した後の各アルカリ蓄電池を、それぞれ25℃の温度雰囲気中において、6000mAの充電電流で30分間充電した後、45℃の温度雰囲気中において、それぞれ充電深度(SOC)が40〜60%の範囲内に維持されるように制御しながら、50Aの電流で間欠充放電を18000サイクル繰り返して行った。   Next, each alkaline storage battery after measuring IPx of Example 1 and Comparative Example 1 was charged in a temperature atmosphere of 25 ° C. for 30 minutes at a charging current of 6000 mA, and then in a temperature atmosphere of 45 ° C. , Intermittent charging / discharging was repeated 18000 cycles at a current of 50 A while controlling the depth of charge (SOC) to be maintained within the range of 40 to 60%.

そして、このように間欠充放電を18000サイクル繰り返した後の各アルカリ蓄電池を用い、それぞれ上記の場合と同様にして、25℃の温度雰囲気中における各アルカリ蓄電池におけるI−V特性を求めて、各アルカリ蓄電池の25℃における放電出力IPyを算出し、下記の式により、18000サイクル後の出力劣化率を求め、比較例1のアルカリ蓄電池における出力劣化率を出力劣化100として、実施例1のアルカリ蓄電池における出力劣化を算出し、その結果を下記の表2に示した。   And using each alkaline storage battery after repeating 18000 cycles of intermittent charging / discharging in this way, in the same manner as in the above case, the IV characteristics in each alkaline storage battery in a temperature atmosphere at 25 ° C. were obtained, The discharge output IPy at 25 ° C. of the alkaline storage battery is calculated, the output deterioration rate after 18000 cycles is obtained by the following formula, the output deterioration rate in the alkaline storage battery of Comparative Example 1 is set as the output deterioration 100, and the alkaline storage battery of Example 1 The output deterioration was calculated and the results are shown in Table 2 below.

18000サイクル後の出力劣化率=(IPx−IPy)/IPx   Output deterioration rate after 18000 cycles = (IPx−IPy) / IPx

この結果、バルク相の上に上記のような第1層〜第3層の3つの層が形成された水素吸蔵合金を用いた実施例1のアルカリ蓄電池は、バルク相の上に第1層と第2層とからなる2層が形成されただけの水素吸蔵合金を用いた比較例1のアルカリ蓄電池に比べて、低温放電出力特性が大きく向上すると共に、出力劣化も大きく減少して、優れた出力寿命特性が得られた。   As a result, the alkaline storage battery of Example 1 using the hydrogen storage alloy in which the three layers of the first layer to the third layer as described above were formed on the bulk phase had the first layer on the bulk phase. Compared with the alkaline storage battery of Comparative Example 1 using a hydrogen storage alloy in which two layers consisting of the second layer are formed, the low-temperature discharge output characteristics are greatly improved and the output deterioration is greatly reduced, which is excellent. Output life characteristics were obtained.

(実施例1a)
実施例1aにおいては、負極に用いる水素吸蔵合金電極を作製するにあたり、上記の実施例1の場合と同様に、組成がLa0.60Sm0.30Mg0.10Ni3.70Al0.10になった水素吸蔵合金の粉末を空気雰囲気中において150℃の温度で2時間加熱した後、さらに空気雰囲気中において200℃の温度で1時間加熱処理して、水素吸蔵合金の表面にNiOを含む酸化物層を形成したものを用い、この水素吸蔵合金の粉末1質量部に対して、導電剤のニッケル粉末を3質量部の割合で混合し、これをペレット状に加圧成形し、容量が90mAhになった水素吸蔵合金電極を作製した。
Example 1a
In Example 1a, in preparing the hydrogen storage alloy electrode used for the negative electrode, a hydrogen storage alloy powder having a composition of La 0.60 Sm 0.30 Mg 0.10 Ni 3.70 Al 0.10 was prepared in the same manner as in Example 1 above. After heating in an air atmosphere at a temperature of 150 ° C. for 2 hours, and further heat-treating in an air atmosphere at a temperature of 200 ° C. for 1 hour, an oxide layer containing NiO is formed on the surface of the hydrogen storage alloy. A hydrogen storage alloy electrode having a capacity of 90 mAh was prepared by mixing nickel powder of a conductive agent at a ratio of 3 parts by mass with 1 part by mass of the hydrogen storage alloy powder, and pressing the mixture into a pellet. Produced.

そして、上記のようにして作製した水素吸蔵合金電極を負極に用いる一方、正極には負極に対して過剰の容量を有する円筒状に形成した焼結式ニッケル極を用い、アルカリ電解液には30質量%の水酸化カリウム水溶液を使用し、図5に示すような試験セルを作製した。 The hydrogen storage alloy electrode produced as described above is used for the negative electrode, while the positive electrode uses a sintered nickel electrode formed in a cylindrical shape having an excess capacity relative to the negative electrode, and 30 for the alkaline electrolyte. Using a mass% aqueous potassium hydroxide solution, a test cell as shown in FIG. 5 was produced.

ここで、上記の試験セルにおいては、ポリプロピレン製の容器20内に上記のアルカリ電解液23を収容させ、上記の円筒状に形成した正極21内に、負極22と酸化水銀電極からなる参照極24とを収容させた状態で、上記の正極21と負極22と参照極24とを上記のアルカリ電解液23に浸漬させた。   Here, in the test cell, the alkaline electrolyte 23 is accommodated in a polypropylene container 20, and the reference electrode 24 including a negative electrode 22 and a mercury oxide electrode is provided in the cylindrical positive electrode 21. And the positive electrode 21, the negative electrode 22, and the reference electrode 24 were immersed in the alkaline electrolyte 23.

そして、上記の試験セルを、25℃の温度雰囲気中において、45mAの電流で170分間充電させて、10分間休止した後、45mAの電流で参照極に対する負極の電位が−0.7Vになるまで放電させて、20分間休止し、これを1サイクルとして8サイクルの充放電を繰り返して行い、この試験セルを活性化させた。   The test cell was charged at a current of 45 mA for 170 minutes in a temperature atmosphere of 25 ° C., rested for 10 minutes, and then the potential of the negative electrode with respect to the reference electrode became −0.7 V at a current of 45 mA. The test cell was activated by discharging and resting for 20 minutes, and repeating this charge and discharge for 8 cycles.

(実施例2a)
実施例2aにおいては、上記の実施例1aにおける水素吸蔵合金電極の作製において、組成がLa0.60Sm0.30Mg0.10Ni3.70Al0.10になった水素吸蔵合金の粉末を空気雰囲気中において150℃の温度で2時間加熱した後、さらに空気雰囲気中において200℃の温度で0.25時間加熱処理して、水素吸蔵合金の表面にNiOを含む酸化物層を形成したものを用い、それ以外は、上記の実施例1aと同様にして試験セルを作製すると共に、このように作製した試験セルを上記の実施例1aの試験セルと同様に充放電させて活性化させた。
Example 2a
In Example 2a, in the production of the hydrogen storage alloy electrode in Example 1a above, the powder of the hydrogen storage alloy having the composition La 0.60 Sm 0.30 Mg 0.10 Ni 3.70 Al 0.10 was heated in an air atmosphere at a temperature of 150 ° C. After heating for 2 hours, the heat treatment was further performed in an air atmosphere at a temperature of 200 ° C. for 0.25 hours to form an oxide layer containing NiO on the surface of the hydrogen storage alloy. A test cell was produced in the same manner as in Example 1a, and the test cell produced in this way was activated by being charged and discharged in the same manner as the test cell in Example 1a.

(実施例3a)
実施例3aにおいては、上記の実施例1aにおける水素吸蔵合金電極の作製において、組成がLa0.60Sm0.30Mg0.10Ni3.70Al0.10になった水素吸蔵合金の粉末を空気雰囲気中において150℃の温度で2時間加熱した後、さらに空気雰囲気中において200℃の温度で0.5時間加熱処理して、水素吸蔵合金の表面にNiOを含む酸化物層を形成したものを用い、それ以外は、上記の実施例1aと同様にして試験セルを作製すると共に、このように作製した試験セルを上記の実施例1aの試験セルと同様に充放電させて活性化させた。
(Example 3a)
In Example 3a, in the production of the hydrogen storage alloy electrode in Example 1a above, the powder of the hydrogen storage alloy having the composition La 0.60 Sm 0.30 Mg 0.10 Ni 3.70 Al 0.10 was heated in an air atmosphere at a temperature of 150 ° C. After heating for 2 hours, the heat treatment was further performed in an air atmosphere at a temperature of 200 ° C. for 0.5 hours to form a hydrogen storage alloy surface on which an oxide layer containing NiO was used. A test cell was produced in the same manner as in Example 1a, and the test cell produced in this way was activated by being charged and discharged in the same manner as the test cell in Example 1a.

(実施例4a)
実施例4aにおいては、上記の実施例1aにおける水素吸蔵合金電極の作製において、組成がLa0.60Sm0.30Mg0.10Ni3.70Al0.10になった水素吸蔵合金の粉末を空気雰囲気中において150℃の温度で2時間加熱した後、さらに空気雰囲気中において200℃の温度で2時間加熱処理して、水素吸蔵合金の表面にNiOを含む酸化物層を形成したものを用い、それ以外は、上記の実施例1aと同様にして試験セルを作製すると共に、このように作製した試験セルを上記の実施例1aの試験セルと同様に充放電させて活性化させた。
Example 4a
In Example 4a, in the production of the hydrogen storage alloy electrode in Example 1a above, the powder of the hydrogen storage alloy having the composition La 0.60 Sm 0.30 Mg 0.10 Ni 3.70 Al 0.10 was heated in an air atmosphere at a temperature of 150 ° C. After heating for 2 hours and further heat-treating in an air atmosphere at a temperature of 200 ° C. for 2 hours to form an oxide layer containing NiO on the surface of the hydrogen-absorbing alloy, the other examples described above are used. A test cell was produced in the same manner as 1a, and the test cell produced in this way was activated by charging and discharging in the same manner as in the test cell of Example 1a.

(比較例1a)
比較例1aにおいては、上記の実施例1aにおける水素吸蔵合金電極の作製において、組成がLa0.60Sm0.30Mg0.10Ni3.70Al0.10になった水素吸蔵合金の粉末を、上記の比較例1の場合と同様に加熱処理せず、水素吸蔵合金の表面にNiOを含む酸化物層を形成しないようにし、それ以外は、上記の実施例1aと同様にして試験セルを作製すると共に、このように作製した試験セルを上記の実施例1aの試験セルと同様に充放電させて活性化させた。
(Comparative Example 1a)
In Comparative Example 1a, the hydrogen storage alloy powder having the composition La 0.60 Sm 0.30 Mg 0.10 Ni 3.70 Al 0.10 in the production of the hydrogen storage alloy electrode in Example 1a described above was compared with the case of Comparative Example 1 above. Similarly, heat treatment was not performed, and an oxide layer containing NiO was not formed on the surface of the hydrogen storage alloy. Otherwise, a test cell was produced in the same manner as in Example 1a, and thus produced. The test cell was activated by charging and discharging in the same manner as the test cell of Example 1a above.

そして、上記のように実施例1a〜4a及び比較例1aの処理後について、前記のようにして各水素吸蔵合金の断面構造を透過型電子顕微鏡TEM(日本電子製:JEM−2010F型)によって観察した結果、実施例1a〜4aのものにおいては、上記の実施例1の活性化後の場合と同様に、バルク相の上に前述の第3層のような34−68nmの層が形成されていたのに対して、比較例1aのものにおいては、第3層は存在していなかった。また、上記の実施例1a〜4aの各水素吸蔵合金については、各水素吸蔵合金の最表面における上記の第3層の層厚を求め、その結果を下記の表3に示した。   And as mentioned above, after processing of Examples 1a to 4a and Comparative Example 1a, the cross-sectional structure of each hydrogen storage alloy is observed with a transmission electron microscope TEM (manufactured by JEOL: JEM-2010F type) as described above. As a result, in Examples 1a to 4a, as in the case after the activation of Example 1 above, a 34-68 nm layer like the third layer described above was formed on the bulk phase. On the other hand, the third layer was not present in Comparative Example 1a. Moreover, about each hydrogen storage alloy of said Example 1a-4a, the layer thickness of said 3rd layer in the outermost surface of each hydrogen storage alloy was calculated | required, and the result was shown in following Table 3.

また、上記のように活性化させた実施例1a〜4a及び比較例1aの各試験セルを、それぞれ25℃の温度雰囲気中において、45mAの充電電流で170分間充電し、10分間休止した後、さらに−20℃の温度雰囲気中において4時間休止し、その後、−20℃の温度雰囲気中において、45mAの放電電流で上記の参照極に対する負極の電位が−0.7Vになるまで放電して、各試験セルにおける−20℃での放電容量を求め、比較例1aの試験セルにおける放電容量を低温放電特性100として、実施例1a〜4aの各試験セルにおける低温放電特性を算出し、その結果を下記の表3に示した。   In addition, each of the test cells of Examples 1a to 4a and Comparative Example 1a activated as described above was charged at a charge current of 45 mA for 170 minutes in a temperature atmosphere of 25 ° C., and then rested for 10 minutes. Furthermore, it was rested in a temperature atmosphere of −20 ° C. for 4 hours, and then discharged in a temperature atmosphere of −20 ° C. with a discharge current of 45 mA until the potential of the negative electrode with respect to the reference electrode became −0.7 V, The discharge capacity at −20 ° C. in each test cell is obtained, the discharge capacity in the test cell of Comparative Example 1a is defined as the low temperature discharge characteristic 100, and the low temperature discharge characteristics in each test cell of Examples 1a to 4a are calculated. The results are shown in Table 3 below.

この結果、バルク相の上に上記のような第1層〜第3層の3つの層が形成された水素吸蔵合金を用いた実施例1a〜4aの各試験セルは、バルク相の上に第1層と第2層とからなる2層が形成されただけの水素吸蔵合金を用いた比較例1aの試験セルに比べて、低温放電特性が高くなっており、−20℃の低温下における放電容量が大きくなっていた。   As a result, each of the test cells of Examples 1a to 4a using the hydrogen storage alloy in which the three layers of the first layer to the third layer as described above were formed on the bulk phase had the first cells on the bulk phase. Compared with the test cell of Comparative Example 1a using a hydrogen storage alloy in which two layers consisting of one layer and a second layer are formed, the low-temperature discharge characteristics are high, and discharge at a low temperature of −20 ° C. The capacity was getting bigger.

また、上記の実施例1a〜4aの各試験セルを比較した結果、水素吸蔵合金の最表面における第3層の層厚が40nm以上になった実施例1a.3a,4aのものは、水素吸蔵合金の最表面における第3層の層厚が40nm未満になった実施例2aのものに比べて、低温放電特性がさらに高くなっており、−20℃の低温下における放電容量がさらに大きくなっていた。   Further, as a result of comparing the test cells of Examples 1a to 4a, the layer thickness of the third layer on the outermost surface of the hydrogen storage alloy was 40 nm or more. Those of 3a and 4a have higher low-temperature discharge characteristics than those of Example 2a in which the thickness of the third layer on the outermost surface of the hydrogen storage alloy is less than 40 nm, and a low temperature of −20 ° C. The discharge capacity at the bottom was even larger.

1 正極
2 負極
3 セパレータ
4 電池缶
5 正極リード
6 正極蓋
6a ガス放出口
7 負極リード
8 絶縁パッキン
9 正極外部端子
10 コイルスプリング
11 閉塞板
20 容器
21 正極
22 負極
23 アルカリ電解液
24 参照極
B バルク相
S1 第1層
S2 第1層
S3 第3層
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery can 5 Positive electrode lead 6 Positive electrode cover 6a Gas discharge port 7 Negative electrode lead 8 Insulation packing 9 Positive electrode external terminal 10 Coil spring 11 Closure board 20 Container 21 Positive electrode 22 Negative electrode 23 Alkaline electrolyte 24 Reference electrode B Bulk Phase S1 1st layer S2 1st layer S3 3rd layer

Claims (11)

一般式Ln1-xMgxNiy-a-bAlab(式中、Lnは、Yを含む希土類元素、Zr、Tiから選択される少なくとも1種の元素、Mは、V、Nb、Ta、Cr、Mo、Mn、Fe、Co、Ga、Zn、Sn、In、Cu、Si、P、Bから選択される少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす。)で示される水素吸蔵合金を用いたアルカリ蓄電池用負極において、上記の水素吸蔵合金のバルク相の表面に第1層〜第3層の3つの層が積層されてなり、バルク相に近い第1層は、この第1層の上に位置する第2層よりも含有される酸素の量が多く、アルカリ溶液に可溶な元素が10原子%以上含まれ、またこの第1層の上に位置する第2層は、Niの含有率が上記のバルク相よりも高く、またこの第2層の上に位置する第3層は、NiOの含有率が上記の第2層におけるNiOの含有率よりも高いことを特徴とするアルカリ蓄電池用負極。 General formula Ln 1-x Mg x Ni yab Al a M b (wherein Ln is at least one element selected from rare earth elements including Y, Zr, Ti, M is V, Nb, Ta, Cr) , Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, B, and at least one element selected from 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9.) in the negative electrode for an alkaline storage battery using the hydrogen storage alloy described above. Three layers of the first layer to the third layer are laminated on the surface of the bulk phase, and the first layer close to the bulk phase contains oxygen contained more than the second layer located on the first layer. The amount of the element that is soluble in the alkaline solution is 10 atomic% or more, and the second layer located on the first layer is: The Ni content is higher than the bulk phase, and the third layer located on the second layer is characterized in that the NiO content is higher than the NiO content in the second layer. Negative electrode for alkaline storage battery. 請求項1に記載のアルカリ蓄電池用負極において、上記の第3層中に、NiOと金属Niとが存在することを特徴とするアルカリ蓄電池用負極。   2. The negative electrode for an alkaline storage battery according to claim 1, wherein NiO and metal Ni are present in the third layer. 請求項1又は請求項2に記載のアルカリ蓄電池用負極において、上記の第3層におけるNiOと金属Niとの合計のNi量に対するNiOにおけるNi量の比率が、20%以上99%以下であることを特徴とするアルカリ蓄電池用負極。   3. The negative electrode for an alkaline storage battery according to claim 1, wherein the ratio of the Ni content in NiO to the total Ni content of NiO and metal Ni in the third layer is 20% or more and 99% or less. A negative electrode for an alkaline storage battery. 請求項1〜請求項3の何れか1項に記載のアルカリ蓄電池用負極において、上記の第3層に含まれる元素中における酸素とNiとの合計量が90原子%以上であることを特徴とするアルカリ蓄電池用負極。   The alkaline storage battery negative electrode according to any one of claims 1 to 3, wherein the total amount of oxygen and Ni in the elements contained in the third layer is 90 atomic% or more. Negative electrode for alkaline storage battery. 請求項1〜請求項4の何れか1項に記載のアルカリ蓄電池用負極において、上記の第3層の層厚が10nm以上100nm以下であることを特徴とするアルカリ蓄電池用負極。   5. The negative electrode for an alkaline storage battery according to claim 1, wherein the layer thickness of the third layer is 10 nm or more and 100 nm or less. 請求項1〜請求項5の何れか1項に記載のアルカリ蓄電池用負極において、上記の第3層に存在する結晶粒子の粒径が、上記の第2層に存在する結晶粒子の粒径よりも小さいことを特徴とするアルカリ蓄電池用負極。   The negative electrode for an alkaline storage battery according to any one of claims 1 to 5, wherein the crystal particle size present in the third layer is greater than the particle size of the crystal particles present in the second layer. A negative electrode for an alkaline storage battery characterized by being small. 請求項1〜請求項6の何れか1項に記載のアルカリ蓄電池用負極において、上記の第3層に存在する結晶粒子が、粒径が7nm以下の結晶粒子だけで構成されていることを特徴とするアルカリ蓄電池用負極。   The negative electrode for an alkaline storage battery according to any one of claims 1 to 6, wherein the crystal particles present in the third layer are composed only of crystal particles having a particle size of 7 nm or less. A negative electrode for alkaline storage batteries. 請求項1〜請求項7の何れか1項に記載のアルカリ蓄電池用負極において、上記の第1層におけるアルカリ溶液に可溶な元素として、上記の一般式に示すLnとAlとMgとが含まれることを特徴とするアルカリ蓄電池用負極。   8. The negative electrode for an alkaline storage battery according to claim 1, wherein Ln, Al, and Mg represented by the above general formula are included as elements soluble in the alkaline solution in the first layer. A negative electrode for an alkaline storage battery. 正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、上記の負極として、請求項1〜請求項8の何れか1項に記載のアルカリ蓄電池用負極を用いたことを特徴とするアルカリ蓄電池。   In the alkaline storage battery provided with the positive electrode, the negative electrode using a hydrogen storage alloy, and alkaline electrolyte, the negative electrode for alkaline storage batteries of any one of Claims 1-8 was used as said negative electrode. An alkaline storage battery characterized by that. 請求項9に記載のアルカリ蓄電池を製造するにあたり、上記の一般式Ln1-xMgxNiy-a-bAlabで示される水素吸蔵合金を酸化処理して、この水素吸蔵合金の表面にNiOを含む酸化物層を形成する工程と、このアルカリ蓄電池を充放電させて、NiOを含む酸化物層が形成された水素吸蔵合金の表面に上記の第1層〜第3層を形成する工程とを行うことを特徴とするアルカリ蓄電池の製造方法。 In manufacturing the alkaline storage battery according to claim 9, the hydrogen storage alloy represented by the general formula Ln 1-x Mg x Ni yab Al a M b is oxidized, and NiO is added to the surface of the hydrogen storage alloy. A step of forming an oxide layer including the step of charging and discharging the alkaline storage battery, and a step of forming the first to third layers on the surface of the hydrogen storage alloy on which the oxide layer including NiO is formed. The manufacturing method of the alkaline storage battery characterized by performing. 請求項10に記載のアルカリ蓄電池の製造方法において、上記の水素吸蔵合金を酸化処理するにあたり、上記の水素吸蔵合金を酸素が存在する雰囲気中で150℃以上の温度で加熱処理することを特徴とするアルカリ蓄電池の製造方法。   The method for producing an alkaline storage battery according to claim 10, wherein the hydrogen storage alloy is heat-treated at a temperature of 150 ° C. or higher in an oxygen-containing atmosphere when oxidizing the hydrogen storage alloy. A method for producing an alkaline storage battery.
JP2009158418A 2008-09-30 2009-07-03 Negative electrode for alkaline storage battery, alkaline storage battery, and method for producing alkaline storage battery Active JP5465478B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009158418A JP5465478B2 (en) 2008-09-30 2009-07-03 Negative electrode for alkaline storage battery, alkaline storage battery, and method for producing alkaline storage battery
CN200910178535A CN101714626A (en) 2008-09-30 2009-09-27 Negative electrode for alkaline storage battery, alkaline storage battery, and method of manufacturing alkaline storage battery
US12/588,015 US20100081053A1 (en) 2008-09-30 2009-09-30 Negative electrode for alkaline storage battery, alkaline storage battery, and method of manufacturing alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008254917 2008-09-30
JP2008254917 2008-09-30
JP2009158418A JP5465478B2 (en) 2008-09-30 2009-07-03 Negative electrode for alkaline storage battery, alkaline storage battery, and method for producing alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2010108910A JP2010108910A (en) 2010-05-13
JP5465478B2 true JP5465478B2 (en) 2014-04-09

Family

ID=42057825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158418A Active JP5465478B2 (en) 2008-09-30 2009-07-03 Negative electrode for alkaline storage battery, alkaline storage battery, and method for producing alkaline storage battery

Country Status (3)

Country Link
US (1) US20100081053A1 (en)
JP (1) JP5465478B2 (en)
CN (1) CN101714626A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2472299T3 (en) * 2007-07-16 2014-06-30 Lg Chem, Ltd. Secondary battery pack based on mechanical connection mode
CN103855370A (en) * 2014-03-11 2014-06-11 微山钢研稀土材料有限公司 Low-magnesium RE-Mg-Ti-Ni-Al-B series hydrogen-storage alloy for Ni-MH secondary battery and preparation method
JP6962000B2 (en) * 2017-05-22 2021-11-05 株式会社豊田自動織機 Method for manufacturing hydrogen storage alloy with increased Ni concentration on the surface
JP7036397B2 (en) * 2019-03-26 2022-03-15 日本重化学工業株式会社 Hydrogen storage alloy for alkaline storage batteries and alkaline storage batteries and vehicles using it as the negative electrode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506076A (en) * 1993-06-30 1996-04-09 Toshiba Battery Co., Ltd. Alkali secondary battery
CN1154198C (en) * 1996-01-22 2004-06-16 东芝株式会社 Hydrogen-storage alloy, alloy surface modifying method, cell and alkaline secondary cell negative electrode
DE69839140T2 (en) * 1997-06-17 2008-06-19 Kabushiki Kaisha Toshiba, Kawasaki Hydrogen-absorbing alloy
WO2005014871A1 (en) * 2003-08-08 2005-02-17 Mitsui Mining & Smelting Co., Ltd. LOW Co HYDROGEN OCCLUSION ALLOY
JP4115367B2 (en) * 2003-09-17 2008-07-09 三洋電機株式会社 Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP4849854B2 (en) * 2005-09-26 2012-01-11 三洋電機株式会社 Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery

Also Published As

Publication number Publication date
US20100081053A1 (en) 2010-04-01
JP2010108910A (en) 2010-05-13
CN101714626A (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP5334426B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP5196953B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP6132279B2 (en) Nickel metal hydride secondary battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
JP2011127177A (en) Hydrogen storage alloy, method for producing the same, and alkali storage battery
JP5465478B2 (en) Negative electrode for alkaline storage battery, alkaline storage battery, and method for producing alkaline storage battery
JP5482029B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP4342186B2 (en) Alkaline storage battery
JP5196932B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the hydrogen storage alloy, and nickel-hydrogen secondary battery
JP4458725B2 (en) Alkaline storage battery
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JP2009228096A (en) Hydrogen storage alloy
JP4663451B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP4342196B2 (en) Alkaline storage battery
JP7261059B2 (en) Negative electrode for nickel-metal hydride secondary battery, method for manufacturing this negative electrode, nickel-hydrogen secondary battery using this negative electrode, and hydrogen-absorbing alloy powder
JP2010231940A (en) Alkaline secondary battery
JP5183077B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP2013147753A (en) Method for manufacturing hydrogen storing alloy for battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP2007254782A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2010212117A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP2010055920A (en) Anode for alkaline storage battery and alkaline storage battery
JP2017182925A (en) Negative electrode for alkaline secondary battery, and alkaline secondary battery including the negative electrode

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R150 Certificate of patent or registration of utility model

Ref document number: 5465478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150