JP5462842B2 - Mobile length measuring device and train operation management system using the same - Google Patents

Mobile length measuring device and train operation management system using the same Download PDF

Info

Publication number
JP5462842B2
JP5462842B2 JP2011158986A JP2011158986A JP5462842B2 JP 5462842 B2 JP5462842 B2 JP 5462842B2 JP 2011158986 A JP2011158986 A JP 2011158986A JP 2011158986 A JP2011158986 A JP 2011158986A JP 5462842 B2 JP5462842 B2 JP 5462842B2
Authority
JP
Japan
Prior art keywords
moving body
length
train
object detection
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011158986A
Other languages
Japanese (ja)
Other versions
JP2013024693A (en
Inventor
伏木  匠
たい子 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011158986A priority Critical patent/JP5462842B2/en
Publication of JP2013024693A publication Critical patent/JP2013024693A/en
Application granted granted Critical
Publication of JP5462842B2 publication Critical patent/JP5462842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

本発明は、走行中の移動体の長さを計測する移動体長計測装置に関わり、特に鉄道車両の移動体長計測装置と前記移動体長計測装置を用いた運行管理システムに関する。   The present invention relates to a moving body length measuring device that measures the length of a moving moving body, and more particularly to a moving body length measuring device for a railway vehicle and an operation management system using the moving body length measuring device.

走行中の移動体の長さを計測する装置に関しては、走行方向に2箇所の物体検知センサを設置し、その設置位置2箇所のセンサ間距離と通過時間差を利用して走行速度を推定し、1箇所の物体検知センサの検知開始−終了時刻差に上記走行速度を乗じて移動体長を推定する装置が広く知られている(図1参照)。   For a device that measures the length of a moving body while traveling, two object detection sensors are installed in the traveling direction, and the traveling speed is estimated using the distance between the sensors at the two installation positions and the passage time difference, An apparatus that estimates the moving body length by multiplying the difference between the detection start and end time of one object detection sensor by the travel speed is widely known (see FIG. 1).

例えば、特許文献1には、センサ間距離を移動体の速度変化が小さくなるような距離(1.5m程度)に設定することで等速または等加速度運動を仮定し、2地点間の平均速度から移動体長を推定する装置が開示されている。また、移動体の前方にドップラー効果あるいは光学的な空間フィルタを用いた速度センサを設置して連続的に速度を検出し、その速度を検知開始時刻−終了時刻で積分することにより移動体長を計測する装置が開示されている。   For example, in Patent Document 1, it is assumed that the distance between sensors is set to a distance (about 1.5 m) at which the change in speed of the moving body is small, and constant speed or constant acceleration motion is assumed, and the average speed between two points is assumed. An apparatus for estimating the moving body length from the above is disclosed. In addition, a speed sensor using a Doppler effect or an optical spatial filter is installed in front of the moving body to continuously detect the speed, and the moving body length is measured by integrating the speed from the detection start time to the end time. An apparatus is disclosed.

また、特許文献2には、センサ間距離を予想最大移動体長より長く設置し、センサで個別に移動体の通過時刻差を検出し、この二つの時刻差の調和平均を用いて移動体長を求める計測装置が開示されている。   In Patent Document 2, the distance between the sensors is set longer than the expected maximum moving body length, the difference between the passing times of the moving bodies is individually detected by the sensor, and the moving body length is obtained using the harmonic average of the two time differences. A measurement device is disclosed.

特開2008−180611号公報JP 2008-180611 A 特開平10−260017号公報JP-A-10-260017

特許文献1、2に挙げたシステムでは、いずれも等加速度運動を仮定しているが、上記装置を鉄道車両に適用した場合、信号機等の外的要因、あるいは内的要因により停止を想定する必要がある。また、特許文献1に挙げたように、前方から連続的に速度を検知する方法は、移動体長計測時間中に常に移動体前面を見通せる位置に速度検知装置を設置する必要があり、列車のように複数の鉄道車両を連結して長い移動体長をもつものの計測には適切な設置位置が決定できないという問題点がある。   In the systems listed in Patent Documents 1 and 2, all assume constant acceleration motion. However, when the above device is applied to a railway vehicle, it is necessary to assume a stop due to external factors such as traffic lights or internal factors. There is. In addition, as described in Patent Document 1, the method of detecting the speed continuously from the front requires that a speed detection device be installed at a position where the front of the moving body can always be seen during the moving body length measurement time. However, there is a problem that an appropriate installation position cannot be determined for measurement of a long moving body by connecting a plurality of railway vehicles.

上記の問題点に鑑み、本発明は、移動体側方に設置した物体検知センサを用いて停止時にも移動体長の範囲が検出可能な移動体長計測装置及びそれを利用した列車運行管理システムを提供することを目的とする。   In view of the above problems, the present invention provides a moving body length measuring device capable of detecting a range of a moving body length even when stopped using an object detection sensor installed on the side of the moving body and a train operation management system using the same. For the purpose.

上記課題を解決するために、本発明の移動体長計測装置は、少なくとも3箇所以上の物体検知センサを移動体の進行方向側方に有し、前記物体検知センサのセンサ設置位置間距離はそれぞれ異なり大小二つの距離となるよう配置し、前記センサ設置位置間距離の小さい方の前記物体検知センサ間の距離が、一方の物体検知センサ到着時刻から他方の物体検知センサ到着時刻の間、及び一方の物体検知センサ通過時刻から他方の物体検知センサ通過時刻の間での移動体の移動が一定速度とみなせる程度の距離であるとともに、移動体長の想定最小長よりも小さく、さらに、前記センサ設置位置間距離の大きい方の前記物体検知センサ間の距離が最大想定移動体長よりも長くとられており、前記物体検知センサにより前記移動体の到着時刻及び通過時刻を検知して移動体長の最小値及び最大値を推定する。 In order to solve the above-mentioned problem, the mobile body length measuring device of the present invention has at least three or more object detection sensors on the side in the traveling direction of the mobile body, and the distances between the sensor installation positions of the object detection sensors are different. The distance between the object detection sensors having a smaller distance between the sensor installation positions is set between the arrival time of one object detection sensor and the arrival time of the other object detection sensor. The distance between the object detection sensor passage time and the other object detection sensor passage time is such that the movement of the moving body can be regarded as a constant speed, and is smaller than the assumed minimum length of the moving body length. the larger the distance between the object detection sensor distance have been taken longer than the maximum envisaged moving body length, the arrival time and passing of the moving object by the object detection sensor Time detection to the estimated minimum and maximum values of the moving body length.

さらに、前記物体検知センサの検出区間進入時、及び脱出時の瞬間速度または検出区間走行中の平均速度を推定し、前記瞬間速度、前記平均速度、最大加速度、最大減速度、最高速度のうち少なくとも一つを用いて移動体長の最小値及び最大値を推定する。 Furthermore, prior SL upon detection section enters the object detection sensor, and the instantaneous estimate the average speed in the speed or detecting section traveling during escaping, the instantaneous speed, the average speed, maximum acceleration, maximum deceleration, of the maximum speed The minimum value and the maximum value of the moving body length are estimated using at least one.

さらに、本発明の列車運行管理システムは、上記移動体長計測装置を用いて、列車長を推定する列車長計測装置を備え、前記推定された列車長を用いて画面上へ列車存在区間を表示する表示手段または前記列車存在区間を判定して現場設備を制御する制御判定手段を備える。   Furthermore, the train operation management system of the present invention includes a train length measurement device that estimates a train length using the mobile body length measurement device, and displays a train existing section on a screen using the estimated train length. Control determining means for controlling the field equipment by determining the display means or the train existing section is provided.

本発明を用いることによって、簡便な地上設備のみによって精度よく移動体長、またはその範囲を推定することが可能となる。また、列車の種類によらず計測区間を走行した列車の列車長が推定可能となり、列車運行管理システムでの安全性を向上に寄与する。   By using the present invention, it is possible to accurately estimate the moving body length or its range only with simple ground facilities. Moreover, it becomes possible to estimate the train length of the train that has traveled the measurement section regardless of the type of train, which contributes to improving safety in the train operation management system.

図1は二つの物体検知センサによる計測物理量を示した基本原理図である。FIG. 1 is a basic principle diagram showing physical quantities measured by two object detection sensors. 図2は本発明の移動体長計測装置の実施例である。FIG. 2 shows an embodiment of the moving body length measuring apparatus of the present invention. 図3は移動体の速度変化と移動体長の関係を示したグラフである。FIG. 3 is a graph showing the relationship between the speed change of the moving body and the moving body length. 図4は移動体の最大長、最小長の算出方法を示したグラフである。FIG. 4 is a graph showing a method for calculating the maximum length and the minimum length of the moving object. 図5は停止が発生した際の移動体の最大長、最小長の算出方法を示したグラフである。FIG. 5 is a graph showing a method for calculating the maximum length and the minimum length of a moving body when a stop occurs. 図6は本発明の移動体長計測装置の別の実施例である。FIG. 6 shows another embodiment of the moving body length measuring apparatus of the present invention. 図7は本発明の移動体長計測装置を用いた運行管理システムの例である。FIG. 7 shows an example of an operation management system using the moving body length measuring device of the present invention. 図8は運行管理システムの画面例である。FIG. 8 is a screen example of the operation management system. 図9はセンサ間距離Lが移動体長Xより小さい場合の列車の速度変化を表した図である。FIG. 9 is a diagram showing a change in train speed when the inter-sensor distance L is smaller than the moving body length X.

本発明による移動体長計測装置およびそれを用いた列車運行管理システムの実施の形態を、図面を参照して説明する。以下では、移動体として鉄道車両を用いたシステムについて述べる。   DESCRIPTION OF EMBODIMENTS Embodiments of a moving body length measuring device and a train operation management system using the same according to the present invention will be described with reference to the drawings. In the following, a system using a railway vehicle as a moving body will be described.

図1は本発明を説明するにあたり、二つの物体検知センサを用いて計測可能な物理量を示した基本原理図である。移動体の進行方向に対して手前側から順にセンサA(始点側)、センサB(終点側)を配置し、そのセンサ間距離をL[m]、移動体長をX[m]とする。このときセンサAの到達時刻、通過時刻、センサBの到達時刻、通過時刻をそれぞれtAin、tAout、tBin、tBoutとする。このとき物体検知センサはそれぞれ物体検知時にパルスとして存在を検知する。   FIG. 1 is a basic principle diagram showing physical quantities that can be measured using two object detection sensors in explaining the present invention. Sensor A (start point side) and sensor B (end point side) are arranged in this order from the front side with respect to the traveling direction of the moving body, and the distance between the sensors is L [m] and the moving body length is X [m]. At this time, the arrival time and passage time of sensor A, the arrival time and passage time of sensor B are tAin, tAout, tBin, and tBout, respectively. At this time, each of the object detection sensors detects the presence as a pulse when detecting the object.

物体検知センサは物体検知パルスを取得できれば、超音波センサ、赤外線センサ、レーザセンサなどを用いてよい。適切な物体検知がなされればセンサA検知パルスからはtAin及びtAout、センサB検知パルスからはtBin及びtBoutを取得でき、それらの時刻からセンサA通過時間ΔtA=tAout−tAin、センサB通過時間ΔtB=tBout−tBin、また移動体の先頭側通過時間Δtin=tBin−tAin、末尾側通過時間Δtout=tBout−tAoutがそれぞれ算出できる。   As the object detection sensor, an ultrasonic sensor, an infrared sensor, a laser sensor, or the like may be used as long as an object detection pulse can be acquired. If an appropriate object is detected, tAin and tAout can be obtained from the sensor A detection pulse, and tBin and tBout can be obtained from the sensor B detection pulse. From these times, sensor A passage time ΔtA = tAout−tAin, sensor B passage time ΔtB = TBout-tBin, the head side passage time Δtin = tBin-tAin, and the tail side passage time Δtout = tBout-tAout, respectively.

このとき、移動体の走行速度が一定と仮定できれば走行速度V=L/ΔtinまたはV=L/Δtoutとなり、移動体長X=V・ΔtAまたはX=V・ΔtBとして移動体長が推定できることとなる。ただし、実際の移動体走行、特に鉄道車両が列車として走行したときを考えると、信号の影響等により車両長計測区間中でも停止する可能性があり、走行速度を一定とみなすことは難しい。よって走行速度が変化しても車両長を高精度で計測する手段が必要となる。   At this time, if it can be assumed that the traveling speed of the moving body is constant, the traveling speed V = L / Δtin or V = L / Δtout, and the moving body length can be estimated as the moving body length X = V · ΔtA or X = V · ΔtB. However, in consideration of actual mobile travel, particularly when a railway vehicle travels as a train, there is a possibility of stopping even during the vehicle length measurement section due to the influence of a signal or the like, and it is difficult to regard the travel speed as constant. Therefore, a means for measuring the vehicle length with high accuracy even when the traveling speed changes is required.

図2は、本発明の移動体長計測装置201の実施例1である。201は移動体長計測装置、202は移動体長計測対象の移動体であり、移動体202の進行方向に対して手前側から順にセンサA1、センサA2、センサBを配置し、センサA1、センサA2間のセンサ間距離をl[m]、センサA2、センサBのセンサ間距離をL[m]、求めたい移動体長をX[m]とする。各センサは図1に示した物体検知センサと同一のものを利用し、移動体202として鉄道車両を計測する場合には、車両の切れ目ごとにセンサ検知パルスが切れるように計測区間の側方に設置しており、移動体長計測装置201は車両個々の長さである車両長を計測するものとする。また、移動体202のセンサA1の到達時刻、通過時刻、センサA2の到達時刻、通過時刻、センサBの到達時刻、通過時刻をそれぞれtA1in、tA1out、tA2in、tA2out、tBin、tBoutとする。   FIG. 2 shows a first embodiment of the moving body length measuring apparatus 201 of the present invention. Reference numeral 201 denotes a moving body length measuring device, and 202 denotes a moving body whose moving body length is to be measured. The sensors A1, A2, and B are arranged in this order from the front side with respect to the traveling direction of the moving body 202, and between the sensor A1 and the sensor A2. The distance between the sensors is l [m], the distance between the sensors A2 and B is L [m], and the moving body length to be obtained is X [m]. Each sensor uses the same object detection sensor as shown in FIG. 1, and when measuring a railway vehicle as the moving body 202, the sensor detection pulse is cut off at the side of the measurement section so that each sensor breaks. It is assumed that the moving body length measuring device 201 measures the vehicle length which is the length of each vehicle. In addition, the arrival time, the passage time, the arrival time, the passage time, the arrival time, and the arrival time of the sensor B of the moving body 202 are denoted as tA1in, tA1out, tA2in, tA2out, tBin, and tBout, respectively.

ここで、センサ間距離l[m]は十分に短く、センサA1到着時刻tA1inからセンサA2到着時刻tA2in間、及びセンサA1通過時刻tA1outからセンサA2通過時刻tA2out間での移動体202の移動は一定速度とみなせる程度の距離とする。センサA1とセンサA2間でのセンサ間距離は、移動体長X[m]の想定最小長よりも十分に小さい。このとき、センサA1、センサA2の設置位置はともに始点Aであるとみなし、始点Aの到着時の瞬間速度をVain、始点Aの通過時の瞬間速度をVaoutとすると、以下の(式1)、(式2)により瞬間速度は求まる。

Figure 0005462842
Figure 0005462842
Here, the inter-sensor distance l [m] is sufficiently short, and the movement of the moving body 202 between the sensor A1 arrival time tA1in and the sensor A2 arrival time tA2in and between the sensor A1 passage time tA1out and the sensor A2 passage time tA2out is constant. Use a distance that can be regarded as a speed. The distance between the sensors A1 and A2 is sufficiently smaller than the assumed minimum length of the moving body length X [m]. At this time, assuming that the installation positions of the sensors A1 and A2 are both the start point A, the instantaneous speed when the start point A arrives is Vain, and the instantaneous speed when the start point A passes is Vaout, the following (formula 1) (Equation 2) gives the instantaneous speed.
Figure 0005462842
Figure 0005462842

始点Aの到着時刻tAin、通過時刻tAoutは、tA1in≦tAin≦tA2in、tA1out≦tAout≦tA2outを満たせばどのような値をとってもよいものとし、時刻tAinにおける移動体202の瞬間速度をVain、時刻tAoutにおける移動体202の瞬間速度をVaoutとして定める。   The arrival time tAin and the passage time tAout of the starting point A may take any values as long as tA1in ≦ tAin ≦ tA2in and tA1out ≦ tAout ≦ tA2out are satisfied. The instantaneous speed of the moving body 202 is defined as Vaout.

センサ間距離L[m]は想定される最大車両長よりも長くとるものとする。最大車両長は鉄道車両が走行する線路のもっとも回転半径が小さいカーブを通過する際に、車両の線路に対する横方向の存在位置が車両限界を超えない条件から定まる。通常日本国内では25[m]〜30[m]である。   The inter-sensor distance L [m] is assumed to be longer than the assumed maximum vehicle length. The maximum vehicle length is determined from the condition that the position of the vehicle in the lateral direction with respect to the track does not exceed the vehicle limit when passing through a curve having the smallest turning radius of the track on which the railway vehicle runs. Usually in Japan, it is 25 [m] -30 [m].

図2では移動体202の進行方向手前側の位置AにセンサA1、センサA2を配置したが、位置BにセンサB1、センサB2を設置してもよい。以下では、移動体長計測装置201によって移動体202の移動体長X[m]の範囲を推定する方法について説明する。   In FIG. 2, the sensor A1 and the sensor A2 are disposed at the position A on the front side of the moving body 202 in the traveling direction, but the sensor B1 and the sensor B2 may be disposed at the position B. Hereinafter, a method for estimating the range of the moving body length X [m] of the moving body 202 by the moving body length measuring apparatus 201 will be described.

図3は移動体202の速度変化と移動体長の関係を示したグラフである。グラフ301は横軸に時刻、縦軸に速度をとったグラフであり、曲線302は移動体202の速度変化を表す。移動体長X[m]は、グラフ301上では時刻tAinから時刻tAout、または時刻tBinから時刻tBoutまで速度変化302を積分した値に等しくなる。またセンサ間距離L[m]は、グラフ301上では時刻tAinから時刻tBin、または時刻tAoutから時刻tBoutまで速度変化302を積分した値に等しくなる。すなわち距離L−X[m]は、時刻tAoutから時刻tBinまで速度変化302を積分した値に等しくなる。   FIG. 3 is a graph showing the relationship between the speed change of the moving body 202 and the moving body length. A graph 301 is a graph in which time is plotted on the horizontal axis and speed is plotted on the vertical axis, and a curve 302 represents a speed change of the moving body 202. The moving body length X [m] is equal to a value obtained by integrating the speed change 302 from time tAin to time tAout or from time tBin to time tBout on the graph 301. On the graph 301, the inter-sensor distance L [m] is equal to a value obtained by integrating the speed change 302 from the time tAin to the time tBin or from the time tAout to the time tBout. That is, the distance L−X [m] is equal to a value obtained by integrating the speed change 302 from the time tAout to the time tBin.

移動体202の速度変化302は直接計測することはできないが、(式1)(式2)により時刻tAin、時刻tAoutでの瞬間速度を計測可能であり、グラフ301上ではそれぞれ(tAin,Vain)、(tAout,Vaout)として表すことができる。このとき速度変化302の積分の想定しうる最大値、最小値がそれぞれ曲線303、曲線304のように存在し、最大長曲線303、最小長曲線304ともに(tAin,Vain)、(tAout,Vaout)を通過することが拘束条件となる。   Although the speed change 302 of the moving body 202 cannot be directly measured, the instantaneous speed at the time tAin and the time tAout can be measured by (Equation 1) and (Equation 2), and (tAin, Vain) on the graph 301, respectively. , (TAout, Vaout). At this time, the maximum value and the minimum value that can be assumed for the integration of the speed change 302 exist as curves 303 and 304, respectively. Both the maximum length curve 303 and the minimum length curve 304 are (tAin, Vain), (tAout, Vaout). Passing through is a constraint.

図4は、移動体202の最大長曲線303、最小長曲線304の算出方法を示したグラフである。前提として車両の最大加速度α(α>0)、最大減速度−β(β>0)、最高速度Vmaxが与えられているものとする。ここで計測対象とする車両の種類があらかじめわかっている場合、その車両の仕様値であるα、β、Vmaxを用い、車両の種類がわかっていない場合、想定しうる車両の最大のα、β、Vmaxを用いる。まず区間[tAin,tAout]間の最大長曲線303の導出方法について考える。図3で示した拘束条件(tAin,Vain)通過をみたし、最も速度が大のときが最大長となることを考えると、この条件を満たす時刻tにおける速度変化302v(t)の式は最大加速度αで加速したときの速度であるから以下の(式3)として表される。

Figure 0005462842
FIG. 4 is a graph showing a method for calculating the maximum length curve 303 and the minimum length curve 304 of the moving body 202. It is assumed that the maximum acceleration α (α> 0), the maximum deceleration −β (β> 0), and the maximum speed Vmax are given as preconditions. Here, when the type of vehicle to be measured is known in advance, the specification values α, β, and Vmax of the vehicle are used. When the type of vehicle is not known, the maximum α, β of the vehicle that can be assumed. Vmax is used. First, a method for deriving the maximum length curve 303 in the interval [tAin, tAout] will be considered. Considering the passage of the constraint conditions (tAin, Vain) shown in FIG. 3 and considering that the maximum length is obtained when the speed is the largest, the equation for the speed change 302v (t) at time t that satisfies this condition is the maximum. Since it is the speed when accelerating at the acceleration α, it is expressed as the following (formula 3).
Figure 0005462842

また、拘束条件(tAout,Vaout)通過を満たすためには、同様に最大減速度−βにて減速したときの速度であるから、以下の(式4)として表される。

Figure 0005462842
Further, in order to satisfy the passing of the constraint conditions (tAout, Vaout), it is the speed when the vehicle is similarly decelerated with the maximum deceleration −β, and therefore is expressed as the following (Equation 4).
Figure 0005462842

一方で、

Figure 0005462842
を満たす必要がある。よってv(t)は(式3)(式4)(式5)を全て同時に満たしている必要があるため、これを条件式にすると以下(式6)として表される。
Figure 0005462842
On the other hand,
Figure 0005462842
It is necessary to satisfy. Therefore, since v (t) needs to satisfy (Equation 3), (Equation 4), and (Equation 5) at the same time, it is expressed as (Equation 6) below as a conditional expression.
Figure 0005462842

(式6)でMin()は、()内のうち最小のものを選択する関数である。(式6)の右辺をグラフ上で表したものが図4の最大長曲線303(ただし[tAin,tAout])である。   In (Expression 6), Min () is a function that selects the smallest one in (). The maximum length curve 303 (where [tAin, tAout]) in FIG. 4 represents the right side of (Expression 6) on the graph.

同様に最小長曲線304の導出方法について考える。拘束条件、速度の最小値は0(=停止)であることを考えると、最小長の条件式は以下(式7)で表すことができる。

Figure 0005462842
Similarly, a method for deriving the minimum length curve 304 will be considered. Considering that the minimum value of the constraint condition and the speed is 0 (= stop), the conditional expression of the minimum length can be expressed by the following (Expression 7).
Figure 0005462842

(式7)でMax()は、()内のうち最大のものを選択する関数である。(式7)の左辺をグラフ上で表したものが図4の最小長曲線304(ただし[tAin,tAout])である。(式6)(式7)の両辺を区間[tAin,tAout]で積分すると移動体長X[m]の範囲は以下(式8)となる。

Figure 0005462842
In (Expression 7), Max () is a function that selects the largest one among (). The left side of (Expression 7) on the graph is the minimum length curve 304 ([tAin, tAout]) in FIG. When both sides of (Expression 6) and (Expression 7) are integrated in the interval [tAin, tAout], the range of the moving body length X [m] is as follows (Expression 8).
Figure 0005462842

ここでtAoutが十分に大きく、最大長曲線303がv=Vmax、最小長曲線304がv=0を含むようなケースを考える。このときグラフ401に示した領域405,領域406,領域407,領域408の面積をそれぞれS_405,S_406,S_407,S408とすると、それぞれ以下の通りとなる。

Figure 0005462842
Consider a case where tAout is sufficiently large, the maximum length curve 303 includes v = Vmax, and the minimum length curve 304 includes v = 0. At this time, assuming that the areas of the region 405, the region 406, the region 407, and the region 408 shown in the graph 401 are S_405, S_406, S_407, and S408, respectively, the results are as follows.
Figure 0005462842

このとき(式8)は以下(式10)となる。

Figure 0005462842
At this time, (Equation 8) becomes (Equation 10) below.
Figure 0005462842

ここで移動体202の先頭が地点Aを通過したのち末尾が地点Aを通過しきらずにT秒停止するケースを考える。このときの移動体202の最大長、最小長の算出方法を示したグラフを図5に示す。図5のグラフ502に示すように停止時にはtAoutのみT加算され、このときの移動体長の範囲を(式11)に示す。

Figure 0005462842
Here, a case is considered in which after the head of the moving body 202 passes through the point A, the tail does not pass through the point A and stops for T seconds. FIG. 5 shows a graph showing a method for calculating the maximum length and the minimum length of the moving body 202 at this time. As shown in the graph 502 of FIG. 5, only tAout is T-added when stopped, and the range of the moving body length at this time is shown in (Equation 11).
Figure 0005462842

(式11)と(式10)を比較すると、最小値X_AMINは変化しないものの、最大値X_AMAXは停止時間の分Vmax・Tだけ大きくなっている。このことは停止時間が大きくなるほど最大値X_AMAXも大きくなり、結果Xのとりうる値も増えることを意味している。実際には移動体長Xの長さが(式10)(式11)とで同一にもかかわらず、その範囲が増えてしまうということは停止時には移動体長Xの推定精度が悪化することを意味している。すなわち、一地点でセンサA1,センサA2を用いて移動体長を計測する方式では、地点Aで移動体202が停止した場合に推定精度が悪化する。   Comparing (Equation 11) and (Equation 10), although the minimum value X_AMIN does not change, the maximum value X_AMAX is increased by Vmax · T corresponding to the stop time. This means that the maximum value X_AMAX increases as the stop time increases, and the possible value of the result X also increases. Although the length of the moving body length X is actually the same as in (Equation 10) and (Equation 11), the increase in the range means that the estimation accuracy of the moving body length X is deteriorated at the time of stopping. ing. That is, in the method of measuring the moving body length using the sensors A1 and A2 at one point, the estimation accuracy is deteriorated when the moving body 202 stops at the point A.

再び図3に戻り、第3の物体検知センサであるセンサBの利用方法について、区間[tAout,tBin]間の最大長曲線303、最小長曲線304の導出方法を考える。拘束条件(tAout,Vaout)通過をみたし、最も速度が大のときが最大長となることを考慮すると、この条件を満たす時刻tにおける速度変化302v(t)の式は、最大加速度αで加速したときの速度であるから以下の(式12)として表される。

Figure 0005462842
Returning to FIG. 3 again, a method for deriving the maximum length curve 303 and the minimum length curve 304 during the interval [tAout, tBin] will be considered as a method of using the sensor B as the third object detection sensor. Considering the passing of the constraint conditions (tAout, Vaout) and considering that the maximum length is the maximum when the speed is the maximum, the formula of the speed change 302v (t) at time t that satisfies this condition is accelerated at the maximum acceleration α. Therefore, it is expressed as (Equation 12) below.
Figure 0005462842

一方で、v(t)≦Vmaxを満たす必要があるから、これを条件式にすると、以下(式13)として表される。

Figure 0005462842
On the other hand, since it is necessary to satisfy v (t) ≦ Vmax, when this is used as a conditional expression, it is expressed as (Expression 13) below.
Figure 0005462842

同様に最小長曲線304の導出方法について考える。拘束条件、速度の最小値は0(=停止)であることを考えると、最小長の条件式は以下(式14)で表すことができる。

Figure 0005462842
Similarly, a method for deriving the minimum length curve 304 will be considered. Considering that the minimum value of the constraint condition and the speed is 0 (= stop), the conditional expression of the minimum length can be expressed by the following (Expression 14).
Figure 0005462842

(式13)(式14)の両辺を区間[tAout,tBin]で積分すると[tAout,tBin]の移動体202の移動距離L−X[m]の範囲は以下(式15)となる。

Figure 0005462842
When both sides of (Expression 13) and (Expression 14) are integrated in the interval [tAout, tBin], the range of the movement distance L−X [m] of the moving body 202 in [tAout, tBin] is as follows (Expression 15).
Figure 0005462842

(式15)を変形して移動体長X[m]の式として表すと、以下(式16)のようになる。

Figure 0005462842
When (Expression 15) is transformed and expressed as an expression of the moving body length X [m], the following (Expression 16) is obtained.
Figure 0005462842

ここで(式16)のXの最大値側であるL−L_X_MINに着目する。tBinとtAoutとの差が小さい場合、L_X_MINも小さくなり、0に近づく。しかし、このとき同様に積分区間が小さくなることからL_X_MAXも0に近づく。結果としてtBinとtAoutの差が小さいときには(式16)によりXのとりうる範囲が小さくなり、高精度に移動体長Xの推定が可能となる。   Here, attention is paid to L−L_X_MIN which is the maximum value side of X in (Expression 16). When the difference between tBin and tAout is small, L_X_MIN is also small and approaches zero. However, at this time, L_X_MAX also approaches 0 because the integration interval becomes small. As a result, when the difference between tBin and tAout is small, the range that X can take is reduced by (Equation 16), and the moving body length X can be estimated with high accuracy.

一方で、tBinとtAoutの差が大きい場合を考える。センサ間距離LがXより大きい場合、前述したように(式15)が成立し変形して(式16)となる。ここで、センサ間距離LがXより小さい場合を考える。このときの列車の速度変化を表したものを図9に示す。図9は、図3と同様に901は横軸に時刻、縦軸に速度をとったグラフであり、曲線902は移動体202の速度変化を表す。移動体長X[m]は、図3と同様にグラフ901上では時刻tAinから時刻tAout、または、時刻tBinから時刻tBoutまで速度変化902を積分した値に等しくなる。   On the other hand, consider the case where the difference between tBin and tAout is large. When the inter-sensor distance L is greater than X, (Equation 15) is satisfied and deformed to (Equation 16) as described above. Here, the case where the distance L between sensors is smaller than X is considered. FIG. 9 shows the train speed change at this time. FIG. 9 is a graph in which time 901 is plotted on the horizontal axis and speed is plotted on the vertical axis, as in FIG. 3, and a curve 902 represents the speed change of the moving body 202. The moving body length X [m] is equal to the value obtained by integrating the speed change 902 from time tAin to time tAout or from time tBin to time tBout on the graph 901 as in FIG.

また、センサ間距離L[m]についても、図3と同様に、グラフ901上では時刻tAinから時刻tBin、または時刻tAoutから時刻tBoutまで速度変化902を積分した値に等しくなる。図3と異なるのは、tBinとtAoutの順序が変わった点、すなわち距離X−L[m]が、時刻tBinから時刻tAoutまで速度変化902を積分した値に等しくなっている点である。このとき速度変化902の積分の想定しうる最大値、最小値はそれぞれ、図3の場合と同様とすると、tAin、tAoutの位置関係は変化しないことから(式8)については同様に成立する。一方でX−L[m]の範囲については、以下の(式17)で表すことができる。

Figure 0005462842
Similarly to FIG. 3, the inter-sensor distance L [m] is also equal to a value obtained by integrating the speed change 902 from time tAin to time tBin or from time tAout to time tBout on the graph 901. The difference from FIG. 3 is that the order of tBin and tAout has changed, that is, the distance XL [m] is equal to the value obtained by integrating the speed change 902 from time tBin to time tAout. At this time, assuming that the maximum value and the minimum value of the integration of the speed change 902 are the same as those in the case of FIG. 3, since the positional relationship between tAin and tAout does not change, (Formula 8) is similarly established. On the other hand, the range of X−L [m] can be expressed by the following (formula 17).
Figure 0005462842

(式17)を変形して移動体長X[m]の式として表すと、以下(式18)のようになる。

Figure 0005462842
When (Expression 17) is transformed and expressed as an expression of the moving body length X [m], the following (Expression 18) is obtained.
Figure 0005462842

ここで(式18)の最大値側について考察する。tBinとtAoutの差が大きい場合(式17)の積分式からわかるようにL_X_MAX’’は単純に増加することとなり、最大値は上限を持たない。一方で(式16)においては、L_X_MINは(tAout,Vaout)から最大減速度で速度0まで減速した場合の距離となり、その大きさはVaout2/2β固定となる。よってtBinとtAoutの差がどんなに大きくなってもXの最大値はLより小さい一定値をとることとなり、tBinとtAoutが長くなることによって精度が悪化しない。 Here, the maximum value side of (Equation 18) will be considered. When the difference between tBin and tAout is large, L_X_MAX ″ simply increases as shown in the integral equation (Equation 17), and the maximum value has no upper limit. On the other hand, in (Expression 16), L_X_MIN is the distance when the vehicle is decelerated from (tAout, Vaout) to the speed 0 with the maximum deceleration, and the magnitude is fixed to Vaout 2 / 2β. Therefore, no matter how large the difference between tBin and tAout is, the maximum value of X takes a constant value smaller than L, and the accuracy does not deteriorate by increasing tBin and tAout.

物理的に(式18)(式16)の違いを考えると、(式18)では、tBinとtAoutの差が大きい場合、それが停止なのか、移動体長が長いのか区別がつかないことを意味する。一方で、(式16)の場合はセンサ間距離が移動体長よりも大きいことが前提となっているため、tBinとtAoutの差が大きい場合は停止であることが決定できる。   Physically considering the difference between (Equation 18) and (Equation 16), in (Equation 18), if the difference between tBin and tAout is large, it means that it cannot be distinguished whether it is a stop or the length of the moving body is long. To do. On the other hand, in the case of (Expression 16), it is assumed that the distance between the sensors is larger than the length of the moving body. Therefore, when the difference between tBin and tAout is large, it can be determined that the vehicle is stopped.

以上のように、センサ間距離が移動体長よりも大きいことにより(式16)に表されるように停止時でも上限を備えた最大値が計算されることにより移動体長Xの推定が可能となることがわかった。最終的には(式8)(式16)の二つの条件式を同時に満たす範囲が移動体長Xの範囲として求まる。すなわち、   As described above, since the distance between the sensors is larger than the moving body length, the moving body length X can be estimated by calculating the maximum value with the upper limit even when stopped as expressed in (Equation 16). I understood it. Finally, a range that satisfies the two conditional expressions (Formula 8) and (Formula 16) at the same time is obtained as the range of the moving body length X. That is,

移動体長Xの最小値=Max(X_AMIN,L−L_X_MAX)
移動体長Xの最大値=Min(X_AMAX,L−L_X_MIN)となる。
Minimum value of moving body length X = Max (X_AMIN, L−L_X_MAX)
Maximum value of moving body length X = Min (X_AMAX, L−L_X_MIN).

またセンサ間距離が移動体長よりも小さい場合であっても、tBinとtAoutの差が小さければ、(式18)においてL_X_MIN’’、L_X_MAX’’ともに0に近づく((式17)の積分式による)ため、移動体長Xの推定誤差が小さくなる。すなわち、第3の物体検知センサを用いることにより、(式8)(式18)の二つの条件式を同時に満たす範囲として移動体長Xの範囲を絞り込むことができる。すなわち、   Even if the distance between the sensors is smaller than the moving body length, if the difference between tBin and tAout is small, both L_X_MIN ″ and L_X_MAX ″ in (Expression 18) approach 0 (according to the integral expression of (Expression 17)). Therefore, the estimation error of the moving body length X is reduced. That is, by using the third object detection sensor, the range of the moving body length X can be narrowed down as a range that satisfies the two conditional expressions (Expression 8) and (Expression 18) simultaneously. That is,

移動体長Xの最小値=Max(X_AMIN,L_X_MIN’’+L)
移動体長Xの最大値=Min(X_AMAX,L_X_MAX’’+L)となる。
Minimum value of moving body length X = Max (X_AMIN, L_X_MIN '' + L)
Maximum value of moving body length X = Min (X_AMAX, L_X_MAX ″ + L).

移動体長計測装置201は、移動体長Xの最小値、最大値だけでなく、移動体長として最小値から最大値の範囲に含まれる移動体長を一意に出力してもよい。例えば、最大値を移動体長として出力することにより、外部のシステムでは車両の占有区間を大きめに認識し、車両の占有区間内では作業を行わない、転てつ器などの現場機器の制御を行わないなどより安全側にたった判断をすることが可能となる。   The mobile body length measuring apparatus 201 may uniquely output not only the minimum value and the maximum value of the mobile body length X but also the mobile body length included in the range from the minimum value to the maximum value as the mobile body length. For example, by outputting the maximum value as the moving body length, the external system recognizes the occupied area of the vehicle larger, and does not work in the occupied area of the vehicle, and controls field devices such as a switch It is possible to make a judgment on the safer side, such as not having it.

図6は、本発明の移動体長計測装置601の実施例2である。601は移動体長計測装置、202は移動体長計測対象の移動体であり、移動体202の進行方向に対して手前側から順にセンサA1、センサA2、センサB1、センサB2を配置し、センサA1、センサA2間のセンサ間距離をl1[m]、センサA2、センサB1のセンサ間距離をL[m]、センサB1、センサB2間のセンサ間距離をl2[m]、求めたい移動体長をX[m]とする。実施例1と同様にセンサ間距離l1,l2[m]は十分に短く、始点A、終点Bでの到着、通過時の瞬間速度は実施例1で示した方法と同様に求まるものとする。   FIG. 6 is a second embodiment of the moving body length measuring apparatus 601 of the present invention. Reference numeral 601 denotes a moving body length measuring device, and 202 denotes a moving body that is a moving body length measurement target. Sensor A1, sensor A2, sensor B1, and sensor B2 are arranged in this order from the front side with respect to the traveling direction of the moving body 202, and sensor A1, The distance between sensors A2 is l1 [m], the distance between sensors A2 and B1 is L [m], the distance between sensors B1 and B2 is l2 [m], and the desired moving body length is X [m]. As in the first embodiment, the inter-sensor distances l1, l2 [m] are sufficiently short, and the instantaneous speeds at arrival and passage at the start point A and the end point B are obtained in the same manner as in the method described in the first embodiment.

グラフ602は移動体202の速度変化と移動体長の関係を示したグラフである。グラフ602は横軸に時刻、縦軸に速度をとったグラフであり、始点Aでの到着時刻、通過時刻、終点Bでの到着時刻、通過時刻それぞれの時刻、瞬間速度は速度変化302上の点で(tAin,Vain)、(tAout,Vaout)、(tBin,Vbin)、(tBout,Vbout)として表すことができる。また、速度変化の積分の想定しうる最大値、最小値がそれぞれ曲線604、曲線605のように存在し、最大長曲線604、最小長曲線605がともに(tAin,Vain)、(tAout,Vaout)、(tBin,Vbin)、(tBout,Vbout)を通過することが拘束条件となる。   A graph 602 is a graph showing the relationship between the speed change of the moving body 202 and the moving body length. A graph 602 is a graph with time on the horizontal axis and speed on the vertical axis. The arrival time at the start point A, the passage time, the arrival time at the end point B, the time at each passage time, and the instantaneous speed are on the speed change 302. The points can be expressed as (tAin, Vain), (tAout, Vaout), (tBin, Vbin), (tBout, Vbout). Further, the maximum value and the minimum value that can be assumed for the integration of the speed change exist as curves 604 and 605, respectively, and the maximum length curve 604 and the minimum length curve 605 are both (tAin, Vain), (tAout, Vaout). , (TBin, Vbin) and (tBout, Vbout) are the constraint conditions.

このとき実施例1と同様に車両の最大加速度α(α>0)、最大減速度−β(β>0)、最高速度Vmaxが与えられている場合において、移動体長Xが満たす範囲の条件式を考える。   At this time, in the same manner as in the first embodiment, in the case where the maximum acceleration α (α> 0), the maximum deceleration −β (β> 0), and the maximum velocity Vmax are given, the conditional expression of the range that the moving body length X satisfies think of.

地点Aにおいては、実施例1とまったく同様に(式8)が成立する。地点A−B間においては新たに(tBin,Vbin)を通過する拘束条件が追加されるため、(式13)(式14)は以下の(式19)(式20)に置き換わる。

Figure 0005462842
Figure 0005462842
At the point A, (Equation 8) is established exactly as in the first embodiment. Since a constraint condition that passes through (tBin, Vbin) is newly added between the points A and B, (Expression 13) and (Expression 14) are replaced with the following (Expression 19) and (Expression 20).
Figure 0005462842
Figure 0005462842

(式19)(式20)の両辺を区間[tAout,tBin]で積分すると[tAout,tBin]の移動体202の移動距離L−X[m]の範囲は以下(式21)となる。

Figure 0005462842
When both sides of (Expression 19) and (Expression 20) are integrated in the interval [tAout, tBin], the range of the movement distance L−X [m] of the moving body 202 in [tAout, tBin] is as follows (Expression 21).
Figure 0005462842

(式21)を変形して移動体長X[m]の式として表すと、以下(式22)のようになる。

Figure 0005462842
When (Expression 21) is transformed and expressed as an expression of the moving body length X [m], the following (Expression 22) is obtained.
Figure 0005462842

(式22)は(式16)に比べて(tBin,Vbin)を通過する拘束条件が追加されたため、(式16)よりもより狭い範囲で推定が可能となる。   Since (Equation 22) is added with a constraint that passes (tBin, Vbin) compared to (Equation 16), it can be estimated in a narrower range than (Equation 16).

地点Bにおいては、瞬間速度が算出可能となったことから、実施例1と同様に以下の(式23)が成立する。

Figure 0005462842
Since the instantaneous speed can be calculated at the point B, the following (Equation 23) is established as in the first embodiment.
Figure 0005462842

以上のように、地点Bに物体検知センサを追加することにより、(式16)の条件が(式22)のように狭い範囲となり、(式23)が条件式として追加される。最終的には(式8)(式22)(式23)の二つの条件式を同時に満たす範囲が移動体長Xの範囲として求まる。すなわち、   As described above, by adding an object detection sensor to the point B, the condition of (Expression 16) becomes a narrow range as shown in (Expression 22), and (Expression 23) is added as a conditional expression. Eventually, a range that satisfies the two conditional expressions (Formula 8), (Formula 22), and (Formula 23) at the same time is obtained as the range of the moving body length X. That is,

移動体長Xの最小値=Max(X_AMIN,L−L_X_MAX’,X_BMIN)
移動体長Xの最大値=Min(X_AMAX,L−L_X_MIN’,X_BMAX)となる。
Minimum value of moving body length X = Max (X_AMIN, L−L_X_MAX ', X_BMIN)
Maximum value of the moving body length X = Min (X_AMAX, L−L_X_MIN ′, X_BMAX).

実施例1に比べて条件式が増えることによって、さらに移動体長Xの範囲が絞り込めることとなる。移動体長計測装置601は移動体長Xの最小値、最大値だけでなく、移動体長として最小値から最大値の範囲に含まれる移動体長を一意に出力してもよい。   By increasing the conditional expressions as compared with the first embodiment, the range of the moving body length X can be further narrowed down. The mobile body length measuring device 601 may uniquely output not only the minimum value and the maximum value of the mobile body length X but also the mobile body length included in the range from the minimum value to the maximum value as the mobile body length.

物体検知センサの数を増やすことにより、さらに条件式が増え、最も精度が高い地点での移動体長の計測結果を利用することが可能となる。   By increasing the number of object detection sensors, the conditional expressions are further increased, and the measurement result of the moving body length at the point with the highest accuracy can be used.

図7は、実施例1または実施例2で示した移動体長計測装置703を用いた運行管理システム701の例を示したものである。701は運行管理システム、702は列車長計測対象となる列車、703は移動体長計測装置、704は列車長計測装置、705は現場設備、706は連動装置である。移動体長計測装置703は列車702を構成する車両1台ごとの車両長を計測する。   FIG. 7 shows an example of an operation management system 701 using the moving body length measuring device 703 shown in the first embodiment or the second embodiment. Reference numeral 701 denotes an operation management system, reference numeral 702 denotes a train that is a train length measurement target, reference numeral 703 denotes a moving body length measurement device, reference numeral 704 denotes a train length measurement device, reference numeral 705 denotes field equipment, and reference numeral 706 denotes an interlocking device. The moving body length measuring device 703 measures the vehicle length for each vehicle constituting the train 702.

列車長計測装置704は、移動体長計測装置703からある一定時間間隔以内に受け取った車両長、あるいは車両長の範囲を一つの列車702とみなし、前記車両長または車両長の範囲に車両間の距離(標準的な連結器を基準に一定値を定める、例えば1[m]など)を加算して列車長、あるいは列車長の範囲を推定する。運行管理システム701の運行管理装置707は、列車長計測装置704から受け取った列車長と列車702の位置、あるいは列車の進路上の推定位置から列車702の存在区間を判断する。ここで、列車の位置は、複数箇所に移動体長計測装置703を配置することによっても把握可能である。判断した列車の在線区間に基づき連動装置706を介して現場設備705に指示を与え、例えば、信号機の現示変更、踏み切りの開閉、転てつ器の制御等を行う。   The train length measuring device 704 regards the vehicle length received from the moving body length measuring device 703 within a certain time interval, or the range of the vehicle length as one train 702, and the distance between the vehicles within the vehicle length or the vehicle length range. Estimate the train length or the train length range by adding a certain value (for example, 1 [m]). The operation management device 707 of the operation management system 701 determines the existing section of the train 702 from the train length and the position of the train 702 received from the train length measurement device 704 or the estimated position on the course of the train. Here, the position of the train can also be grasped by arranging the moving body length measuring devices 703 at a plurality of locations. An instruction is given to the on-site equipment 705 via the interlocking device 706 based on the determined on-track section of the train, for example, changing the display of the traffic light, opening / closing the crossing, and controlling the switch.

図8は、運行管理システム701における画面例を示したものである。画面801において802は列車、803は線路配線図、804は表示メッセージ例である。列車802は移動体長計測装置703、及び列車長計測装置704によって得られた進行方向と列車長を画面801上で表示する。また列車長の推定結果から線路配線図803上の各地点での列車802の存在有無がわかるため、表示メッセージ804のように列車802の存在区間での制御指示メッセージを表示することも可能である。   FIG. 8 shows a screen example in the operation management system 701. In the screen 801, 802 is a train, 803 is a track wiring diagram, and 804 is an example of a display message. The train 802 displays the traveling direction and the train length obtained by the moving body length measuring device 703 and the train length measuring device 704 on the screen 801. Moreover, since the presence or absence of the train 802 at each point on the track wiring diagram 803 is known from the estimation result of the train length, it is also possible to display a control instruction message in the section where the train 802 exists like a display message 804. .

201 移動体長計測装置
202 移動体
301 グラフ
302 速度変化
303 最大長曲線
304 最小長曲線
401 グラフ
405 領域
406 領域
407 領域
408 領域
502 グラフ
601 移動体長計測装置
602 グラフ
604 最大長曲線
605 最小長曲線
701 列車運行管理システム
702 列車
703 移動体長計測装置
704 列車長計測装置
705 現場設備
706 連動装置
707 運行管理装置
801 画面
802 列車
803 線路配線図
804 表示メッセージ
901 グラフ
902 速度変化
903 最小長曲線
904 最大長曲線
DESCRIPTION OF SYMBOLS 201 Mobile body length measuring device 202 Mobile body 301 Graph 302 Speed change 303 Maximum length curve 304 Minimum length curve 401 Graph 405 Region 406 Region 407 Region 408 Region 502 Graph 601 Moving body length measurement device 602 Graph 604 Maximum length curve 605 Minimum length curve 701 Train Operation management system 702 Train 703 Moving body length measuring device 704 Train length measuring device 705 Field equipment 706 Interlocking device 707 Operation management device 801 Screen 802 Train 803 Line wiring diagram 804 Display message 901 Graph 902 Speed change 903 Minimum length curve 904 Maximum length curve

Claims (3)

少なくとも3箇所以上の物体検知センサを移動体の進行方向側方に有し、前記物体検知センサのセンサ設置位置間距離はそれぞれ異なり大小二つの距離となるよう配置し、
前記センサ設置位置間距離の小さい方の前記物体検知センサ間の距離が、一方の物体検知センサ到着時刻から他方の物体検知センサ到着時刻の間、及び一方の物体検知センサ通過時刻から他方の物体検知センサ通過時刻の間での移動体の移動が一定速度とみなせる程度の距離であるとともに、移動体長の想定最小長よりも小さく、
さらに、前記センサ設置位置間距離の大きい方の前記物体検知センサ間の距離が最大想定移動体長よりも長くとられており、
前記物体検知センサにより前記移動体の到着時刻及び通過時刻を検知して移動体長の最小値及び最大値を推定することを特徴とする移動体長計測装置。
There are at least three object detection sensors at the side of the moving direction of the moving body, and the distances between the sensor installation positions of the object detection sensors are different from each other, and are arranged to be two large and small distances,
The distance between the object detection sensors having a smaller distance between the sensor installation positions is between the arrival time of one object detection sensor and the arrival time of the other object detection sensor, and the detection of the other object from the passing time of one object detection sensor. The distance is such that the movement of the moving body between the sensor passage times can be regarded as a constant speed, and is smaller than the assumed minimum length of the moving body,
Furthermore, the distance between the object detection sensors with the larger distance between the sensor installation positions is longer than the maximum assumed moving body length,
A moving body length measuring apparatus, wherein the object detection sensor detects an arrival time and a passing time of the moving body to estimate a minimum value and a maximum value of the moving body length.
前記物体検知センサの検出区間進入時、及び脱出時の瞬間速度または検出区間走行中の平均速度を推定し、前記瞬間速度、前記平均速度、最大加速度、最大減速度、最高速度のうち少なくとも一つを用いて移動体長の最小値及び最大値を推定することを特徴とする請求項1記載の移動体長計測装置。 Estimate the instantaneous speed when entering or exiting the detection section of the object detection sensor or the average speed during traveling in the detection section, and at least one of the instantaneous speed, the average speed, the maximum acceleration, the maximum deceleration, and the maximum speed The mobile body length measuring apparatus according to claim 1, wherein a minimum value and a maximum value of the mobile body length are estimated by using. 請求項1又は2記載の移動体長計測装置を用いて、列車長を推定する列車長計測装置を備え、前記推定された列車長を用いて画面上へ列車存在区間を表示する表示手段または前記列車存在区間を判定して現場設備を制御する制御判定手段を備えることを特徴とする列車運行管理システム A display means for displaying a train existing section on a screen using the estimated train length, comprising the train length measuring device for estimating a train length using the mobile body length measuring device according to claim 1 or 2, or the train A train operation management system comprising a control determining means for determining an existing section and controlling field equipment .
JP2011158986A 2011-07-20 2011-07-20 Mobile length measuring device and train operation management system using the same Expired - Fee Related JP5462842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158986A JP5462842B2 (en) 2011-07-20 2011-07-20 Mobile length measuring device and train operation management system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158986A JP5462842B2 (en) 2011-07-20 2011-07-20 Mobile length measuring device and train operation management system using the same

Publications (2)

Publication Number Publication Date
JP2013024693A JP2013024693A (en) 2013-02-04
JP5462842B2 true JP5462842B2 (en) 2014-04-02

Family

ID=47783220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158986A Expired - Fee Related JP5462842B2 (en) 2011-07-20 2011-07-20 Mobile length measuring device and train operation management system using the same

Country Status (1)

Country Link
JP (1) JP5462842B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103129586B (en) * 2013-03-19 2016-01-20 合肥工大高科信息科技股份有限公司 Based on locomotive position monitoring and safety control and the control method thereof of track circuit
JP6026056B2 (en) * 2014-07-02 2016-11-16 三菱電機株式会社 Information display device
CN106323213A (en) * 2015-06-29 2017-01-11 上海宝钢工业技术服务有限公司 Device for measuring sample length in sample mechanical performance test
CN106767448A (en) * 2016-12-14 2017-05-31 广东天机工业智能系统有限公司 Device for detecting length
CN107990831B (en) * 2017-12-27 2024-05-28 同方威视技术股份有限公司 Vehicle length measuring device and vehicle outline measuring system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417760A (en) * 1977-07-08 1979-02-09 Nippon Signal Co Ltd:The Judging apparatus of lengths of moving bodies
JPH10260017A (en) * 1997-03-19 1998-09-29 Nissin Electric Co Ltd Measuring device for traveling vehicle
JP4974358B2 (en) * 2007-01-25 2012-07-11 Ihi運搬機械株式会社 Vehicle length detection device

Also Published As

Publication number Publication date
JP2013024693A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
US11364901B2 (en) Driving support apparatus
CN104837707B (en) Driver assistance system and the method for running driver assistance system
JP5462842B2 (en) Mobile length measuring device and train operation management system using the same
US8751142B2 (en) Method for avoiding side collision of vehicles
JP4888182B2 (en) Control device for mobile body and mobile body having the same
US5634565A (en) Method for anticollision method and apparatus for cranes movable on a common path
KR101514928B1 (en) Automatic driving controlling system and method
CN105612567A (en) Drive assist device for vehicle, and drive assist method for vehicle
JP6304393B2 (en) Travel route calculation device
JP6299496B2 (en) Driving support device and driving support method
CN109949610A (en) Intersect traffic auxiliary and control
KR20160037976A (en) Driving management system, driving management method, and program
JP2010205205A (en) Signal controller
CN109478069A (en) control method of electric vehicle and electric vehicle
RU2281219C1 (en) Automatic crossing signaling control method
CN104176055A (en) Apparatus and method for detecting a critical driving situation of a vehicle
JP2011110958A (en) Collision damage reducing device
KR20060066691A (en) The train follow safe stop system
JP5596736B2 (en) Driving support device and driving support method
EP3868631A1 (en) Obstacle sensing system and obstacle sensing method for track traveling vehicle
KR20150022168A (en) Apparatus and method for controlling automatic steering
KR101255503B1 (en) Traffic signal apparatus and controlling method for a driving safety at the cross roads
JP2002127904A (en) Fixed position stop detector for vehicle
JP2013033461A (en) Driving state diagnostic apparatus
KR101900371B1 (en) System and Method for Car Detecting by Using Pulsed Laser Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees