JP5462723B2 - Evaluation method of braking performance on tires on ice - Google Patents

Evaluation method of braking performance on tires on ice Download PDF

Info

Publication number
JP5462723B2
JP5462723B2 JP2010139701A JP2010139701A JP5462723B2 JP 5462723 B2 JP5462723 B2 JP 5462723B2 JP 2010139701 A JP2010139701 A JP 2010139701A JP 2010139701 A JP2010139701 A JP 2010139701A JP 5462723 B2 JP5462723 B2 JP 5462723B2
Authority
JP
Japan
Prior art keywords
speed
friction coefficient
tire
braking
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010139701A
Other languages
Japanese (ja)
Other versions
JP2012002755A (en
Inventor
浩司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2010139701A priority Critical patent/JP5462723B2/en
Publication of JP2012002755A publication Critical patent/JP2012002755A/en
Application granted granted Critical
Publication of JP5462723B2 publication Critical patent/JP5462723B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タイヤの氷上制動性能を高精度で評価しうるタイヤの氷上制動性能の評価方法に関する。   The present invention relates to a method for evaluating the braking performance on ice of a tire that can evaluate the braking performance on ice of a tire with high accuracy.

例えば下記の特許文献1には、タイヤの氷上性能の評価方法が開示されている。この評価方法では、内周面を氷結路面とした円筒状のドラムを用い、このドラムの回転速度を一定とすると共に、この氷結路面上を走行するタイヤの走行速度を次第に減速して制動し、そのときタイヤと氷結路面との間に発生する摩擦係数μと、タイヤのスリップ率Sとの関係を計測し、これによりタイヤの氷上での制動特性を評価している。   For example, Patent Document 1 below discloses a method for evaluating the performance of a tire on ice. In this evaluation method, a cylindrical drum having an inner peripheral surface as an icing road surface is used, the rotation speed of the drum is made constant, and the traveling speed of a tire traveling on the icing road surface is gradually reduced and braked, At that time, the relationship between the friction coefficient μ generated between the tire and the icing road surface and the slip ratio S of the tire is measured, thereby evaluating the braking characteristics of the tire on ice.

しかし、このようにタイヤの走行速度を連続的に減速させる場合、前後力が大きく変化する状況下で上下荷重が変動するため、摩擦係数μを正確に計測することができず、μ−S特性が、例えば図7(B)の比較例4に示すように、実車のものから大きく外れるなど、氷上制動性能を精度良く評価できないという問題がある。   However, when continuously reducing the tire running speed in this way, the vertical load fluctuates under the situation where the longitudinal force changes greatly, so the friction coefficient μ cannot be accurately measured, and the μ-S characteristic However, for example, as shown in Comparative Example 4 in FIG. 7B, there is a problem that the braking performance on ice cannot be evaluated with high accuracy, for example, it is far from the actual vehicle.

そこで本発明者は、タイヤの走行速度を連続的に減速させるのではなく、段階的に減速させるステップ制動を行い、減速の各段階において摩擦係数とスリップ率とを計測することを提案した。しかしこの場合、下記に示す如き解決すべき新たな問題が発生する。   Therefore, the present inventor has proposed to perform step braking in which the tire traveling speed is decelerated step by step instead of continuously decelerating and measure the friction coefficient and the slip ratio at each step of deceleration. However, in this case, a new problem to be solved occurs as shown below.

即ち、走行速度の減速巾が小さいと、タイヤが停止に至るまでの走行テストの時間が長くなり、氷結路面上の氷が摩擦熱で解け出して路面状態の変化を招く。そのため摩擦係数を正確に計測することが難しくなる。特にスリップ率が50%より高いところでは、融解した水が抵抗となって前後力が増加するため、摩擦係数は実車試験のものよりも高く計測される傾向となる。又減速巾が大きい場合、路面状態の変化は少ないものの、摩擦係数のピーク時或いはその近辺を計測することができなくなり、同様に氷上制動性能の評価を正確に行うことができなくなる。又減速の各段階においては、それぞれの走行時間Δtのうちの最初の20秒間程度は、上下荷重、前後力、走行速度がともに安定せず、摩擦係数やスリップ率に誤差が生じる。   In other words, when the travel speed reduction range is small, the travel test time until the tire stops is prolonged, and the ice on the frozen road surface is melted by frictional heat, causing a change in the road surface condition. This makes it difficult to accurately measure the friction coefficient. Particularly where the slip ratio is higher than 50%, the melted water becomes a resistance and the longitudinal force increases, so the friction coefficient tends to be measured higher than that of the actual vehicle test. When the deceleration range is large, although the change in the road surface state is small, it becomes impossible to measure at or near the peak of the friction coefficient, and similarly, it is impossible to accurately evaluate the braking performance on ice. In each stage of deceleration, the vertical load, the longitudinal force, and the traveling speed are not stable for about the first 20 seconds of each traveling time Δt, and an error occurs in the friction coefficient and the slip ratio.

特開2007−078667号公報JP 2007-076787

そこで本発明は、小な第1の減速巾にて段階的に減速させる第1のステップ制動と、大な第2の減速巾にて段階的に減速させる第2のステップ制動とによってタイヤの制動を行うことを基本として、摩擦係数のピーク時或いはその近辺を確実に計測しながら、走行テスト全体の時間を短縮して路面状態の変化を抑えることができ、摩擦係数やスリップ率の計測精度を高めて、氷上制動性能の評価を正確に行いうるタイヤの氷上制動性能の評価方法を提供することを目的としている。   Accordingly, the present invention provides tire braking by first step braking in which the speed is gradually reduced by a small first reduction width and second step braking in which the speed is gradually reduced by a large second speed reduction width. As a basic rule, while measuring reliably at or near the peak of the friction coefficient, it is possible to reduce the time of the entire running test and suppress changes in road surface conditions, and to improve the accuracy of measuring the friction coefficient and slip ratio. An object of the present invention is to provide a method for evaluating the braking performance on ice of a tire that can be accurately evaluated.

上記課題を解決するために、本願請求項1の発明は、内周面を氷結路面とした円筒状のドラムを一定の速度Voで回転させつつ、前記氷結路面上を走行するタイヤを制動する制動手順、
前記制動中のタイヤの氷結路面に対する摩擦係数μとスリップ率Sとをそれぞれ測定する測定手順、
及び前記測定された摩擦係数μとスリップ率Sとを用いて氷上制動性能を評価する評価手順を具えるとともに、
前記制動手順は、前記氷結路面上を走行するタイヤを、初期速度vaから中間速度vbまでを第1の減速巾Δv1毎のステップ速度vにて段階的に減速させる第1のステップ制動と、前記中間速度vbから停止状態又は略停止状態までを前記第1の減速巾Δv1よりも大きい第2の減速巾Δv2毎のステップ速度vにて段階的に減速させる第2のステップ制動とからなり、かつ減速の各段階では、それぞれのステップ速度vにて40秒以上60秒以下の走行時間Δtを走行させ、
前記測定手順では、減速の各段階毎に、それぞれタイヤに作用する上下荷重Fzと前後力Fx、及びステップ速度vを前記走行時間Δtの時間経過とともに測定し、次式(1)、(2)を用いて摩擦係数μとスリップ率Sとを時間経過に沿って算出し、
μ=Fx/Fz −−−(1)
S=(Vo−v)/Vo −−−(2)
前記評価手順では、減速の各段階毎に、前記走行時間Δtのうちで30秒以降に測定された上下荷重Fzと前後力Fx、及びステップ速度vとから得られた摩擦係数μとスリップ率Sとを平均して平均摩擦係数μ0と平均スリップ率S0とを減速の各段階毎に求める平均化ステップと、
前記平均摩擦係数μ0と平均スリップ率S0とをプロットしてなるμ0−S0曲線から氷上制動性能を評価する評価ステップとを具えることを特徴としている。
In order to solve the above-mentioned problem, the invention of claim 1 of the present application is a braking system that brakes a tire traveling on an icing road surface while rotating a cylindrical drum having an inner peripheral surface as an icing road surface at a constant speed Vo. procedure,
A measurement procedure for measuring a friction coefficient μ and a slip ratio S with respect to an icing road surface of the tire being braked,
And an evaluation procedure for evaluating braking performance on ice using the measured friction coefficient μ and slip ratio S, and
The braking procedure includes a first step braking in which a tire traveling on the icing road surface is decelerated stepwise from an initial speed va to an intermediate speed vb at a step speed v for each first deceleration width Δv1; A second step braking in which the speed from the intermediate speed vb to the stopped state or substantially stopped state is gradually reduced at a step speed v for each second deceleration width Δv2 larger than the first deceleration width Δv1; and In each stage of deceleration, the vehicle travels a traveling time Δt of 40 seconds or more and 60 seconds or less at each step speed v,
In the measurement procedure, at each stage of deceleration, the vertical load Fz, the longitudinal force Fx, and the step speed v acting on the tire are measured over time of the travel time Δt, and the following equations (1), (2) Is used to calculate the friction coefficient μ and the slip ratio S over time,
μ = Fx / Fz --- (1)
S = (Vo−v) / Vo −−− (2)
In the evaluation procedure, the friction coefficient μ and the slip ratio S obtained from the vertical load Fz, the longitudinal force Fx, and the step speed v measured after 30 seconds in the travel time Δt for each stage of deceleration. And averaging step for obtaining an average friction coefficient μ0 and an average slip ratio S0 for each stage of deceleration,
And an evaluation step for evaluating the braking performance on ice from a μ0-S0 curve obtained by plotting the average friction coefficient μ0 and the average slip ratio S0.

又請求項2の発明では、前記評価ステップでは、平均スリップ率S0をX軸、平均摩擦係数μ0をY軸にプロットしてμ0−S0曲線を求め、平均スリップ率S0が0〜50%の区間におけるμ0−S0曲線とX軸との間の面積によって氷上制動性能を評価することを特徴としている。   In the invention of claim 2, in the evaluation step, the average slip ratio S0 is plotted on the X axis and the average friction coefficient μ0 is plotted on the Y axis to obtain a μ0-S0 curve, and the section in which the average slip ratio S0 is 0 to 50%. The braking performance on ice is evaluated by the area between the μ0-S0 curve and the X axis.

又請求項3の発明では、前記ドラムの速度Voは、25〜35km/hの範囲から選択され、前記初期速度vaは、前記速度Voの98〜95%の範囲から選択され、前記第1の減速巾Δv1は、1.25〜1.75km/hの範囲から選択され、前記第2の減速巾Δv2は、前記第1の減速巾Δv1の2〜2.5倍の範囲から選択され、前記中間速度vbは、前記第1の減速巾Δv1の整数倍かつ前記速度Voの55〜65%の範囲から選択されることを特徴としている。   In the invention of claim 3, the speed Vo of the drum is selected from a range of 25 to 35 km / h, the initial speed va is selected from a range of 98 to 95% of the speed Vo, The deceleration width Δv1 is selected from a range of 1.25 to 1.75 km / h, and the second deceleration width Δv2 is selected from a range of 2 to 2.5 times the first deceleration width Δv1, The intermediate speed vb is selected from an integer multiple of the first deceleration width Δv1 and a range of 55 to 65% of the speed Vo.

本発明は叙上の如く、制動手順として、初期速度vaから中間速度vbまでは、小な第1の減速巾Δv1毎のステップ速度vにて段階的に減速させている。即ち、摩擦係数の変化が大きくかつ摩擦係数のピークが現れる低スリップ率側では、小な減速巾にて密に計測しうるため、摩擦係数のピーク或いはその近辺を捉えることができる。又中間速度vbからは、大な第2の減速巾Δv2毎のステップ速度vにて段階的に減速させている。即ち、摩擦係数の変化が小さい高スリップ率側では、大な減速巾にて粗く計測しうるため、走行テスト全体の時間を短縮することができ、路面状態の変化及びそれに伴う測定誤差の発生を低く抑えることが可能となる。   As described above, according to the present invention, as a braking procedure, the initial speed va to the intermediate speed vb are gradually reduced at a step speed v for each small first deceleration width Δv1. That is, on the low slip ratio side where the change in the friction coefficient is large and the peak of the friction coefficient appears, it is possible to measure closely with a small deceleration width, so that the peak of the friction coefficient or the vicinity thereof can be captured. Further, the intermediate speed vb is gradually reduced at a step speed v for each large second deceleration width Δv2. In other words, on the high slip ratio side where the change in the friction coefficient is small, it is possible to measure roughly with a large deceleration range, so the time required for the entire running test can be shortened, and the change in road surface condition and the accompanying measurement error are generated. It can be kept low.

又評価手順では、減速の各段階における走行時間Δtのうちで、30秒以降に測定された上下荷重と前後力及びステップ速度vとから得られた摩擦係数μとスリップ率Sとを平均して平均摩擦係数μ0と平均スリップ率S0とを各段階毎に求める平均化ステップを含む。前述の如く、走行時間Δtのうちの最初の20秒間程度は、上下荷重、前後力、走行速度が安定しない範囲であり、従って、この範囲を避けた30秒以降で測定した上下荷重、前後力、ステップ速度は、誤差の少ない安定したものであり、又これらから得られた摩擦係数μとスリップ率Sとを平均した平均摩擦係数μ0と平均スリップ率S0は、さらに誤差を減じた安定した値となりうる。従ってこの平均摩擦係数μ0と平均スリップ率S0とをプロットしてなるμ0−S0曲線は、実車の氷上制動試験によるμ−S曲線に近似したものとなり、タイヤの氷上制動性能をより正確に評価することができる。   In the evaluation procedure, the friction coefficient μ and the slip ratio S obtained from the vertical load, the longitudinal force and the step speed v measured after 30 seconds are averaged out of the traveling time Δt in each stage of deceleration. An averaging step for obtaining the average friction coefficient μ0 and the average slip ratio S0 for each stage is included. As described above, the first 20 seconds of the running time Δt is a range in which the vertical load, the longitudinal force, and the running speed are not stable. Therefore, the vertical load, the longitudinal force measured after 30 seconds avoiding this range. The step speed is stable with few errors, and the average friction coefficient μ0 and average slip ratio S0 obtained by averaging the friction coefficient μ and the slip ratio S obtained from these are stable values with further error reduction. It can be. Therefore, the μ0-S0 curve obtained by plotting the average friction coefficient μ0 and the average slip ratio S0 approximates the μ-S curve obtained by the on-ice braking test on the actual vehicle, and more accurately evaluates the on-ice braking performance of the tire. be able to.

本発明のタイヤの氷上制動性能の評価方法を実施するための氷上試験装置を概念的に示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view conceptually showing an on-ice test apparatus for carrying out a method for evaluating on-ice braking performance of a tire according to the present invention. 制動手順の一例を示すグラフである。It is a graph which shows an example of a braking procedure. (A)、(B)は、スリップ率5%の段階において測定した摩擦係数μと走行時間Δtとの関係、及びスリップ率Sと走行時間Δtとの関係を示すグラフである。(A), (B) is a graph which shows the relationship between the friction coefficient (micro | micron | mu) measured in the step of 5% of slip ratio, and travel time (DELTA) t, and the relationship between slip ratio S and travel time (DELTA) t. (A)、(B)は、スリップ率5%の段階において測定した上下荷重Fzと走行時間Δtとの関係、及び前後力Fxと走行時間Δtとの関係を示すグラフである。(A), (B) is a graph which shows the relationship between the up-and-down load Fz measured in the step of 5% of slip ratios, and traveling time (DELTA) t, and the relationship between the longitudinal force Fx and traveling time (DELTA) t. μ0−S0曲線を示すグラフである。It is a graph which shows a μ0-S0 curve. (A)〜(C)は、実施例1及び比較例1〜2におけるμ0−S0曲線を示すグラフである。(A)-(C) are the graphs which show the μ0-S0 curve in Example 1 and Comparative Examples 1-2. (A)は、比較例3におけるμ0−S0曲線を示すグラフ、(B)は比較例4におけるμ−S曲線を示すグラフである。(A) is a graph showing a μ0-S0 curve in Comparative Example 3, and (B) is a graph showing a μ-S curve in Comparative Example 4. 平均スリップ率0〜50%の区間におけるμ0−S0曲線とX軸との間の面積Gと、実車のABS制動距離との関係を示すグラフである。It is a graph which shows the relationship between the area G between (micro | micron | mu) 0-S0 curve and an X-axis in the area of an average slip rate of 0 to 50%, and the ABS braking distance of a real vehicle.

以下、本発明の実施の形態について、詳細に説明する。図1は、本発明のタイヤの氷上制動性能の評価方法を実施するための氷上試験装置1を概念的に示す側面図であって、前記氷上試験装置1は、内周面を氷結路面2sとした円筒状のドラム2と、前記ドラム2を水平方向の軸心j2周りで回転可能に支持するドラム支持手段3と、前記氷結路面2sに対して、タイヤTの外周面を所定の荷重で接触させながら前記タイヤTを水平方向の軸心jT周りに回転可能に支持するタイヤ支持手段4とを具える。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a side view conceptually showing an on-ice test apparatus 1 for carrying out the method for evaluating the braking performance on ice of a tire according to the present invention. The on-ice test apparatus 1 has an inner peripheral surface as an icing road surface 2s. The outer peripheral surface of the tire T is brought into contact with the icing road surface 2s with a predetermined load with respect to the cylindrical drum 2, the drum support means 3 that rotatably supports the drum 2 around a horizontal axis j2, and the frozen road surface 2s. And a tire support means 4 that rotatably supports the tire T around a horizontal axis jT.

前記ドラム2は、鋼製の円筒状のドラム本体2Aと、このドラム本体2Aの一側面を閉じる側壁体2Bとを具え、他側面側はタイヤTを出し入れするための開口5とするとともに該開口5の周縁には小高さのフランジ部5fを設けている。   The drum 2 includes a steel cylindrical drum main body 2A and a side wall body 2B that closes one side surface of the drum main body 2A. The other side surface has an opening 5 for taking in and out the tire T and the opening. A flange portion 5 f having a small height is provided on the periphery of 5.

又前記ドラム支持手段3は、ドラム2の前記側壁体2Bに一端部が固定される支持軸3Aと、この支持軸3Aを軸受けを介して回転自在に支持する支持台3Bと、前記支持軸3Aを回転駆動する駆動手段3Cとを具える。前記駆動手段3Cは、モータMを含み、このモータMの回転速度を制御することにより前記ドラム2の回転速度も調節自在としている。   The drum support means 3 includes a support shaft 3A having one end fixed to the side wall 2B of the drum 2, a support base 3B that rotatably supports the support shaft 3A via a bearing, and the support shaft 3A. Driving means 3C for rotationally driving the motor. The driving means 3C includes a motor M, and the rotational speed of the drum 2 is adjustable by controlling the rotational speed of the motor M.

前記ドラム本体2Aの内周面側には、周方向に連続する滑らかな氷結路面2sが形成される。この氷結路面2sは、前記氷上試験装置1を設置する実験室の室温を0℃以下(例えば−5℃)に設定した後、前記ドラム2を回転させながら水を注入することにより形成される。具体的には、ドラム2を、その内周面の速度が50〜100km/hの範囲となる高速回転域にて回転させながら、ドラム2内に水を適宜注入する。そして、この注入した水を遠心力によって前記内周面に均等に貼り付けながら凍結させ、これを繰り返すことで氷厚さが例えば20〜50mmの氷盤を形成する。その後、ドラム回転状態にて切削バイトを用いて氷盤表面を薄く削り取ることにより、ドラム2と同心な滑らかな氷結路面2sを形成する。   A smooth icing road surface 2s continuous in the circumferential direction is formed on the inner peripheral surface side of the drum body 2A. The icing road surface 2s is formed by injecting water while rotating the drum 2 after setting the room temperature of the laboratory where the on-ice testing apparatus 1 is set to 0 ° C. or lower (for example, −5 ° C.). Specifically, water is appropriately injected into the drum 2 while rotating the drum 2 in a high-speed rotation region where the speed of the inner peripheral surface is in the range of 50 to 100 km / h. Then, the injected water is frozen while being evenly attached to the inner peripheral surface by centrifugal force, and an ice plate having an ice thickness of, for example, 20 to 50 mm is formed by repeating this. Thereafter, the surface of the ice disk is thinly scraped off with a cutting tool while the drum is rotating, thereby forming a smooth icing road surface 2 s concentric with the drum 2.

又前記タイヤ支持手段4は、本例では、基台10と、この基台10上にドラム軸方向にスライド移動可能に支持される支持台11と、該支持台11にシリンダ12を介して昇降自在に取り付く支持アーム13と、該支持アーム13の下端部に軸受けを介して連結される水平なタイヤ支持軸14とを具える。そして、このタイヤ支持手段4は、前記シリンダ12によって支持アーム13を上下動させることにより、前記タイヤ支持軸14に回転自在に保持するタイヤTを、前記氷結路面2sに対して所定の荷重で押し付けうるとともに、その時の荷重量を調整することができる。   In the present example, the tire support means 4 includes a base 10, a support base 11 supported on the base 10 so as to be slidable in the drum axis direction, and the support base 11 via a cylinder 12. A support arm 13 that is freely attached, and a horizontal tire support shaft 14 that is coupled to the lower end of the support arm 13 via a bearing are provided. The tire support means 4 moves the support arm 13 up and down by the cylinder 12 to press the tire T held rotatably on the tire support shaft 14 against the ice road surface 2s with a predetermined load. In addition, the load amount at that time can be adjusted.

なお前記支持アーム13には、前記タイヤ支持軸14の回転速度、ひいてはタイヤTの外周面の走行速度を自在にコントロールしうるタイヤ速度制御手段15が取り付く。このタイヤ速度制御手段15は、例えば周知のモータ及び制動装置を含んで構成される。又前記タイヤ支持軸14には、タイヤTに作用する上下荷重Fz及び前後力Fxを測定するための荷重センサ、本例では6分力計が取り付けられる。   The support arm 13 is provided with tire speed control means 15 that can freely control the rotational speed of the tire support shaft 14 and thus the traveling speed of the outer peripheral surface of the tire T. The tire speed control means 15 includes, for example, a known motor and braking device. Further, a load sensor for measuring the vertical load Fz and the longitudinal force Fx acting on the tire T, in this example, a 6-component force meter, is attached to the tire support shaft 14.

次に、タイヤの氷上制動性能の評価方法を説明する。この評価方法は、内周面を氷結路面2sとした前記ドラム2を一定の速度Vo(氷結路面2sの周速度Vo)で回転させつつ前記氷結路面2s上を走行するタイヤTを制動する制動手順K1、前記制動中のタイヤTの氷結路面2sに対する摩擦係数μとスリップ率Sとをそれぞれ測定する測定手順K2、及び前記測定された摩擦係数μとスリップ率Sとを用いて氷上制動性能を評価する評価手順K3を具える。   Next, a method for evaluating the braking performance on ice of the tire will be described. In this evaluation method, a braking procedure for braking the tire T traveling on the icing road surface 2s while rotating the drum 2 having an inner circumferential surface of the icing road surface 2s at a constant speed Vo (a peripheral speed Vo of the icing road surface 2s). Evaluation of braking performance on ice is performed using K1, a measurement procedure K2 for measuring the friction coefficient μ and the slip ratio S with respect to the icing road surface 2s of the tire T being braked, and the measured friction coefficient μ and the slip ratio S, respectively. An evaluation procedure K3 is provided.

前記制動手順K1では、タイヤTの走行速度を連続的に減速させるのではなく、段階的に減速させるステップ制動を行う。具体的には、図2に示すように、前記氷結路面2s上を走行するタイヤTを、初期速度vaから中間速度vbまでを第1の減速巾Δv1毎のステップ速度vにて段階的に減速させる第1のステップ制動K1Aと、前記中間速度vbから停止状態又は略停止状態までを前記第1の減速巾Δv1よりも大きい第2の減速巾Δv2毎のステップ速度vにて段階的に減速させる第2のステップ制動K1Bとを行う。   In the braking procedure K1, step braking is performed in which the traveling speed of the tire T is not decelerated continuously but decelerated step by step. Specifically, as shown in FIG. 2, the tire T traveling on the icing road surface 2s is gradually decelerated from the initial speed va to the intermediate speed vb at a step speed v for each first deceleration width Δv1. The first step braking K1A to be performed and the intermediate speed vb to the stop state or substantially stopped state are stepwise decelerated at a step speed v for each second deceleration width Δv2 that is larger than the first deceleration width Δv1. Second step braking K1B is performed.

一般に、氷結路面におけるタイヤの摩擦係数μは、スリップ率Sが0〜30%の範囲で大きく変化し、又摩擦係数μのピークは、スリップ率Sが5〜10%の範囲において現れる傾向がある。従って、初期速度vaから中間速度vbまでを、小な第1の減速巾Δv1毎のステップ速度vにて段階的に減速させ、摩擦係数μの変化が大きくかつ摩擦係数μのピークが現れる低スリップ率側を密に計測することで、摩擦係数μの変化を精度良く検出することができる。これに対して、中間速度vbから停止状態又は略停止状態までは、大な第2の減速巾Δv2毎のステップ速度vにて段階的に減速させ、摩擦係数の変化が小さい高スリップ率側を粗く計測する。これにより、検出精度を維持しながら走行テスト全体の時間を短縮することができ、摩擦による氷の融解などの路面状況の変化、及びそれに起因する誤差を減じることができる。なお当然ではあるが、前記中間速度vbが前記第2の減速巾Δv2の倍数の場合には、中間速度vbから停止状態まで段階的に減速されるが、中間速度vbが第2の減速巾Δv2の倍数とならない場合、停止状態に最も近づく第2の減速巾Δv2の倍数の段階まで、即ち略停止状態まで段階的に減速される。   In general, the friction coefficient μ of a tire on an icy road surface varies greatly when the slip ratio S is in the range of 0 to 30%, and the peak of the friction coefficient μ tends to appear when the slip ratio S is in the range of 5 to 10%. . Accordingly, the initial speed va to the intermediate speed vb are gradually reduced at the step speed v for each small first deceleration width Δv1, and the low slip where the change of the friction coefficient μ is large and the peak of the friction coefficient μ appears. By measuring the rate side closely, it is possible to accurately detect a change in the friction coefficient μ. On the other hand, from the intermediate speed vb to the stopped state or substantially stopped state, the speed is gradually reduced at the step speed v for each large second deceleration width Δv2, and the high slip ratio side where the change in the friction coefficient is small. Measure roughly. As a result, it is possible to shorten the time for the entire running test while maintaining the detection accuracy, and it is possible to reduce changes in road surface conditions such as melting of ice due to friction, and errors resulting therefrom. Naturally, when the intermediate speed vb is a multiple of the second deceleration width Δv2, the intermediate speed vb is gradually reduced from the intermediate speed vb to the stop state, but the intermediate speed vb is reduced to the second deceleration width Δv2. If it is not a multiple of, the speed is gradually reduced to a multiple of the second deceleration width Δv2 that is closest to the stop state, that is, to a substantially stop state.

そのためには、前記初期速度vaを、前記ドラム2の氷結路面2sの速度Voの98〜95%の範囲から選択し、かつ前記中間速度vbを、前記速度Voの55〜65%の範囲から選択するのが好ましい。前記初期速度vaが前記速度Voの95%より小、及び前記中間速度vbが前記速度Voの65%より大の場合、摩擦係数μの大きな変化、及びそのピークを捉えることが難しくなる。又中間速度vbが前記速度Voの55%より小の場合、走行テスト全体の時間短縮が不充分となり、路面状況の変化を充分に抑えることが難しくなる。なお初期速度vaとして、前記速度Voの98〜95%の範囲とし、かつ該速度Voから第1の減速巾Δv1を減じた値(va=Vo−Δv1)を設定するのが、速度コントロールの観点からより好ましい。   For this purpose, the initial speed va is selected from a range of 98 to 95% of the speed Vo of the frozen road surface 2s of the drum 2, and the intermediate speed vb is selected from a range of 55 to 65% of the speed Vo. It is preferable to do this. When the initial speed va is smaller than 95% of the speed Vo and the intermediate speed vb is larger than 65% of the speed Vo, it is difficult to capture a large change in the friction coefficient μ and its peak. On the other hand, if the intermediate speed vb is less than 55% of the speed Vo, the time required for the entire driving test is not sufficiently shortened, and it becomes difficult to sufficiently suppress changes in road surface conditions. In view of speed control, the initial speed va is set within a range of 98 to 95% of the speed Vo and a value obtained by subtracting the first deceleration width Δv1 from the speed Vo (va = Vo−Δv1). Is more preferable.

又前記第1の減速巾Δv1は、1.25〜1.75km/hの範囲から選択され、かつ第2の減速巾Δv2は、前記第1の減速巾Δv1の2.0〜2.5倍の範囲から選択されるのが好ましい。前記第1の減速巾Δv1が1.25km/hより小さいと、摩擦係数が高い状態にて路面が長い時間磨かれることとなるため、摩擦係数が低下する側に路面状況が変化してしまい、逆に1.75km/hを越えると、減速巾が粗すぎて摩擦係数μの大きな変化やピークを捉えることが難しくなる。又第2の減速巾Δv2が第1の減速巾Δv1の2倍未満では、走行テスト全体の時間が不必要に増加し、氷を融解させるなどの路面状況の変化を招き、逆に2.5倍を越えると計測間隔が粗すぎて検出精度に悪影響を及ぼす。   The first deceleration width Δv1 is selected from the range of 1.25 to 1.75 km / h, and the second deceleration width Δv2 is 2.0 to 2.5 times the first deceleration width Δv1. It is preferable to select from the range. When the first deceleration width Δv1 is smaller than 1.25 km / h, the road surface is polished for a long time in a state where the friction coefficient is high, so the road surface condition changes to the side where the friction coefficient decreases, On the other hand, if it exceeds 1.75 km / h, the deceleration width is too rough, and it becomes difficult to capture large changes and peaks in the friction coefficient μ. On the other hand, if the second deceleration width Δv2 is less than twice the first deceleration width Δv1, the time required for the entire running test increases unnecessarily, causing a change in road surface conditions such as melting ice, and conversely 2.5. If it exceeds twice, the measurement interval is too coarse, which adversely affects detection accuracy.

又前記ドラム2の前記速度Voとしては、従来と同様25〜35km/hの範囲が好ましく採用しうる。なお前記図2には、速度Vo=30km/h、初期速度va=28.5km/h(即ち、va/Vo=0.95)、中間速度vb=18km/h(即ち、vb/Vo=0.60)、減速巾Δv1=1.5km/h、減速巾Δv2=3.0km/h(即ち、Δv2/Δv1=2.0)とした好ましい場合が示されている。   As the speed Vo of the drum 2, a range of 25 to 35 km / h can be preferably employed as in the conventional case. In FIG. 2, the speed Vo = 30 km / h, the initial speed va = 28.5 km / h (that is, va / Vo = 0.95), the intermediate speed vb = 18 km / h (that is, vb / Vo = 0). .60), and a preferred range of deceleration width Δv1 = 1.5 km / h and deceleration width Δv2 = 3.0 km / h (that is, Δv2 / Δv1 = 2.0) is shown.

又前記制動手順K1では、減速の各段階において、それぞれのステップ速度vにて40秒以上60秒以下の走行時間Δtを走行させる。   In the braking procedure K1, the traveling time Δt of 40 seconds or more and 60 seconds or less is caused to travel at each step speed v at each stage of deceleration.

次に、前記測定手順K2では、減速の各段階毎に、それぞれタイヤTに作用する上下荷重Fzと前後力Fx、及びステップ速度vを前記走行時間Δtの時間経過とともに測定し、図3(A)、(B)に示すように、摩擦係数μとスリップ率Sとを時間経過に沿って算出する。なお摩擦係数μとスリップ率Sとは、次式(1)、(2)を用いて算出しうる。
μ=Fx/Fz −−−(1)
S=(Vo−v)/Vo −−−(2)
ここで、タイヤTの走行速度を段階的に減速させた場合、減速の各段階においては、それぞれの走行時間Δtのうちの最初の20秒間程度は、上下荷重Fz、前後力Fx、走行速度が安定しない傾向にある。図4(A)、(B)は、初期速度vaの段階(即ちスリップ率5%の段階)において測定した上下荷重Fz、及び前後力Fxを示し、0〜約20秒の範囲では、上下荷重Fz、及び前後力Fxが安定しないのが確認できる。そのため、上下荷重Fz、前後力Fx、走行速度から算出される摩擦係数μ及びスリップ率Sも、前記図 3(A)、(B)の如く0〜約20秒の範囲で変動して誤差が発生する傾向にある。
Next, in the measurement procedure K2, the vertical load Fz, the longitudinal force Fx, and the step speed v acting on the tire T are measured for each stage of deceleration with the lapse of the travel time Δt. ) And (B), the friction coefficient μ and the slip ratio S are calculated over time. The friction coefficient μ and the slip ratio S can be calculated using the following equations (1) and (2).
μ = Fx / Fz --- (1)
S = (Vo−v) / Vo −−− (2)
Here, when the traveling speed of the tire T is decelerated stepwise, in each stage of deceleration, the vertical load Fz, the longitudinal force Fx, and the traveling speed are in the first 20 seconds of each traveling time Δt. It tends to be unstable. 4A and 4B show the vertical load Fz and the longitudinal force Fx measured at the stage of the initial speed va (that is, the stage of the slip rate 5%), and the vertical load is in the range of 0 to about 20 seconds. It can be confirmed that Fz and the longitudinal force Fx are not stable. Therefore, the friction coefficient μ and the slip ratio S calculated from the vertical load Fz, the longitudinal force Fx, the traveling speed also vary within the range of 0 to about 20 seconds as shown in FIGS. 3 (A) and 3 (B). Tend to occur.

そのため前記制動手順K1では、前記走行時間Δtを40秒以上として摩擦係数μ及びスリップ率Sを安定させることが必要となる。しかし走行時間Δtが長すぎると、走行テスト全体の時間が増加して路面状態の変化を招く。従って、前記走行時間Δtの上限は、60秒以下に規制される。   Therefore, in the braking procedure K1, it is necessary to stabilize the friction coefficient μ and the slip ratio S by setting the travel time Δt to 40 seconds or more. However, if the traveling time Δt is too long, the time of the entire traveling test is increased, causing a change in road surface condition. Therefore, the upper limit of the travel time Δt is restricted to 60 seconds or less.

次に、前記評価手順K3では、減速の各段階毎に、前記走行時間Δtのうちで30秒以降に測定された上下荷重Fzと前後力Fx、及びステップ速度vとから得られた摩擦係数μとスリップ率Sとを平均して平均摩擦係数μ0と平均スリップ率S0とを減速の各段階毎に求める平均化ステップK3Aと、前記平均摩擦係数μ0と平均スリップ率S0とをプロットしてなるμ0−S0曲線から氷上制動性能を評価する評価ステップK3Bとを具える。   Next, in the evaluation procedure K3, for each stage of deceleration, the friction coefficient μ obtained from the vertical load Fz, the longitudinal force Fx, and the step speed v measured after 30 seconds in the travel time Δt. And an average step K3A for obtaining an average friction coefficient μ0 and an average slip ratio S0 for each stage of deceleration by averaging the slip ratio S and the slip ratio S, and a plot of the average friction coefficient μ0 and the average slip ratio S0. -An evaluation step K3B for evaluating the braking performance on ice from the S0 curve.

前述した如く、走行時間Δtのうちの最初の20秒間程度は、上下荷重Fz、前後力Fx、走行速度が安定しない範囲である。従って、この範囲を避けた30秒以降で測定した上下荷重Fzと前後力Fx、及びステップ速度vから得られる摩擦係数μ、及びスリップ率Sをそれぞれ平均した平均摩擦係数μ0、及び平均スリップ率S0は、より誤差が少なく安定した値であって、減速の各段階における代表の摩擦係数、及びスリップ率となりうる。なお精度の観点から、前記走行時間Δtは40秒以上、50秒以上が好ましい。   As described above, the first 20 seconds of the traveling time Δt is a range in which the vertical load Fz, the longitudinal force Fx, and the traveling speed are not stable. Therefore, the average friction coefficient μ0 and the average slip ratio S0 obtained by averaging the friction coefficient μ and the slip ratio S obtained from the vertical load Fz and the longitudinal force Fx and the step speed v measured after 30 seconds avoiding this range, respectively. Is a stable value with less error, and can be a representative friction coefficient and slip ratio at each stage of deceleration. From the viewpoint of accuracy, the travel time Δt is preferably 40 seconds or more and 50 seconds or more.

そしてこの代表の摩擦係数、及びスリップ率である平均摩擦係数μ0、及び平均スリップ率S0をプロットしてなるμ0−S0曲線(図5に例示する。)は、実車の氷上制動試験によるμ−S曲線に近似したものとなり、タイヤの氷上制動性能をより正確に評価することができる。   The representative friction coefficient, the average friction coefficient μ0 that is the slip ratio, and the μ0-S0 curve (illustrated in FIG. 5) obtained by plotting the average slip ratio S0 are μ-S obtained by the on-ice braking test on the actual vehicle. It approximates a curve, and the braking performance on ice of the tire can be more accurately evaluated.

なお前記評価ステップK3Bでは、平均スリップ率S0をX軸、平均摩擦係数μ0をY軸にプロットしてμ0−S0曲線を求め、前記平均スリップ率S0が0〜50%の区間におけるμ0−S0曲線とX軸との間の面積Gの値によって、氷上制動性能を数値化して評価することができる。このように数値化することで、サイズや種類の異なるタイヤ同士の氷上制動性能を比較することが可能となる。   In the evaluation step K3B, the average slip rate S0 is plotted on the X axis and the average friction coefficient μ0 is plotted on the Y axis to obtain a μ0-S0 curve, and the μ0-S0 curve in the section where the average slip rate S0 is 0 to 50%. The braking performance on ice can be quantified and evaluated by the value of the area G between the X axis and the X axis. By digitizing in this way, it becomes possible to compare the braking performance on ice between tires of different sizes and types.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

図1に示す氷上試験装置を用い、市販の乗用車用ラジアルタイヤ(タイヤサイズ195/65R15)の氷上制動性能を、表1に示す仕様にてテストした。そして、減速の各段階毎に、平均摩擦係数μ0と平均スリップ率S0とを求めるとともに、その平均摩擦係数μ0と平均スリップ率S0とをプロットしてなるμ0−S0曲線を、それぞれ図6、7に示している。なお実験室の室温及び氷結路面の温度は−5℃、タイヤの内圧は200kPa、タイヤへの負荷荷重は、後述する実車の制動試験において車両の前輪タイヤに負荷される荷重と一致させるために、4.24kNに設定された。   The on-ice braking performance of a commercially available radial tire for a passenger car (tire size 195 / 65R15) was tested with the specifications shown in Table 1 using the on-ice test apparatus shown in FIG. For each stage of deceleration, an average friction coefficient μ0 and an average slip ratio S0 are obtained, and μ0-S0 curves obtained by plotting the average friction coefficient μ0 and the average slip ratio S0 are respectively shown in FIGS. It shows. The room temperature of the laboratory and the temperature of the icing road surface are −5 ° C., the internal pressure of the tire is 200 kPa, and the load applied to the tire is matched with the load applied to the front tire of the vehicle in the braking test of the actual vehicle described later. It was set to 4.24 kN.

又比較のため、実質的に同じタイヤを内圧200kPaの条件にて、車両(乗用車2000cc、FR車)の全輪に装着し、気温−5℃の環境下で、初速度30km/hにて平滑な氷結路面に進入し、ABSを有効にした状態にて制動試験を実施した。そして非接触速度計を用いて車両速度を計算するとともに、ABS信号の回転パルスから車輪タイヤの速度を計算し、これらの結果から、実車におけるμ−S特性を求め、前記氷上試験装置を用いて求めたμ0−S0曲線と比較した。   For comparison, substantially the same tire is mounted on all wheels of a vehicle (passenger car 2000cc, FR car) under the condition of an internal pressure of 200 kPa, and smoothed at an initial speed of 30 km / h in an environment of a temperature of -5 ° C. A braking test was conducted in a state in which the vehicle entered a frozen road surface and ABS was enabled. And while calculating a vehicle speed using a non-contact speedometer, the speed of a wheel tire is calculated from the rotation pulse of an ABS signal, and from these results, a μ-S characteristic in an actual vehicle is obtained, and the above-mentioned test apparatus on ice is used. The obtained μ0-S0 curve was compared.

次に、トレッドパターンが異なる3種類のタイヤ(サンプルタイヤ1〜3)に対し、前記氷上試験装置を用いて、前記実施例1の仕様にて氷上制動性能テストを行い、μ0−S0曲線を求めた。そして、平均スリップ率S0が0〜50%の区間におけるμ0−S0曲線とX軸との間の面積Gを求め、サンプルタイヤ1を100とする指数によって評価した。又前記サンプルタイヤ1〜3に対して、実車の制動試験を行い、制動距離を求めるとともに、サンプルタイヤ1を100とする指数によって評価した。そして、その結果を、図8に示すように、氷上試験装置を用いた氷上制動性能テストによる評価をY軸、実車の制動試験による評価をX軸とした座標系にプロットし比較した。   Next, on the three types of tires (sample tires 1 to 3) having different tread patterns, an on-ice braking performance test is performed according to the specifications of Example 1 using the on-ice test device, and a μ0-S0 curve is obtained. It was. Then, an area G between the μ0-S0 curve and the X axis in a section where the average slip ratio S0 is 0 to 50% was obtained and evaluated by an index with the sample tire 1 being 100. In addition, a braking test of an actual vehicle was performed on the sample tires 1 to 3 to obtain a braking distance, and evaluation was performed using an index with the sample tire 1 being 100. Then, as shown in FIG. 8, the results were plotted and compared in a coordinate system in which the evaluation based on the on-ice braking performance test using the on-ice test apparatus was plotted on the Y axis, and the evaluation based on the actual vehicle braking test was plotted on the X axis.

Figure 0005462723
Figure 0005462723

図6、7に示すように、実施例1の場合、実車のμ−S特性に近いμ0−S0曲線を得ることができるのが確認できる。又比較例1の場合、ステップ制動が一つかつ減速巾Δvが狭いため、早期に氷が解けて路面状態が変化してしまい、正確な摩擦係数を計測することができなくなるのが確認できる。特にスリップ率20%付近では、摩擦係数が高い状態にて路面が長い時間磨かれた結果、実車のμ−S特性よりも摩擦係数が低下してしまい、逆にスリップ率50%より高い所では、融解した水が抵抗となって前後力Fxを増加させ、摩擦係数が見かけ上大きく現れている。又比較例2の場合、ステップ制動が一つかつ減速巾Δvが広いため、摩擦係数の大きな変化やピークを捉えることができず、正確な摩擦係数を計測することができなくなる。又比較例3の場合、適正な減速巾Δvを有するもののステップ制動が一つであるため、比較例1と同様に、テスト中に氷が解けて路面状態が変化してしまい、正確な摩擦係数を計測することができなくなる。又比較例4の場合、タイヤの走行速度を連続的に減速させているため、前後力が大きく変化する状況下で上下荷重も変動するため、摩擦係数を正確に計測することができない。   As shown in FIGS. 6 and 7, in the case of Example 1, it can be confirmed that a μ0-S0 curve close to the μ-S characteristic of the actual vehicle can be obtained. Further, in the case of Comparative Example 1, it can be confirmed that since the step braking is one and the deceleration width Δv is narrow, the ice is melted at an early stage and the road surface state is changed, so that an accurate friction coefficient cannot be measured. Particularly in the vicinity of a slip rate of 20%, the road surface is polished for a long time with a high friction coefficient. As a result, the friction coefficient is lower than the μ-S characteristic of the actual vehicle. The melted water acts as a resistance to increase the longitudinal force Fx, and the friction coefficient appears apparently large. Further, in the case of the comparative example 2, since there is one step braking and the deceleration range Δv is wide, a large change or peak of the friction coefficient cannot be captured, and an accurate friction coefficient cannot be measured. Further, in the case of Comparative Example 3, since there is only one step braking although it has an appropriate deceleration width Δv, as in Comparative Example 1, the ice melts during the test and the road surface condition changes, and an accurate friction coefficient is obtained. Cannot be measured. In the case of Comparative Example 4, since the tire running speed is continuously decelerated, the vertical load also fluctuates under the situation where the longitudinal force changes greatly, so the friction coefficient cannot be measured accurately.

又平均スリップ率S0が0〜50%の区間におけるμ0−S0曲線とX軸との間の面積G(便宜上、μ0−S0曲線の面積Gという場合がある。)を指標とする場合、図8に示すように、ABSを用いた実車の制動試験に近い氷上性能を示すことができる。即ち、実車の制動試験を行うことなく、タイヤのABS制動性能を予測することが可能となる。   When the area G between the μ0-S0 curve and the X axis in the section where the average slip ratio S0 is 0 to 50% (for convenience, it may be referred to as the area G of the μ0-S0 curve) is used as an index. As shown in Fig. 5, the performance on ice close to the braking test of an actual vehicle using ABS can be shown. That is, it is possible to predict the ABS braking performance of a tire without performing a braking test on an actual vehicle.

2 ドラム
2s 氷結路面
K1 制動手順
K1A 第1のステップ制動
K1B 第2のステップ制動
K2 測定手順
K3 評価手順
K3A 平均化ステップ
K3B 評価ステップ
T タイヤ
2 drum 2s icing road surface K1 braking procedure K1A first step braking K1B second step braking K2 measurement procedure K3 evaluation procedure K3A averaging step K3B evaluation step T tire

Claims (3)

内周面を氷結路面とした円筒状のドラムを一定の速度Voで回転させつつ、前記氷結路面上を走行するタイヤを制動する制動手順、
前記制動中のタイヤの氷結路面に対する摩擦係数μとスリップ率Sとをそれぞれ測定する測定手順、
及び前記測定された摩擦係数μとスリップ率Sとを用いて氷上制動性能を評価する評価手順を具えるとともに、
前記制動手順は、前記氷結路面上を走行するタイヤを、初期速度vaから中間速度vbまでを第1の減速巾Δv1毎のステップ速度vにて段階的に減速させる第1のステップ制動と、前記中間速度vbから停止状態又は略停止状態までを前記第1の減速巾Δv1よりも大きい第2の減速巾Δv2毎のステップ速度vにて段階的に減速させる第2のステップ制動とからなり、かつ減速の各段階では、それぞれのステップ速度vにて40秒以上60秒以下の走行時間Δtを走行させ、
前記測定手順では、減速の各段階毎に、それぞれタイヤに作用する上下荷重Fzと前後力Fx、及びステップ速度vを前記走行時間Δtの時間経過とともに測定し、次式(1)、(2)を用いて摩擦係数μとスリップ率Sとを時間経過に沿って算出し、
μ=Fx/Fz −−−(1)
S=(Vo−v)/Vo −−−(2)
前記評価手順では、減速の各段階毎に、前記走行時間Δtのうちで30秒以降に測定された上下荷重Fzと前後力Fx、及びステップ速度vとから得られた摩擦係数μとスリップ率Sとを平均して平均摩擦係数μ0と平均スリップ率S0とを減速の各段階毎に求める平均化ステップと、
前記平均摩擦係数μ0と平均スリップ率S0とをプロットしてなるμ0−S0曲線から氷上制動性能を評価する評価ステップとを具えることを特徴とするタイヤの氷上制動性能の評価方法。
A braking procedure for braking a tire traveling on the icing road surface while rotating a cylindrical drum having an inner peripheral surface as an icing road surface at a constant speed Vo;
A measurement procedure for measuring a friction coefficient μ and a slip ratio S with respect to an icing road surface of the tire being braked,
And an evaluation procedure for evaluating braking performance on ice using the measured friction coefficient μ and slip ratio S, and
The braking procedure includes a first step braking in which a tire traveling on the icing road surface is decelerated stepwise from an initial speed va to an intermediate speed vb at a step speed v for each first deceleration width Δv1; A second step braking in which the speed from the intermediate speed vb to the stopped state or substantially stopped state is gradually reduced at a step speed v for each second deceleration width Δv2 larger than the first deceleration width Δv1; and In each stage of deceleration, the vehicle travels a traveling time Δt of 40 seconds or more and 60 seconds or less at each step speed v,
In the measurement procedure, at each stage of deceleration, the vertical load Fz, the longitudinal force Fx, and the step speed v acting on the tire are measured over time of the travel time Δt, and the following equations (1), (2) Is used to calculate the friction coefficient μ and the slip ratio S over time,
μ = Fx / Fz --- (1)
S = (Vo−v) / Vo −−− (2)
In the evaluation procedure, the friction coefficient μ and the slip ratio S obtained from the vertical load Fz, the longitudinal force Fx, and the step speed v measured after 30 seconds in the travel time Δt for each stage of deceleration. And averaging step for obtaining an average friction coefficient μ0 and an average slip ratio S0 for each stage of deceleration,
An evaluation method for braking performance on ice of a tire, comprising: an evaluation step for evaluating braking performance on ice from a μ0-S0 curve obtained by plotting the average friction coefficient μ0 and the average slip ratio S0.
前記評価ステップでは、平均スリップ率S0をX軸、平均摩擦係数μ0をY軸にプロットしてμ0−S0曲線を求め、平均スリップ率S0が0〜50%の区間におけるμ0−S0曲線とX軸との間の面積によって氷上制動性能を評価することを特徴とする請求項1記載のタイヤの氷上制動性能の評価方法。   In the evaluation step, the average slip rate S0 is plotted on the X axis and the average friction coefficient μ0 is plotted on the Y axis to obtain a μ0-S0 curve, and the μ0-S0 curve and the X axis in the section where the average slip rate S0 is 0 to 50%. The method for evaluating the braking performance on ice of a tire according to claim 1, wherein the braking performance on ice is evaluated based on an area between them. 前記ドラムの速度Voは、25〜35km/hの範囲から選択され、前記初期速度vaは、前記速度Voの98〜95%の範囲から選択され、前記第1の減速巾Δv1は、1.25〜1.75km/hの範囲から選択され、前記第2の減速巾Δv2は、前記第1の減速巾Δv1の2〜2.5倍の範囲から選択され、前記中間速度vbは、前記第1の減速巾Δv1の整数倍かつ前記速度Voの55〜65%の範囲から選択されることを特徴とする請求項1又は2記載のタイヤの氷上制動性能の評価方法。   The drum speed Vo is selected from a range of 25 to 35 km / h, the initial speed va is selected from a range of 98 to 95% of the speed Vo, and the first deceleration width Δv1 is 1.25. The second deceleration width Δv2 is selected from a range of 2 to 2.5 times the first deceleration width Δv1, and the intermediate speed vb is selected from the first speed range Δb2. 3. The method for evaluating the braking performance on ice of a tire according to claim 1, wherein the speed is selected from an integer multiple of a deceleration width Δv1 and a range of 55 to 65% of the speed Vo.
JP2010139701A 2010-06-18 2010-06-18 Evaluation method of braking performance on tires on ice Expired - Fee Related JP5462723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010139701A JP5462723B2 (en) 2010-06-18 2010-06-18 Evaluation method of braking performance on tires on ice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139701A JP5462723B2 (en) 2010-06-18 2010-06-18 Evaluation method of braking performance on tires on ice

Publications (2)

Publication Number Publication Date
JP2012002755A JP2012002755A (en) 2012-01-05
JP5462723B2 true JP5462723B2 (en) 2014-04-02

Family

ID=45534889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139701A Expired - Fee Related JP5462723B2 (en) 2010-06-18 2010-06-18 Evaluation method of braking performance on tires on ice

Country Status (1)

Country Link
JP (1) JP5462723B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6790866B2 (en) * 2017-01-23 2020-11-25 住友ゴム工業株式会社 Tire braking performance evaluation method
JP6922270B2 (en) * 2017-03-08 2021-08-18 住友ゴム工業株式会社 Tire performance evaluation method
JP6922360B2 (en) * 2017-04-07 2021-08-18 住友ゴム工業株式会社 Evaluation method of braking performance on ice of tires
KR102179821B1 (en) * 2019-06-05 2020-11-17 넥센타이어 주식회사 Braking performance test method reflecting sensitivity of tire braking initial velocity
TW202316090A (en) * 2021-10-08 2023-04-16 日商國際計測器股份有限公司 Tire testing system, tire testing method and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3295726B2 (en) * 1999-11-17 2002-06-24 独立行政法人交通安全環境研究所 Low friction roller for on-board test equipment
JP4561426B2 (en) * 2005-03-24 2010-10-13 横浜ゴム株式会社 Tire braking performance measuring device and tire braking performance measuring method
JP2007078667A (en) * 2005-09-16 2007-03-29 Sumitomo Rubber Ind Ltd Ice test device for tire, and method of evaluating on-ice performance of tire
JP2008082709A (en) * 2006-09-25 2008-04-10 Sumitomo Rubber Ind Ltd Device of measuring performance of tire and method of measuring performance of racing tire

Also Published As

Publication number Publication date
JP2012002755A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
US7751961B2 (en) Acceleration/deceleration induced real-time identification of maximum tire-road friction coefficient
JP5462723B2 (en) Evaluation method of braking performance on tires on ice
JP5620268B2 (en) Tire wear estimation method and tire wear estimation apparatus
WO2013011992A1 (en) Road surface condition estimation method, and road surface condition estimation device
EP1767422B1 (en) Method and apparatus for evaluating a cornering stability of a wheel
JP4771175B2 (en) Method and apparatus for measuring sliding friction force of tire
CN108562536B (en) Device and method for testing friction performance of pavement material
JP2016170138A (en) Adhesive force testing method of tyre rubber
JP5855424B2 (en) Method for measuring road friction coefficient
JP2010274906A (en) Road surface state estimation method, vehicle control method, and road surface state estimation device
JP4629756B2 (en) Road surface state estimation method and road surface state estimation device
JP2001512822A (en) Automatic wear test equipment
JP4030572B2 (en) Vehicle braking distance prediction device and vehicle braking distance prediction method
JP3948678B2 (en) Wheel turning stability evaluation method and wheel turning stability evaluation apparatus
JP6363920B2 (en) Method for evaluating hydroplaning performance of tires
JP5677111B2 (en) Evaluation method for starting and acceleration performance of tires on ice
JP6922360B2 (en) Evaluation method of braking performance on ice of tires
RU182915U1 (en) The stand for the study of the twin wheels of vehicles
CN102057267B (en) Method of estimating the transverse grip of a pair of tyres by comparative analysis
JP2019158370A (en) Test method of performance of tire on ice
JP4876759B2 (en) Method and apparatus for evaluating dynamic characteristics during braking / driving of tire
JP6288762B2 (en) Predicting tire block wear
JP6922270B2 (en) Tire performance evaluation method
JP5705051B2 (en) Road surface state estimation method and road surface state estimation device
JP2018031738A (en) Method for evaluating spike tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees