JP5462007B2 - Solar water heater - Google Patents

Solar water heater Download PDF

Info

Publication number
JP5462007B2
JP5462007B2 JP2010012395A JP2010012395A JP5462007B2 JP 5462007 B2 JP5462007 B2 JP 5462007B2 JP 2010012395 A JP2010012395 A JP 2010012395A JP 2010012395 A JP2010012395 A JP 2010012395A JP 5462007 B2 JP5462007 B2 JP 5462007B2
Authority
JP
Japan
Prior art keywords
heat medium
heat
solar
hot water
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010012395A
Other languages
Japanese (ja)
Other versions
JP2011149652A (en
Inventor
佳幹 可児
宏明 佐々木
晃太郎 木村
秀二 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Rinnai Corp
Original Assignee
Tokyo Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Rinnai Corp filed Critical Tokyo Gas Co Ltd
Priority to JP2010012395A priority Critical patent/JP5462007B2/en
Publication of JP2011149652A publication Critical patent/JP2011149652A/en
Application granted granted Critical
Publication of JP5462007B2 publication Critical patent/JP5462007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

本発明は、太陽熱給湯装置に関する。特に、本発明は、太陽熱集熱器と貯湯タンクとの間で熱媒を循環する熱媒循環管路内の熱媒の循環状態を検査可能な太陽熱給湯装置に関する。   The present invention relates to a solar water heater. In particular, the present invention relates to a solar water heater that can inspect the circulation state of a heat medium in a heat medium circulation pipe that circulates the heat medium between a solar heat collector and a hot water storage tank.

従来、太陽熱を利用して熱媒を加熱する太陽熱集熱器と、貯湯タンクと、太陽熱集熱器と貯湯タンクとの間で熱媒を循環する熱媒循環管路と、貯湯タンクの下流側に貯湯タンクから出湯される湯水を所定温度まで加熱する給湯器などの補助熱源機とを備えた太陽熱給湯装置が知られている。この種の太陽熱給湯装置においては、太陽熱集熱器で加熱された熱媒を熱媒循環管路で貯湯タンクに導き、貯湯タンク内で給水された水と加熱された熱媒とを熱交換することにより湯水を貯湯し、熱媒によって加熱された貯湯タンク内の湯水の温度が低い場合、給湯運転時に補助熱源機を作動させて、所定温度まで昇温させた湯水を出湯端末に供給している(例えば、特許文献1)。   Conventionally, a solar heat collector that heats a heat medium using solar heat, a hot water storage tank, a heat medium circulation conduit that circulates the heat medium between the solar heat collector and the hot water storage tank, and a downstream side of the hot water storage tank There is known a solar water heater equipped with an auxiliary heat source device such as a water heater for heating hot water discharged from a hot water storage tank to a predetermined temperature. In this type of solar water heater, a heat medium heated by a solar heat collector is guided to a hot water storage tank through a heat medium circulation pipe, and heat is exchanged between the water supplied in the hot water tank and the heated heat medium. If the temperature of the hot water in the hot water tank heated by the heat medium is low, the auxiliary heat source unit is activated during the hot water supply operation, and the hot water heated to a predetermined temperature is supplied to the outlet terminal. (For example, Patent Document 1).

特開2003−148804号公報JP 2003-148804 A

ところで、上記太陽熱給湯装置においては、熱媒循環管路に循環ポンプを設け、該循環ポンプを駆動することにより、熱媒を循環させているが、経時的な劣化により循環ポンプの能力が低下した場合や熱媒循環管路が目詰まりした場合などに備えて、定期的に熱媒循環管路内の熱媒の循環状態を検査することが望ましい。   By the way, in the above solar water heater, a circulation pump is provided in the heat medium circulation pipe and the circulation medium is driven to circulate the heat medium. However, the capacity of the circulation pump has decreased due to deterioration over time. It is desirable to periodically inspect the circulation state of the heat medium in the heat medium circulation pipe in preparation for cases or when the heat medium circulation pipe is clogged.

このような熱媒の循環状態の検査を行なう場合、太陽熱集熱器や熱媒循環管路に温度センサなどの熱媒温度検知部を設け、該熱媒温度検知部により検知される検査時間内の温度差を比較し、熱媒の循環状態を判断することが考えられる。   When inspecting the circulation state of such a heat medium, a heat medium temperature detection unit such as a temperature sensor is provided in the solar heat collector or the heat medium circulation pipe, and within the inspection time detected by the heat medium temperature detection unit. It is conceivable to determine the circulation state of the heat medium by comparing the temperature difference between the two.

しかしながら、太陽熱集熱器は集熱効率が低く、それゆえ熱媒の温度変化が小さいことから、検知誤差が生じやすい。そのため、太陽熱集熱器内や熱媒循環管路内の熱媒の温度を検知するだけでは熱媒の循環状態の正確な判断が難しいという問題がある。また、太陽熱集熱器による集熱量は日射量に依存するため、夜間や雨天などの日射量が少ない場合、熱媒の温度が上昇せず、熱媒の循環状態を検査することができないという問題がある。   However, the solar heat collector is low in heat collection efficiency, and therefore the temperature change of the heat medium is small, so that detection errors are likely to occur. Therefore, there is a problem that it is difficult to accurately determine the circulation state of the heat medium only by detecting the temperature of the heat medium in the solar heat collector or the heat medium circulation pipe. In addition, since the amount of heat collected by the solar heat collector depends on the amount of solar radiation, there is a problem that the temperature of the heat medium does not rise and the circulation state of the heat medium cannot be inspected when the amount of solar radiation is low, such as at night or in the rain. There is.

本発明は上記課題を解決するためになされたものであり、本発明の目的は、太陽熱集熱器と貯湯タンクとの間で熱媒を循環する熱媒循環管路内の熱媒の循環状態を正確に判断でき、しかも日射量に依存せず定期的に熱媒の循環状態を検査可能な太陽熱給湯装置を提供することにある。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to circulate the heat medium in the heat medium circulation pipe that circulates the heat medium between the solar heat collector and the hot water storage tank. It is an object of the present invention to provide a solar water heater that can accurately determine the temperature of the heat medium and can periodically check the circulation state of the heat medium without depending on the amount of solar radiation.

本発明は、太陽熱を利用して熱媒を加熱する太陽熱集熱器と、
給水された水を前記太陽熱集熱器で加熱された熱媒と熱交換して湯水を貯湯する貯湯タンクと、
前記太陽熱集熱器と前記貯湯タンクとの間で前記熱媒を循環する熱媒循環管路と、
前記熱媒循環管路に設けられ、前記熱媒を循環させる循環ポンプ及び前記熱媒の温度を検知する熱媒温度検知部と、
前記貯湯タンクから出湯される湯水及び補助熱媒を加熱する補助熱源機と、
前記補助熱源機から延設され、前記補助熱源機で加熱された補助熱媒を循環する補助熱媒循環管路と、
前記熱媒循環管路内の熱媒の循環状態検査運転を行う制御部とを備え、
前記制御部は、前記熱媒の循環状態検査運転を行うにあたって、
前記補助熱源機を作動させることにより加熱された補助熱媒で前記熱媒循環管路の熱媒を昇温させ、
前記熱媒温度検知部によって検知される前記熱媒循環管路の熱媒の温度変化が所定温度以上となるかどうかを判断する太陽熱給湯装置である。
The present invention includes a solar heat collector that heats a heat medium using solar heat,
A hot water storage tank for storing hot water by exchanging heat between the supplied water and a heat medium heated by the solar heat collector;
A heat medium circulation conduit for circulating the heat medium between the solar heat collector and the hot water storage tank;
A circulation pump that is provided in the heat medium circulation pipe, circulates the heat medium, and a heat medium temperature detection unit that detects the temperature of the heat medium;
An auxiliary heat source machine for heating hot water discharged from the hot water storage tank and an auxiliary heat medium;
An auxiliary heat medium circulation pipe that extends from the auxiliary heat source machine and circulates an auxiliary heat medium heated by the auxiliary heat source machine;
A control unit for performing a circulating state inspection operation of the heat medium in the heat medium circulation pipe,
In performing the circulating state inspection operation of the heating medium, the control unit,
Raise the temperature of the heat medium in the heat medium circulation line with the auxiliary heat medium heated by operating the auxiliary heat source machine,
It is a solar water heater which judges whether the temperature change of the heat medium of the said heat-medium circulation pipe line detected by the said heat-medium temperature detection part becomes more than predetermined temperature.

上記太陽熱給湯装置によれば、補助熱媒循環管路に補助熱源機で加熱された補助熱媒を循環させることにより、太陽熱集熱器と貯湯タンクとを接続する熱媒循環管路内の熱媒を昇温させることができる。そして、太陽熱集熱器は集熱エネルギーが低く、それゆえ太陽熱集熱器による加熱では熱媒の温度変化が小さいのに対し、補助熱源機では補助熱媒を任意の温度に加熱することができるから、上記補助熱媒で熱媒循環管路内の熱媒を加熱することにより、熱媒の温度変化を大きくすることができ、それによって検知誤差を低減することができる。また、補助熱源機は、日射量に依存せず、補助熱媒を加熱することができるため、上記太陽熱給湯装置によれば、日射量に制限されることなく、熱媒の循環状態を検査することができる。   According to the solar water heater, the heat in the heat medium circulation pipe connecting the solar heat collector and the hot water storage tank is circulated by circulating the auxiliary heat medium heated by the auxiliary heat source machine in the auxiliary heat medium circulation pipe. The temperature of the medium can be raised. The solar heat collector has a low heat collection energy, and therefore the temperature change of the heat medium is small in the heating by the solar heat collector, whereas the auxiliary heat source machine can heat the auxiliary heat medium to an arbitrary temperature. Therefore, by heating the heating medium in the heating medium circulation pipe with the auxiliary heating medium, the temperature change of the heating medium can be increased, and thereby the detection error can be reduced. In addition, since the auxiliary heat source machine can heat the auxiliary heat medium without depending on the amount of solar radiation, the solar heat water supply apparatus inspects the circulation state of the heat medium without being limited to the amount of solar radiation. be able to.

上記太陽熱給湯装置は、
前記熱媒循環管路に設けられ、前記熱媒循環管路における熱媒の流れを連通/遮断する第1開閉弁と、
前記熱媒循環管路の熱媒循環往路と熱媒循環復路とをバイパスするバイパス路と、
前記バイパス路に設けられ、前記バイパス路における熱媒の流れを連通/遮断する第2開閉弁と、
前記バイパス路に隣接して設けられ、前記熱媒循環管路内の熱媒と前記補助熱源機から前記補助熱媒循環管路を介して循環される補助熱媒とを熱交換して、前記熱媒を加熱する液々熱交換部とを有し、
前記制御部は、前記熱媒の循環状態検査運転を行うにあたって、
前記熱媒が前記太陽熱集熱器を流通せず、前記バイパス路を流通するように、前記第1開閉弁を閉弁するとともに、前記第2開閉弁を開弁し、
前記補助熱源機を作動させることにより前記加熱された補助熱媒で前記液々熱交換部を加熱して、前記熱媒循環管路の熱媒を昇温させてもよい。
The solar water heater is
A first on-off valve that is provided in the heat medium circulation pipe and communicates / blocks the flow of the heat medium in the heat medium circulation pipe;
A bypass path that bypasses the heat medium circulation forward path and the heat medium circulation return path of the heat medium circulation pipe;
A second on-off valve that is provided in the bypass passage and communicates / blocks the flow of the heat medium in the bypass passage;
Provided adjacent to the bypass path, heat exchange between the heat medium in the heat medium circulation pipe and the auxiliary heat medium circulated from the auxiliary heat source machine through the auxiliary heat medium circulation pipe, A liquid-to-heat exchange section for heating the heat medium,
In performing the circulating state inspection operation of the heating medium, the control unit,
Closing the first on-off valve and opening the second on-off valve so that the heat medium does not flow through the solar heat collector but flows through the bypass path;
The liquid heat exchanger may be heated with the heated auxiliary heat medium by operating the auxiliary heat source unit, and the temperature of the heat medium in the heat medium circulation pipe may be increased.

上記太陽熱給湯装置は、熱媒循環管路の熱媒循環往路と熱媒循環復路とをバイパスするバイパス路と、熱媒循環管路に第1開閉弁と、バイパス路に第2開閉弁とを有しており、熱媒の循環状態検査運転を行うにあたって、制御部が、熱媒が太陽熱集熱器を流通せず、バイパス路を流通するように、第1開閉弁を閉弁するとともに、第2開閉弁を開弁するから、補助熱媒によって加熱された熱媒を太陽熱集熱器に循環させることなく、液々熱交換部で加熱された補助熱媒と熱媒とを熱交換することにより、熱媒を昇温させることができる。このため、高温の熱媒が循環されることによる太陽熱集熱器からの放熱を防止でき、太陽熱集熱器による熱媒の降温を防止できる。その結果、熱媒の温度は太陽熱集熱器からの放熱に影響されないから、補助熱媒により効率的に熱媒を昇温させることができるとともに、より正確に熱媒の循環状態を検査することができる。   The solar water heater includes a bypass path that bypasses the heat medium circulation forward path and the heat medium circulation return path of the heat medium circulation pipe, a first on-off valve in the heat medium circulation pipe, and a second on-off valve in the bypass path. And when performing the circulating state inspection operation of the heat medium, the control unit closes the first on-off valve so that the heat medium does not flow through the solar heat collector but flows through the bypass path, Since the second on-off valve is opened, the auxiliary heat medium heated by the liquid heat exchanger and the heat medium are heat-exchanged without circulating the heat medium heated by the auxiliary heat medium to the solar heat collector. As a result, the temperature of the heating medium can be raised. For this reason, the heat radiation from the solar heat collector due to the circulation of the high-temperature heat medium can be prevented, and the temperature drop of the heat medium by the solar heat collector can be prevented. As a result, since the temperature of the heat medium is not affected by the heat radiation from the solar heat collector, the temperature of the heat medium can be efficiently raised by the auxiliary heat medium, and the circulation state of the heat medium can be checked more accurately. Can do.

上記太陽熱給湯装置において、
前記太陽熱集熱器は、ソーラ発電部をさらに有し、
前記循環ポンプは、前記ソーラ発電部による電力、商用電源による電力いずれでも駆動可能であり、
前記制御部は、前記熱媒の循環状態検査運転を行うにあたって、
前記循環ポンプの駆動源を前記ソーラ発電部による電力から、前記商用電源による電力に切り換えてもよい。
In the above solar water heater,
The solar heat collector further includes a solar power generation unit,
The circulating pump can be driven by any of the electric power from the solar power generation unit and the commercial power source,
In performing the circulating state inspection operation of the heating medium, the control unit,
The driving source of the circulation pump may be switched from electric power from the solar power generation unit to electric power from the commercial power source.

循環ポンプを太陽熱集熱器が有するソーラ発電部による電力で駆動すれば、太陽熱給湯装置の使用時における省エネ化を図ることができる。そして、夜間や雨天などの日射量が不足している場合、ソーラ発電部による電力は低くなり、その結果、循環ポンプの駆動が不安定となって、熱媒循環管路内の熱媒の循環量が変動して、熱媒の温度変化を正確に検知し難くなるが、上記太陽熱給湯装置によれば、熱媒の循環状態検査運転において、安定な電力が供給できる商用電源からの電力で循環ポンプが駆動されるから、熱媒を安定に熱媒循環管路内で循環させることができ、それによってさらに正確に熱媒の循環状態を検査することができる。   If the circulation pump is driven by electric power from a solar power generation unit included in the solar heat collector, energy saving can be achieved during use of the solar water heater. If the amount of solar radiation is insufficient at night or in the rain, the power generated by the solar power generation unit becomes low. As a result, the drive of the circulation pump becomes unstable, and the circulation of the heat medium in the heat medium circulation pipe However, according to the solar water heater, in the circulating state inspection operation of the heating medium, it is circulated with power from a commercial power source that can supply stable power. Since the pump is driven, the heat medium can be stably circulated in the heat medium circulation pipe, and thereby, the circulation state of the heat medium can be more accurately inspected.

そして、上記太陽熱給湯装置によれば、日射量に影響されることなく熱媒の循環状態を検査することができるから、定期的に熱媒の循環状態検査運転を行うことができる。   And according to the said solar thermal water heater, since the circulation state of a heating medium can be test | inspected without being influenced by the amount of solar radiation, the circulating state inspection operation of a heating medium can be performed regularly.

以上のように、本発明によれば、太陽熱集熱器と貯湯タンクとの間で熱媒を循環する熱媒循環管路内の熱媒の循環状態を正確に判断でき、しかも日射量に依存せず定期的に熱媒の循環状態を検査可能な太陽熱給湯装置を提供することができる。   As described above, according to the present invention, it is possible to accurately determine the circulation state of the heat medium in the heat medium circulation pipe that circulates the heat medium between the solar heat collector and the hot water storage tank, and also depends on the amount of solar radiation. Therefore, it is possible to provide a solar water heater that can periodically inspect the circulation state of the heat medium.

図1は、本発明の実施の形態に係る太陽熱給湯装置の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of a solar hot water supply apparatus according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る太陽熱給湯装置において、熱媒の循環状態検査運転を行なう場合の制御動作の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of a control operation in the case of performing a circulating state inspection operation of the heat medium in the solar water heating apparatus according to the embodiment of the present invention.

以下、図面を参照しながら本実施の形態の太陽熱給湯装置について説明する。
図1は、本発明の実施の形態に係る太陽熱給湯装置の一例を示す概略構成図である。本実施の形態の太陽熱給湯装置は、太陽熱集熱器1、貯湯タンク2、補助熱源機3、太陽熱給湯装置の運転や給湯温度を設定するリモコン4、及び太陽熱給湯装置の貯湯運転、給湯運転、及び熱媒の循環状態検査運転等を制御する制御部Cなどを備えている。
Hereinafter, the solar water heating apparatus of the present embodiment will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of a solar hot water supply apparatus according to an embodiment of the present invention. A solar water heater of the present embodiment includes a solar heat collector 1, a hot water storage tank 2, an auxiliary heat source unit 3, an operation of the solar water heater and a remote controller 4 for setting the hot water temperature, and a hot water storage operation and a hot water supply operation of the solar water heater. And a control unit C for controlling the circulating state inspection operation of the heat medium and the like.

太陽熱集熱器1は、集合住宅のベランダに縦置きされたり、建物の屋根などに設置されるもので、図示しないパネル状の集熱板と、ソーラ発電部として太陽電池セルが複数配設された太陽電池パネル1aとが積層一体化された発電集熱ユニットからなり、その内部に熱媒を循環させる内部流路を有している。この内部流路は、熱媒循環管路7の一部を構成している。太陽熱集熱器1内に配設された太陽電池パネル1aは制御部Cと電気配線で接続されており、発電時の電力は常時制御部Cに印加されている。   The solar heat collector 1 is installed vertically on a veranda of an apartment house or installed on the roof of a building, etc., and includes a panel-shaped heat collecting plate (not shown) and a plurality of solar cells as solar power generation units. The solar cell panel 1a is composed of a power generation heat collecting unit in which the solar cell panels 1a are laminated and integrated, and has an internal flow path for circulating a heat medium therein. This internal flow path constitutes a part of the heat medium circulation conduit 7. The solar cell panel 1a disposed in the solar heat collector 1 is connected to the control unit C by electric wiring, and the power during power generation is always applied to the control unit C.

貯湯タンク2は、耐食性に優れた金属(例えば、ステンレス)製のタンクであり、外周部に断熱材を有しており、下部に水を給水する給水管5と接続された給水口を、上部に湯水を出湯する出湯管6と接続された出湯口を有し、貯湯タンク2内に内部の湯水の温度を検知するための温度検知手段として4つの貯湯タンクサーミスタ20a,20b,20c,20dを備えている。4つの貯湯タンクサーミスタ20a,20b,20c,20dの検知信号は、それぞれ制御部Cに出力され、各検知温度は、貯湯タンク2内の水の加熱や出湯温制御、蓄熱量の算出等に利用される。   The hot water storage tank 2 is a tank made of metal (for example, stainless steel) excellent in corrosion resistance, has a heat insulating material on the outer peripheral portion, and has a water supply port connected to a water supply pipe 5 for supplying water at the lower portion. The hot water storage tank 2 has a hot water outlet connected to a hot water discharge pipe 6, and four hot water storage tank thermistors 20 a, 20 b, 20 c, and 20 d are used as temperature detection means for detecting the temperature of hot water in the hot water storage tank 2. I have. The detection signals of the four hot water storage tank thermistors 20a, 20b, 20c, and 20d are output to the control unit C, and the detected temperatures are used for heating the water in the hot water storage tank 2, controlling the hot water temperature, calculating the heat storage amount, and the like. Is done.

給水管5には、上流側から順に、給水元弁51、減圧弁52、給水温度を検知する入水温サーミスタ53、逆止弁54、及び排水弁55が配設されている。減圧弁52は、貯湯タンク2への給水圧を調整する弁であり、貯湯タンク2内の湯水が減少した場合、減圧弁52の下流側圧力が低下し、それに応じて貯湯タンク2内の圧力を維持するため、貯湯タンク2に水が給水される。   In the water supply pipe 5, a water supply source valve 51, a pressure reducing valve 52, an incoming water temperature thermistor 53 that detects the water supply temperature, a check valve 54, and a drain valve 55 are arranged in this order from the upstream side. The pressure reducing valve 52 is a valve that adjusts the water supply pressure to the hot water storage tank 2, and when the hot water in the hot water storage tank 2 decreases, the pressure on the downstream side of the pressure reducing valve 52 decreases, and the pressure in the hot water storage tank 2 accordingly. Therefore, water is supplied to the hot water storage tank 2.

出湯管6は、給水管5から分岐する給水分岐管9と接続された混合弁Mに接続されている。出湯管6には、貯湯タンク2の出湯口と混合弁Mとの間で、上流側から順に、貯湯タンク2から出湯される湯水の温度を検知する出湯温サーミスタ61、貯湯タンク2内の圧力が所定圧力以上となった場合に、湯水を排出するための圧力逃がし弁62、及び電磁弁63が配設されている。   The hot water discharge pipe 6 is connected to a mixing valve M connected to a water supply branch pipe 9 branched from the water supply pipe 5. The hot water discharge pipe 6 includes a hot water temperature thermistor 61 that detects the temperature of hot water discharged from the hot water storage tank 2 in order from the upstream side between the hot water outlet of the hot water storage tank 2 and the mixing valve M, and the pressure in the hot water storage tank 2. A pressure relief valve 62 and a solenoid valve 63 are provided for discharging hot water when the pressure exceeds a predetermined pressure.

太陽熱集熱器1と貯湯タンク2とは、熱媒循環管路7により接続されている。熱媒循環管路7は、太陽熱集熱器1で加熱された熱媒を貯湯タンク2に送る熱媒循環往路7aと、貯湯タンク2内で給水された水と加熱された熱媒との間で熱交換を行う熱交換部7bと、熱交換により冷却された熱媒を太陽熱集熱器1に戻す熱媒循環復路7cとが連設されて構成されている。熱交換部7bは、貯湯タンク2内の下方にU字状等に屈曲された配管から構成されている。また、貯湯タンク2外の熱媒循環往路7aと熱媒循環復路7cとはバイパス路14により連通されている。熱媒としては、従来公知のプロピレングリコールなどを含有する不凍液が使用される。   The solar heat collector 1 and the hot water storage tank 2 are connected by a heat medium circulation pipe 7. The heat medium circulation pipe 7 is provided between the heat medium circulation forward path 7a for sending the heat medium heated by the solar heat collector 1 to the hot water storage tank 2, and the water supplied in the hot water storage tank 2 and the heated heat medium. The heat exchanging section 7b for exchanging heat and the heat medium circulation return path 7c for returning the heat medium cooled by the heat exchange to the solar heat collector 1 are connected to each other. The heat exchanging portion 7 b is configured by a pipe bent in a U shape or the like below the hot water storage tank 2. Further, the heat medium circulation outward path 7 a and the heat medium circulation return path 7 c outside the hot water storage tank 2 are communicated by a bypass path 14. As the heat medium, a conventionally known antifreeze containing propylene glycol or the like is used.

熱媒循環管路7の熱媒循環復路7cには、上流側から順に、熱媒を貯留するための開放系のシスターン8と、循環ポンプPと、熱媒温度を検知する熱媒温度検知部として熱媒サーミスタ71と、第1熱動弁(第1開閉弁)72とが配設されている。この第1熱動弁(第1開閉弁)72は熱媒循環復路7cとバイパス路14との接続部よりも太陽熱集熱器1側に配設されており、熱媒の循環状態検査運転などで補助熱媒により熱媒循環管路の熱媒を加熱する運転時以外(例えば、貯湯運転や給湯運転など)では常開している開閉弁であり、制御部Cからの信号に応じて、開閉され、それによって太陽熱集熱器1への熱媒の流れが連通/遮断される。なお、第1熱動弁(第1開閉弁)72は、熱媒循環往路7aのバイパス路14との接続部よりも太陽熱集熱器1側に設けてもよいし、熱媒循環往路7a、熱媒循環復路7cの両方に設けてもよい。熱媒サーミスタ71は、熱媒循環復路7cとバイパス路14との接続部よりも貯湯タンク2側に配設されている。熱媒サーミスタは、さらに熱媒循環往路7aにも設けてもよい。熱媒サーミスタ71の検知信号は、制御部Cに出力される。   In the heating medium circulation return path 7c of the heating medium circulation pipe 7, an open system cistern 8 for storing the heating medium, a circulation pump P, and a heating medium temperature detection unit for detecting the heating medium temperature are sequentially arranged from the upstream side. As shown, a heat medium thermistor 71 and a first thermal valve (first on-off valve) 72 are provided. The first thermal valve (first on-off valve) 72 is disposed closer to the solar heat collector 1 than the connection between the heat medium circulation return path 7c and the bypass path 14, and the heat medium circulation state inspection operation is performed. The on-off valve is normally open except during operation in which the heat medium in the heat medium circulation pipe is heated by the auxiliary heat medium (for example, hot water storage operation or hot water supply operation), and according to a signal from the control unit C, It is opened and closed, whereby the flow of the heat medium to the solar heat collector 1 is communicated / blocked. The first thermal valve (first on-off valve) 72 may be provided closer to the solar heat collector 1 than the connection with the bypass path 14 of the heating medium circulation path 7a, or the heating medium circulation path 7a, You may provide in both of the heat-medium circulation return paths 7c. The heat medium thermistor 71 is disposed closer to the hot water storage tank 2 than the connection portion between the heat medium circulation return path 7 c and the bypass path 14. The heat medium thermistor may also be provided in the heat medium circulation outward path 7a. The detection signal of the heat medium thermistor 71 is output to the control unit C.

バイパス路14には、熱媒の循環状態検査運転時に、バイパス路14における熱媒の流れを連通/遮断する第2熱動弁(第2開閉弁)142が配設されており、制御部Cからの信号に応じて、開閉され、それによって熱媒の流れが連通/遮断される。この第2熱動弁(第2開閉弁)142は、循環状態検査運転などで補助熱媒により熱媒循環管路の熱媒を加熱する運転時以外では常閉している開閉弁である。また、バイパス路14には、補助熱源機3と補助熱媒循環管路15を介して接続された液々熱交換部141が隣接して配設されている。液々熱交換部141の構造としては、例えば、バイパス路14を構成する配管の周囲を覆うように補助熱媒循環管路15を構成する配管を設けた二重管構造や、隔壁を介して一方の室にバイパス路14を接続し、他方の室に補助熱媒循環管路15を接続した構造を採用することができる。   The bypass passage 14 is provided with a second thermal valve (second on-off valve) 142 that communicates / blocks the flow of the heating medium in the bypass passage 14 during the circulation state inspection operation of the heating medium. Is opened and closed in response to a signal from the heating medium, whereby the flow of the heat medium is communicated / blocked. The second thermal valve (second on-off valve) 142 is an on-off valve that is normally closed except during an operation in which the heat medium in the heat medium circulation pipe is heated by an auxiliary heat medium in a circulation state inspection operation or the like. In addition, a liquid-to-liquid heat exchanging portion 141 connected to the auxiliary heat source device 3 via the auxiliary heat medium circulation conduit 15 is disposed adjacent to the bypass passage 14. As the structure of the liquid-liquid heat exchanging unit 141, for example, a double pipe structure in which a pipe constituting the auxiliary heat medium circulation pipe 15 is provided so as to cover the circumference of the pipe constituting the bypass path 14, or through a partition wall. A structure in which the bypass passage 14 is connected to one chamber and the auxiliary heat medium circulation conduit 15 is connected to the other chamber can be employed.

シスターン8内には、熱媒の高水位を検知する高水位スイッチ81と、熱媒の低水位を検知する低水位スイッチ82と、循環ポンプPの空転を防止するための水位スイッチ83とが配設されている。また、シスターン8の上部には、熱媒がオーバーフローした場合に、シスターン8外に熱媒を排出するためのオーバーフロー管84が配設されている。高水位スイッチ81及び低水位スイッチ82は、熱媒に触れていると水位検知信号を制御部Cに出力する。制御部Cは、これらの水位検知信号に基づき、シスターン8内の熱媒の水位が、高水位を超えているか、高水位と低水位との間にあるか、低水位よりも低いかを判断する。   In the cistern 8, a high water level switch 81 for detecting the high water level of the heat medium, a low water level switch 82 for detecting the low water level of the heat medium, and a water level switch 83 for preventing the circulating pump P from idling are arranged. It is installed. In addition, an overflow pipe 84 for discharging the heat medium to the outside of the cis turn 8 when the heat medium overflows is disposed above the cis turn 8. The high water level switch 81 and the low water level switch 82 output a water level detection signal to the control unit C when touching the heat medium. Based on these water level detection signals, the control unit C determines whether the water level of the heat medium in the cistern 8 exceeds the high water level, is between the high water level and the low water level, or is lower than the low water level. To do.

循環ポンプPは、貯湯運転時や給湯運転時において、太陽熱集熱器1内に配設された太陽電池パネル1aからの発電エネルギーが所定の電力以上である場合には、その電気エネルギーにより駆動され、夜間や雨天などで日射量が不足し、発電エネルギーが所定の電力未満である場合には、商用電源である電源供給部(図示せず)と接続された制御基板33を介して印加される制御部Cからの電力により駆動される。また、熱媒の循環状態検査運転においては、電源供給部からの電力で循環ポンプPが駆動されるように構成されている。このように熱媒の循環状態検査運転において、商用電源による電力を使用して循環ポンプPを駆動することにより、日射量に依存することなく、熱媒を安定して熱媒循環管路7内で循環させることができる。   The circulation pump P is driven by electric energy when the power generation energy from the solar cell panel 1a disposed in the solar heat collector 1 is equal to or higher than a predetermined power during hot water storage operation or hot water supply operation. When the amount of solar radiation is insufficient at night or in rainy weather and the generated energy is less than a predetermined power, it is applied via a control board 33 connected to a power supply unit (not shown) that is a commercial power source. It is driven by electric power from the control unit C. In the circulating state inspection operation of the heat medium, the circulation pump P is driven by the electric power from the power supply unit. In this way, in the circulating state inspection operation of the heating medium, by driving the circulation pump P using electric power from a commercial power source, the heating medium can be stably stabilized in the heating medium circulation line 7 without depending on the amount of solar radiation. It can be circulated with.

本実施の形態の太陽熱給湯装置で貯湯運転が行われる場合、太陽熱集熱器1に日射が当たり、制御部Cに印加される太陽電池パネル1aの発電エネルギーが所定の電力以上であれば、制御部Cはその電力により循環ポンプPを駆動する。これにより、加熱された熱媒が貯湯タンク2に送られ、貯湯タンク2内に給水された水が加熱されて、湯水が貯湯される。なお、貯湯運転においては、貯湯タンク2から湯水が出湯されないよう、出湯管6に設けられた電磁弁63は閉弁される。   When hot water storage operation is performed in the solar water heater of the present embodiment, if solar radiation is radiated to the solar heat collector 1 and the power generation energy of the solar cell panel 1a applied to the control unit C is equal to or higher than a predetermined power, control is performed. The part C drives the circulation pump P with the electric power. Thereby, the heated heat medium is sent to the hot water storage tank 2, the water supplied into the hot water storage tank 2 is heated, and hot water is stored. In the hot water storage operation, the electromagnetic valve 63 provided in the hot water discharge pipe 6 is closed so that hot water is not discharged from the hot water storage tank 2.

貯湯タンク2と補助熱源機3との間に配設されている混合弁Mは、貯湯タンク2から出湯される湯水の温度に応じて、貯湯タンク2から出湯された湯水と給水分岐管9を介して給水管5から給水された水とを混合する弁であり、制御部Cからの信号に応じて、その開度が調整される。   The mixing valve M disposed between the hot water storage tank 2 and the auxiliary heat source unit 3 connects the hot water discharged from the hot water storage tank 2 and the water supply branch pipe 9 according to the temperature of the hot water discharged from the hot water storage tank 2. It is a valve that mixes the water supplied from the water supply pipe 5 through the valve, and its opening degree is adjusted according to the signal from the control unit C.

補助熱源機3は、貯湯タンク2の下流側に配設されており、給湯用加熱ユニット31と、補助熱媒加熱用加熱ユニット32と、これら加熱ユニット31,32の動作を制御する制御基板33とを備えている。これらの加熱ユニット31,32にはそれぞれ、給湯用熱交換器311及び給湯用ガスバーナ312と、補助熱媒加熱用熱交換器321及び補助熱媒加熱用ガスバーナ322とが内蔵されている。   The auxiliary heat source unit 3 is disposed on the downstream side of the hot water storage tank 2, and includes a hot water supply heating unit 31, an auxiliary heat medium heating unit 32, and a control board 33 that controls operations of the heating units 31 and 32. And. Each of the heating units 31 and 32 includes a hot water supply heat exchanger 311 and a hot water supply gas burner 312, an auxiliary heat medium heating heat exchanger 321, and an auxiliary heat medium heating gas burner 322.

給湯用熱交換器311は、上記混合弁Mと混合配管10で接続されており、混合弁Mで混合された混合湯水が流入する。混合配管10には、上流側から順に、水量センサ11、混合サーミスタ12、及びハイカットサーミスタ13が配設されている。水量センサ11は混合配管10を流れる混合湯水の流量を検知し、その検知信号は制御部Cに出力される。また、混合サーミスタ12及びハイカットサーミスタ13は、混合弁Mから流出する混合湯水の温度を検知し、これらの検知信号は制御部Cに出力される。給湯用熱交換器311で加熱された混合湯水は、給湯管Lから浴室や台所などに設けられたカラン等の出湯端末に供給される。   The hot water supply heat exchanger 311 is connected to the mixing valve M by the mixing pipe 10, and the mixed hot water mixed by the mixing valve M flows in. In the mixing pipe 10, a water amount sensor 11, a mixing thermistor 12, and a high cut thermistor 13 are arranged in this order from the upstream side. The water amount sensor 11 detects the flow rate of the mixed hot water flowing through the mixing pipe 10, and the detection signal is output to the control unit C. The mixing thermistor 12 and the high-cut thermistor 13 detect the temperature of the mixed hot water flowing out from the mixing valve M, and these detection signals are output to the control unit C. The mixed hot water heated by the hot water supply heat exchanger 311 is supplied from the hot water supply pipe L to a hot water outlet terminal such as a currant provided in a bathroom or kitchen.

本実施の形態の太陽熱給湯装置で給湯運転が行われる場合、出湯端末が開栓されると、給水分岐管9から混合弁Mを介して混合配管10に水が供給される。そして、水量センサ11で所定流量以上の流水が検知されると、制御部Cは出湯管6に設けられた電磁弁63を開弁する。電磁弁63が開弁されると、貯湯タンク2内から湯水が出湯管6に出湯され、出湯温サーミスタ61は出湯された湯水の温度を検知し、制御部Cに検知温度を出力する。そして、リモコン4の給湯温度設定スイッチを操作することにより制御部Cに入力された出湯端末で要求される温度よりも貯湯タンク2から出湯される湯水の温度が高い場合、制御部Cにより混合弁Mの開度が調整されて、湯水と給水分岐管9から給水される水とが混合され、給湯用加熱ユニット31を作動させることなく、出湯端末に所定温度の混合湯水が供給される。一方、貯湯タンク2内から出湯される湯水の温度が出湯端末で要求される温度よりも低い場合、制御部Cは混合弁Mの開度を所定割合に調整し、給湯用加熱ユニット31を作動させ、給湯用ガスバーナ312を点火する。そして、貯湯タンク2から出湯された湯水は混合弁Mで水が混合された後、給湯用熱交換器311で加熱され、所定温度の混合湯水が出湯端末に供給される。   When the hot water supply operation is performed with the solar hot water supply apparatus of the present embodiment, when the hot water outlet terminal is opened, water is supplied from the water supply branch pipe 9 to the mixing pipe 10 through the mixing valve M. Then, when flowing water of a predetermined flow rate or more is detected by the water amount sensor 11, the control unit C opens the electromagnetic valve 63 provided in the tap water pipe 6. When the solenoid valve 63 is opened, hot water is discharged from the hot water storage tank 2 to the hot water discharge pipe 6, and the hot water temperature thermistor 61 detects the temperature of the hot water discharged and outputs the detected temperature to the control unit C. When the temperature of the hot water discharged from the hot water storage tank 2 is higher than the temperature required at the hot water terminal input to the control unit C by operating the hot water supply temperature setting switch of the remote controller 4, the control unit C controls the mixing valve. The opening of M is adjusted, hot water and water supplied from the water supply branch pipe 9 are mixed, and the hot water supply unit 31 is supplied with the mixed hot water at a predetermined temperature without operating the hot water supply heating unit 31. On the other hand, when the temperature of the hot water discharged from the hot water storage tank 2 is lower than the temperature required at the hot water terminal, the control unit C adjusts the opening of the mixing valve M to a predetermined ratio and operates the hot water supply heating unit 31. The hot water supply gas burner 312 is ignited. The hot water discharged from the hot water storage tank 2 is mixed with water by the mixing valve M and then heated by the heat exchanger 311 for hot water supply, and the mixed hot water at a predetermined temperature is supplied to the hot water terminal.

補助熱媒加熱用熱交換器321は、既述したバイパス路14に設けられた液々熱交換部141と補助熱源機3から延設された補助熱媒循環管路15で接続されている。補助熱媒循環管路15は、補助熱媒加熱用熱交換器321で加熱された補助熱媒を補助熱媒循環ポンプで液々熱交換部141に送る補助熱媒循環往路15aと、熱交換により冷却された補助熱媒を補助熱媒加熱用熱交換器321に戻す補助熱媒循環復路15bとから構成されており、補助熱媒循環往路15aには補助熱媒の流れを連通/遮断する熱動弁151が配設されている。なお、補助熱媒循環ポンプは商用電源による電力で駆動される。補助熱媒としては、補助熱媒加熱用熱交換器321で加熱される温水(不凍液を含んでいてもよい)を使用することができる。   The auxiliary heat medium heating heat exchanger 321 is connected to the liquid heat exchanger 141 provided in the bypass path 14 described above and the auxiliary heat medium circulation pipe 15 extending from the auxiliary heat source unit 3. The auxiliary heat medium circulation pipe 15 is connected to the auxiliary heat medium circulation forward path 15a for sending the auxiliary heat medium heated by the auxiliary heat medium heating heat exchanger 321 to the liquid-to-liquid heat exchanging unit 141 by the auxiliary heat medium circulation pump. The auxiliary heat medium circulating return path 15b returns the auxiliary heat medium cooled by the auxiliary heat medium to the auxiliary heat medium heating heat exchanger 321. The auxiliary heat medium circulation forward path 15a communicates / blocks the flow of the auxiliary heat medium. A thermal valve 151 is provided. The auxiliary heat medium circulation pump is driven by electric power from a commercial power source. As the auxiliary heat medium, hot water (which may contain an antifreeze liquid) heated by the heat exchanger 321 for heating the auxiliary heat medium can be used.

補助熱媒加熱用加熱ユニット32は、通常、暖房装置Wなどを加熱するための加熱ユニットとして使用されるが、本実施の形態では、熱媒の循環状態検査運転を行う場合に、この補助熱媒加熱用加熱ユニット32を作動させて、補助熱媒を加熱し、該加熱された補助熱媒で熱媒循環管路7の熱媒を強制的に昇温させる。なお、この補助熱媒加熱用加熱ユニット32は、さらに太陽熱集熱器1で集熱される集熱エネルギーが少なく、日射量が不足して貯湯タンク2内に所定温度の湯水が貯湯されない場合や、太陽熱給湯装置が長時間使用されず、そのため貯湯タンク2内の湯水が入れ替わらず雑菌が繁殖する虞がある場合に、熱媒循環管路7を再加熱して、貯湯タンク2内の湯水の温度を昇温させるための加熱ユニットとして使用してもよい。   The heating unit 32 for heating the auxiliary heat medium is normally used as a heating unit for heating the heating device W or the like. In the present embodiment, this auxiliary heat medium is used when performing the circulating state inspection operation of the heat medium. The heating unit 32 for heating the medium is operated to heat the auxiliary heat medium, and the temperature of the heat medium in the heat medium circulation pipe 7 is forcibly raised by the heated auxiliary heat medium. The auxiliary heat medium heating unit 32 has less heat collection energy collected by the solar heat collector 1, and the amount of solar radiation is insufficient, so that hot water of a predetermined temperature is not stored in the hot water storage tank 2. When the solar water heater is not used for a long time, the hot water in the hot water storage tank 2 is not replaced, and there is a possibility that various germs may propagate, so that the heating medium circulation line 7 is reheated and the hot water in the hot water storage tank 2 is reheated. You may use as a heating unit for raising temperature.

制御部Cは、マイクロコンピュータを主体として構成されており、図示しない熱媒の循環状態検査運転を実行するための検査運転プログラムが記憶されたROMを備えるとともに、熱媒サーミスタ71により検知される検査初期の熱媒の温度を記憶する記憶部、検査時間内における熱媒サーミスタ71で検知された熱媒の温度と初期温度とを比較する比較部、比較部によって比較された検査時間内の熱媒の温度変化が所定温度以上であるかどうかを判断する判断部、上記温度変化が所定温度未満である場合に、熱媒の循環状態の異常をリモコン4から報知させる報知部、及び検査時間や熱媒の循環状態検査運転を定期的に行なうための所定の定期時間を計測するタイマなどを備えている。また、制御部Cは、太陽熱集熱器1、補助熱源機3内の制御基板33、循環ポンプP、水量センサ11、既述した各サーミスタ12,13,20a,20b,20c,20d,53,61,71、熱動弁72,142,151、電磁弁63、混合弁Mなどと接続されており、浴室や台所などに配置されたリモコン4と補助熱源機3内の制御基板33を介して接続されている。   The control unit C is configured mainly with a microcomputer, and includes a ROM in which an inspection operation program for executing a circulating state inspection operation of a heating medium (not shown) is stored, and an inspection detected by the heating medium thermistor 71. Storage unit for storing the temperature of the initial heat medium, comparison unit for comparing the temperature of the heat medium detected by the heat medium thermistor 71 within the inspection time and the initial temperature, and the heat medium within the inspection time compared by the comparison unit A determination unit for determining whether or not the temperature change is equal to or higher than a predetermined temperature, a notification unit for notifying the abnormality of the circulation state of the heating medium from the remote controller 4 when the temperature change is lower than the predetermined temperature, and an inspection time or heat A timer for measuring a predetermined periodic time for periodically performing the circulating state inspection operation of the medium is provided. In addition, the control unit C includes the solar heat collector 1, the control board 33 in the auxiliary heat source unit 3, the circulation pump P, the water amount sensor 11, and the respective thermistors 12, 13, 20a, 20b, 20c, 20d, 53, 61, 71, thermal valves 72, 142, 151, electromagnetic valve 63, mixing valve M, etc. are connected via remote control 4 and control board 33 in auxiliary heat source unit 3 arranged in a bathroom or kitchen. It is connected.

次に、本実施の形態の太陽熱給湯装置において、熱媒循環管路7の熱媒の循環状態検査運転を行う制御動作を図2のフローチャートに従って具体的に説明する。なお、本実施の形態では、この検査運転プログラムは720時間ごとに起動されるように設定されている。   Next, in the solar hot water supply apparatus of the present embodiment, a control operation for performing the heat medium circulation state inspection operation of the heat medium circulation pipe 7 will be specifically described with reference to the flowchart of FIG. In the present embodiment, this inspection operation program is set to be started every 720 hours.

まず、制御部Cは、前回の熱媒の循環状態検査運転から所定の定期時間が経過しているかどうかを判断する(ST1)。   First, the control unit C determines whether or not a predetermined period of time has elapsed since the previous circulating state inspection operation of the heating medium (ST1).

所定の定期時間が経過している場合(ST1でYES)、記憶部は検査運転開始時における熱媒サーミスタ71で検知される熱媒の初期温度を記憶する(ST2)。次いで、制御部Cは、補助熱源機3の補助熱媒加熱用加熱ユニット32を作動させ、補助熱媒加熱用ガスバーナ322を点火して、補助熱媒の加熱を開始し、補助熱媒循環管路15の熱動弁151を開弁する(ST3)。これにより、補助熱媒循環管路15に加熱された補助熱媒が循環される。   When the predetermined period of time has elapsed (YES in ST1), the storage unit stores the initial temperature of the heat medium detected by the heat medium thermistor 71 at the start of the inspection operation (ST2). Next, the control unit C operates the auxiliary heat medium heating unit 32 of the auxiliary heat source unit 3 to ignite the auxiliary heat medium heating gas burner 322 to start heating the auxiliary heat medium, and the auxiliary heat medium circulation pipe The thermal valve 151 of the passage 15 is opened (ST3). Thereby, the auxiliary heat medium heated by the auxiliary heat medium circulation line 15 is circulated.

補助熱源機3で補助熱媒の加熱が開始されると、制御部Cは、第1熱動弁(第1開閉弁)72を閉弁し、第2熱動弁(第2開閉弁)142を開弁して、熱媒が太陽熱集熱器1を流通せず、バイパス路14を流通するように、熱媒の循環経路を切替える(ST4)。これにより、検査運転時に熱媒が太陽熱集熱器1を流通しないため、高温の熱媒を循環させても、太陽熱集熱器1からの放熱が生じず、補助熱媒で熱交換される熱量のみにより熱媒を昇温させることができる。従って、熱媒の温度変化の計測において、太陽熱集熱器1による熱媒の降温を考慮する必要がない。さらに、温度変化の誤検知の低減を目的として、高温の補助熱媒を使用し、熱媒を高温に加熱しても、太陽熱集熱器1に熱媒が循環されないため、太陽熱集熱器1が過熱されることもない。また、制御部Cは、循環ポンプPの駆動源を太陽電池パネル1aによる電力から商用電源による電力に切替え、循環ポンプPを駆動する(ST4)。これにより、安定した駆動回転数で循環ポンプPを駆動することができる。   When heating of the auxiliary heat medium is started in the auxiliary heat source unit 3, the controller C closes the first thermal valve (first on-off valve) 72 and the second thermal valve (second on-off valve) 142. And the circulation path of the heat medium is switched so that the heat medium does not flow through the solar heat collector 1 but flows through the bypass 14 (ST4). Thereby, since a heat medium does not distribute | circulate the solar-heat collector 1 at the time of test | inspection driving | operation, even if it circulates a high-temperature heat medium, heat radiation does not arise from the solar-heat collector 1, and the amount of heat exchanged by the auxiliary heat medium Only by this, the temperature of the heating medium can be raised. Therefore, it is not necessary to consider the temperature drop of the heat medium by the solar heat collector 1 in measuring the temperature change of the heat medium. Furthermore, for the purpose of reducing false detection of temperature change, even if a high temperature auxiliary heat medium is used and the heat medium is heated to a high temperature, the heat medium is not circulated through the solar heat collector 1. Is not overheated. Moreover, the control part C switches the drive source of the circulation pump P from the electric power by the solar cell panel 1a to the electric power by a commercial power supply, and drives the circulation pump P (ST4). As a result, the circulation pump P can be driven at a stable drive speed.

次に、制御部Cは、比較部において、記憶部に記憶された熱媒の初期温度と、熱媒サーミスタ71で検知される熱媒の温度とを比較し、判断部において、熱媒の初期温度から検査運転中の熱媒サーミスタ71で検知される熱媒の温度への温度変化が、所定温度(例えば、3℃)以上であるかどうかを判断する(ST5)。なお、このとき、検査運転中の熱媒の循環状態が変動する場合を考慮して、上記検査運転中の熱媒の温度が一定時間(例えば、1秒)継続するかどうかをさらに判断してもよい。   Next, the control unit C compares the initial temperature of the heat medium stored in the storage unit with the temperature of the heat medium detected by the heat medium thermistor 71 in the comparison unit, and determines the initial temperature of the heat medium in the determination unit. It is determined whether the temperature change from the temperature to the temperature of the heat medium detected by the heat medium thermistor 71 during the inspection operation is equal to or higher than a predetermined temperature (for example, 3 ° C.) (ST5). At this time, in consideration of the case where the circulation state of the heat medium during the inspection operation varies, it is further determined whether or not the temperature of the heat medium during the inspection operation continues for a certain time (for example, 1 second). Also good.

熱媒サーミスタ71で検知される熱媒の温度変化が所定温度以上である場合(ST5でYES)、制御部Cは、熱媒の循環状態が正常と判断して、第1熱動弁(第1開閉弁)72を開弁し、第2熱動弁(第2開閉弁)142を閉弁して、熱媒がバイパス路14を流通せず、太陽熱集熱器1を流通するように、熱媒の循環経路を切替えるとともに、循環ポンプPの駆動源を商用電源による電力から太陽電池パネル1aによる電力に切替える(ST6)。そして、補助熱源機3の作動を終了し(ST7)、次回の定期検査運転を行うためにタイマをリセットする(ST8)。   When the temperature change of the heat medium detected by the heat medium thermistor 71 is equal to or higher than the predetermined temperature (YES in ST5), the control unit C determines that the circulation state of the heat medium is normal, and the first heat valve (first heat valve) 1 on-off valve) 72, and the second thermal valve (second on-off valve) 142 is closed so that the heat medium does not flow through the bypass 14 but flows through the solar heat collector 1. While switching the circulation path of the heat medium, the drive source of the circulation pump P is switched from the power from the commercial power source to the power from the solar cell panel 1a (ST6). Then, the operation of the auxiliary heat source unit 3 is terminated (ST7), and the timer is reset to perform the next periodic inspection operation (ST8).

一方、熱媒の初期温度と、検査運転中の熱媒サーミスタ71で検知される熱媒の温度との差が小さく、熱媒の温度変化が所定温度未満である場合(ST5でNO)、制御部Cは、さらに所定の検査時間(例えば、3分)が経過しているかどうかを判断する(ST9)。検査時間が経過しても、熱媒の温度変化が所定温度未満である場合には(ST9でYES)、判断部は、循環ポンプPの故障等により熱媒循環管路7内の熱媒の循環が異常になっていると判断して、エラー報知部からリモコン4に異常信号を送信し、リモコン4のスピーカや表示部から異常を報知させる(ST10)。   On the other hand, when the difference between the initial temperature of the heat medium and the temperature of the heat medium detected by the heat medium thermistor 71 during the inspection operation is small and the temperature change of the heat medium is less than a predetermined temperature (NO in ST5), control is performed. Part C further determines whether or not a predetermined inspection time (for example, 3 minutes) has elapsed (ST9). If the temperature change of the heat medium is less than the predetermined temperature even after the inspection time has elapsed (YES in ST9), the determination unit determines whether the heat medium in the heat medium circulation pipe 7 has fallen due to a failure of the circulation pump P or the like. It is determined that the circulation is abnormal, and an error signal is transmitted from the error notification unit to the remote controller 4 to notify the abnormality from the speaker or display unit of the remote controller 4 (ST10).

上記太陽熱給湯装置によれば、熱媒の循環状態検査運転時に、補助熱源機3で任意の温度に加熱可能な補助熱媒で熱媒循環管路7を循環する熱媒を加熱することができるから、集熱エネルギーの低い太陽熱集熱器1により熱媒を加熱する場合よりも、熱媒を高温に昇温させることができる。これにより、熱媒の温度変化を大きくすることができるから、熱媒の温度差の誤検知を低減することができ、正確に熱媒の循環状態を判断することができる。   According to the solar water heater, the heat medium circulating through the heat medium circulation pipe 7 can be heated with the auxiliary heat medium that can be heated to an arbitrary temperature by the auxiliary heat source device 3 during the circulation state inspection operation of the heat medium. Thus, the heating medium can be heated to a higher temperature than when the heating medium is heated by the solar heat collector 1 having low heat collecting energy. Thereby, since the temperature change of a heating medium can be enlarged, the erroneous detection of the temperature difference of a heating medium can be reduced, and the circulation state of a heating medium can be judged correctly.

また、上記熱媒の循環状態検査運転では、補助熱源機3で加熱される補助熱媒で熱媒循環管路7の熱媒の温度を昇温させることができるから、日射量に影響されることなく、定期的に検査運転を行うことができる。   Moreover, in the circulating state inspection operation of the heat medium, the temperature of the heat medium in the heat medium circulation pipe 7 can be raised by the auxiliary heat medium heated by the auxiliary heat source unit 3, which is influenced by the amount of solar radiation. The inspection operation can be performed periodically without any problems.

なお、上記実施の形態では、補助熱源機3としてガス給湯器を有する太陽熱給湯装置を例に挙げて説明したが、本実施の形態の補助熱源機3はこれに限定されるものでない。例えば、ヒートポンプなどの従来公知の補助熱源機を用いてもよい。   In the above-described embodiment, the solar heat water heater having a gas water heater has been described as an example of the auxiliary heat source unit 3. However, the auxiliary heat source unit 3 of the present embodiment is not limited to this. For example, a conventionally known auxiliary heat source device such as a heat pump may be used.

1 太陽熱集熱器
1a 太陽電池パネル(ソーラ発電部)
2 貯湯タンク
3 補助熱源機
7 熱媒循環管路
7a 熱媒循環往路
7b 熱交換部
7c 熱媒循環復路
14 バイパス路
15 補助熱媒循環管路
15a 補助熱媒循環往路
15b 補助熱媒循環復路
71 熱媒サーミスタ(熱媒温度検知部)
72 第1熱動弁(第1開閉弁)
141 液々熱交換部
142 第2熱動弁(第2開閉弁)
C 制御部
P 循環ポンプ
1 Solar collector 1a Solar panel (solar power generation unit)
2 Hot-water storage tank 3 Auxiliary heat source machine 7 Heat medium circulation pipe 7a Heat medium circulation forward path 7b Heat exchange part 7c Heat medium circulation backward path 14 Bypass path 15 Auxiliary heat medium circulation pipe 15a Auxiliary heat medium circulation forward path 15b Auxiliary heat medium circulation backward path 71 Heat medium thermistor (heat medium temperature detection part)
72 First thermal valve (first on-off valve)
141 Liquid heat exchanger 142 Second thermal valve (second on-off valve)
C Control part P Circulation pump

Claims (4)

太陽熱を利用して熱媒を加熱する太陽熱集熱器と、
給水された水を前記太陽熱集熱器で加熱された熱媒と熱交換して湯水を貯湯する貯湯タンクと、
前記太陽熱集熱器と前記貯湯タンクとの間で前記熱媒を循環する熱媒循環管路と、
前記熱媒循環管路に設けられ、前記熱媒を循環させる循環ポンプ及び前記熱媒の温度を検知する熱媒温度検知部と、
前記貯湯タンクから出湯される湯水及び補助熱媒を加熱する補助熱源機と、
前記補助熱源機から延設され、前記補助熱源機で加熱された補助熱媒を循環する補助熱媒循環管路と、
前記熱媒循環管路内の熱媒の循環状態検査運転を行う制御部とを備え、
前記制御部は、前記熱媒の循環状態検査運転を行うにあたって、
前記補助熱源機を作動させることにより加熱された補助熱媒で前記熱媒循環管路の熱媒を昇温させ、
前記熱媒温度検知部によって検知される前記熱媒循環管路の熱媒の温度変化が所定温度以上となるかどうかを判断する太陽熱給湯装置。
A solar collector that uses solar heat to heat the heating medium;
A hot water storage tank for storing hot water by exchanging heat between the supplied water and a heat medium heated by the solar heat collector;
A heat medium circulation conduit for circulating the heat medium between the solar heat collector and the hot water storage tank;
A circulation pump that is provided in the heat medium circulation pipe, circulates the heat medium, and a heat medium temperature detection unit that detects the temperature of the heat medium;
An auxiliary heat source machine for heating hot water discharged from the hot water storage tank and an auxiliary heat medium;
An auxiliary heat medium circulation pipe that extends from the auxiliary heat source machine and circulates an auxiliary heat medium heated by the auxiliary heat source machine;
A control unit for performing a circulating state inspection operation of the heat medium in the heat medium circulation pipe,
In performing the circulating state inspection operation of the heating medium, the control unit,
Raise the temperature of the heat medium in the heat medium circulation line with the auxiliary heat medium heated by operating the auxiliary heat source machine,
The solar water heater which judges whether the temperature change of the heat medium of the said heat-medium circulation pipe line detected by the said heat-medium temperature detection part becomes more than predetermined temperature.
前記熱媒循環管路に設けられ、前記熱媒循環管路における熱媒の流れを連通/遮断する第1開閉弁と、
前記熱媒循環管路の熱媒循環往路と熱媒循環復路とをバイパスするバイパス路と、
前記バイパス路に設けられ、前記バイパス路における熱媒の流れを連通/遮断する第2開閉弁と、
前記バイパス路に隣接して設けられ、前記熱媒循環管路内の熱媒と前記補助熱源機から前記補助熱媒循環管路を介して循環される補助熱媒とを熱交換して、前記熱媒を加熱する液々熱交換部とを有し、
前記制御部は、前記熱媒の循環状態検査運転を行うにあたって、
前記熱媒が前記太陽熱集熱器を流通せず、前記バイパス路を流通するように、前記第1開閉弁を閉弁するとともに、前記第2開閉弁を開弁し、
前記補助熱源機を作動させることにより前記加熱された補助熱媒で前記液々熱交換部を加熱して、前記熱媒循環管路の熱媒を昇温させる請求項1に記載の太陽熱給湯装置。
A first on-off valve that is provided in the heat medium circulation pipe and communicates / blocks the flow of the heat medium in the heat medium circulation pipe;
A bypass path that bypasses the heat medium circulation forward path and the heat medium circulation return path of the heat medium circulation pipe;
A second on-off valve that is provided in the bypass passage and communicates / blocks the flow of the heat medium in the bypass passage;
Provided adjacent to the bypass path, heat exchange between the heat medium in the heat medium circulation pipe and the auxiliary heat medium circulated from the auxiliary heat source machine through the auxiliary heat medium circulation pipe, A liquid-to-heat exchange section for heating the heat medium,
In performing the circulating state inspection operation of the heating medium, the control unit,
Closing the first on-off valve and opening the second on-off valve so that the heat medium does not flow through the solar heat collector but flows through the bypass path;
2. The solar water heating apparatus according to claim 1, wherein the liquid heat exchanger is heated by the heated auxiliary heat medium by operating the auxiliary heat source unit to raise the temperature of the heat medium in the heat medium circulation pipe. .
前記太陽熱集熱器は、ソーラ発電部をさらに有し、
前記循環ポンプは、前記ソーラ発電部による電力、商用電源による電力いずれでも駆動可能であり、
前記制御部は、前記熱媒の循環状態検査運転を行うにあたって、
前記循環ポンプの駆動源を前記ソーラ発電部による電力から、前記商用電源による電力に切り換える請求項1または2に記載の太陽熱給湯装置。
The solar heat collector further includes a solar power generation unit,
The circulating pump can be driven by any of the electric power from the solar power generation unit and the commercial power source,
In performing the circulating state inspection operation of the heating medium, the control unit,
The solar thermal water heater according to claim 1 or 2, wherein a driving source of the circulation pump is switched from electric power by the solar power generation unit to electric power by the commercial power source.
前記制御部は、前記熱媒の循環状態検査運転を定期的に行う請求項1〜3のいずれか1項に記載の太陽熱給湯装置。

The solar control hot water supply apparatus according to any one of claims 1 to 3, wherein the control unit periodically performs a circulating state inspection operation of the heat medium.

JP2010012395A 2010-01-22 2010-01-22 Solar water heater Expired - Fee Related JP5462007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012395A JP5462007B2 (en) 2010-01-22 2010-01-22 Solar water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012395A JP5462007B2 (en) 2010-01-22 2010-01-22 Solar water heater

Publications (2)

Publication Number Publication Date
JP2011149652A JP2011149652A (en) 2011-08-04
JP5462007B2 true JP5462007B2 (en) 2014-04-02

Family

ID=44536797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012395A Expired - Fee Related JP5462007B2 (en) 2010-01-22 2010-01-22 Solar water heater

Country Status (1)

Country Link
JP (1) JP5462007B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928282Y2 (en) * 1979-11-29 1984-08-15 松下電器産業株式会社 Hot water supply system using solar heat
JPS61280346A (en) * 1985-05-14 1986-12-10 Sanyo Electric Co Ltd Control device for solar heat collecting device
JPH09145070A (en) * 1995-11-22 1997-06-06 Sanyo Electric Co Ltd Hot water type heater
JP2002106976A (en) * 2000-09-29 2002-04-10 Sekisui Chem Co Ltd Solar hot-water supplier
JP2003148804A (en) * 2001-11-15 2003-05-21 Hitachi Housetec Co Ltd Hot water temperature control method for solar water heater supplying hot water of table temperature
JP2006090689A (en) * 2004-09-27 2006-04-06 Sts Kk Solar hot water supply system with heat pump heat source unit
JP5192778B2 (en) * 2007-11-01 2013-05-08 パーパス株式会社 Hot water heater

Also Published As

Publication number Publication date
JP2011149652A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5461318B2 (en) Solar water heating system
JP5462009B2 (en) Solar water heating system
KR101160795B1 (en) Water heater with automatic controller
JP4513754B2 (en) Hybrid hot water supply system
EP2009366B1 (en) Hot water supplier having a malfunction detection device
JP5518006B2 (en) Hot water system
EP3412985B1 (en) Method for controlling water-heating system, and water-heating system
JP2013224790A (en) Storage type water heater
JP5491878B2 (en) Hot water storage hot water supply system using solar heat
JP2013224809A (en) Storage type water heater
JP5537971B2 (en) Solar water heating system
JP5577109B2 (en) Solar water heater
JP5546264B2 (en) Solar water heater
JP5462007B2 (en) Solar water heater
JP5162263B2 (en) Cogeneration system
JP5604119B2 (en) Hot water storage hot water supply system
JP2012013301A (en) Hot water supply system
JP4867282B2 (en) Water heater
JP5537966B2 (en) Solar water heater
JP4994291B2 (en) Heat source machine
JP2013069598A (en) Cogeneration system
JP5606141B2 (en) Heat source device and hot water supply device
JP5880078B2 (en) Hot water storage hot water supply system
JP5537967B2 (en) Hot water storage hot water supply system using solar heat
JP2002295851A (en) Freeze proofing method of heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5462007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees