JP5461340B2 - Resonant type wireless power transmission device - Google Patents

Resonant type wireless power transmission device Download PDF

Info

Publication number
JP5461340B2
JP5461340B2 JP2010182362A JP2010182362A JP5461340B2 JP 5461340 B2 JP5461340 B2 JP 5461340B2 JP 2010182362 A JP2010182362 A JP 2010182362A JP 2010182362 A JP2010182362 A JP 2010182362A JP 5461340 B2 JP5461340 B2 JP 5461340B2
Authority
JP
Japan
Prior art keywords
power
power transmission
type wireless
side device
resonance type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010182362A
Other languages
Japanese (ja)
Other versions
JP2012044752A (en
Inventor
貴史 丸山
達也 清水
征士 中津川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010182362A priority Critical patent/JP5461340B2/en
Publication of JP2012044752A publication Critical patent/JP2012044752A/en
Application granted granted Critical
Publication of JP5461340B2 publication Critical patent/JP5461340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、送電側装置から受電側装置へ給電するとともに受電側から送電側に情報を伝送する共鳴型無線電力伝送装置に関する。   The present invention relates to a resonance type wireless power transmission apparatus that feeds power from a power transmission side device to a power reception side device and transmits information from the power reception side to the power transmission side.

携帯電話等の2次電池の充電や、非接触ICカード、RFIDタグ等への電力供給には、有線接続を要しない給電方法が採用されている。これを実現する手段の代表例は電磁誘導方式である。電磁誘導方式の無線電力伝送装置では、送電側と受電側とにコイルを配置し、両者が近接して送電側コイルの磁束が受電側コイルを通過することで、受電側に電力が得られる。この詳細な原理は非特許文献1に記載されている。電磁誘導方式は一般に、十分な伝送効率を得るために、送受信コイルは近接して漏れ磁束を少なくする方法がとられる。   A power feeding method that does not require a wired connection is used for charging a secondary battery such as a mobile phone or supplying power to a non-contact IC card, an RFID tag, or the like. A typical example of means for realizing this is an electromagnetic induction system. In the electromagnetic induction type wireless power transmission device, coils are arranged on the power transmission side and the power reception side, and when both are close to each other and the magnetic flux of the power transmission side coil passes through the power reception side coil, power is obtained on the power reception side. This detailed principle is described in Non-Patent Document 1. In general, in order to obtain a sufficient transmission efficiency, the electromagnetic induction method is a method in which the transmitting and receiving coils are close to each other to reduce the leakage magnetic flux.

このような無線電力伝送装置では、装置の認証等のため、送電側と受電側とが通信を行う場合がある。ここで、送電側から受電側への通信回線を下りリンク、受電側から送電側への通信回線を上りリンクと呼ぶ。電磁誘導を用いて下りリンクを構成するには、送信する電力に変調を加える方法が用いられる。電磁誘導を用いて上りリンクを構成するには、受電側で負荷の接続/非接続により消費電力を変化させ、その変化を送電側で検出する負荷変調が用いられる。   In such a wireless power transmission device, the power transmission side and the power reception side may communicate with each other for device authentication or the like. Here, a communication line from the power transmission side to the power reception side is called a downlink, and a communication line from the power reception side to the power transmission side is called an uplink. In order to configure a downlink using electromagnetic induction, a method of modulating transmission power is used. To configure an uplink using electromagnetic induction, load modulation is used in which power consumption is changed by connecting / disconnecting a load on the power receiving side, and the change is detected on the power transmission side.

図8は、無線電力伝送装置の構成例を示す。
図8において、送電側装置10の電源11に接続される送電側コイル13と、受電側装置20の負荷23に接続される受電側コイル22が電磁誘導で電気的に結合し、電源11から負荷23に電力が供給される。さらに、受電側コイル22と負荷23との間に制御部26により開閉するスイッチ25を挿入し、送電側コイル13に復調部12を接続する。制御部26は、上りリンクで伝送する情報ビットに対応してスイッチ22を開閉することにより、受電側装置20で消費される電力が変化する。これを送電側装置10の復調部12で検出し、受電側装置20から送出された情報ビットを復元する。
FIG. 8 shows a configuration example of the wireless power transmission apparatus.
In FIG. 8, the power transmission side coil 13 connected to the power source 11 of the power transmission side device 10 and the power reception side coil 22 connected to the load 23 of the power reception side device 20 are electrically coupled by electromagnetic induction. Power is supplied to 23. Further, a switch 25 that is opened and closed by the control unit 26 is inserted between the power reception side coil 22 and the load 23, and the demodulation unit 12 is connected to the power transmission side coil 13. The control unit 26 opens and closes the switch 22 corresponding to the information bits transmitted on the uplink, so that the power consumed by the power receiving side device 20 changes. This is detected by the demodulator 12 of the power transmission side device 10 and the information bits sent from the power reception side device 20 are restored.

また、近年では、ある程度(例えば1m)の伝送距離を有する場合でも高い給電効率が得られる共鳴型無線電力伝送装置が提案されている(非特許文献2)。   In recent years, a resonance type wireless power transmission apparatus has been proposed that can obtain high power supply efficiency even when the transmission distance is at a certain level (for example, 1 m) (Non-Patent Document 2).

図9は、共鳴型無線電力伝送装置の構成例を示す。
図9において、送電側装置10の送電側コイル13と電磁誘導で電気的に結合する送電側共鳴コイル14と、受電側装置20の受電側コイル22と電磁誘導で電気的に結合する受電側共鳴コイル25との共鳴現象によって電力が伝達される。共鳴は特定の周波数でのみ発生する。図10はSパラメータ(S21) の例を示す。図よりピークが得られる周波数は限定的であること、負荷に依存してピークの周波数が変動することがわかる。
FIG. 9 shows a configuration example of a resonance type wireless power transmission apparatus.
In FIG. 9, the power transmission side resonance coil 14 that is electrically coupled to the power transmission side coil 13 of the power transmission side device 10 by electromagnetic induction, and the power reception side resonance that is electrically coupled to the power reception side coil 22 of the power reception side device 20 by electromagnetic induction. Electric power is transmitted by a resonance phenomenon with the coil 25. Resonance occurs only at specific frequencies. FIG. 10 shows an example of the S parameter (S21). From the figure, it can be seen that the frequency at which the peak is obtained is limited, and that the peak frequency varies depending on the load.

苅部浩、「非接触ICカード設計入門」、日刊工業新聞社.Hiroshi Isobe, “Introduction to contactless IC card design”, Nikkan Kogyo Shimbun. Aristeidis Karalis, J.D. Joannopoulos and Marin Soljacic, 'Efficient wireless non-radiative mid-range energy transfer,' Annals of Physics, Vol.323 Issue 1, pp.34-48, Apr 2007.Aristeidis Karalis, J.D.Joannopoulos and Marin Soljacic, 'Efficient wireless non-radiative mid-range energy transfer,' Annals of Physics, Vol.323 Issue 1, pp.34-48, Apr 2007.

図9の共鳴型無線電力伝送装置では、受電側から送電側に情報を伝送する構成の場合、通信中も受電側装置が電力供給を受け続けるために受電側装置で負荷インピーダンスを変化させ、その変化を送電側装置で検出する負荷変調方式が考えられている。ここで、負荷インピーダンスが複数の状態をとった場合に、負荷インピーダンスの変化が少ない場合には送電側装置で受電側装置から伝送された情報を検出できない。また、負荷インピーダンスの変化が大きい場合には共鳴が生じる周波数が変化するため、負荷変調を行った場合の負荷への供給電力は低下する。   In the resonance type wireless power transmission device of FIG. 9, in the configuration in which information is transmitted from the power receiving side to the power transmitting side, the load receiving device changes the load impedance so that the power receiving device continues to receive power supply even during communication. A load modulation method in which a change is detected by a power transmission side device is considered. Here, when the load impedance is in a plurality of states and the change in the load impedance is small, the information transmitted from the power receiving side device cannot be detected by the power transmitting side device. Further, when the load impedance changes greatly, the frequency at which resonance occurs changes, so that the power supplied to the load when load modulation is performed decreases.

本発明は、負荷インピーダンスの変化量を適宜設定し、情報の伝送品質を高め、さらに負荷への給電効率を高めることができる共鳴型無線電力伝送装置を提供することを目的とする。   An object of the present invention is to provide a resonance type wireless power transmission apparatus that can appropriately set the amount of change in load impedance, improve the quality of information transmission, and increase the efficiency of power supply to the load.

本発明は、送電側装置の送電側コイルと電磁誘導で電気的に結合される送電側共鳴コイルと、受電側装置の受電側コイルと電磁誘導で電気的に結合される受電側共鳴コイルとの間の共鳴現象を利用し、送電側装置の電源の電力を受電側装置の負荷へ伝送する共鳴型無線電力伝送装置において、受電側装置は、スイッチの開閉により負荷インピーダンスを所定の範囲で変化させる負荷インピーダンス変化手段と、受電側装置から送電側装置へ送信する情報ビットとスイッチの開閉に伴う負荷インピーダンスの変化を対応付けてスイッチの開閉を制御する制御部とを備え、送電側装置は、受電側装置から送信する情報ビットに対応する負荷インピーダンスの変化を検出し、情報ビットを復元する復調部を備え、負荷インピーダンス変化手段は、送電側コイルから受電側装置を見たインピーダンスの変化に基づく反射電力または力率の変化量が規定値以内となるように、負荷インピーダンスを所定の範囲で変化させる構成である。 The present invention includes a power transmission side resonance coil that is electrically coupled to a power transmission side coil of a power transmission side device by electromagnetic induction, and a power reception side resonance coil that is electrically coupled to a power reception side coil of the power reception side device by electromagnetic induction. In the resonance type wireless power transmission device that uses the resonance phenomenon between the power transmission side devices to transmit the power of the power source side device to the load of the power reception side device, the power reception side device changes the load impedance within a predetermined range by opening and closing the switch. A load impedance changing unit; and a control unit that controls the opening and closing of the switch by associating the change of the load impedance associated with the opening and closing of the switch with the information bit transmitted from the power receiving side device to the power transmitting side device. detecting a change in load impedance corresponding to the information bits to be transmitted from the side apparatus, a demodulation unit for restoring the information bit, the load impedance variation unit includes feeding As the amount of change in reflected power or power factor based on the change in impedance viewed power receiving apparatus from the side coils is within a prescribed value, a structure for varying the load impedance at a predetermined range.

復調部は、電源に並列接続され、複素電圧と複素電流を測定して受電側装置から送信された情報ビットを復元する構成である。
復調部は、電源に直列接続され、電流を測定して受電側装置から送信された情報ビットを復元する構成である。
復調部は、電源に方向性結合器またはサーキュレータを介して接続され、各コイルからの反射電力を測定して受電側装置から送信された情報ビットを復元する構成である。
The demodulator is connected in parallel to the power source, and measures the complex voltage and complex current to restore the information bits transmitted from the power receiving device.
The demodulator is connected in series to the power supply, and measures the current to restore the information bits transmitted from the power receiving device.
The demodulator is connected to the power supply via a directional coupler or circulator, and measures the reflected power from each coil to restore the information bits transmitted from the power receiving device.

負荷インピーダンス変化手段は、スイッチの開閉により負荷に接続される抵抗の増減により負荷インピーダンスが設定される構成である。   The load impedance changing means is configured such that the load impedance is set by increasing or decreasing the resistance connected to the load by opening and closing the switch.

負荷インピーダンス変化手段は、スイッチの開閉により負荷に接続されるリアクタンスの増減により負荷インピーダンスが設定される構成である。   The load impedance changing means is configured such that the load impedance is set by increasing or decreasing the reactance connected to the load by opening and closing the switch.

本発明の共鳴型無線電力伝送装置は、受電側装置から送信する情報ビットに応じて負荷インピーダンスを変化させ、送電側装置でそれを電流の変化として検出することにより、情報ビットの伝送が可能である。また、送電側装置から見た電流の変化量やインピーダンスから負荷インピーダンスの変化量を決定することで情報ビットの伝送品質と電力の到達性とを両立することができる。また、負荷インピーダンスごとの送電側装置から見たインピーダンスを参照し、周波数や電源の特性インピーダンスを決定することにより、上り情報伝送時の電力の到達性を向上することができる。   The resonance type wireless power transmission device of the present invention can transmit information bits by changing the load impedance according to the information bits transmitted from the power receiving side device and detecting the change as a current in the power transmission side device. is there. Further, by determining the change amount of the load impedance from the change amount and impedance of the current viewed from the power transmission side device, it is possible to achieve both the transmission quality of information bits and the power reachability. Moreover, the reachability of the power at the time of uplink information transmission can be improved by referring to the impedance viewed from the power transmission side device for each load impedance and determining the frequency and the characteristic impedance of the power source.

本発明の実施例1の共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the resonance type wireless power transmission apparatus of Example 1 of this invention. 送電側装置10の点Aにおける電流の例を示す図である。4 is a diagram illustrating an example of a current at a point A of the power transmission side device 10. FIG. 送電側装置10のA−A’におけるインピーダンスの虚部を示す図である。4 is a diagram illustrating an imaginary part of impedance at A-A ′ of the power transmission side device 10. FIG. 送電側装置10のA−A’におけるインピーダンスの実部を示す図である。6 is a diagram illustrating a real part of impedance at A-A ′ of the power transmission side device 10. FIG. 本発明の実施例2の共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the resonance type wireless power transmission apparatus of Example 2 of this invention. 本発明の実施例3の共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the resonance type wireless power transmission apparatus of Example 3 of this invention. 本発明の実施例4の共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the resonance-type wireless power transmission apparatus of Example 4 of this invention. 無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of a wireless power transmission apparatus. 共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of a resonance type wireless power transmission apparatus. Sパラメータ(S21) の例を示す図である。It is a figure which shows the example of S parameter (S21).

図1は、本発明の実施例1の共鳴型無線電力伝送装置の構成例を示す。
図1において、共鳴型無線電力伝送装置は、電力の送電を担う送電側装置10と、送電された電力を受け取る受電側装置20とからなり、受電側装置20から送電側装置10に情報ビットを伝送するための構成である。送電側装置10から受電側装置20への電力、情報ビットの流れを下り、受電側装置20から送電側装置10への情報ビットの流れを上りと呼ぶ。
FIG. 1 shows a configuration example of a resonance type wireless power transmission apparatus according to a first embodiment of the present invention.
In FIG. 1, the resonance type wireless power transmission device includes a power transmission side device 10 that is responsible for power transmission and a power reception side device 20 that receives the transmitted power. An information bit is transmitted from the power reception side device 20 to the power transmission side device 10. This is a configuration for transmission. The flow of power and information bits from the power transmission side device 10 to the power reception side device 20 is called down, and the flow of information bits from the power reception side device 20 to the power transmission side device 10 is called up.

送電側装置10は、電源11、受電側装置20から送られた上り情報ビットを復元する復調部12、送電側コイル13、送電側共鳴コイル14を有する。受電側装置20は、受電側共鳴コイル21、受電側コイル22、負荷23、抵抗24、スイッチ25、制御部26を有する。送電側コイル13と送電側共鳴コイル14とは電磁誘導で電気的に結合している。送電側共鳴コイル14と受電側共鳴コイル21とは共鳴により電気的に結合している。受電側共鳴コイル21と受電側コイル22とは電磁誘導で電気的に結合している。これにより電源11からの電力を負荷23に伝送することができる。   The power transmission side device 10 includes a power source 11, a demodulation unit 12 that restores uplink information bits sent from the power reception side device 20, a power transmission side coil 13, and a power transmission side resonance coil 14. The power receiving side device 20 includes a power receiving side resonance coil 21, a power receiving side coil 22, a load 23, a resistor 24, a switch 25, and a control unit 26. The power transmission side coil 13 and the power transmission side resonance coil 14 are electrically coupled by electromagnetic induction. The power transmission resonance coil 14 and the power reception resonance coil 21 are electrically coupled by resonance. The power receiving side resonance coil 21 and the power receiving side coil 22 are electrically coupled by electromagnetic induction. Thereby, the power from the power source 11 can be transmitted to the load 23.

上りリンクで伝送される情報ビットは、送電側装置10および受電側装置20を認証するためのものでもよいし、受電側装置20が通信端末である場合の上りデータであってもよい。ここで、簡単のため負荷23単体のインピーダンスは不変とし、図中のB−B’から右側をみたインピーダンスを負荷インピーダンスと呼ぶ。負荷インピーダンスは、スイッチ25の開閉で抵抗24の通過の有無を選択することにより、2つの状態を取り得る。制御部26は、送信する情報ビットに応じてスイッチ25を開閉し、負荷インピーダンスを変化させる構成である。ただし、本実施例の構成では、スイッチ25が開の場合も閉の場合も負荷23への接続は開放されないため、負荷23への電力供給は継続される。   The information bits transmitted on the uplink may be for authenticating the power transmission side device 10 and the power reception side device 20, or may be uplink data when the power reception side device 20 is a communication terminal. Here, for the sake of simplicity, the impedance of the load 23 alone is not changed, and the impedance when the right side is viewed from B-B ′ in the figure is referred to as load impedance. The load impedance can take two states by selecting whether or not the resistor 24 is passed by opening and closing the switch 25. The control unit 26 is configured to change the load impedance by opening and closing the switch 25 according to the information bit to be transmitted. However, in the configuration of the present embodiment, the connection to the load 23 is not released regardless of whether the switch 25 is open or closed, so that power supply to the load 23 is continued.

なお、図1の構成では、抵抗24とスイッチ25が並列に接続され、抵抗24と負荷23とが直列に接続されているが、抵抗24とスイッチ25を直列に接続し、抵抗24と負荷23とを並列に接続してもよい。ただし、上りリンクで伝送される情報ビットとスイッチ25の開閉の関係は逆になる。   In the configuration of FIG. 1, the resistor 24 and the switch 25 are connected in parallel, and the resistor 24 and the load 23 are connected in series. However, the resistor 24 and the switch 25 are connected in series, and the resistor 24 and the load 23 are connected. May be connected in parallel. However, the relationship between the information bits transmitted on the uplink and the opening / closing of the switch 25 is reversed.

受電側装置20と送電側装置10とは電気的に結合しているため、負荷インピーダンスの変化は送電側装置10のA−A’から受電側装置20をみたインピーダンスの変化、または電流の変化として現れる。復調部12はこの変化を検出し、受電側装置20から送信された情報ビットを復元することができる。   Since the power receiving side device 20 and the power transmitting side device 10 are electrically coupled, a change in the load impedance is a change in impedance when the power receiving side device 20 is viewed from AA ′ of the power transmitting side device 10, or a current change. appear. The demodulator 12 can detect this change and restore the information bits transmitted from the power receiving side device 20.

受電側装置20において、スイッチ25が閉で電流が抵抗24を通過しない場合(負荷インピーダンスが高い状態)に送信する情報ビットを0、スイッチ25が開で電流が抵抗24を通過する場合(負荷インピーダンスが低い状態)に送信する情報ビットを1とする。図2は、送電側装置10の点Aにおける電流の時間波形を表しており、情報ビットの変化に連動して電流が変化する。復調部12はこの変化を検出して受電側装置20から送信された情報ビットを復元する。   In the power receiving side device 20, when the switch 25 is closed and the current does not pass through the resistor 24 (when the load impedance is high), the information bit to be transmitted is 0, and when the switch 25 is open and the current passes through the resistor 24 (load impedance Is 1). FIG. 2 shows a time waveform of the current at the point A of the power transmission side device 10, and the current changes in conjunction with the change of the information bit. The demodulator 12 detects this change and restores the information bits transmitted from the power receiving side device 20.

ここで、情報ビットの変化に対する負荷インピーダンスの変化が微小な場合には、点Aの電流の変化も微小となり、外部ノイズや電源の安定度に起因して復号に誤りが生じる恐れがある。このため、点Aの電流の変化が復調に十分なレベルとなるように負荷インピーダンスの変化量を決定する。   Here, when the change in the load impedance with respect to the change in the information bits is minute, the change in the current at the point A is also minute, and there is a possibility that an error may occur in decoding due to external noise or the stability of the power source. Therefore, the amount of change in load impedance is determined so that the change in current at point A is at a level sufficient for demodulation.

一方、情報ビット0の場合に問題無く電力を伝送できる条件において、情報ビット1の場合に負荷インピーダンスが大きく変化する場合には、A−A’から受電側装置20を見たインピーダンスが大きく変化する。これは電力の反射につながり、負荷23まで電力が到達しなくなる。この場合には、反射電力または力率が規定値以下となるように負荷インピーダンスの変化量を決定する。なお、反射電力は方向性結合器等を用いて直接測定できるし、A−A’から受電側装置20を見た力率はA−A’間の複素電圧と点Aの複素電流から求められる。   On the other hand, when the load impedance changes greatly in the case of information bit 1 under the condition that power can be transmitted without any problem in the case of information bit 0, the impedance when the power receiving side device 20 is viewed from AA ′ changes greatly. . This leads to reflection of power, and power does not reach the load 23. In this case, the amount of change in the load impedance is determined so that the reflected power or the power factor is equal to or less than the specified value. The reflected power can be directly measured using a directional coupler or the like, and the power factor when the power receiving side device 20 is viewed from AA ′ is obtained from the complex voltage between AA ′ and the complex current at point A. .

A−A’から受電側装置20を見たインピーダンスの虚部が0であることは共鳴を意味している。したがって、負荷インピーダンスを変化させる場合においてもインピーダンスの虚部は0に近いことが望ましい。情報ビット0の場合と情報ビット1の場合でインピーダンスの虚部の符号が変化し、この間で虚部が0を通過するように周波数を設定することが望ましい。図3は、A−A’における情報ビットごとのインピーダンスの虚部の例を示す。図中の矢印の位置に対応する周波数は、情報ビットの変化で虚部が0を通過する例である。これにより、情報ビットの伝送品質と電力の到達性とを両立させることができる。   The fact that the imaginary part of the impedance when the power receiving device 20 is viewed from A-A ′ is 0 means resonance. Therefore, it is desirable that the imaginary part of the impedance is close to 0 even when the load impedance is changed. It is desirable to set the frequency so that the sign of the imaginary part of the impedance changes between the information bit 0 and the information bit 1, and the imaginary part passes 0 during this time. FIG. 3 shows an example of the imaginary part of the impedance for each information bit in A-A ′. The frequency corresponding to the position of the arrow in the figure is an example in which the imaginary part passes 0 due to a change in information bits. Thereby, both the transmission quality of information bits and the reachability of power can be achieved.

また、A−A’におけるインピーダンスの実部と電源11および電源線路の特性インピーダンスについて、等しいか近くすることでインピーダンス整合を図ることが望ましい。図4は、A−A’における情報ビットごとのインピーダンスの実部の例を示す。図中の矢印の位置に対応する周波数を用いる場合、情報ビットごとのインピーダンスの実部をその中間の50オーム付近に設定すればよい。これにより、情報ビットの伝送品質と電力の到達性とを両立させることができる。   In addition, it is desirable to achieve impedance matching by making the real part of the impedance in A-A ′ and the characteristic impedance of the power source 11 and the power line equal or close to each other. FIG. 4 shows an example of the real part of the impedance for each information bit in A-A ′. When using the frequency corresponding to the position of the arrow in the figure, the real part of the impedance for each information bit may be set around 50 ohms in the middle. Thereby, both the transmission quality of information bits and the reachability of power can be achieved.

以上により、負荷23への電力供給を維持しつつ、上りリンクの情報ビット伝送が可能となる。   As described above, uplink information bit transmission is possible while maintaining power supply to the load 23.

図5は、本発明の実施例2の共鳴型無線電力伝送装置の構成例を示す。
図1の実施例1と比較し、抵抗24がリアクタンス27に置き換わっている。その他の構成は図1の実施例1と同様である。リアクタンス27とは、リアクタンス成分を持つ素子であるコイルやキャパシタを指す。
FIG. 5 shows a configuration example of the resonance type wireless power transmission apparatus according to the second embodiment of the present invention.
Compared with the first embodiment of FIG. 1, the resistor 24 is replaced with a reactance 27. Other configurations are the same as those of the first embodiment shown in FIG. The reactance 27 refers to a coil or a capacitor that is an element having a reactance component.

なお、図5ではリアクタンス27とスイッチ25が並列、リアクタンス27と負荷23とが直列に接続されているが、リアクタンス27とスイッチ25を直列にし、これらを負荷23と並列に接続しても同様である。   In FIG. 5, the reactance 27 and the switch 25 are connected in parallel, and the reactance 27 and the load 23 are connected in series. However, the reactance 27 and the switch 25 are connected in series, and these are connected in parallel with the load 23. is there.

動作は実施例1と同じであるため省略する。なお、負荷インピーダンスの変化として、抵抗成分とリアクタンス成分を同時に変化させてもよい。   Since the operation is the same as that of the first embodiment, a description thereof will be omitted. Note that the resistance component and the reactance component may be changed simultaneously as a change in the load impedance.

本実施例の構成においても、負荷23への電力供給を維持しつつ、上りリンクの情報ビット伝送が可能となる。   Also in the configuration of the present embodiment, uplink information bit transmission is possible while maintaining power supply to the load 23.

図6は、本発明の実施例3の共鳴型無線電力伝送装置の構成例を示す。
図1の実施例1と比較し、復調部12が電源11と直列に接続されている。その他の構成は図1の実施例1と同様である。なお、実施例2のように、抵抗24をリアクタンス27に置き換えてもよい。
FIG. 6 shows a configuration example of the resonance type wireless power transmission apparatus according to the third embodiment of the present invention.
Compared with the first embodiment of FIG. 1, the demodulator 12 is connected in series with the power supply 11. Other configurations are the same as those of the first embodiment shown in FIG. Note that the resistor 24 may be replaced with a reactance 27 as in the second embodiment.

動作は実施例1と同じであるため省略する。ただし、本構成では、インピーダンスの測定手段を持たないため、電流の変化を検出した復調を行う。   Since the operation is the same as that of the first embodiment, a description thereof will be omitted. However, in this configuration, since there is no impedance measurement means, demodulation is performed by detecting a change in current.

本実施例の構成においても、負荷23への電力供給を維持しつつ、上りリンクの情報ビット伝送が可能となる。   Also in the configuration of the present embodiment, uplink information bit transmission is possible while maintaining power supply to the load 23.

図7は、本発明の実施例4の共鳴型無線電力伝送装置の構成例を示す。
図1の実施例1と比較し、復調部12が方向性結合器15またはサーキュレータを介して反射電力を測定するように接続されている。その他の構成は図1の実施例1と同様である。なお、実施例2のように、抵抗24をリアクタンス27に置き換えてもよい。
FIG. 7 shows a configuration example of a resonance type wireless power transmission apparatus according to the fourth embodiment of the present invention.
Compared with the first embodiment of FIG. 1, the demodulator 12 is connected to measure the reflected power via the directional coupler 15 or the circulator. Other configurations are the same as those of the first embodiment shown in FIG. Note that the resistor 24 may be replaced with a reactance 27 as in the second embodiment.

動作は実施例1と同じであるため省略する。ただし、本構成では、反射方向のみの電力が取り出されるため、より精度の高い復調が可能となる。   Since the operation is the same as that of the first embodiment, a description thereof will be omitted. However, in this configuration, power in only the reflection direction is extracted, so that demodulation with higher accuracy is possible.

本実施例の構成においても、負荷23への電力供給を維持しつつ、上りリンクの情報ビット伝送が可能となる。   Also in the configuration of the present embodiment, uplink information bit transmission is possible while maintaining power supply to the load 23.

10 送電側装置
11 電源
12 復調部
13 送電側コイル
14 送電側共鳴コイル
15 方向性結合器
20 受電側装置
21 受電側共鳴コイル
22 受電側コイル
23 負荷
24 抵抗
25 スイッチ
26 制御部
DESCRIPTION OF SYMBOLS 10 Power transmission side apparatus 11 Power supply 12 Demodulation part 13 Power transmission side coil 14 Power transmission side resonance coil 15 Directional coupler 20 Power reception side apparatus 21 Power reception side resonance coil 22 Power reception side coil 23 Load 24 Resistance 25 Switch 26 Control part

Claims (6)

送電側装置の送電側コイルと電磁誘導で電気的に結合される送電側共鳴コイルと、受電側装置の受電側コイルと電磁誘導で電気的に結合される受電側共鳴コイルとの間の共鳴現象を利用し、送電側装置の電源の電力を受電側装置の負荷へ伝送する共鳴型無線電力伝送装置において、
前記受電側装置は、スイッチの開閉により負荷インピーダンスを所定の範囲で変化させる負荷インピーダンス変化手段と、前記受電側装置から前記送電側装置へ送信する情報ビットと前記スイッチの開閉に伴う前記負荷インピーダンスの変化を対応付けて前記スイッチの開閉を制御する制御部とを備え、
前記送電側装置は、前記受電側装置から送信する前記情報ビットに対応する前記負荷インピーダンスの変化を検出し、前記情報ビットを復元する復調部を備え
前記負荷インピーダンス変化手段は、前記送電側コイルから前記受電側装置を見たインピーダンスの変化に基づく反射電力または力率の変化量が規定値以内となるように、前記負荷インピーダンスを所定の範囲で変化させる構成である
ことを特徴とする共鳴型無線電力伝送装置。
A resonance phenomenon between a power transmission side resonance coil that is electrically coupled to the power transmission side coil of the power transmission side device by electromagnetic induction, and a power reception side resonance coil that is electrically coupled to the power reception side coil of the power reception side device by electromagnetic induction. In the resonance type wireless power transmission device that transmits the power of the power source of the power transmission side device to the load of the power reception side device,
The power receiving side device includes a load impedance changing means for changing a load impedance within a predetermined range by opening and closing a switch, an information bit transmitted from the power receiving side device to the power transmitting side device, and the load impedance associated with the opening and closing of the switch. A controller that controls the opening and closing of the switch in association with the change,
The power transmission side device includes a demodulator that detects a change in the load impedance corresponding to the information bit transmitted from the power reception side device and restores the information bit .
The load impedance changing means changes the load impedance within a predetermined range so that a change amount of reflected power or power factor based on a change in impedance when the power receiving side device is viewed from the power transmission side coil is within a specified value. resonance type radio power transmission apparatus, characterized in that the arrangement for.
請求項1に記載の共鳴型無線電力伝送装置において、
前記復調部は、前記電源に並列接続され、複素電圧と複素電流を測定して前記受電側装置から送信された前記情報ビットを復元する構成である
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to claim 1,
The resonance type wireless power transmission device, wherein the demodulation unit is connected in parallel to the power source, and measures a complex voltage and a complex current to restore the information bit transmitted from the power receiving side device.
請求項1に記載の共鳴型無線電力伝送装置において、
前記復調部は、前記電源に直列接続され、電流を測定して前記受電側装置から送信された前記情報ビットを復元する構成である
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to claim 1 ,
The resonance type wireless power transmission apparatus, wherein the demodulator is connected in series to the power supply, and measures the current to restore the information bits transmitted from the power receiving apparatus.
請求項1に記載の共鳴型無線電力伝送装置において、
前記復調部は、前記電源に方向性結合器またはサーキュレータを介して接続され、前記各コイルからの反射電力を測定して前記受電側装置から送信された前記情報ビットを復元する構成である
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to claim 1 ,
The demodulator is connected to the power source via a directional coupler or circulator, and measures the reflected power from each coil to restore the information bits transmitted from the power receiving device. A resonance type wireless power transmission device.
請求項1ないし4のいずれか1項に記載の共鳴型無線電力伝送装置において、
前記負荷インピーダンス変化手段は、前記スイッチの開閉により前記負荷に接続される抵抗の増減により前記負荷インピーダンスが設定される構成である
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to any one of claims 1 to 4 ,
The resonance type wireless power transmission device, wherein the load impedance changing means is configured to set the load impedance by increasing / decreasing a resistance connected to the load by opening / closing the switch.
請求項1ないし4のいずれか1項に記載の共鳴型無線電力伝送装置において、
前記負荷インピーダンス変化手段は、前記スイッチの開閉により前記負荷に接続されるリアクタンスの増減により前記負荷インピーダンスが設定される構成である
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to any one of claims 1 to 4 ,
The resonance type wireless power transmission device, wherein the load impedance changing means is configured to set the load impedance by increasing or decreasing reactance connected to the load by opening and closing the switch.
JP2010182362A 2010-08-17 2010-08-17 Resonant type wireless power transmission device Expired - Fee Related JP5461340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010182362A JP5461340B2 (en) 2010-08-17 2010-08-17 Resonant type wireless power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010182362A JP5461340B2 (en) 2010-08-17 2010-08-17 Resonant type wireless power transmission device

Publications (2)

Publication Number Publication Date
JP2012044752A JP2012044752A (en) 2012-03-01
JP5461340B2 true JP5461340B2 (en) 2014-04-02

Family

ID=45900432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182362A Expired - Fee Related JP5461340B2 (en) 2010-08-17 2010-08-17 Resonant type wireless power transmission device

Country Status (1)

Country Link
JP (1) JP5461340B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262615B1 (en) * 2012-03-05 2013-05-08 엘지이노텍 주식회사 Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power
US9673867B2 (en) * 2012-03-14 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Power transmission device and power feeding system
JP5906175B2 (en) * 2012-12-11 2016-04-20 日本電信電話株式会社 Power transmission method and magnetic resonance type wireless power transmission device
KR102187962B1 (en) 2013-05-10 2020-12-08 삼성전자주식회사 Differential load detection method for detecting a wireless power receiver in wireless power network and wireless power transmitter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911148B2 (en) * 2008-09-02 2012-04-04 ソニー株式会社 Contactless power supply
US8929957B2 (en) * 2008-11-21 2015-01-06 Qualcomm Incorporated Reduced jamming between receivers and wireless power transmitters
JP5244578B2 (en) * 2008-12-24 2013-07-24 株式会社日立製作所 Non-contact power transmission system
US9136914B2 (en) * 2009-01-22 2015-09-15 Qualcomm Incorporated Impedance change detection in wireless power transmission
JP5372537B2 (en) * 2009-01-28 2013-12-18 パナソニック株式会社 Electronic device charging system, charger, and electronic device

Also Published As

Publication number Publication date
JP2012044752A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP6542964B2 (en) Power transmission device and wireless power transmission system
KR101667725B1 (en) Wireless power transmitter and method for controlling the same
JP5456625B2 (en) Resonant type wireless power transmission device
KR102212032B1 (en) Wireless power transfer apparatus and system
TWI484717B (en) Wireless power transmitter, wireless power receiver and wireless power transmission method
EP3031117B1 (en) System and method for alignment and compatibility detection for a wireless power transfer system
CN105515216B (en) Apparatus and method for wireless power transmission
KR101882273B1 (en) Method and apparatus for wireless power reception and method and apparatus for wireless power transmission
US9294153B2 (en) Systems and methods of wireless power transfer with interference detection
KR101262615B1 (en) Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power
JP5395018B2 (en) Resonant type wireless power transmission device
TW201532363A (en) Inductive power supply system with multiple coil primary and inductive power supply and method for the same
KR20130033867A (en) Wireless power transmission system
US10511183B2 (en) System, apparatus and method for optimizing wireless charging via load modulation
US20190089571A1 (en) Adaptive Backscatter Modulation
JP5461340B2 (en) Resonant type wireless power transmission device
US11626756B1 (en) Wireless power and data transfer system with out of band communications hand off
EP3350899B1 (en) Methods and apparatus utilizing multi-filar alignment assistance in wireless power transfer applications
JP6476096B2 (en) Receiving apparatus and control method thereof
JP2010284066A (en) Communication device, communication terminal and communication system
KR101731447B1 (en) Wireless power transmitter and method for controlling the same
US11469626B2 (en) Wireless power receiver for receiving high power high frequency transfer
KR102508492B1 (en) Apparatus For Handling Feedback Signal In Wireless Power Transmitter
US10491027B2 (en) Wireless power transmission
JP5801240B2 (en) Resonant type wireless power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees