JP5460749B2 - Cross-flow fan, blower and air conditioner - Google Patents

Cross-flow fan, blower and air conditioner Download PDF

Info

Publication number
JP5460749B2
JP5460749B2 JP2012003930A JP2012003930A JP5460749B2 JP 5460749 B2 JP5460749 B2 JP 5460749B2 JP 2012003930 A JP2012003930 A JP 2012003930A JP 2012003930 A JP2012003930 A JP 2012003930A JP 5460749 B2 JP5460749 B2 JP 5460749B2
Authority
JP
Japan
Prior art keywords
region
cross
radius
blade
flow fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012003930A
Other languages
Japanese (ja)
Other versions
JP2012067768A (en
Inventor
敬英 田所
尚史 池田
誠司 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012003930A priority Critical patent/JP5460749B2/en
Publication of JP2012067768A publication Critical patent/JP2012067768A/en
Application granted granted Critical
Publication of JP5460749B2 publication Critical patent/JP5460749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

この発明は、空気調和機の室内機などに使われる貫流ファン及びそれを用いた送風機、空気調和機に関する。   The present invention relates to a cross-flow fan used in an indoor unit of an air conditioner, a blower using the same, and an air conditioner.

近年の送風機や空気調和機は、広い部屋に対応するため必要能力が大きくなってきており、そのためには送風機の高風量化が求められる。また省エネ性と快適性向上のため、送風機や空気調和機は、低入力化と低騒音化が求められている。これらの目的をファンの翼形状によって実現させる事例がある。
(1)例えば、気流が翼に流入する方向と翼の入口角を合わせて騒音発生を抑制する事例がある(例えば特許文献1)。
(2)また、ファン外径を幅方向に変化させて音発生のタイミングをずらした事例もある(例えば特許文献2、特許文献3)。
(3)また、羽根車軸方向の翼弦長を変化させて軸方向の風速分布を均一化する事例もある(例えば特許文献4)。
In recent years, blowers and air conditioners have a larger required capacity to cope with a large room. For this purpose, it is required to increase the air volume of the blower. In order to save energy and improve comfort, blowers and air conditioners are required to have low input and low noise. There are cases where these objectives are realized by the fan blade shape.
(1) For example, there is a case where noise generation is suppressed by matching the direction in which the airflow flows into the blade and the inlet angle of the blade (for example, Patent Document 1).
(2) There is also a case where the sound generation timing is shifted by changing the fan outer diameter in the width direction (for example, Patent Document 2 and Patent Document 3).
(3) In addition, there is an example in which the chord length in the impeller axial direction is changed to uniform the axial wind speed distribution (for example, Patent Document 4).

特開2006−329099号公報(第7頁、第1図)Japanese Patent Laying-Open No. 2006-329099 (page 7, FIG. 1) 特開平9−100795号公報(第6頁、第2図)Japanese Patent Laid-Open No. 9-1000079 (page 6, FIG. 2) 特開2001−50189号公報(第4頁、第1図や第3図)JP 2001-50189 A (page 4, FIGS. 1 and 3) 特開10−77988号公報(第6頁、第4図)Japanese Patent Laid-Open No. 10-77788 (page 6, FIG. 4) 国際公開第2006/35933号International Publication No. 2006/35933

従来の貫流ファンは幅方向に翼断面形状が同一であったため、吹出し翼列で翼列の向きと翼列に流入する気流方向が一致する場所が幅方向に同じ位置になっており、翼間風速が局所的に速くなっていた。翼間を通過するときのエネルギー損失は風速の2乗に比例し、騒音は風速の6乗に比例する。このため、風速が大きくなるとファンの入力悪化と騒音増加を招いていた。さらに、ファンから吹き出した後の風路に局所的に高速な主流が残るため、速度差により渦が発生してエネルギー損失が大きくなると共に、吹出し口にある気流制御用ベーンに高速流が衝突して圧力変動が高まり、騒音が大きくなるという課題がある。特許文献1で示したように、幅方向でファン外周側の出口角を変化させると、角度の大小で翼列の通風抵抗を調整して吹出し位置をずらすことはできる。しかし、出口角を大きくしすぎると吸込み側の翼列で流れが翼に沿わずに剥がれる剥離現象が発生して翼先端で渦が発生し、エネルギー損失と騒音が大きくなる。従って、ファン外周側だけの制御により吹出し風量を広範囲に分布させることは困難である。   Since the conventional cross-flow fan has the same blade cross-sectional shape in the width direction, the location where the direction of the blade row matches the direction of the airflow flowing into the blade row in the blowing blade row is the same position in the width direction. The wind speed increased locally. The energy loss when passing between the blades is proportional to the square of the wind speed, and the noise is proportional to the sixth power of the wind speed. For this reason, when the wind speed increases, the fan input deteriorates and the noise increases. In addition, because a high-speed mainstream remains locally in the air path after blowing out from the fan, vortices are generated due to the speed difference and energy loss increases, and high-speed flow collides with the airflow control vane at the outlet. Therefore, there is a problem that pressure fluctuation increases and noise increases. As shown in Patent Document 1, when the outlet angle on the fan outer peripheral side is changed in the width direction, the blowing position can be shifted by adjusting the ventilation resistance of the blade row by the magnitude of the angle. However, if the exit angle is too large, a separation phenomenon occurs in which the flow does not follow the blades in the blade row on the suction side, and a vortex is generated at the blade tip, resulting in increased energy loss and noise. Therefore, it is difficult to distribute the blown air volume over a wide range by controlling only the fan outer peripheral side.

また、特許文献2、特許文献3のようにファン外径を変化させると、翼弦長の長短で風速の大小をつけることができて、風路の風速分布は均一化する。しかし、吸込み翼列先端の方向がファン径により変化するため、流れが翼に沿う場所もあれば、大きなはく離が発生する場所ができることとなり、送風機全体のエネルギー損失と騒音との低減は難しい。また、ファンとスタビライザ(ノーズ)のシール位置が幅方向に同一にならないため、漏れ流れが発生して吹出し風量が低下する恐れがある。またファン径が大きくなると、製造ばらつきにより肉厚が不均一な翼が製造されたときに振動が大きくなる。   Further, when the fan outer diameter is changed as in Patent Document 2 and Patent Document 3, the length of the chord can be changed to increase or decrease the wind speed, and the wind speed distribution in the air path is made uniform. However, since the direction of the tip of the suction blade row changes depending on the fan diameter, if there is a place where the flow is along the blade, there will be a place where large separation occurs, and it is difficult to reduce the energy loss and noise of the entire blower. In addition, since the seal positions of the fan and the stabilizer (nose) are not the same in the width direction, there is a possibility that a leakage flow occurs and the blown-out air volume decreases. Further, when the fan diameter is increased, vibration is increased when a blade having a non-uniform thickness is manufactured due to manufacturing variations.

特許文献4の事例にあるように翼弦長を軸方向に変化させた事例では、羽根車軸方向の風速分布を均一にできると思われるが、羽根車周方向に均一吹き出しすることは困難と思われる。羽根車周方向に均一に吹き出すためには回転軸方向の翼形状に明確な差を設ける必要があり、特許文献4の図4に示すように翼形状が次第に変化する翼形状では、軸方向の断面が同一である2次元翼と同様に特定の翼列のみに吹出し流れが集中する恐れがある。   In the case of changing the chord length in the axial direction as in the case of Patent Document 4, it seems that the wind speed distribution in the impeller axis direction can be made uniform, but it seems difficult to blow out uniformly in the impeller circumferential direction. It is. In order to blow out uniformly in the circumferential direction of the impeller, it is necessary to provide a clear difference in the blade shape in the rotation axis direction. As shown in FIG. 4 of Patent Document 4, in the blade shape in which the blade shape gradually changes, Like the two-dimensional blades having the same cross section, the blowout flow may concentrate only on a specific blade row.

この発明は、吸込み側の剥離流れを防止しながら、ファンの吹出し位置をずらして、翼間の最大風速を低減してファンの低入力化、低騒音化を図ることを目的とする。また、ファン吹出し後の風路の風速分布を均一化して風路のエネルギー損失と騒音とを低減した送風機や空気調和機を提供することを目的とする。   An object of the present invention is to reduce the fan input position and noise by reducing the maximum wind speed between the blades by shifting the fan blowing position while preventing the separation flow on the suction side. It is another object of the present invention to provide a blower or an air conditioner that reduces the energy loss and noise of the air passage by uniformizing the wind speed distribution of the air passage after the fan blows out.

この発明の貫流ファンは、
回転軸の長手方向に所定の間隔で配置された2つ以上のリング形状の翼支持部材と、
隣り合う2つの前記翼支持部材の間に、外周寄り、かつ、周方向に間隔をあけて配置された複数の翼と
を備えた貫流ファンにおいて、
隣り合う2つの前記翼支持部材の間に配置された前記複数の翼からなる構成部分である単位ユニットは、
2つの前記翼支持部材の間の任意の位置で前記回転軸を法線とする平面で切断されると、前記回転軸と前記平面との交点から遠い端部と近い端部との2つの端部を持つ各翼の断面が現われ、
各翼の断面の前記交点から遠い端部は前記平面上において前記交点を中心とする第1の円の円周上に並び、かつ、各翼の断面の前記交点から近い端部は前記平面上において前記交点を中心とする第2の円の円周上に並び、
各翼の断面は、外周円である前記第1の円と内周円である前記第2の円との間に存在し、
少なくとも一つの前記単位ユニットは、
一方の前記翼支持部材から他方の前記翼支持部材に向かって前記平面で順次切断されると、前記内周円である前記第2の円の半径が所定の長さの第1半径で連続する第1半径領域と、前記内周円である前記第2の円の半径が前記第1半径よりも短い第2半径で連続する第2半径領域とが出現する出現ユニットであり、
前記出現ユニットは、
一方の前記翼支持部材から他方の前記翼支持部材に向かって前記平面で順次切断されると、前記第2半径領域が前記出現ユニットの前記回転軸方向における一方の前記翼支持部材の側と他方の前記翼支持部材の側との両側に出現し、かつ、ただ1つの前記第1半径領域が2つの前記2半径領域の間に出現することを特徴とする。
The cross-flow fan of this invention
Two or more ring-shaped blade support members disposed at predetermined intervals in the longitudinal direction of the rotation shaft;
In a cross-flow fan comprising a plurality of blades arranged near the outer periphery and spaced apart in the circumferential direction between two adjacent blade support members,
A unit unit that is a constituent part composed of the plurality of blades disposed between two adjacent blade support members,
When cut at a plane between the rotation axis and the normal line at an arbitrary position between the two blade support members, two ends of an end portion far from an intersection of the rotation shaft and the plane and an end portion close to the end portion A section of each wing with a part appears,
End portions of the cross sections of the blades that are far from the intersection point are arranged on the plane of the first circle centered on the intersection point, and end portions of the cross sections of the blades that are close to the intersection point are on the plane surface. Arranged on the circumference of a second circle centered on the intersection at
A cross section of each wing exists between the first circle which is an outer circumference circle and the second circle which is an inner circumference circle,
At least one of the unit units is
When the plane is sequentially cut from the one blade support member toward the other blade support member in the plane, the radius of the second circle, which is the inner circumferential circle, continues with the first radius having a predetermined length. An appearance unit in which a first radius region and a second radius region in which a radius of the second circle which is the inner circumferential circle is continuous with a second radius shorter than the first radius appear,
The appearance unit is
When the plane is sequentially cut from one of the blade support members toward the other blade support member in the plane, the second radius region is one side of the blade support member in the rotation axis direction of the appearance unit and the other The first radiating region appears on both sides of the wing support member and only one first radiating region appears between the two second radiating regions.

この発明により、低入力、低騒音の貫流ファンを提供できる。   According to the present invention, a low-input, low-noise cross-flow fan can be provided.

実施の形態1の貫流ファン1の構成図。1 is a configuration diagram of a cross-flow fan 1 according to Embodiment 1. FIG. 実施の形態1の貫流ファン1の断面図。FIG. 3 is a cross-sectional view of cross-flow fan 1 according to the first embodiment. 実施の形態1の貫流ファン1の翼の概観図。FIG. 2 is a schematic view of a blade of cross-flow fan 1 according to the first embodiment. 実施の形態1の貫流ファン1を用いた空気調和機30の断面図。Sectional drawing of the air conditioner 30 using the cross-flow fan 1 of Embodiment 1. FIG. 実施の形態1の貫流ファン1のファン中心軸高さにおける翼間気流を示す模式図。FIG. 3 is a schematic diagram showing an airflow between blades at the height of the fan central axis of the once-through fan 1 according to the first embodiment. 実施の形態1の貫流ファン1のユニット下部における翼間気流を示す模式図。FIG. 3 is a schematic diagram showing an airflow between blades in a lower part of the cross-flow fan 1 according to the first embodiment. 実施の形態1の貫流ファン1の吹き出し気流を示す模式図。FIG. 3 is a schematic diagram showing a blown air flow of the once-through fan 1 according to the first embodiment. 実施の形態1の従来と貫流ファン1との送風機の吹出し風速分布の模式図。The schematic diagram of the blowing wind speed distribution of the air blower of the conventional and cross-flow fan 1 of Embodiment 1. FIG. 実施の形態1の貫流ファン1を用いた送風機の試験結果を示す図。The figure which shows the test result of the air blower using the once-through fan 1 of Embodiment 1. FIG. 実施の形態2の貫流ファン1の断面図。Sectional drawing of the once-through fan 1 of Embodiment 2. FIG. 実施の形態3の貫流ファン1の断面図。Sectional drawing of the once-through fan 1 of Embodiment 3. FIG. 実施の形態4の貫流ファン1の断面図。Sectional drawing of the crossflow fan 1 of Embodiment 4. FIG. 実施の形態5の貫流ファン1の断面図。Sectional drawing of the once-through fan 1 of Embodiment 5. FIG. 実施の形態5の貫流ファン1の翼の概観図。FIG. 7 is a schematic view of a blade of a crossflow fan 1 according to a fifth embodiment. 実施の形態7の貫流ファン1の断面図。Sectional drawing of the once-through fan 1 of Embodiment 7. FIG. 実施の形態9の貫流ファン1の断面図。FIG. 10 is a cross-sectional view of cross-flow fan 1 according to a ninth embodiment.

実施の形態1.
図1〜図9を参照して実施の形態1の貫流ファン1を説明する。図1は、実施の形態1の貫流ファン1の構造を示す図である。図1(a)は、貫流ファン1の外観を示す斜視図ある。図1(b)は、リング2とリング2との間の拡大部である。
図1(c)は、図1(b)のA−A断面である。
Embodiment 1 FIG.
The once-through fan 1 of Embodiment 1 is demonstrated with reference to FIGS. FIG. 1 is a diagram illustrating a structure of a cross-flow fan 1 according to the first embodiment. FIG. 1A is a perspective view showing the appearance of the cross-flow fan 1. FIG. 1B is an enlarged portion between the ring 2 and the ring 2.
FIG.1 (c) is the AA cross section of FIG.1 (b).

貫流ファン1は、回転軸1−1の長手方向に所定の間隔で配置された複数のリング形状の翼支持部材(以下、リングという)と(図1(a))、隣り合う2つのリング2の間に、外周寄り、かつ、周方向に間隔をあけて配置された複数の翼(図1(c))とを備えている。図1(a)の貫流ファン1は、6つのリング2を備え、隣合う2つリングの間には、35枚の翼3が配置されている。図1(a)において、隣り合う2つのリングの間に取り付けられた複数の翼からなる構成部分を、羽根車単体4(あるいは1連という)。図1(a)の貫流ファン1は、5つの「一連」(単位ユニット)からなる。   Cross-flow fan 1 includes a plurality of ring-shaped blade support members (hereinafter referred to as rings) arranged at predetermined intervals in the longitudinal direction of rotating shaft 1-1 (FIG. 1A), and two adjacent rings 2 In between, there are a plurality of wings (FIG. 1 (c)) arranged near the outer periphery and spaced apart in the circumferential direction. The cross-flow fan 1 shown in FIG. 1A includes six rings 2, and 35 blades 3 are arranged between two adjacent rings. In FIG. 1A, a component part composed of a plurality of blades attached between two adjacent rings is a single impeller 4 (or a single station). The cross-flow fan 1 in FIG. 1A is composed of five “series” (unit units).

(貫流ファン1の翼の断面形状)
図2は、貫流ファン1の断面形状と外観とを示す図である。図2(a)は図1(b)と同様の図である。図2(b)はS−S断面を示す図である。図2(c)はC−C断面を示す図である。図2(a)に示すように、1連におけるリング2−1とリング2−2との間を所定の幅をもつ3つの領域に分け、左から順に左側の領域である領域S(Side)、中央の領域である領域C(Center)、右側領域である領域Sとしている。右側、左側とも領域Sとしたのは、後述のように右側、左側とも翼の断面形状が同じであるためである。この3つの領域の幅は、図中では1連幅の1/3ずつとしている。領域S、領域C、領域Sで以下のように翼断面形状を変化させる。
(Cross sectional shape of cross-flow fan 1 blades)
FIG. 2 is a view showing a cross-sectional shape and an appearance of the cross-flow fan 1. FIG. 2A is a view similar to FIG. FIG.2 (b) is a figure which shows SS cross section. FIG.2 (c) is a figure which shows CC cross section. As shown in FIG. 2A, a region between the ring 2-1 and the ring 2-2 in a series is divided into three regions having a predetermined width, and a region S (Side) which is a left region in order from the left. , A region C (Center) which is a central region and a region S which is a right region. The reason why the right and left sides are defined as the region S is that, as will be described later, the right and left sides have the same cross-sectional shape. The widths of these three regions are each 1/3 of one continuous width in the figure. In the region S, the region C, and the region S, the blade cross-sectional shape is changed as follows.

以下、リング2に近い領域Sを「リング近傍部」と呼ぶ場合があり、翼中央部の領域Cを「翼中央部」と呼ぶ場合がある。   Hereinafter, the region S close to the ring 2 may be referred to as “ring vicinity”, and the region C in the wing center may be referred to as “wing center”.

リング近傍部(領域S)と翼中央部(領域C)との翼の断面形状を比較する。S−S断面を示す図2(b)、C−C断面を示す図2(c)において、翼肉厚の中心を結ぶ線(翼中心線5)は円弧で形成されている。そして翼先端R部の曲率中心6(R部がない場合は尖部先端)を通る円(内径7、外径8の後述の第1の円、第2の円)を定義する。すなわち図2(b)、(c)に示すように、一連は、2つのリングの間の任意の位置で回転軸1−1を法線とする平面で切断されると、回転軸1−1と平面との交点(円の中心となる図3の点P)から遠い端部5−1と近い端部5−2との2つの端部を持つ各翼の断面が現われる。それぞれの翼断面の遠い端部5−1は、前記平面上においてその交点を中心とする第1の円(半径8。外径という場合がある。)の円周上に並ぶ。また各翼の断面の近い端部5−2は、前記平面上において前記交点を中心とする第2の円(半径7。内径という場合がある。)の円周上に並ぶ。各翼の断面(S−S断面、C−C断面)は、外周円である第1の円と内周円である第2の円との間に存在する(図2(b)、(c))。   The cross-sectional shapes of the blades in the ring vicinity (region S) and the blade center (region C) are compared. In FIG. 2B showing the SS cross section and FIG. 2C showing the CC cross section, a line (blade center line 5) connecting the centers of the blade thicknesses is formed by an arc. Then, circles (a first circle and a second circle described later having an inner diameter 7 and an outer diameter 8) passing through the center of curvature 6 of the blade tip R portion (the tip tip when there is no R portion) are defined. That is, as shown in FIGS. 2B and 2C, when a series is cut at a plane between the two rings at a normal line with the rotation axis 1-1 as a normal line, the rotation axis 1-1. And a cross section of each wing having two end portions, ie, an end portion 5-1 which is far from an intersection (a point P in FIG. 3 which is the center of the circle) and a near end portion 5-2. The far ends 5-1 of each blade section are arranged on the circumference of a first circle (radius 8, sometimes referred to as an outer diameter) centered on the intersection on the plane. Further, the end portions 5-2 of the cross sections of the blades are arranged on the circumference of a second circle (radius 7; sometimes referred to as an inner diameter) centered on the intersection on the plane. The cross section of each blade (SS cross section, CC cross section) exists between a first circle that is an outer circumference circle and a second circle that is an inner circumference circle (FIGS. 2B and 2C). )).

ここで、領域S(S−S断面)と領域C(C−C断面)とにおける翼の内径7、外径8を比較する。そうすると、図2(b)、(c)に示すように、翼中央部の翼内径(半径7c)は、リング近傍の翼内径(半径7s)よりも短くなっている(半径7s>半径7c)。また、翼外径は一連の間で同一である(半径8s=半径8c)。内周側の円(第2の円)に関して半径が短いということは、翼断面の形状(翼弦長という)が長いということである。つまり領域Cの方が領域Sよりも翼弦長が長い。この関係を図2(c)の半径7s、7cとの長さで表現した。また後述する図3でも述べる。   Here, the inner diameter 7 and the outer diameter 8 of the blade in the region S (SS section) and the region C (CC section) are compared. Then, as shown in FIGS. 2B and 2C, the blade inner diameter (radius 7c) at the blade central portion is shorter than the blade inner diameter (radius 7s) in the vicinity of the ring (radius 7s> radius 7c). . The blade outer diameter is the same between the series (radius 8s = radius 8c). A short radius with respect to the inner circumferential side circle (second circle) means that the shape of the blade cross section (referred to as the chord length) is long. That is, the chord length in the region C is longer than that in the region S. This relationship is expressed by the lengths with the radii 7s and 7c in FIG. This will also be described in FIG.

(出現ユニット)
図2(a)〜(c)に示すように、一連(単位ユニット)は、一方のリング2−1から他方のリング2−2に向かって回転軸1−1を法線とする平面で順次切断されると、内周円である第2の円の半径7が所定の長さの第1半径7aで連続する領域S(第1半径領域)と、第1半径7aよりも短い第2半径7cで連続する領域C(第2半径領域)とが出現する。このように一連のうち第1半径領域と第2半径領域とが出現する一連を、出現ユニットという。図1(a)に示すように貫流ファン1は5つの一連からなる。5つの一連の全部が出現ユニットでもよいし、少なくとも一つが出現ユニットでもよい。図2(a)の出現ユニットは、一方のリング2−1から他方のリング2−2に向かって回転軸1−1を法線とする平面で順次切断されると、領域S(第1半径領域)が出現ユニットのリング2−1側とリング2−2側との両側に出現し、かつ、領域C(第2半径領域)が2つの領域Sの間に出現する。
(Appearance unit)
As shown in FIGS. 2A to 2C, a series (unit unit) is sequentially formed on a plane having the rotation axis 1-1 as a normal line from one ring 2-1 toward the other ring 2-2. When cut, a region S (first radius region) in which the radius 7 of the second circle, which is an inner circle, continues with a first radius 7a having a predetermined length, and a second radius shorter than the first radius 7a A continuous region C (second radius region) appears at 7c. A series in which the first radius area and the second radius area appear in the series is referred to as an appearance unit. As shown in FIG. 1A, the cross-flow fan 1 is composed of five series. All of the series of five may be appearance units, or at least one may be appearance units. When the appearance unit in FIG. 2A is sequentially cut from one ring 2-1 to the other ring 2-2 along a plane having the rotation axis 1-1 as a normal line, the region S (first radius) (Region) appears on both sides of the ring 2-1 side and the ring 2-2 side of the appearance unit, and a region C (second radius region) appears between the two regions S.

図3は、出現ユニットに取り付けられる翼3の外観図を示す。図3は1枚の翼を示している。翼3の外観は、内周側が回転軸1−1方向において点31〜点36に推移する凸型形状である。領域S(点31〜点32、点35〜点36の範囲)と領域C(点33〜点34の範囲)との間は段差状に接続されている。   FIG. 3 shows an external view of the wing 3 attached to the appearance unit. FIG. 3 shows one wing. The external appearance of the wing | blade 3 is a convex shape in which an inner peripheral side changes to the points 31-36 in the rotating shaft 1-1 direction. A step is connected between the region S (the range from the point 31 to the point 32 and the point 35 to the point 36) and the region C (the range from the point 33 to the point 34).

(空気調和機)
図4は、この貫流ファン1を用いる空気調和機30の構成例である。本実施の形態1の貫流ファン1の周囲を取り囲むように、空気と冷媒との熱交換をする熱交換器9が配置されている。熱交換器9と吹き出し口18の間には、埃除去用または空気清浄用の機器10やフィルター11が配置されている機種もある。貫流ファン1の吸込み側と吹き出し側とは、ユニット正面側のノズル12先端に取り付けられたスタビライザ13、背面側のリアガイド14で仕切られている。貫流ファン1の回転(回転方向15)により、吸い込み口から流入した気流16はフィルター11を通過し、熱交換器9を通過して熱交換した後、送風機に吸込まれ(範囲37)、反対側から吹出す(範囲38)。風路を通過した気流は気流制御用のベーン17で定められた方向に沿って、吹き出し口18から機外に排出される。
(Air conditioner)
FIG. 4 is a configuration example of an air conditioner 30 using the cross-flow fan 1. A heat exchanger 9 for exchanging heat between the air and the refrigerant is arranged so as to surround the periphery of the once-through fan 1 of the first embodiment. There is also a model in which a dust removing or air cleaning device 10 and a filter 11 are disposed between the heat exchanger 9 and the air outlet 18. The suction side and the blowout side of the cross-flow fan 1 are partitioned by a stabilizer 13 attached to the tip of the nozzle 12 on the front side of the unit and a rear guide 14 on the back side. Due to the rotation of the cross-flow fan 1 (rotation direction 15), the air flow 16 flowing in from the suction port passes through the filter 11, passes through the heat exchanger 9 and exchanges heat, and is then sucked into the blower (range 37), on the opposite side. (Range 38). The airflow that has passed through the air passage is discharged from the outlet 18 along the direction determined by the vane 17 for airflow control.

(動作)
次に動作について説明する。送風機の吸込み口から流入した気流16は貫流ファン1の翼列に吸込まれ、ファン内側を通過して、ファン中心に対して吸込み側(範囲37)と反対側の翼列(範囲38)から吹出す。ここで、ファンの吹出し翼列と気流の流入方向との関係について、気流解析による結果を用いて説明する。
(Operation)
Next, the operation will be described. The airflow 16 flowing in from the suction port of the blower is sucked into the blade row of the once-through fan 1, passes through the inside of the fan, and blows from the blade row (range 38) opposite to the suction side (range 37) with respect to the fan center. put out. Here, the relationship between the blowing blade row of the fan and the inflow direction of the airflow will be described using the results of the airflow analysis.

(ファン中心軸高さ19の場合)
図5は、翼列がファン中心軸高さ19にあるときの翼列周りの流れ場を示す。図5(a)は、ファン中心軸高さ19の翼列を示している。図5(b)は、ファン中心軸高さ19でのリング近傍(S−S断面相当)の断面を示している。図5(c)は、ファン中心軸高さ19での翼中央部(C−C断面相当)の断面を示している。翼に流入する気流方向20(回転する翼の座標系から見た相対速度)と、翼の弦線21(内外の翼先端と結んだ直線)方向とは、略平行関係になる。翼列の通風抵抗は摩擦支配になるため、両翼列の通風抵抗の差は小さい。長弦翼は吹出す空気に対してエネルギーを多く与えるため、翼が長い翼中央部(領域C)での吹き出し風速が速くなる。すなわちファン中心軸高さ19の場合、長弦翼領域の方が吹き出し風速が速くなる。
(When fan center axis height is 19)
FIG. 5 shows the flow field around the blade row when the blade row is at the fan center axis height 19. FIG. 5A shows a blade row having a fan center axis height 19. FIG. 5B shows a cross section in the vicinity of the ring (corresponding to the SS cross section) at the fan central axis height 19. FIG. 5C shows a cross section of the blade central portion (corresponding to the CC cross section) at the fan center axis height 19. The direction 20 of airflow flowing into the wing (relative speed as viewed from the coordinate system of the rotating wing) and the direction of the chord line 21 (straight line connecting the inner and outer wing tips) are substantially parallel to each other. Since the draft resistance of the cascade is dominated by friction, the difference in draft resistance between the two cascades is small. Since the long chord wing gives a lot of energy to the air blown out, the blowing wind speed at the central portion (region C) of the long wing becomes high. That is, when the fan center axis height is 19, the blown wind speed is higher in the long chord blade region.

(ユニット下部22の場合)
図6は、翼列が回転してユニット下部22に移動したとの翼列周りの流れ場を示す。図6(a)は、ユニット下部22での翼列を示している。図6(b)は、ユニット下部22でのリング近傍(S−S断面相当)の断面を示している。図6(c)は、ユニット下部22での翼中央部(C−C断面相当)の断面を示している。翼列が回転してユニット下部22に移動したとき、翼中央部(図6(c))は、リング近傍部(図6(b))よりも入口・出口の方向23、24(翼入口出口先端における翼中心線の接線方向とする)のなす角度θ25が大きい(θ25S<θ25C)。このため、気流20が翼間を通過する際の流入〜流出の気流転向が大きくなるので、角度θ25が大きいほど通風抵抗が大きくなる。従って、角度θ25が小さく抵抗が小さい短弦翼列からの吹出し風速が速くなる。
(In the case of the lower unit 22)
FIG. 6 shows the flow field around the cascade as the cascade rotates and moves to the lower unit 22. FIG. 6A shows the blade row at the unit lower part 22. FIG. 6B shows a cross section near the ring (corresponding to the SS cross section) at the unit lower part 22. FIG. 6C shows a cross section of the blade central portion (corresponding to the CC cross section) at the unit lower portion 22. When the blade row rotates and moves to the unit lower part 22, the blade central part (FIG. 6C) has inlet / outlet directions 23 and 24 (blade inlet / outlet directions) rather than the ring vicinity (FIG. 6B). The angle θ 25 formed by the tangential direction of the blade center line at the tip is large (θ 25S25C ). Therefore, air flow 20 is because the air flow deflecting the inflow-outflow when passing between blades increases, ventilation resistance as the angle theta 25 is large is increased. Therefore, speed of air blowing from the short chord blade row angle theta 25 is small small resistance is increased.

図7は、貫流ファン1において、ファン中心軸高さ19(図7(a))とユニット下部22(図7(b))との翼列から吹出した気流の軌跡を示している。図7(a)は、ファン中心軸高さ19における領域C(長弦翼の領域)の気流を示している。図8(a)で後述するようにファン中心軸高さ19では翼列から気流は吹き出しにくいのであるが、領域Cを長弦翼としたため図5(b)の効果によって、ファン中心軸高さ19の翼間から気流26aが吹き出し、気流26aは風路下側41に沿って流れていく。また図7(b)は、ユニット下部22における領域S(短弦翼の領域)の気流を示している。図8(a)で後述するようにユニット下部22では翼列から気流は吹き出しにくいのであるが、図6(a)で述べた効果によって、ユニット下部22の翼間から気流26bが吹き出し、気流26bは風路上側に沿って流れていく。ファン中心軸高さ19とユニット下部22との間の位置では上記で示した2つの現象の中間状態になるため、風路の上から下まで気流が吹き分けされて風路高さ方向に均一な吹出し流れが形成される。また、翼中央部とリング近傍部間においても吹き分けされるため、ファン幅方向にも吹出し気流が分散される。このように本実施の形態1の貫流ファン1では、吹出し気流を周方向と幅方向に分散させることができる。   FIG. 7 shows the trajectory of the airflow blown out from the blade row of the fan center axis height 19 (FIG. 7A) and the unit lower part 22 (FIG. 7B) in the cross-flow fan 1. FIG. 7A shows the airflow in the region C (long chord blade region) at the fan center axis height 19. As will be described later with reference to FIG. 8A, it is difficult for the airflow to blow out from the blade row at the fan center axis height 19, but since the region C is a long chord blade, the effect of FIG. The airflow 26 a is blown out from between the 19 blades, and the airflow 26 a flows along the air path lower side 41. FIG. 7B shows the airflow in the region S (short chord blade region) in the unit lower part 22. As will be described later with reference to FIG. 8A, the air flow from the blade row is difficult to blow out at the unit lower portion 22, but the air flow 26b is blown out from between the blades of the unit lower portion 22 due to the effect described with reference to FIG. Flows along the upper wind path. At the position between the fan center axis height 19 and the unit lower part 22, the air flow is blown from the top to the bottom of the air path so that it is uniform in the air path height direction. A straight flow is formed. Further, since the air is also blown between the blade center portion and the ring vicinity portion, the blown airflow is also dispersed in the fan width direction. Thus, in the once-through fan 1 of the first embodiment, the blown airflow can be dispersed in the circumferential direction and the width direction.

図8(a)は、従来のファンの吹き出し状態を示す。従来のファンでは各断面で同一の吹き出し状態である。図8(b)は、貫流ファン1の出現ユニットの各断面の吹き出し状態を重ねてみたものに相当する。図8(a)に示す従来のファンでは、吹出し気流が局所の翼間に偏る。すなわち、従来のファンでは、ファン中心軸高さ19あるいはユニット下部22では気流が吹き出しにくい。一方、図8(a)に示すように右下45度の方向では気流が局所的に吹き出している。一方、本実施の形態1の貫流ファン1では、図8(b)に示すように吹出し気流が局所の翼間に偏ることなく、ファン周方向に分散するため、吹出し範囲が広がる。同一風量で比較すれば、吹出し範囲が広い方が翼列を通過する最大風速が低減するので、翼列通過時のエネルギー損失と騒音が低減される。また、ファン下流の風路で局所的な高速域がなくなるため風速分布27が均一化され、風路や気流制御用のベーンを通過する最大風速が低下して圧力損失が低減してエネルギー損失を抑えることができる。最大風速が低下するので、風路で発生する騒音も低減される。本実施の形態1の貫流ファン1では翼内周の形状変更により気流分布を制御しているため、ファン吸込み部の翼外周部で発生する剥離を誘発しない。そのため、吸込み側で騒音増加することなしに気流を制御することができる。   FIG. 8A shows a conventional fan blowing state. The conventional fan is in the same blowing state in each cross section. FIG. 8B corresponds to a state in which the blowout states of the cross sections of the appearance unit of the cross-flow fan 1 are overlapped. In the conventional fan shown in FIG. 8A, the blown airflow is biased between local blades. That is, in the conventional fan, the airflow is difficult to blow out at the fan center axis height 19 or the unit lower part 22. On the other hand, as shown in FIG. 8A, the air current is blown out locally in the direction of 45 degrees at the lower right. On the other hand, in the once-through fan 1 of the first embodiment, as shown in FIG. 8 (b), the blown airflow is not biased between the local blades but is dispersed in the fan circumferential direction, so that the blowout range is widened. If the same air volume is compared, the maximum wind speed passing through the blade row is reduced when the blowing range is wider, so that energy loss and noise when passing through the blade row are reduced. Further, since the local high speed region is eliminated in the air path downstream of the fan, the air speed distribution 27 is made uniform, the maximum air speed passing through the air path and the airflow control vane is reduced, the pressure loss is reduced, and the energy loss is reduced. Can be suppressed. Since the maximum wind speed is reduced, noise generated in the wind path is also reduced. In cross-flow fan 1 of the first embodiment, the airflow distribution is controlled by changing the shape of the inner periphery of the blade, so that separation that occurs at the outer periphery of the blade of the fan suction portion is not induced. Therefore, the airflow can be controlled without increasing noise on the suction side.

本実施の形態1の貫流ファン1は、羽根車単体(両側のリング間)で翼形状の差(翼内径の大小)を明確にして、異なる翼形状の範囲を所定の幅だけ確保したことにより、吹出し気流の吹き分けを可能にしている。背景技術で挙げた特許文献4のように翼形状を次第に変化させると、吹出し翼列の通風抵抗の大小差が弱くなるため、局所の翼列に流れが偏る可能性があり周方向の吹き分けは困難になる。本実施の形態1の貫流ファン1では翼形状を同一とする軸方向の幅を羽根車1連の翼長さの1/4以上として、気流の吹き分け作用が働くようにしている。   Cross-flow fan 1 according to the first embodiment has a difference in blade shape (the size of blade inner diameter) between impellers alone (between rings on both sides) and ensures a range of different blade shapes by a predetermined width. , Enabling blowing airflow. If the blade shape is gradually changed as in Patent Document 4 cited in the background art, the difference in ventilation resistance of the blowing blade row becomes weak, so there is a possibility that the flow is biased to the local blade row, and the circumferential blowing is performed. Becomes difficult. In the once-through fan 1 of the first embodiment, the axial width with the same blade shape is set to 1/4 or more of the blade length of one impeller series so that the airflow blowing action works.

図9は、貫流ファン1と従来ファンとの比較結果を示す図である。本実施の形態1の貫流ファン1を用いた送風機の実験を行い、実施の形態1の貫流ファン1では、図9に示すように空気調和機の定格風量(18m3/min)でファンのトルク負荷が約3%低減し、騒音が0.3dB低減することを確認した。   FIG. 9 is a diagram showing a comparison result between the cross-flow fan 1 and the conventional fan. An experiment of a blower using the once-through fan 1 of the first embodiment was conducted, and in the once-through fan 1 of the first embodiment, as shown in FIG. 9, the torque load of the fan at the rated air volume (18 m3 / min) of the air conditioner Was reduced by about 3%, and noise was confirmed to be reduced by 0.3 dB.

以上のように、本実施の形態1の貫流ファン1は、翼列の吹出し範囲を広くして局所的に高速な吹出し流れが発生しないようにしている。その結果、翼間を通過する気流のエネルギー損失を低減することができ、翼間で発生する騒音を低減することができる。また、風路の高速流を抑制することができるので、風路でのエネルギー損失と騒音を低減される送風機や空気調和機を実現できる。   As described above, the cross-flow fan 1 according to the first embodiment widens the blowing range of the blade row so that a high-speed blowing flow is not locally generated. As a result, energy loss of the airflow passing between the blades can be reduced, and noise generated between the blades can be reduced. Moreover, since the high-speed flow of an air path can be suppressed, the air blower and air conditioner which can reduce the energy loss and noise in an air path are realizable.

以上の実施の形態1では次の貫流ファン1を説明した。貫流ファン1は、複数の翼とそれらを支持するリングとで構成される複数の羽根車単体(一連)が当該羽根車の回転軸方向に連結されており、羽根車の回転によって一方から空気を吸い込み他方にその空気を吹き出す。この貫流ファン1において、リングに挟まれた翼(一連に配置された翼)を回転軸方向に所定の幅をもつ領域に分け、翼の中央を翼中央部、両側のリング近傍をリング近傍部と定義したとき、翼中央部の翼内径がリング近傍部の翼内径より小さい。また、翼外径は羽根車単体で同じである。   In the first embodiment, the following cross-flow fan 1 has been described. The cross-flow fan 1 includes a plurality of impellers (a series) composed of a plurality of blades and a ring that supports them connected to each other in the rotational axis direction of the impeller. Inhale and blow out the air to the other. In this cross-flow fan 1, blades sandwiched between rings (a series of blades) are divided into regions having a predetermined width in the rotation axis direction, the center of the blade is the central portion of the blade, and the vicinity of the rings on both sides is the vicinity of the ring , The inner diameter of the blade at the center of the blade is smaller than the inner diameter of the blade near the ring. The blade outer diameter is the same for the impeller alone.

実施の形態2.
次に図10を参照して実施の形態2を説明する。図10は、実施の形態2における貫流ファン1の翼の形状を示す図である。図10は図2とほぼ同様であるが、図10(b),(c)に出口角を記載している。実施の形態2の貫流ファン1の特徴は次の様である。すなわち、出口角について、領域S(短弦翼の領域)における出口角のほうが、領域C(長弦翼の領域)における出口角よりも大きいことを特徴とする。
Embodiment 2. FIG.
Next, Embodiment 2 will be described with reference to FIG. FIG. 10 shows the shape of the blades of cross-flow fan 1 in the second embodiment. FIG. 10 is substantially the same as FIG. 2, but the exit angles are shown in FIGS. 10 (b) and 10 (c). The characteristics of the cross-flow fan 1 of the second embodiment are as follows. In other words, the exit angle in the region S (short chord blade region) is larger than the exit angle in the region C (long chord blade region).

図10(b),(c)は断面の例を示す。一連分の羽根車断面を所定の幅をもつリング近傍部(S−S断面)と翼中央部(C−C断面)に分けて示しており、中央部の内径が小さい(中央部が長弦翼の翼形状)。これは実施の形態1と同様である。ここで翼断面の外周部に着目すると、翼中心線5と翼外径の円弧8(第1の円の円周)とが交わる点における2つの線の接線28がなす角(出口角θ29)が、リング近傍部(短弦翼領域)の出口角θ29sの方が翼中央部の出口角θ29cよりも大きくなっている(θ29s>θ29c)。 10B and 10C show examples of cross sections. The cross section of a series of impellers is divided into a ring vicinity (SS cross section) having a predetermined width and a blade center (CC cross section), and the inner diameter of the center is small (the center is a long chord) Wing shape). This is the same as in the first embodiment. When attention is paid to the outer peripheral portion of the blade cross section, the angle (exit angle θ 29) formed by the tangent line 28 of the two lines at the point where the blade center line 5 and the blade outer diameter arc 8 (circumference of the first circle) intersect. However, the exit angle θ 29s in the vicinity of the ring (short chord blade region) is larger than the exit angle θ 29c in the center of the blade (θ 29s > θ 29c ).

出口角θ29を大きくすると、吹出し翼列がユニット下部22にあるときに翼列で流入〜流出する気流の転向が小さくなるため、通風抵抗が小さくなる。よって翼列の通風抵抗が小さくなる領域がユニット下部付近で拡大するため、吹出し範囲が広がり、吹出し風量がさらに均一化される。それに伴い、風路の風速分布も均一化されて最大風速がさらに低減する。風路や吹出し口の風向ベーン17で発生する圧力損失と騒音を低減することができる。本実施の形態2では翼における内周と外周形状との両方で吹出し分布調整をするため出口角の変化は少なくて済み、ファン吸込み側で大きなはく離を発生させる危険は少ない。 Increasing the outlet angle θ 29 reduces the turning resistance of the airflow flowing in and out of the blade row when the blowing blade row is in the unit lower part 22, and thus reduces the ventilation resistance. Accordingly, the region where the draft resistance of the blade row is reduced is enlarged near the lower portion of the unit, so that the blowing range is widened and the blowing air amount is further uniformized. Along with this, the wind speed distribution in the wind path is also made uniform, and the maximum wind speed is further reduced. It is possible to reduce pressure loss and noise generated in the wind direction vane 17 in the air passage or the outlet. In the second embodiment, since the outlet distribution is adjusted for both the inner and outer peripheral shapes of the blade, the change in the exit angle is small, and there is little risk of causing a large separation on the fan suction side.

以上の実施の形態2では、翼断面の出口角が、リング近傍部の方が翼中央部よりも大きくなっている貫流ファン1を説明した。   In the second embodiment described above, the cross-flow fan 1 in which the exit angle of the blade cross section is larger in the vicinity of the ring than in the center of the blade has been described.

実施の形態3.
次に図11を参照して実施の形態3を説明する。図11は、実施の形態3における貫流ファン1の翼の形状を示す図である。図11は図2とほぼ同様である。実施の形態3の貫流ファン1では、出現ユニットの領域C(長弦翼の領域)は、一方のリング2−1から他方のリング2−2に向かう領域長さが、両側の2つの領域S(短弦の領域)の領域長さの和よりも長くなっている。すなわち図11(a)において左側の領域Sの回転軸方向の長さをLs(左)、右側の領域Sの回転軸方向の長さをLs(右)、中央の領域Cの回転軸方向長さをLcとすれば、
Lc>Ls(左)+Ls(右)
の関係である。
すなわち図11では一連分の羽根車断面を所定の幅をもつリング近傍部(領域S)と翼中央部(領域C)とに分けて示しており、翼中央部の内径の方が小さい。ここまでは実施の形態1と同じである。そして2種類の翼形状が幅方向に占める割合を比較すると、内径が小さい翼(領域C)の方が多くなっている点が実施の形態1と異なる。
Embodiment 3 FIG.
Next, Embodiment 3 will be described with reference to FIG. FIG. 11 shows the shape of the blades of cross-flow fan 1 according to the third embodiment. FIG. 11 is almost the same as FIG. In the cross-flow fan 1 according to the third embodiment, the region C of the appearance unit (the region of the long chord blade) has a region length from one ring 2-1 to the other ring 2-2 and two regions S on both sides. It is longer than the sum of the region lengths (short chord region). That is, in FIG. 11A, the length of the left region S in the rotation axis direction is Ls (left), the length of the right region S in the rotation axis direction is Ls (right), and the length of the central region C in the rotation axis direction is Let Lc be
Lc> Ls (left) + Ls (right)
It is a relationship.
That is, in FIG. 11, the cross section of a series of impellers is divided into a ring vicinity (region S) having a predetermined width and a blade center (region C), and the inner diameter of the blade center is smaller. The steps so far are the same as those in the first embodiment. When the ratio of the two types of blade shapes in the width direction is compared, the number of blades (region C) having a smaller inner diameter is greater than that of the first embodiment.

図7に示したように、ファン中心軸高さ19でファンから吹出した気流はケーシングに沿い風路下側41を流れる。実施の形態3の貫流ファン1は、内径が小さい領域(長弦翼領域)が多いのでケーシングに沿って風路下側41を流れる空気の風量が多くなる。   As shown in FIG. 7, the airflow blown out from the fan at the fan center axis height 19 flows along the lower side 41 of the airway along the casing. Since the cross-flow fan 1 of Embodiment 3 has many areas with a small inner diameter (long chord blade area), the amount of air flowing along the casing 41 along the casing increases.

空気調和機の吹出し口の下面側(風路下側41)は、表面を通過する気流速度が遅くなると、冷房時に外気が侵入して壁面で結露付着と露落下を起こしやすく品質悪化を招く。これらを防ぐためには風速を速くして外気進入を防げばよいため、ファン中心軸高さ19で吹出し気流を多くなるように、内径が小さく弦長が長い翼の幅を多くしている。但し、気流が風路下側だけに偏ると局所高速流を発生させてエネルギー損失と騒音増加を招く。本実施の形態3の翼は短弦翼も備えるので吹出し気流を風路上側42にも配分するので、局所高速域の発生を防ぎエネルギー損失と騒音増加を抑制できる。   When the airflow speed passing through the surface of the lower surface side (wind path lower side 41) of the air conditioner is slow, outside air enters during cooling and easily causes condensation and dew dropping on the wall surface, leading to quality deterioration. In order to prevent these, it is only necessary to increase the wind speed to prevent the outside air from entering. Therefore, the width of the blade having a small inner diameter and a long chord length is increased so that the blown airflow is increased at the fan center axis height 19. However, if the air flow is biased only to the lower side of the wind path, a local high-speed flow is generated, resulting in energy loss and increased noise. Since the wing of the third embodiment also includes a short chord wing, the blown airflow is also distributed to the upper airway 42, so that the local high speed region can be prevented and energy loss and noise increase can be suppressed.

以上の実施の形態3では、羽根車単体の翼を回転軸方向に所定の幅をもつ内径が小さい翼領域と、内径が大きい翼領域とに分けたとき、内径が小さい翼領域の方が、内径が大きい翼領域よりも広い貫流ファン1を説明した。   In Embodiment 3 above, when the blades of a single impeller are divided into a blade region having a predetermined width in the rotation axis direction and a blade region having a small inner diameter and a blade region having a large inner diameter, the blade region having a smaller inner diameter is The cross-flow fan 1 having a larger inner diameter than the blade region has been described.

実施の形態4.
次に図12を参照して実施の形態4を説明する。図12は、実施の形態4における貫流ファン1の翼の形状を示す図である。図12は図2とほぼ同様である。実施の形態4の貫流ファン1では、実施の形態3とは逆に、出現ユニットの領域C(長弦翼の領域)は、一方のリング2−1から他方のリング2−2に向かう領域長さが、両側の2つの領域S(短弦の領域)の領域長さの和よりも短くなっている。すなわち図12(a)において左側の領域Sの回転軸方向の長さをLs(左)、右側の領域Sの回転軸方向の長さをLs(右)、中央の領域Cの回転軸方向長さをLcとすれば、
Ls(左)+Ls(右)>Lc
の関係である。
すなわち図12に示すように、一連分の羽根車断面を所定の幅をもつリング近傍部(領域S)と翼中央部(領域C)に分けて示しており、翼中央部の内径が小さい。2種類の翼形状が幅方向に占める割合を比較すると、内径が大きい翼の方が多くなっている。実施の形態3とは逆にユニット下部22でのファンからの吹出し風量が多くなり、このため図4におけるべーン17−2によって水平方向に吹き出す気流が多くなる。気流の到達距離を稼ぎ、広い部屋を空調するためにはこの翼形状が適する。実施の形態3同様に局所に気流が偏らないように長弦翼を組み合わせているため、エネルギー損失と騒音を抑制も実現できる。よって、気流の到達距離が長く低入力・低騒音な空気調和機を実現できる。
Embodiment 4 FIG.
Next, a fourth embodiment will be described with reference to FIG. FIG. 12 shows the shape of the blades of cross-flow fan 1 according to the fourth embodiment. FIG. 12 is substantially the same as FIG. In the cross-flow fan 1 of the fourth embodiment, contrary to the third embodiment, the region C (the region of the long chord blade) of the appearance unit is the region length from one ring 2-1 toward the other ring 2-2. Is shorter than the sum of the region lengths of the two regions S (short chord regions) on both sides. That is, in FIG. 12A, the length of the left region S in the rotation axis direction is Ls (left), the length of the right region S in the rotation axis direction is Ls (right), and the length of the central region C in the rotation axis direction is Let Lc be
Ls (left) + Ls (right)> Lc
It is a relationship.
That is, as shown in FIG. 12, a series of impeller cross sections is divided into a ring vicinity (region S) and a blade center (region C) having a predetermined width, and the inner diameter of the blade center is small. Comparing the proportion of the two types of blade shapes in the width direction, the number of blades with a larger inner diameter is larger. Contrary to the third embodiment, the amount of air blown from the fan at the unit lower part 22 is increased, and for this reason, the airflow blown in the horizontal direction by the vane 17-2 in FIG. 4 is increased. This wing shape is suitable for increasing the airflow reach and air-conditioning a large room. As in the third embodiment, since long chord blades are combined so that the airflow is not locally deviated, energy loss and noise can be suppressed. Therefore, it is possible to realize an air conditioner that has a long airflow reach, low input, and low noise.

羽根車単体の翼を回転軸方向に所定の幅をもつ内径が小さい翼領域と、内径が大きい翼領域とに分けたとき、内径が大きい翼領域の方が、内径が小さい翼領域よりも広い貫流ファン1を説明した。   When a blade of a single impeller is divided into a blade region having a predetermined width in the direction of the rotation axis and a small inner diameter, and a blade region having a large inner diameter, the blade region having a larger inner diameter is wider than the blade region having a smaller inner diameter. The once-through fan 1 has been described.

実施の形態5.
次に図13、図14を参照して実施の形態5を説明する。実施の形態5の貫流ファン1は、図14に示すように、実施の形態1とは逆に、リング側の2つの領域Sを長弦翼の領域とし、中央部分の領域Cを短弦翼の領域とした形状である。図13は図2に対応し、図14は図3に対応する。図14に示すように出現ユニットは、一方のリング2−1から他方のリング2−2に向かって回転軸1−1を法線とする平面で順次切断されると、半径7sの領域S(長弦翼領域)が出現ユニットの回転軸方向における一方のリング2−1の側と他方のリング22−2の側との両側に出現し、かつ、半径7cの領域C(短弦翼領域)が2つの領域Sの間に出現する。
Embodiment 5 FIG.
Next, the fifth embodiment will be described with reference to FIGS. As shown in FIG. 14, the cross-flow fan 1 according to the fifth embodiment has two ring-side regions S as long chord blade regions and a central portion region C as short chord blades, contrary to the first embodiment. This is the shape of the region. 13 corresponds to FIG. 2, and FIG. 14 corresponds to FIG. As shown in FIG. 14, when the appearance unit is sequentially cut from one ring 2-1 toward the other ring 2-2 along a plane having the rotation axis 1-1 as a normal line, a region S (with a radius of 7 s) A long chord blade region) appears on both sides of one ring 2-1 side and the other ring 22-2 side in the rotation axis direction of the appearance unit, and a region C (short chord blade region) having a radius of 7c. Appears between the two regions S.

図13は、一連分の羽根車断面を所定の幅をもつリング近傍部(領域S)と翼中央部(領域C)に分けて示している。実施の形態1〜4までは、翼中央部(領域C)の翼内径をリング近傍部(領域S)よりも小さくしていた。実施の形態5ではリング近傍部の翼内径7sが翼中央部7cよりも小さくなっている(半径7s<半径7c)。図14は翼1枚の外観図を示す。外観は点51〜点56に推移する凹型形状であり、領域Sと領域Cとの間は段差状に接続されている。   FIG. 13 shows a cross section of a series of impellers divided into a ring vicinity (region S) having a predetermined width and a blade center (region C). In the first to fourth embodiments, the blade inner diameter of the blade center (region C) is made smaller than that of the ring vicinity (region S). In the fifth embodiment, the blade inner diameter 7s in the vicinity of the ring is smaller than the blade center portion 7c (radius 7s <radius 7c). FIG. 14 shows an external view of one wing. The appearance is a concave shape transitioning from point 51 to point 56, and the region S and the region C are connected in a stepped shape.

実施の形態5の貫流ファン1は、ファン中心軸高さ19でリング近傍部下流が増速されユニット下部22で翼中央部(短弦翼領域)が増速されるので、これまで示した事例と逆になる。しかし、ファンから吹出す翼列の範囲を広げ、局所高速流を抑制する点については変わらないため、空力性能の観点では、これまで示した事例と同様に低入力・低騒音のユニットを実現できる。一方、構造面から考えると、リング近傍部で重い翼(長弦翼)が支えられているため、両リング間の翼のたわみが小さくなるので、ファンが高速回転したときの振動がこれまで示した事例よりも小さくなる。従って、本実施の形態5の貫流ファン1は気流音だけではなく振動音も低減されるので、より低騒音な送風機や空気調和機を実現できる。   In the once-through fan 1 of the fifth embodiment, the fan central axis height 19 increases the speed in the vicinity of the ring and the unit lower part 22 increases the speed of the blade center (short chord blade region). And vice versa. However, since the range of cascades that blow out from the fan is expanded and the local high-speed flow is suppressed, the unit with low input and low noise can be realized from the viewpoint of aerodynamic performance, as in the previous examples. . On the other hand, considering the structure, the heavy blades (long chord blades) are supported in the vicinity of the ring, which reduces the deflection of the blade between the two rings. It becomes smaller than the case. Therefore, since the cross-flow fan 1 according to the fifth embodiment reduces not only the airflow noise but also the vibration noise, a lower noise blower and air conditioner can be realized.

以上の実施の形態5では、リングに挟まれた翼を回転軸方向に所定の幅をもつ領域に分けて翼の中央を翼中央部、両側のリング近傍をリング近傍部と定義したとき、翼中央部の翼内径がリング近傍部の翼内径より大きく、翼外径が羽根車単体で同じである貫流ファン1を説明した。   In Embodiment 5 described above, when the blade sandwiched between the rings is divided into regions having a predetermined width in the rotation axis direction, the center of the blade is defined as the central portion of the blade, and the vicinity of the rings on both sides is defined as the vicinity of the ring. The cross-flow fan 1 has been described in which the inner diameter of the blade at the center is larger than the inner diameter of the blade near the ring and the outer diameter of the blade is the same for the impeller alone.

実施の形態6.
実施の形態6は、実施の形態5について実施の形態2(出口角)、実施の形態3(領域S<領域C)、実施の形態4(領域S>領域C)を適用する場合である。実施の形態2に示した内径が大きい翼の出口角を大きくする事例や、実施の形態3〜4で示した幅方向に内径大小の翼領域に長短をつける事例は、長弦翼断面の翼部位がリング近傍部、翼中央部にあっても依存しない。このため、リング近傍部の翼内径が小さい貫流ファンであっても同様の効果が得られる。なお、これらの図示は省略する。すなわち実施の形態5の形状において、出現ユニットの領域C(短弦翼の領域)は、一方のリングから他方のリングに向かう領域長さが、両側の2つの領域S(長弦翼の領域)の領域長さの和よりも長くなってもよい。あるいは、出現ユニットの領域C(短弦翼の領域)は、一方のリングから他方のリングに向かう領域長さが、両側の2つの領域S(長弦翼の領域)の領域長さの和よりも短くなってもよい。また実施の形態2のように、短弦翼領域の出口角を長弦翼の領域の出口角よりも大きくしてもよい。
Embodiment 6 FIG.
The sixth embodiment is a case where the second embodiment (exit angle), the third embodiment (region S <region C), and the fourth embodiment (region S> region C) are applied to the fifth embodiment. The example of increasing the exit angle of the blade having a large inner diameter shown in the second embodiment, and the example in which the blade region having a large and small inner diameter in the width direction shown in the third to fourth embodiments is used. It does not depend on whether the part is in the vicinity of the ring or the wing center. For this reason, even if it is a cross-flow fan with the small blade inner diameter of the ring vicinity part, the same effect is acquired. These illustrations are omitted. That is, in the shape of the fifth embodiment, the region C (short chord wing region) of the appearance unit has two region S (long chord wing region) on both sides in the region length from one ring to the other ring. It may be longer than the sum of the region lengths. Alternatively, in the appearance unit region C (short chord blade region), the region length from one ring to the other ring is based on the sum of the region lengths of the two regions S (long chord blade region) on both sides. May be shorter. Further, as in the second embodiment, the exit angle of the short chord blade region may be larger than the exit angle of the long chord blade region.

実施の形態7.
次に図15を参照して実施の形態7を説明する。図15(a)は、実施の形態7の貫流ファン1の外観図である。図15(a)は一連が5つで構成されている場合を示している。図15(a)では、すべての一連が出現ユニットであるとする。それぞれの一連は、実施の形態1で説明した出現ユニットの形状である。すなわち5つの各一連の翼形状は、翼中央部(領域C)でリング近傍部(領域S)よりも翼内径が小さくなっている。すなわち領域Cが長弦翼領域である。本実施の形態7では、貫流ファン1の両端部の一連4−1、一連4−2が両端以外の他の一連に比べて、翼内径がさらに小さいことを特徴とする。すなわち、それぞれの一連4−1〜一連4−5はいずれも実施の形態1の図3の翼形状であるが、両端の一連4−1、一連4−2の長弦領域の半径7c(端部)は、これら両端以外の一連(例えば中央部の一連4−3)の長弦領域の半径7c(中央部)よりも小さいことを特徴とする。
Embodiment 7 FIG.
Next, Embodiment 7 will be described with reference to FIG. FIG. 15A is an external view of the cross-flow fan 1 according to the seventh embodiment. FIG. 15A shows a case where the series is composed of five. In FIG. 15A, it is assumed that all series are appearance units. Each series is the shape of the appearance unit described in the first embodiment. That is, in each of the five series of blade shapes, the blade inner diameter is smaller in the blade center portion (region C) than in the ring vicinity portion (region S). That is, the region C is a long chord wing region. In the seventh embodiment, the series 4-1 and the series 4-2 at both end portions of the cross-flow fan 1 are characterized in that the blade inner diameter is smaller than the series other than both ends. That is, each of the series 4-1 to the series 4-5 has the wing shape of FIG. 3 of the first embodiment, but the long chord area radius 7c (end of the series 4-1 at both ends and the series 4-2). Part) is smaller than the radius 7c (central part) of a long chord region of a series (for example, series 4-3 of the central part) other than both ends.

このように実施の形態7の貫流ファン1は、少なくとも3つ以上の出現ユニットが含まれると共に回転軸1−1の方向の両端に出現ユニットが配置される。両端に配置された出現ユニットは、長弦翼領域の半径の長さが、両端とは異なる位置に配置された出現ユニットの長弦翼領域の半径の長さよりも、短い。   As described above, cross-flow fan 1 according to the seventh embodiment includes at least three or more appearance units, and the appearance units are arranged at both ends in the direction of rotating shaft 1-1. In the appearance units arranged at both ends, the length of the radius of the long chord wing region is shorter than the length of the radius of the long chord wing region of the appearance unit arranged at a position different from both ends.

図7で示したように翼内径が小さい、つまり翼弦が長いときには風は下吹きしやすくなる。ユニット端部(ファン端部)は外気が吹出し口からユニット内部に逆流する現象が特に起きやすく、本実施の形態7ではファン端部で下吹き傾向が強くなるように翼内周径をユニット中央部の連よりもさらに小さくしている。このようにすれば、ユニット中央部の連は吹出し風速分布の均一化によるエネルギー損失低減と音低減、端部は逆流防止により品質向上を図ることができる。   As shown in FIG. 7, when the blade inner diameter is small, that is, when the blade chord is long, the wind is easy to blow down. At the end of the unit (fan end), the phenomenon that the outside air flows back from the outlet to the inside of the unit is particularly likely to occur. In the seventh embodiment, the inner diameter of the blade is set at the center of the unit so It is even smaller than the series. In this way, it is possible to improve quality by reducing energy loss and noise by making the blowout wind speed distribution uniform at the central part of the unit and preventing backflow at the end.

以上の実施の形態7では、羽根車単体で内径が小さい翼について、貫流ファンの端部に配置される羽根車単体の翼内径がその他の羽根車単体の翼内径に比べて、小さい貫流ファン1を説明した。   In the seventh embodiment described above, a cross-flow fan 1 having a blade impeller having a small inner diameter is smaller in blade inner diameter of a single impeller disposed at the end of the cross-flow fan than a blade inner diameter of other impeller single blades. Explained.

実施の形態8.
実施の形態8では、実施の形態1の貫流ファン1の両側の端部の一連について、翼内径が小さい領域幅(長弦領域の回転軸方向長さ)が両端以外に配置された他の一連に比べて広くなるように構成する。
Embodiment 8 FIG.
In the eighth embodiment, with respect to a series of end portions on both sides of the cross-flow fan 1 of the first embodiment, another series in which the blade inner diameter is small (the length in the rotation axis direction of the long chord region) is arranged at both ends. It is configured to be wider than

このように、このように実施の形態8の貫流ファン1は、少なくとも3つ以上の出現ユニットが含まれると共に回転軸1−1の方向の両端に出現ユニットが配置される。両端に配置された出現ユニットは、回転軸1−1方向に向かう長弦領域長さが、両端とは異なる位置に配置された出現ユニットの長弦領域長さよりも長い。   As described above, the cross-flow fan 1 of the eighth embodiment includes at least three or more appearance units and the appearance units are arranged at both ends in the direction of the rotating shaft 1-1. The appearing units arranged at both ends have a longer chord area length in the direction of the rotation axis 1-1 longer than that of the appearing units arranged at positions different from both ends.

このようにすると、ファン端部で風路下部が流れやすくなり、実施の形態7と同じように、ファン端部における逆流を防止することができる。   If it does in this way, it will become easy to flow an air path lower part at a fan end, and back flow in a fan end can be prevented like Embodiment 7.

以上の実施の形態8では、羽根車単体で内径が小さい翼が占める領域について、貫流ファンの端部に配置される羽根車単体がその他の羽根車単体に比べて広い貫流ファン1を説明した。   In the above-described eighth embodiment, the cross-flow fan 1 in which the impeller alone disposed at the end of the cross-flow fan is wider than the other impellers in the region occupied by the blades having a small inner diameter in the single impeller has been described.

実施の形態9.
図16に実施の形態9における貫流ファン1の翼1枚の外観図を示す。これまでの実施の形態1〜8までの事例は、羽根車1連の幅方向に所定の幅の異なる翼形状が混在する事例であり、翼形状が変化する点において、急激に形状変化すると段差で風きり音発生の恐れがある。本実施の形態9では、翼形状が領域Sから領域Cに変化する途中の過程(領域SC)を設けて曲線で滑らかに接合している。全てを曲線だけで構成するのではなく、直線と両端部を翼形状に沿った曲線で結んでもよい。これにより風きり音を抑制しつつ吹出し流れを均一化して低騒音と低入力化を図ることができる。
Embodiment 9 FIG.
FIG. 16 shows an external view of one blade of cross-flow fan 1 according to the ninth embodiment. The examples up to the embodiments 1 to 8 are examples in which blade shapes having different predetermined widths are mixed in the width direction of a single impeller, and in the point where the blade shape changes, a step difference occurs when the shape changes suddenly. There is a risk of wind noise. In the ninth embodiment, a process (region SC) in the middle of changing the blade shape from the region S to the region C is provided and smoothly joined by a curve. Instead of configuring everything entirely with curves, the straight lines and both ends may be connected with curves along the wing shape. As a result, it is possible to achieve a low noise and a low input by making the blowing flow uniform while suppressing wind noise.

このように実施の形態9の貫流ファン1では、出現ユニットの各翼は、短弦翼領域から長弦翼領域に移行する滑らかな形状で形成されている。   As described above, in the cross-flow fan 1 according to the ninth embodiment, each blade of the appearance unit is formed in a smooth shape that shifts from the short chord blade region to the long chord blade region.

以上の実施の形態1〜9では、送風機や空気調和機を対象とする貫流ファンを説明したが、空気清浄機や除湿機など、貫流ファンを用いた他の機器に対しても同様の効果が得られ、低騒音と低入力化を実現できる。   In the above Embodiments 1 to 9, the cross-flow fan intended for the blower and the air conditioner has been described, but the same effect can be obtained for other devices using the cross-flow fan, such as an air purifier and a dehumidifier. As a result, low noise and low input can be realized.

実施の形態9では、羽根車単体の翼が所定の幅をもつ翼内径が大きい領域と小さい領域とをもち、2つの領域が傾斜状あるいは曲線で接合されている貫流ファン1を説明した。   In the ninth embodiment, the cross-flow fan 1 has been described in which a blade of a single impeller has a predetermined width, a region having a large blade inner diameter and a region having a small blade inner diameter, and the two regions are joined in an inclined shape or a curve.

以上の実施の形態1〜9では貫流ファン1を説明したが、実施の形態1〜9で説明した貫流ファン1を備えた送風機、あるいはこの貫流ファンを備えた空気調和機の実施形態とすることも可能である。   Although the cross flow fan 1 was demonstrated in the above Embodiments 1-9, it is set as embodiment of the air blower provided with the cross flow fan 1 demonstrated in Embodiment 1-9, or this air flow fan provided with this cross flow fan. Is also possible.

以上の実施の形態では、
回転軸の長手方向に所定の間隔で配置された2つ以上のリング形状の翼支持部材と、
隣り合う2つの前記翼支持部材の間に、外周寄り、かつ、周方向に間隔をあけて配置された複数の翼と
を備えた貫流ファンにおいて、
隣り合う2つの前記翼支持部材の間に配置された前記複数の翼からなる構成部分である単位ユニットは、
2つの前記翼支持部材の間の任意の位置で前記回転軸を法線とする平面で切断されると、前記回転軸と前記平面との交点から遠い端部と近い端部との2つの端部を持つ各翼の断面が現われ、
各翼の断面の前記交点から遠い端部は前記平面上において前記交点を中心とする第1の円の円周上に並び、かつ、各翼の断面の前記交点から近い端部は前記平面上において前記交点を中心とする第2の円の円周上に並び、
各翼の断面は、外周円である前記第1の円と内周円である前記第2の円との間に存在し、
少なくとも一つの前記単位ユニットは、
一方の前記翼支持部材から他方の前記翼支持部材に向かって前記平面で順次切断されると、前記内周円である前記第2の円の半径が所定の長さの第1半径で連続する第1半径領域と、前記内周円である前記第2の円の半径が前記第1半径よりも短い第2半径で連続する第2半径領域とが出現する出現ユニットであることを特徴とする貫流ファンを説明した。
In the above embodiment,
Two or more ring-shaped blade support members disposed at predetermined intervals in the longitudinal direction of the rotation shaft;
In a cross-flow fan comprising a plurality of blades arranged near the outer periphery and spaced apart in the circumferential direction between two adjacent blade support members,
A unit unit that is a constituent part composed of the plurality of blades disposed between two adjacent blade support members,
When cut at a plane between the rotation axis and the normal line at an arbitrary position between the two blade support members, two ends of an end portion far from an intersection of the rotation shaft and the plane and an end portion close to the end portion A section of each wing with a part appears,
End portions of the cross sections of the blades that are far from the intersection point are arranged on the plane of the first circle centered on the intersection point, and end portions of the cross sections of the blades that are close to the intersection point are on the plane surface. Arranged on the circumference of a second circle centered on the intersection at
A cross section of each wing exists between the first circle which is an outer circumference circle and the second circle which is an inner circumference circle,
At least one of the unit units is
When the plane is sequentially cut from the one blade support member toward the other blade support member in the plane, the radius of the second circle, which is the inner circumferential circle, continues with the first radius having a predetermined length. It is an appearance unit in which a first radius region and a second radius region in which a radius of the second circle which is the inner circumference circle is continuous with a second radius shorter than the first radius appear. Explained once-through fans.

以上の実施の形態では、
前記出現ユニットは、
一方の前記翼支持部材から他方の前記翼支持部材に向かって前記平面で順次切断されると、前記第1半径領域が前記出現ユニットの前記回転軸方向における一方の前記翼支持部材の側と他方の前記翼支持部材の側との両側に出現し、かつ、前記第2半径領域が2つの前記1半径領域の間に出現することを特徴とする貫流ファンを説明した。
In the above embodiment,
The appearance unit is
When the plane is sequentially cut from the one blade support member toward the other blade support member in the plane, the first radius region is one side of the blade support member in the rotation axis direction of the appearance unit and the other. The cross-flow fan described above is characterized in that it appears on both sides of the blade support member and the second radius region appears between two of the first radius regions.

以上の実施の形態では、
前記出現ユニットの前記第2半径領域は、
一方の前記翼支持部材から他方の前記翼支持部材に向かう領域長さが、2つの前記1半径領域の前記領域長さの和よりも長いことを特徴とする貫流ファンを説明した。
In the above embodiment,
The second radius region of the appearance unit is
A cross-flow fan has been described in which the region length from one blade support member to the other blade support member is longer than the sum of the region lengths of the two radius regions.

以上の実施の形態では、
前記出現ユニットの前記第2半径領域は、
一方の前記翼支持部材から他方の前記翼支持部材に向かう領域長さが、2つの前記1半径領域の前記領域長さの和よりも短いことを特徴とする貫流ファンを説明した。
In the above embodiment,
The second radius region of the appearance unit is
The cross-flow fan has been described in which the region length from one blade support member to the other blade support member is shorter than the sum of the region lengths of the two radius regions.

以上の実施の形態では、
前記出現ユニットは、
一方の前記翼支持部材から他方の前記翼支持部材に向かって前記平面で順次切断されると、前記第2半径領域が前記出現ユニットの前記回転軸方向における一方の前記翼支持部材の側と他方の前記翼支持部材の側との両側に出現し、かつ、前記第1半径領域が2つの前記2半径領域の間に出現することを特徴とする貫流ファンを説明した。
In the above embodiment,
The appearance unit is
When the plane is sequentially cut from one of the blade support members toward the other blade support member in the plane, the second radius region is one side of the blade support member in the rotation axis direction of the appearance unit and the other The cross-flow fan described above is characterized in that it appears on both sides of the blade support member and the first radial region appears between two of the two radial regions.

以上の実施の形態では、
前記出現ユニットの各翼の前記第1半径領域は、
一方の前記翼支持部材から他方の前記翼支持部材に向かう領域長さが、2つの前記2半径領域の前記領域長さの和よりも長いことを特徴とする貫流ファンを説明した。
In the above embodiment,
The first radius region of each wing of the appearance unit is
A cross-flow fan has been described in which the region length from one blade support member to the other blade support member is longer than the sum of the region lengths of the two radius regions.

以上の実施の形態では、
前記出現ユニットの前記第1半径領域は、
一方の前記翼支持部材から他方の前記翼支持部材に向かう領域長さが、2つの前記2半径領域の前記領域長さの和よりも短いことを特徴とする貫流ファンを説明した。
In the above embodiment,
The first radius region of the appearance unit is
The cross-flow fan is characterized in that the region length from one blade support member to the other blade support member is shorter than the sum of the region lengths of the two two-radial regions.

以上の実施の形態では、
前記貫流ファンは、
少なくとも3つ以上の前記出現ユニットが含まれると共に前記回転軸の方向の両端に前記出現ユニットが配置され、
前記両端に配置された前記出現ユニットは、
前記第2半径領域の前記第2半径の長さが、前記両端とは異なる位置に配置された前記出現ユニットの前記第2半径領域の前記第2半径の長さよりも、短いことを特徴とする貫流ファンを説明した。
In the above embodiment,
The cross-flow fan is
At least three or more appearance units are included and the appearance units are arranged at both ends in the direction of the rotation axis;
The appearance units arranged at both ends are
A length of the second radius of the second radius region is shorter than a length of the second radius of the second radius region of the appearance unit arranged at a position different from the both ends. Explained once-through fans.

以上の実施の形態では、
前記貫流ファンは、
少なくとも3つ以上の前記出現ユニットが含まれると共に前記回転軸の方向の両端に前記出現ユニットが配置され、
前記両端に配置された前記出現ユニットは、
一方の前記翼支持部材から他方の前記翼支持部材に向かう前記第2半径領域の領域長さが、前記両端とは異なる位置に配置された前記出現ユニットの前記第2半径領域の前記領域長さよりも、長いことを特徴とする貫流ファンを説明した。
In the above embodiment,
The cross-flow fan is
At least three or more appearance units are included and the appearance units are arranged at both ends in the direction of the rotation axis;
The appearance units arranged at both ends are
The region length of the second radius region from one of the blade support members toward the other blade support member is larger than the region length of the second radius region of the appearance unit arranged at a position different from the both ends. Also explained the cross-flow fan, which is characterized by a long time.

以上の実施の形態では、
前記出現ユニットの各翼は、
前記第1半径領域から前記第2半径領域に移行する滑らかな形状で形成されていることを特徴とする貫流ファンを説明した。
In the above embodiment,
Each wing of the appearance unit is
The cross-flow fan is characterized in that it is formed in a smooth shape transitioning from the first radius region to the second radius region.

以上の実施の形態では、
前記出現ユニットの各翼は、
前記第1半径領域の翼断面の出口角が、前記第2半径領域の翼断面の出口角よりも大きいことを特徴とする貫流ファンを説明した。
In the above embodiment,
Each wing of the appearance unit is
The cross-flow fan is characterized in that the exit angle of the blade cross section of the first radius region is larger than the exit angle of the blade cross section of the second radius region.

以上の実施の形態では、上記の貫流ファンを備えた送風機を説明した。   In the above embodiment, the air blower provided with said cross-flow fan was demonstrated.

以上の実施の形態では、上記の貫流ファンを備えた空気調和機を説明した。   In the above embodiment, the air conditioner provided with said cross-flow fan was demonstrated.

1 貫流ファン、2 リング、3 翼、4 羽根車単体、5 翼中心線、6 翼先端のRまたは尖部先端、7 翼内径、8 翼外径、9 熱交換器、10 空気清浄用機器、11 フィルター、12 ノズル、13 スタビライザ、14 リアガイド、15 貫流ファンの回転方向、16 空気調和機を通過する気流、17 気流制御用のベーン、18 吹き出し口、19 ファン中心軸高さ、20 翼間に流入する気流方向、21 翼の弦線、22 ユニット下部、23 翼列の入口方向、24 翼列の出口方向、25 23と24のなす角、26 翼間から吹出した気流、27 吹出し風速分布、28 翼中心線と翼外径の交点を通る両接線、29 出口角。   1 Cross-flow fan, 2 ring, 3 blades, 4 impeller unit, 5 blade center line, 6 R or tip of blade tip, 7 blade inner diameter, 8 blade outer diameter, 9 heat exchanger, 10 air cleaning device, DESCRIPTION OF SYMBOLS 11 Filter, 12 Nozzle, 13 Stabilizer, 14 Rear guide, 15 Direction of rotation of cross-flow fan, 16 Airflow passing through air conditioner, 17 Airflow control vane, 18 Air outlet, 19 Fan center axis height, 20 Between blades Airflow direction flowing into the blade, 21 blade chord line, 22 unit lower part, 23 blade row inlet direction, 24 blade row outlet direction, angle formed by 25 23 and 24, 26 air flow blown from between the blades, 27 blown air velocity distribution , 28 Both tangents passing through the intersection of the blade center line and the blade outer diameter, 29 exit angle.

Claims (9)

回転軸の長手方向に所定の間隔で配置された2つ以上のリング形状の翼支持部材と、
隣り合う2つの前記翼支持部材の間に、外周寄り、かつ、周方向に間隔をあけて配置された複数の翼と
を備えた貫流ファンにおいて、
隣り合う2つの前記翼支持部材の間に配置された前記複数の翼からなる構成部分である単位ユニットは、
2つの前記翼支持部材の間の任意の位置で前記回転軸を法線とする平面で切断されると、前記回転軸と前記平面との交点から遠い端部と近い端部との2つの端部を持つ各翼の断面が現われ、
各翼の断面の前記交点から遠い端部は前記平面上において前記交点を中心とする第1の円の円周上に並び、かつ、各翼の断面の前記交点から近い端部は前記平面上において前記交点を中心とする第2の円の円周上に並び、
各翼の断面は、外周円である前記第1の円と内周円である前記第2の円との間に存在し、
少なくとも一つの前記単位ユニットは、
一方の前記翼支持部材から他方の前記翼支持部材に向かって前記平面で順次切断されると、前記内周円である前記第2の円の半径が所定の長さの第1半径で連続する第1半径領域と、前記内周円である前記第2の円の半径が前記第1半径よりも短い第2半径で連続する第2半径領域とが出現する出現ユニットであり、
前記出現ユニットは、
一方の前記翼支持部材から他方の前記翼支持部材に向かって前記平面で順次切断されると、前記第2半径領域が前記出現ユニットの前記回転軸方向における一方の前記翼支持部材の側と他方の前記翼支持部材の側との両側に出現し、かつ、ただ1つの前記第1半径領域が2つの前記2半径領域の間に出現することを特徴とする貫流ファン。
Two or more ring-shaped blade support members disposed at predetermined intervals in the longitudinal direction of the rotation shaft;
In a cross-flow fan comprising a plurality of blades arranged near the outer periphery and spaced apart in the circumferential direction between two adjacent blade support members,
A unit unit that is a constituent part composed of the plurality of blades disposed between two adjacent blade support members,
When cut at a plane between the rotation axis and the normal line at an arbitrary position between the two blade support members, two ends of an end portion far from an intersection of the rotation shaft and the plane and an end portion close to the end portion A section of each wing with a part appears,
End portions of the cross sections of the blades that are far from the intersection point are arranged on the plane of the first circle centered on the intersection point, and end portions of the cross sections of the blades that are close to the intersection point are on the plane surface. Arranged on the circumference of a second circle centered on the intersection at
A cross section of each wing exists between the first circle which is an outer circumference circle and the second circle which is an inner circumference circle,
At least one of the unit units is
When the plane is sequentially cut from the one blade support member toward the other blade support member in the plane, the radius of the second circle, which is the inner circumferential circle, continues with the first radius having a predetermined length. An appearance unit in which a first radius region and a second radius region in which a radius of the second circle which is the inner circumferential circle is continuous with a second radius shorter than the first radius appear,
The appearance unit is
When the plane is sequentially cut from one of the blade support members toward the other blade support member in the plane, the second radius region is one side of the blade support member in the rotation axis direction of the appearance unit and the other cross-flow fan the emerging on both sides of the side of the wing support member, and only one of the first radius region is characterized by the appearance between two of said second radius regions of.
前記出現ユニットの各翼の前記第1半径領域は、
一方の前記翼支持部材から他方の前記翼支持部材に向かう領域長さが、2つの前記2半径領域の前記領域長さの和よりも長いことを特徴とする請求項1記載の貫流ファン。
The first radius region of each wing of the appearance unit is
The cross-flow fan according to claim 1, wherein a region length from one of the blade support members toward the other blade support member is longer than a sum of the region lengths of the two second radius regions.
前記出現ユニットの前記第1半径領域は、
一方の前記翼支持部材から他方の前記翼支持部材に向かう領域長さが、2つの前記2半径領域の前記領域長さの和よりも短いことを特徴とする請求項1記載の貫流ファン。
The first radius region of the appearance unit is
The cross-flow fan according to claim 1, wherein a region length from one of the blade support members to the other blade support member is shorter than a sum of the region lengths of the two second radius regions.
前記貫流ファンは、
少なくとも3つ以上の前記出現ユニットが含まれると共に前記回転軸の方向の両端に前記出現ユニットが配置され、
前記両端に配置された前記出現ユニットは、
前記第2半径領域の前記第2半径の長さが、前記両端とは異なる位置に配置された前記出現ユニットの前記第2半径領域の前記第2半径の長さよりも、短いことを特徴とする請求項1〜3のいずれかに記載の貫流ファン。
The cross-flow fan is
At least three or more appearance units are included and the appearance units are arranged at both ends in the direction of the rotation axis;
The appearance units arranged at both ends are
A length of the second radius of the second radius region is shorter than a length of the second radius of the second radius region of the appearance unit arranged at a position different from the both ends. The once-through fan according to any one of claims 1 to 3.
前記貫流ファンは、
少なくとも3つ以上の前記出現ユニットが含まれると共に前記回転軸の方向の両端に前記出現ユニットが配置され、
前記両端に配置された前記出現ユニットは、
一方の前記翼支持部材から他方の前記翼支持部材に向かう前記第2半径領域の領域長さが、前記両端とは異なる位置に配置された前記出現ユニットの前記第2半径領域の前記領域長さよりも、長いことを特徴とする請求項1〜4のいずれかに記載の貫流ファン。
The cross-flow fan is
At least three or more appearance units are included and the appearance units are arranged at both ends in the direction of the rotation axis;
The appearance units arranged at both ends are
The region length of the second radius region from one of the blade support members toward the other blade support member is larger than the region length of the second radius region of the appearance unit arranged at a position different from the both ends. The cross-flow fan according to claim 1, wherein the cross-flow fan is long.
前記出現ユニットの各翼は、
前記第1半径領域から前記第2半径領域に移行する滑らかな形状で形成されていることを特徴とする請求項1〜5のいずれかに記載の貫流ファン。
Each wing of the appearance unit is
The cross-flow fan according to any one of claims 1 to 5, wherein the cross-flow fan is formed in a smooth shape transitioning from the first radius region to the second radius region.
前記出現ユニットの各翼は、
前記第1半径領域の翼断面の出口角が、前記第2半径領域の翼断面の出口角よりも大きいことを特徴とする請求項1〜6のいずれかに記載の貫流ファン。
Each wing of the appearance unit is
The cross-flow fan according to any one of claims 1 to 6, wherein an exit angle of a blade cross section of the first radius region is larger than an exit angle of a blade cross section of the second radius region.
請求項1〜7いずれかに記載の貫流ファンを備えた送風機。   A blower comprising the cross-flow fan according to claim 1. 請求項1〜7いずれかに記載の貫流ファンを備えた空気調和機。   The air conditioner provided with the cross-flow fan in any one of Claims 1-7.
JP2012003930A 2012-01-12 2012-01-12 Cross-flow fan, blower and air conditioner Active JP5460749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003930A JP5460749B2 (en) 2012-01-12 2012-01-12 Cross-flow fan, blower and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003930A JP5460749B2 (en) 2012-01-12 2012-01-12 Cross-flow fan, blower and air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009255644A Division JP4989705B2 (en) 2009-11-09 2009-11-09 Cross-flow fan, blower and air conditioner

Publications (2)

Publication Number Publication Date
JP2012067768A JP2012067768A (en) 2012-04-05
JP5460749B2 true JP5460749B2 (en) 2014-04-02

Family

ID=46165284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003930A Active JP5460749B2 (en) 2012-01-12 2012-01-12 Cross-flow fan, blower and air conditioner

Country Status (1)

Country Link
JP (1) JP5460749B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109209990B (en) * 2018-10-26 2024-07-02 珠海格力电器股份有限公司 Cross-flow fan blade, cross-flow fan and air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329099A (en) * 2005-05-27 2006-12-07 Daikin Ind Ltd Cross flow fan
JP4208020B2 (en) * 2007-04-13 2009-01-14 ダイキン工業株式会社 Multi-blade fan impeller

Also Published As

Publication number Publication date
JP2012067768A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
KR102317338B1 (en) Blower and outdoor unit of air conditioner having the same
JP7092433B2 (en) Forward / reverse rotation fan
JP5269060B2 (en) Cross-flow fan and air conditioner indoor unit
US10436496B2 (en) Indoor unit for air-conditioning apparatus
WO2011036848A1 (en) Through-flow fan, air blower, and air conditioner
JP4989705B2 (en) Cross-flow fan, blower and air conditioner
WO2014080899A1 (en) Air conditioner
JP6381811B2 (en) Blower and air conditioner
JP2011069320A5 (en)
JP6029738B2 (en) Outdoor cooling unit for vehicle air conditioner
JP6524331B2 (en) Blower and air conditioner using the same
JP2012255628A (en) Air conditioner
JP2009203897A (en) Multi-blade blower
WO2013031046A1 (en) Air conditioner
JP5631429B2 (en) Air conditioner
WO2012124021A1 (en) Cross-flow fan, blower, and air conditioner
WO2011024215A1 (en) Fan unit and air conditioner equipped with fan unit
JP5460749B2 (en) Cross-flow fan, blower and air conditioner
JP5083349B2 (en) Air conditioner indoor unit
JP2007154685A (en) Turbo fan and air conditioner using the same
JP2002357194A (en) Cross-flow fan
JP7275257B2 (en) air conditioner
JP7555474B2 (en) Blower and air conditioner
JP2017067056A (en) Turbo fan and air conditioner using the turbo fan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5460749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250