JP5460479B2 - Pattern dimension measuring apparatus and contour line forming apparatus - Google Patents

Pattern dimension measuring apparatus and contour line forming apparatus Download PDF

Info

Publication number
JP5460479B2
JP5460479B2 JP2010140057A JP2010140057A JP5460479B2 JP 5460479 B2 JP5460479 B2 JP 5460479B2 JP 2010140057 A JP2010140057 A JP 2010140057A JP 2010140057 A JP2010140057 A JP 2010140057A JP 5460479 B2 JP5460479 B2 JP 5460479B2
Authority
JP
Japan
Prior art keywords
pattern
dimension
contour line
electron beam
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010140057A
Other languages
Japanese (ja)
Other versions
JP2012002765A (en
Inventor
純一 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010140057A priority Critical patent/JP5460479B2/en
Publication of JP2012002765A publication Critical patent/JP2012002765A/en
Application granted granted Critical
Publication of JP5460479B2 publication Critical patent/JP5460479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、パターン寸法測定装置及び輪郭線抽出装置に係り、特に、電子ビーム等の照射によってシュリンクするパターンであっても高精度に測定及び輪郭線形成を行い得るパターン寸法測定装置及び輪郭線抽出装置に関する。   The present invention relates to a pattern dimension measuring apparatus and contour line extracting apparatus, and more particularly to a pattern dimension measuring apparatus and contour line extraction capable of performing measurement and contour line formation with high accuracy even for a pattern that shrinks by irradiation with an electron beam or the like. Relates to the device.

近年、フォトリソグラフィーでは、フッ化アルゴン(ArF)エキシマレーザ光に反応するフォトレジスト(以下「ArFレジスト」と呼ぶ)を用いて微細な回路パターンを加工している。このArFレジストには、電子線照射によりアクリル樹脂等が縮合反応をおこし体積が減少する現象が知られている(以下「シュリンク」と呼ぶ)。   In recent years, in photolithography, a fine circuit pattern is processed using a photoresist (hereinafter referred to as “ArF resist”) that reacts with argon fluoride (ArF) excimer laser light. This ArF resist has a known phenomenon that acrylic resin or the like undergoes a condensation reaction by electron beam irradiation to reduce the volume (hereinafter referred to as “shrink”).

特許文献1、及び特許文献2には、シュリンクを起こすパターンの実際の寸法値(即ち、シュリンク前の寸法値)を適正に求めるための手法として、測定回数とシュリンク量との関係を示すカーブを用意し、当該カーブを1回目以降の測定値にフィッティングすることによって、シュリンク前の寸法値(ゼロ回値)を推定する手法が説明されている。   In Patent Document 1 and Patent Document 2, a curve indicating the relationship between the number of times of measurement and the amount of shrinkage is used as a method for appropriately obtaining the actual dimension value (that is, the dimension value before shrinkage) of a pattern that causes shrinkage. A method is described in which a dimension value (zero time value) before shrinking is estimated by preparing and fitting the curve to the first and subsequent measurement values.

WO03/021186号公報(対応米国特許USP7,659,508)WO 03/021186 (corresponding US Pat. No. 7,659,508) WO03/098149号公報(対応米国特許USP7,285,777)WO03 / 098149 (corresponding US Pat. No. 7,285,777)

電子顕微鏡を用いた加工パターンの観察や測長を行う場合、画像取得時の電子線照射により、シュリンクが生じ、本来の寸法測定が特定できない問題がある。特許文献1及び2には、計測点で連続して複数回画像取得し、寸法変化よりフィティングカーブを作成し、シュリンク前の寸法である本来の寸法を推定する方法である。しかし、現在の微細な回路パターンにおいては、シュリンクがパターン寸法に依存し、微細であるほど高速に反応することが発明者らの検討によって明らかになった。即ち、パターンの寸法によっては、単なるフィッティングカーブを用いた推定法では、高い測定精度を維持できない可能性のあることが分かった。   When performing processing pattern observation and length measurement using an electron microscope, there is a problem that shrinkage occurs due to electron beam irradiation at the time of image acquisition, and original dimension measurement cannot be specified. Patent Documents 1 and 2 are methods for acquiring an image several times continuously at a measurement point, creating a fitting curve from a dimensional change, and estimating an original dimension that is a dimension before shrinking. However, the present inventors have clarified that, in the current fine circuit pattern, the shrink depends on the pattern size, and the finer the pattern, the faster the reaction. That is, it has been found that there is a possibility that high measurement accuracy cannot be maintained by an estimation method using a simple fitting curve depending on the pattern size.

以下にパターンサイズに応じてシュリンクの程度が異なる場合であっても、適正に寸法測定、或いはパターンエッジの輪郭線抽出を行うことを目的とした、パターン寸法測定装置、及び輪郭線抽出装置について説明する。   Hereinafter, a description will be given of a pattern dimension measuring apparatus and an outline extracting apparatus for the purpose of appropriately measuring a dimension or extracting an outline of a pattern edge even when the degree of shrinking varies depending on the pattern size. To do.

上記目的を達成するための一態様として、以下に、試料に電子ビームを走査することによって得られる信号に基づいて、前記試料上に形成されたパターンの寸法を測定するパターン寸法測定装置において、前記信号に基づいて得られる前記パターンの寸法値に、前記パターンの寸法に応じた補正量を加算することによって、前記パターン寸法値を補正する演算装置を備えたことを特徴とするパターン寸法測定装置を提案する。   As an aspect for achieving the above object, in the following, in the pattern dimension measuring apparatus for measuring the dimension of the pattern formed on the sample based on a signal obtained by scanning the sample with an electron beam, A pattern dimension measuring apparatus comprising: an arithmetic unit that corrects the pattern dimension value by adding a correction amount corresponding to the dimension of the pattern to the dimension value of the pattern obtained based on a signal. suggest.

また、上記目的を達成するための他の態様として、以下に、試料に電子ビームを走査することによって得られる信号に基づいて、前記試料上に形成されたパターンエッジの輪郭線を抽出する輪郭線形成部を備えた輪郭線抽出装置において、当該輪郭線形成部は、前記信号に基づいて得られた輪郭線を構成する複数の片、或いは部位毎に登録された補正量に基づいて、前記輪郭線を構成する各点の位置を補正し、当該補正された点に基づいて、新たな輪郭線を形成することを特徴とする輪郭線抽出装置を提案する。   As another mode for achieving the above object, a contour line for extracting a contour line of a pattern edge formed on the sample based on a signal obtained by scanning the sample with an electron beam is described below. In the contour line extraction device provided with the forming unit, the contour line forming unit is configured to generate the contour based on a plurality of pieces constituting the contour line obtained based on the signal or a correction amount registered for each part. A contour extraction apparatus is proposed in which the position of each point constituting a line is corrected and a new contour is formed based on the corrected point.

上記一態様によれば、パターンのサイズに応じて変化するシュリンク量に依らず、高精度にパターン寸法値を導出することが可能となる。また、上記他の態様によれば、複雑な形状を有するパターンであっても、シュリンク前の形状を正確に再現した輪郭線の抽出が可能となる。   According to the above-described aspect, it is possible to derive the pattern dimension value with high accuracy regardless of the amount of shrink that changes according to the size of the pattern. Further, according to the other aspect, it is possible to extract a contour line that accurately reproduces the shape before shrinking even if the pattern has a complicated shape.

電子ビーム照射によってシュリンクするパターンの測長値と測定回数との関係を示す図。The figure which shows the relationship between the length measurement value of the pattern shrunk by electron beam irradiation, and the frequency | count of a measurement. 測長値と測定回数の関係を示すカーブ(シュリンクカーブ)に基づいて、シュリンク前の測長値を推定する例を説明する図。The figure explaining the example which estimates the length measurement value before shrink based on the curve (shrink curve) which shows the relationship between length measurement value and the frequency | count of a measurement. 微細パターンのシュリンクカーブの一例を説明する図。The figure explaining an example of the shrink curve of a fine pattern. 微細パターンのシュリンクカーブに基づいて、シュリンク前の測長値を推定する例を説明する図。The figure explaining the example which estimates the length measurement value before shrinking based on the shrink curve of a fine pattern. 微細パターンのシュリンク前寸法の推定値と、実際の寸法値との関係を説明する図。The figure explaining the relationship between the estimated value of the dimension before shrink of a fine pattern, and an actual dimension value. ΔSカーブ作成工程を説明するフローチャート。The flowchart explaining a (DELTA) S curve creation process. ΔSカーブを説明する説明図。Explanatory drawing explaining (DELTA) S curve. 標準シュリンク量の算出工程を説明するフローチャート。The flowchart explaining the calculation process of standard shrink amount. シュリンクカーブを用いた測長値推測工程を説明するフローチャート。The flowchart explaining the length measurement value estimation process using a shrink curve. ホールパターンの測長値推測工程を説明するフローチャート。The flowchart explaining the length measurement value estimation process of a hole pattern. OPCパターンのシュリンク例を説明する図。The figure explaining the shrink example of an OPC pattern. OPCパターンのシュリンク例を説明する図。The figure explaining the shrink example of an OPC pattern. シュリンク前輪郭線への補正工程を説明するフローチャート。The flowchart explaining the correction process to the outline before shrink. レジスト幅の検索を説明する図。The figure explaining the search of a resist width. 走査電子顕微鏡の概略説明図。Schematic explanatory drawing of a scanning electron microscope. 走査電子顕微鏡の制御装置の概略説明図。Schematic explanatory drawing of the control apparatus of a scanning electron microscope. 輪郭線抽出法の一例を説明する図。The figure explaining an example of the outline extraction method. 輪郭線抽出工程を説明するフローチャート。The flowchart explaining an outline extraction process. シュリンク前輪郭線への補正法を説明する図。The figure explaining the correction method to the outline before shrink. シュリンク前寸法値の推定工程を説明する図。The figure explaining the estimation process of the dimension value before shrink.

以下、図面を用いて適正なシュリンクカーブを形成するための手法について説明する。図15は、走査電子顕微鏡(Scanning Electron Microscope:SEM)の一態様を説明する図である。   Hereinafter, a method for forming an appropriate shrink curve will be described with reference to the drawings. FIG. 15 is a diagram illustrating one embodiment of a scanning electron microscope (SEM).

電子源1501から引出電極1502によって引き出され、図示しない加速電極によって加速された電子ビーム1503は、集束レンズの一形態であるコンデンサレンズ1504によって、絞られた後に、走査偏向器1505により、試料1509上を一次元的、或いは二次元的に走査される。電子ビーム1503は試料台1508に内蔵された電極に印加された負電圧により減速されると共に、対物レンズ1506のレンズ作用によって集束されて試料1509上に照射される。   An electron beam 1503 extracted from an electron source 1501 by an extraction electrode 1502 and accelerated by an acceleration electrode (not shown) is focused by a condenser lens 1504 which is a form of a converging lens, and then is scanned on a sample 1509 by a scanning deflector 1505. Are scanned one-dimensionally or two-dimensionally. The electron beam 1503 is decelerated by the negative voltage applied to the electrode built in the sample stage 1508, and is focused by the lens action of the objective lens 1506 and irradiated onto the sample 1509.

電子ビーム1503が試料1509に照射されると、当該照射個所から二次電子、及び後方散乱電子のような電子1510が放出される。放出された電子1510は、試料に印加される負電圧に基づく加速作用によって、電子源方向に加速され、変換電極1512に衝突し、二次電子1511を生じさせる。変換電極1512から放出された二次電子1511は、検出器1513によって捕捉され、捕捉された二次電子量によって、検出器1513の出力Iが変化する。この出力Iに応じて図示しない表示装置の輝度が変化する。例えば二次元像を形成する場合には、走査偏向器1505への偏向信号と、検出器1513の出力Iとの同期をとることで、走査領域の画像を形成する。   When the sample 1509 is irradiated with the electron beam 1503, secondary electrons and electrons 1510 such as backscattered electrons are emitted from the irradiated portion. The emitted electrons 1510 are accelerated in the direction of the electron source by the acceleration action based on the negative voltage applied to the sample, and collide with the conversion electrode 1512 to generate secondary electrons 1511. The secondary electrons 1511 emitted from the conversion electrode 1512 are captured by the detector 1513, and the output I of the detector 1513 changes depending on the amount of captured secondary electrons. Depending on the output I, the brightness of a display device (not shown) changes. For example, when forming a two-dimensional image, an image of the scanning region is formed by synchronizing the deflection signal to the scanning deflector 1505 with the output I of the detector 1513.

なお、図15の例では試料から放出された電子を変換電極にて一端変換して検出する例について説明しているが、無論このような構成に限られることはなく、例えば加速された電子の軌道上に、電子倍像管や検出器の検出面を配置するような構成とすることも可能である。   In addition, although the example of FIG. 15 demonstrates the example which detects the electron emitted from the sample by converting once with a conversion electrode, of course, it is not restricted to such a structure, For example, it is the acceleration | stimulation of the accelerated electron. It is possible to adopt a configuration in which the detection surface of the electron multiplier tube or the detector is arranged on the orbit.

制御装置1514は、走査電子顕微鏡の各構成を制御すると共に、検出された電子に基づいて画像を形成する機能や、ラインプロファイルと呼ばれる検出電子の強度分布に基づいて、試料上に形成されたパターンのパターン幅を測定する機能を備えている。   The control device 1514 controls each component of the scanning electron microscope, and forms a pattern on the sample based on a function of forming an image based on detected electrons and an intensity distribution of detected electrons called a line profile. It has a function to measure the pattern width.

図16は、走査電子顕微鏡の制御装置1514の詳細を説明する図である。制御装置1514内には、演算部1603と記憶部1602が内蔵されている。装置条件制御部1603は、装置条件記憶部1610に記憶されている装置条件(電子ビームの加速電圧,倍率(視野の大きさ),ビーム電流,各レンズの集束条件、及びパターン測定の際の測定条件等)に基づいて、制御信号を生成する。測定部1604では、SEMによって得られた検出信号に基づいて、パターン幅を測定する。測定部1604では、検出信号に基づいて、ラインプロファイルを形成し、当該ラインプロファイルのピーク幅に基づいて、所望のパターンの寸法値を測定する。測定部1604における測定結果は、測定結果記憶部1611に記憶される。Sカーブ形成部1605は、測定部1604にて得られた測定結果に基づいて、横軸を測定回数、縦軸を寸法値とするカーブ(Sカーブ)を形成する。形成されたSカーブに関する情報は、測定結果記憶部1611に記憶される。測定値差分演算部1606では、異なる測定回数間の測定値の差分が計算される。その演算結果は、測定値差分記憶部1612に記憶される。寸法推定部1606では、Sカーブ形成部1605にて形成されたSカーブに基づいて、電子ビームを照射する前のパターン寸法を推定する。具体的な手法については後述する。推定結果は、寸法推定結果記憶部1613に記憶される。   FIG. 16 is a diagram for explaining the details of the control device 1514 of the scanning electron microscope. The control device 1514 includes a calculation unit 1603 and a storage unit 1602. The apparatus condition control unit 1603 stores the apparatus conditions (electron beam acceleration voltage, magnification (field size), beam current, focusing condition of each lens, and pattern measurement) stored in the apparatus condition storage unit 1610. Control signal is generated on the basis of the conditions. The measurement unit 1604 measures the pattern width based on the detection signal obtained by SEM. The measurement unit 1604 forms a line profile based on the detection signal, and measures the dimension value of the desired pattern based on the peak width of the line profile. The measurement result in the measurement unit 1604 is stored in the measurement result storage unit 1611. The S-curve forming unit 1605 forms a curve (S-curve) having the horizontal axis as the number of measurements and the vertical axis as the dimension value based on the measurement result obtained by the measuring unit 1604. Information about the formed S curve is stored in the measurement result storage unit 1611. In the measurement value difference calculation unit 1606, the difference between the measurement values between different measurement times is calculated. The calculation result is stored in the measurement value difference storage unit 1612. The dimension estimation unit 1606 estimates a pattern dimension before irradiation with an electron beam based on the S curve formed by the S curve forming unit 1605. A specific method will be described later. The estimation result is stored in the dimension estimation result storage unit 1613.

ΔSカーブ形成部1608は、測定値差分演算部1606による演算結果を、横軸をパターンサイズ(或いは設計サイズ)、縦軸を測定値差分とするカーブ(ΔSカーブ)を形成する。具体的な選択法については後述する。   The ΔS curve forming unit 1608 forms a curve (ΔS curve) with the horizontal axis representing the pattern size (or design size) and the vertical axis representing the measured value difference, based on the calculation result by the measurement value difference calculating unit 1606. A specific selection method will be described later.

輪郭線形成部1609は、SEMによって得られた画像に基づいて、輪郭線を形成する。図17は、検出された電子に基づいて形成されるパターン画像から、輪郭線を抽出するための手法の一例を説明する図である。なお、この輪郭線抽出工程は、制御装置1514内で行うようにしても良いし、他の演算装置等で行うようにしても良い。輪郭線抽出には、図18のフローチャートに例示するように、先ずSEM画像を形成する(ステップ1801)。次にSEM画像上のパターン1701のエッジ部分に相当するホワイトバンド1702から第1の輪郭線(図示せず)を抽出する(ステップ1802)。なお、この第1の輪郭線の抽出手法としては、SEM像からビットマップデータで構成されたパターン像を抽出し、そのパターン像をベクトルデータで構成されたパターンデータに変換する方法が考えられる。   The contour line forming unit 1609 forms a contour line based on an image obtained by SEM. FIG. 17 is a diagram illustrating an example of a technique for extracting a contour line from a pattern image formed based on detected electrons. Note that this contour line extraction step may be performed in the control device 1514 or may be performed by another arithmetic device or the like. For contour extraction, an SEM image is first formed as illustrated in the flowchart of FIG. 18 (step 1801). Next, a first contour line (not shown) is extracted from the white band 1702 corresponding to the edge portion of the pattern 1701 on the SEM image (step 1802). As a method for extracting the first contour line, a method of extracting a pattern image composed of bitmap data from an SEM image and converting the pattern image into pattern data composed of vector data can be considered.

次に、形成された第1の輪郭線とレイアウトデータ1703とのベクトルデータ比較、或いはパターンマッチングによって、レイアウトデータ1703と第1の輪郭線との重ね合わせを行う(ステップ1803)。レイアウトデータ1703は、GDSフォーマット等で記憶された設計データの線分情報であり、データベース1614から読み出して適用する。このような重ね合わせを行った上で、輝度分布情報収集領域1704,1705を、第1の輪郭線の線分と垂直になるように設定し、輝度分布1706,1707を検出する(ステップ1804)。このように形成された輝度分布の所定の明るさを持つ画素を抽出しその位置を第2の輪郭線位置と定義することで、より正確な輪郭線の形成が可能となる(ステップ1805)。   Next, the layout data 1703 and the first contour are superimposed by vector data comparison or pattern matching between the formed first contour and layout data 1703 (step 1803). The layout data 1703 is line information of design data stored in the GDS format or the like, and is read from the database 1614 and applied. After such superposition, the luminance distribution information collection areas 1704 and 1705 are set to be perpendicular to the first contour line segment, and the luminance distributions 1706 and 1707 are detected (step 1804). . By extracting a pixel having a predetermined brightness in the luminance distribution formed in this way and defining the position as the second contour line position, a more accurate contour line can be formed (step 1805).

なお、このような正確な輪郭線形成手法は、特開昭60−169977号公報,特開平6−325176号公報,特開平8−161508号公報,特開平9−204529号公報等に記載された既存の手法の適用が可能である。   Such an accurate contour forming method is described in Japanese Patent Application Laid-Open No. 60-169777, Japanese Patent Application Laid-Open No. 6-325176, Japanese Patent Application Laid-Open No. 8-161508, Japanese Patent Application Laid-Open No. 9-204529, and the like. Existing methods can be applied.

なお、上述のように第1の輪郭線とレイアウトデータと重ね合わせることによって、線分単位でレイアウトデータと第1の輪郭線との対応付けが可能となる。レイアウトデータが持つ各線分の線分情報を、輪郭線の各線分情報とすることによって、輪郭線データを設計データと同じ所定のフォーマットにて登録することが可能となる。   As described above, the layout data and the first contour line can be associated with each other by superimposing the first contour line and the layout data. By using the line segment information of each line segment included in the layout data as each line segment information of the contour line, the contour line data can be registered in the same predetermined format as the design data.

上述のように、電子ビームを照射すると、体積が減少するパターンがある。例えば、ArFレジストに電子線を照射した場合の生じる体積の減少は、集束電子線のパターンへの加速電圧Vacc,電子線電流密度Ipd,ライン形状のパターンにおけるシュリンク量2S(片側のエッジでのシュリンク量をSとした場合の両エッジでのシュリンク量)に基づいて、式(1)を用いて求めることができる。   As described above, there is a pattern in which the volume decreases when the electron beam is irradiated. For example, the decrease in volume that occurs when an ArF resist is irradiated with an electron beam includes the acceleration voltage Vacc to the focused electron beam pattern, the electron beam current density Ipd, and the shrink amount 2S in the line-shaped pattern (shrink at one edge). Based on the amount of shrink at both edges when the amount is S, it can be obtained using equation (1).

2S=K1・VaccK2・{1−exp(−(Ipd0.5・n/K3))} …(1)
ここで、2S:シュリンク量(両側)、Vacc:加速電圧(V)、K1,K2,K3:レジストによって決まるパラメータ、n:測定回数である。
2S = K1 · Vacc K2 · {1-exp (− (Ipd 0.5 · n / K3))} (1)
Here, 2S: shrink amount (both sides), Vacc: acceleration voltage (V), K1, K2, K3: parameters determined by resist, n: number of measurements.

よって、同一点を繰り返し画像取得し測定した場合の寸法変化は、図1のような変化をすることになり、この寸法変化をシュリンクカーブと呼ぶ。シュリンクカーブを、上記式(1)に基づいて近似すると、図2のように1回目の測長前の寸法値を推測することができる。また、1回目の測長で生じるシュリンク量、つまりシュリンク前寸法と1回目の測長値の差分をゼロシュリンクと呼ぶ。   Therefore, the dimensional change when images of the same point are repeatedly acquired and measured changes as shown in FIG. 1, and this dimensional change is called a shrink curve. When the shrink curve is approximated based on the above equation (1), the dimension value before the first length measurement can be estimated as shown in FIG. Further, the shrink amount generated in the first length measurement, that is, the difference between the pre-shrink dimension and the first length measurement value is called zero shrink.

しかし、発明者の実験において、測定線幅が100nm以下の微細なパターンにおいては、実際の計測結果が上記式(1)に従わなくなることが分かった。   However, the inventors' experiments have shown that the actual measurement results do not follow the above formula (1) in a fine pattern with a measurement line width of 100 nm or less.

図3は、微細なパターンを計測した場合のシュリンクカーブである。このカーブから式(1)にて推測されるゼロシュリンクは、図4のように非常に小さくなりシュリンクが生じないように見える。しかしながら本現象は、発明者の実験によりシュリンク速度が高速になり、図5のようにゼロシュリンクが大きいためにこのように見えることが分かった。また、本現象は、100nm以下の微細パターンで顕著に現れ、上記式では、現在のプロセスパターンのゼロシュリンクを推測できず、シュリンク前の寸法値を推測することができない。   FIG. 3 is a shrink curve when a fine pattern is measured. From this curve, the zero shrink estimated from the equation (1) becomes very small as shown in FIG. However, it has been found that this phenomenon looks like this because the shrinkage speed becomes high and the zero shrinkage is large as shown in FIG. In addition, this phenomenon appears remarkably in a fine pattern of 100 nm or less, and the above formula cannot estimate the zero shrink of the current process pattern, and cannot estimate the dimension value before shrink.

実験結果によると、寸法に依存してシュリンク速度が高速化しており、観察条件(加速電圧,電流密度)が同一の場合、ゼロシュリンク(ΔS)は測定寸法に依存し、以下の式(2)で表すことができる。   According to the experimental results, when the shrinking speed is increased depending on the dimensions, and the observation conditions (acceleration voltage, current density) are the same, the zero shrink (ΔS) depends on the measurement dimensions, and the following equation (2) Can be expressed as

ΔS=exp(−(CD0.5/K1)) …(2)
ここで、K1は、レジストの種類によって決まるパラメータである。本実施例では、線幅に依存せずシュリンク前の寸法値を推測する手順を示す。
ΔS = exp (− (CD 0.5 / K1)) (2)
Here, K1 is a parameter determined by the type of resist. In this embodiment, a procedure for estimating the dimension value before shrinking without depending on the line width is shown.

本手法を用いて寸法の推測を行うために、使用するレジストと同一のレジストを用いてパターンニングをしたウェハを準備し、事前に線幅とシュリンク量の計測を行う。次に、事前測定結果より、近似曲線(ΔSカーブ)とゼロシュリンク量を算出する。   In order to estimate the dimensions using this method, a patterned wafer is prepared using the same resist as the resist to be used, and the line width and shrinkage are measured in advance. Next, an approximate curve (ΔS curve) and a zero shrink amount are calculated from the preliminary measurement results.

シュリンク前寸法値を推測する計測を行う場合には、上記、ΔSカーブと標準ゼロシュリンク量から補正値を算出し寸法値を推測する。以下に、手順を示す。   When performing measurement for estimating the pre-shrink dimension value, the correction value is calculated from the ΔS curve and the standard zero shrink amount, and the dimension value is estimated. The procedure is shown below.

事前測定に必要となるものは、デザイン寸法を変化させたラインパターンである。例えば、50nmから150nmまで10nm刻みで寸法の変化させたラインパターンなどを準備する。ΔSカーブ算出シーケンスを図6に示す。寸法変化したパターン各々をそれぞれ連続2回測定し、それぞれの1回目の測長結果をCD1、2回目の測長結果をCD2として測長値を記録する。 What is required for the pre-measurement is a line pattern whose design dimensions are changed. For example, a line pattern whose dimensions are changed in steps of 10 nm from 50 nm to 150 nm is prepared. The ΔS curve calculation sequence is shown in FIG. Each dimension-changed pattern is continuously measured twice, and the length measurement value is recorded with CD 1 as the first length measurement result and CD 2 as the second length measurement result.

本実施例にて求めるΔSカーブとは、1回目の測長値と2回目の測長値の差分を、異なるパターン寸法毎にプロットすることによって求められるものであり、ΔSカーブを作成する手法としては、上述のように、CD1とCD2に基づいて、CD1−CD2を演算し、ΔS(1-2)を求め、当該演算結果をプロットする。 The ΔS curve obtained in this embodiment is obtained by plotting the difference between the first length measurement value and the second length measurement value for each different pattern dimension, and is a method for creating the ΔS curve. As described above, CD 1 -CD 2 is calculated based on CD 1 and CD 2 to obtain ΔS (1-2) , and the calculation result is plotted.

計測後、パターン寸法CD1もしくは、デザインサイズとΔS(1-2)=CD1−CD2より、式(2)に従いΔSカーブ1を作成する。 After the measurement, a ΔS curve 1 is created according to the equation (2) from the pattern dimension CD 1 or the design size and ΔS (1-2) = CD 1 −CD 2 .

この時、得られるΔSカーブ1を図7に例示する。ここでX軸は、1回目の測長結果となっているが、デザインサイズでも良い。次に標準ゼロシュリンク量2S(S)を算出するための代表パターンを決定する。代表パターンの決定シーケンスを図8に示す。   FIG. 7 illustrates the ΔS curve 1 obtained at this time. Here, the X-axis is the first measurement result, but it may be the design size. Next, a representative pattern for calculating the standard zero shrink amount 2S (S) is determined. A representative pattern determination sequence is shown in FIG.

標準ゼロシュリンク量を決定するための代表パターンは、式(1)でシュリンク量を推測できるほどの十分な大きさがなければならず、ΔSカーブにおいて傾きがゼロになる寸法以上となる。また、経験上、100nm以上のラインパターンであれば寸法によるゼロシュリンクの変化が現れないため、100nm以上の任意の寸法値を持つパターンを、代表パターンとするようにしても良い。代表パターンの決定後、代表パターンを最低3回から通常5〜10回の連続測定を行いそれぞれの寸法値を記録する。   The representative pattern for determining the standard zero shrinkage amount must be large enough to allow the shrinkage amount to be estimated by the equation (1), and is equal to or larger than the dimension at which the slope is zero in the ΔS curve. In addition, experience shows that if the line pattern is 100 nm or more, the zero shrink change due to the dimension does not appear. Therefore, a pattern having an arbitrary dimension value of 100 nm or more may be used as the representative pattern. After the representative pattern is determined, the representative pattern is continuously measured from at least 3 times to usually 5 to 10 times, and the respective dimension values are recorded.

記録した寸法値を用いて式(1)よりシュリンク前の測長値CD0を推測後、CD0−CD1の値を標準ゼロシュリンク量とする。測定に使用したパターンが、ΔSカーブ取得ポイントと同様の場合、推測に用いる寸法値は、CD1,CD2にΔSカーブ取得時の寸法値を用いる。 After estimating the length measurement value CD 0 before shrinkage from the equation (1) using the recorded dimension value, the value of CD 0 -CD 1 is set as the standard zero shrink amount. When the pattern used for the measurement is the same as the ΔS curve acquisition point, the dimension values used for estimation are the dimension values at the time of ΔS curve acquisition for CD 1 and CD 2 .

また、同一ウェハ面内より代表パターンと同じ寸法パターンを複数個測定しその平均値を用いて標準ゼロシュリンク量を算出しても良い。   Alternatively, a plurality of dimensional patterns that are the same as the representative pattern may be measured from the same wafer surface, and the standard zero shrink amount may be calculated using the average value.

次に、算出したΔSカーブ1と標準ゼロシュリンク量より、シュリンク補正式(3)を算出し、記憶する。
ΔS1=exp{−(CD1 0.5/K1)}+2S …(3)
次に、上記式(3)を用いた、測定時のシュリンク前測長値推測シーケンス図9に示す。
Next, the shrink correction formula (3) is calculated from the calculated ΔS curve 1 and the standard zero shrink amount and stored.
ΔS 1 = exp {− (CD 1 0.5 / K1)} + 2S (3)
Next, FIG. 9 shows a pre-shrink measurement length estimation sequence at the time of measurement using the above equation (3).

測長後、得られた寸法値を元に、事前取得していた式(3)よりCD1のゼロシュリンク量を算出し、表示することができる。これにより測定時は、1回の測長でシュリンク前の測長値を推測でき、最小限の電子線照射によるダメージに抑えることが可能となる。 After the length measurement, the zero shrink amount of CD 1 can be calculated and displayed based on the previously obtained equation (3) based on the obtained dimension value. Thereby, at the time of measurement, the length measurement value before shrinking can be estimated by one length measurement, and it becomes possible to suppress damage due to the minimum electron beam irradiation.

本実施例では、代表パターンのシュリンクカーブを用いて、シュリンク前の寸法推定(計算)を行うために、40nm近傍のパターンにおけるオーバーシュリンク量を補正値の一部として導出する。オーバーシュリンク量とは、測定対象パターン(例えば1回目の測定で大きなシュリンクを発生させる40nm程度の幅を持つパターン)のシュリンク量と、代表パターンのシュリンク量との1回目の測定値と2回目の測定値の差分である。標準ゼロシュリンク量にオーバーシュリンク量を加算することによって、シュリンクが大きなパターンに対する補正量とする。   In the present embodiment, in order to perform dimension estimation (calculation) before shrink using the shrink curve of the representative pattern, the over shrink amount in the pattern near 40 nm is derived as a part of the correction value. The overshrink amount is the first measured value of the shrinkage amount of the measurement target pattern (for example, a pattern having a width of about 40 nm that generates a large shrinkage in the first measurement) and the shrinkage amount of the representative pattern. It is the difference between the measured values. By adding the over shrink amount to the standard zero shrink amount, a correction amount for a pattern having a large shrink is obtained.

よって、式(4)を解くことによって、シュリンクが大きく発生する測定対象パターンのシュリンク量を推定することができる。   Therefore, by solving the equation (4), it is possible to estimate the shrink amount of the measurement target pattern in which the shrinkage is greatly generated.

2S=2S(S)+ΔS …(4)
(2S(S):代表パターンの標準シュリンク量、2S:測定対象パターンのシュリンク量、ΔS:測定対象パターンのオーバーシュリンク量)
式(5)のように、以上のようにして求められた2Sを、測定対象パターンの測定値に加算することによって、シュリンク前のパターン寸法を推定することが可能となる。
2S = 2S (S) + ΔS (4)
(2S (S): standard shrink amount of representative pattern, 2S: shrink amount of measurement target pattern, ΔS: over shrink amount of measurement target pattern)
It is possible to estimate the pattern size before shrinking by adding 2S obtained as described above to the measurement value of the measurement target pattern as shown in Equation (5).

CDe=CDx+2S …(5)
(CDe:シュリンク前のパターン寸法推定値、CDx:パターン寸法測定値)
なお、ΔSは、上述したように測定対象パターンの大きさによって変化するため、パターンの種類に応じて予め所定の記憶媒体に記憶しておき、演算時に読み出すようにすると良い。なお、ΔSは、パターンの実寸法によって変化するため、測定対象パターンの設計データのサイズに応じてその値を読み出すようにすると良い。また、ΔSとパターンサイズとの関係を示す近似曲線(関数)、或いはテーブルを予め作成しておき、当該関数とパターンのサイズに基づいて、ΔSを導出するようにしても良い。
CDe = CDx + 2S (5)
(CDe: estimated pattern dimension before shrinking, CDx: measured pattern dimension)
Since ΔS changes depending on the size of the measurement target pattern as described above, it is preferable to store ΔS in a predetermined storage medium in advance according to the type of pattern and read it out during calculation. Since ΔS varies depending on the actual dimension of the pattern, it is preferable to read the value according to the size of the design data of the measurement target pattern. Alternatively, an approximate curve (function) or table indicating the relationship between ΔS and the pattern size may be created in advance, and ΔS may be derived based on the function and the pattern size.

また、パターンの実測値(CD1(1回目の測定値))と、ΔS(或いは2S)との関係を、予め関数化、或いはテーブル化しておき、実際の測定時に得られた実測値に基づいて、ΔS(或いは2S)を導出するようにしても良い。 Further, the relationship between the actual measurement value of the pattern (CD 1 (first measurement value)) and ΔS (or 2S) is made into a function or a table in advance, and based on the actual measurement value obtained at the time of actual measurement. Thus, ΔS (or 2S) may be derived.

図20は、微細なパターンのシュリンク補正量の算出工程と、当該補正量に基づいて測定値を補正することによって、シュリンク前のパターン寸法を推定する工程を説明するフローチャートである。   FIG. 20 is a flowchart illustrating a process of calculating a shrink correction amount of a fine pattern and a process of estimating a pattern dimension before shrinking by correcting a measurement value based on the correction amount.

まず、複数のサイズのパターン(例えば、50nm〜150nmの寸法幅を持つパターン)について、CD1(1回目の測長値)とCD2(2回目の測長値)を測定する(ステップ2001)。次に各サイズについてCD1−CD2を演算し、横軸をパターンサイズ(設計サイズでも可)、縦軸をCD1−CD2とするグラフ上にプロット(ΔSカーブ1)を形成する(ステップ2002)。次に、ΔSカーブ1の傾きがゼロ、或いは傾きが所定値以下のポイントに相当するパターンサイズの選択(代表パターンの選択)を行う(ステップ2003)。この代表パターンは、第1のパターンサイズを持つ。次に代表パターンに対するn回の測定に基づいて、シュリンクカーブ(Sカーブ)を作成する(ステップ2004)。次に、代表パターンについて形成されたSカーブに基づいて、『標準ゼロシュリンク量(推定されるゼロ回値と1回目の測定値との差分)』を算出する(ステップ2005)。次に、代表パターンのCD1−CD2と、代表パターンに対して、パターンサイズが小なる複数のパターンのCD1−CD2との差分(ΔS:ΔS1〜ΔSn)を算出する(ステップ2006)。ここまでが、シュリンク補正量の算出ステップであり、所定の記憶媒体に上記情報を記憶する。なお、上記順番はシュリンク補正量を求める手法の一例に過ぎず、標準ゼロシュリンク量とΔSを別の順番で求めるようにしても良い。 First, CD 1 (first measurement value) and CD 2 (second measurement value) are measured for a plurality of patterns (for example, patterns having a dimension width of 50 nm to 150 nm) (step 2001). . Next, CD 1 −CD 2 is calculated for each size, and a plot (ΔS curve 1) is formed on a graph with the horizontal axis representing the pattern size (or design size is acceptable) and the vertical axis representing CD 1 −CD 2 (step S). 2002). Next, a pattern size corresponding to a point where the slope of the ΔS curve 1 is zero or the slope is equal to or smaller than a predetermined value (selection of a representative pattern) is performed (step 2003). This representative pattern has a first pattern size. Next, a shrink curve (S curve) is created based on n measurements for the representative pattern (step 2004). Next, “standard zero shrink amount (difference between estimated zero time value and first measured value)” is calculated based on the S curve formed for the representative pattern (step 2005). Next, a difference (ΔS: ΔS 1 to ΔS n ) between the representative pattern CD 1 -CD 2 and a plurality of patterns CD 1 -CD 2 having a smaller pattern size with respect to the representative pattern is calculated (Step S 1 ). 2006). The steps so far are the calculation step of the shrink correction amount, and the information is stored in a predetermined storage medium. Note that the above order is merely an example of a method for obtaining the shrink correction amount, and the standard zero shrink amount and ΔS may be obtained in different orders.

次に、実際の測定対象パターンの測長を実行する(ステップ2007)。次に、測定対象パターンの寸法値,標準ゼロシュリンク量、及びΔSに基づいて、式(5)等に基づいて、シュリンク前の寸法値を演算する(ステップ2008)。このようにして求められたシュリンク前寸法値を、所定の記憶媒体に記憶、及び図示しない表示装置に測長値(或いは推定値)として出力する(ステップ2009)。   Next, length measurement of the actual measurement target pattern is executed (step 2007). Next, based on the dimension value of the measurement target pattern, the standard zero shrink amount, and ΔS, the dimension value before shrinking is calculated based on Equation (5) and the like (step 2008). The pre-shrink dimension value obtained in this way is stored in a predetermined storage medium, and is output as a measured value (or estimated value) to a display device (not shown) (step 2009).

本実施例では、標準ゼロシュリンク量(2S(S))と各パターンの寸法に依存したシュリンク量(ΔS)を実測値に加算することによって、トータルのシュリンク量を求める例を説明したが、その都度計算するのではなく、例えば、2S(S)+ΔSを予め各パターンの寸法(デザインサイズ、或いは実測値)毎に登録したテーブル、或いは関係式を用意しておき、測定された実測値(或いは測定対象パターンのデザインサイズ)に応じて、総シュリンク量をテーブルから読み出し、或いは関係式に基づいて演算を行うことによって、総シュリンク量を導出するようにしても良い。   In the present embodiment, an example has been described in which the total shrink amount is obtained by adding the standard zero shrink amount (2S (S)) and the shrink amount (ΔS) depending on the size of each pattern to the actual measurement value. Instead of calculating each time, for example, a table or a relational expression in which 2S (S) + ΔS is registered in advance for each pattern dimension (design size or measured value) is prepared, and the measured actual value (or Depending on the design size of the measurement target pattern, the total shrink amount may be derived by reading out the total shrink amount from the table or performing a calculation based on the relational expression.

以上のように、1回の測定(電子ビーム照射)によるシュリンクが大きく、フィッティングカーブによるゼロ回値の推定が困難なパターンであっても、予め標準ゼロシュリンク量やΔSを求めておくことにより、ゼロ回値の正確な推定が可能となる。また、標準ゼロシュリンク量とΔSを求めておけば、1回の測定でシュリンク前寸法の演算が可能となる。   As described above, by obtaining the standard zero shrink amount and ΔS in advance even if the pattern is large in shrink due to one measurement (electron beam irradiation) and difficult to estimate the zero value by the fitting curve, Accurate estimation of the zero time value is possible. In addition, if the standard zero shrink amount and ΔS are obtained, the pre-shrink dimension can be calculated in one measurement.

実施例1は、微細ラインパターンのシュリンク前寸法の推測方法であるが、微細ホールパターンのシュリンク前寸法値の推測方法にも有効である。   The first embodiment is a method for estimating the dimension before shrinking of the fine line pattern, but is also effective for a method of estimating the dimension value before shrinking of the fine hole pattern.

複数個のホールが密集したパターンでは、ホール間隔が近づくほど、微細ラインパターンと同様の現象が見られる。密集ホールパターンの場合、ホールとホールの間がレジスト領域になり、ホール間隔が近づくほど、レジスト領域が微細になる。よってホールパターンにおいては、ホール寸法でなく、ホール間隔でΔSカーブを作成することができる。図6におけるCD1,CD2はそれぞれ測定ホールと周辺ホールとの間隔測定結果となる。標準ゼロシュリンク量の算出方法は同じ方法で算出することができる。測定時のシュリンク前測長値推測シーケンスを図10に示す。 In a pattern in which a plurality of holes are densely packed, a phenomenon similar to that of a fine line pattern is observed as the hole interval is closer. In the case of a dense hole pattern, a resist region is formed between holes, and the closer the hole interval is, the finer the resist region is. Therefore, in the hole pattern, a ΔS curve can be created not by the hole size but by the hole interval. CD 1 and CD 2 in FIG. 6 are the measurement results of the distance between the measurement hole and the peripheral hole, respectively. The standard zero shrink amount can be calculated by the same method. FIG. 10 shows a pre-shrink measurement value estimation sequence at the time of measurement.

ホール測長時に、同一画面内でホール測長とホール間隔測長を行いそれぞれの寸法値を記録する。ホール間隔をCD1とし、式(3)よりゼロシュリンク量を推測することができる。ホール測長結果は、ホール測長結果CD2と上記ゼロシュリンク量よりシュリンク前寸法CD(0)を算出し、表示する。 At the time of hall measurement, hall measurement and hole interval measurement are performed on the same screen, and the respective dimension values are recorded. The hole interval is CD 1 and the amount of zero shrink can be estimated from equation (3). Hall measurement results, calculates the Hall measurement results CD 2 and the zero-shrinkage than pre-shrinking dimension CD (0), and displays.

同様に、スペース測定時もホール測定同様にスペースとスペースの間隔で推測することができる。この場合、スペース間隔をCD1としてスペース測定結果をCD2としてシュリンク前寸法を推測することができる。 Similarly, at the time of space measurement, it can be estimated from the space-to-space interval as in the case of hole measurement. In this case, the size before shrinking can be estimated by setting the space interval as CD 1 and the space measurement result as CD 2 .

半導体パターンやフラットパネル等の転写に用いられるフォトマスクでは、パターン等の微細化に伴い、光近接効果(Optical Proximity Correction:OPC)の影響によって設計データに忠実なレジストパターンを形成することが困難になりつつある。このような課題に対し、補助パターン(OPCパターン)を付加することによって、適正なパターン形成を実現する試みがなされている。このようなOPCにおいては、実施例1,2のような一次元的な寸法測定だけではなく、二次元的な寸法測定に基づく形状評価の要求がある。このような形状評価に基づいて、マスクデザインの補正が行われる。このOPC測定では、SEM像からパターン輪郭線を抽出し、輪郭線に基づいて二次元形状を評価したり、輪郭線に基づく露光シミュレーションによる形状評価を行うことが知られている。   With photomasks used for transferring semiconductor patterns and flat panels, it is difficult to form resist patterns that are faithful to design data due to the effects of optical proximity effects (OPC) as the patterns become finer. It is becoming. In order to solve such a problem, an attempt has been made to realize proper pattern formation by adding an auxiliary pattern (OPC pattern). In such OPC, there is a demand for shape evaluation based on two-dimensional dimension measurement as well as one-dimensional dimension measurement as in the first and second embodiments. Based on such shape evaluation, the mask design is corrected. In this OPC measurement, it is known that a pattern contour line is extracted from an SEM image, a two-dimensional shape is evaluated based on the contour line, or a shape evaluation is performed by exposure simulation based on the contour line.

二次元測定を要するようなパターンの場合、計測パターン形状や周辺パターンが複雑であり、シュリンク量がパターンやパターンの部位ごとに異なる場合がある。即ち、ゼロシュリンク量がパターンやパターンの部位毎に異なる場合がある。本実施例では、パターンやパターンの部位毎に異なるシュリンク量に依らず、パターンエッジの輪郭抽出を高精度に行い得る輪郭線抽出法を説明する。   In the case of a pattern that requires two-dimensional measurement, the measurement pattern shape and the peripheral pattern are complicated, and the amount of shrinkage may vary from pattern to pattern or pattern part. That is, the zero shrink amount may be different for each pattern or pattern portion. In the present embodiment, a description will be given of a contour line extraction method capable of performing pattern edge contour extraction with high accuracy regardless of the amount of shrinkage that differs for each pattern or pattern part.

図11はOPCパターンの一例である。T字型の部分がArFレジストで形成されたパターンを例に説明する。T字パターンのシュリンクは、図11のポイントA,B,Cそれぞれにおいてレジストの線幅が異なるためにゼロシュリンク量が異なる。よって、輪郭線抽出のためのSEM像を取得すると、シュリンク量は、A>B>Cの順で大きくなり、線幅の小さなAはよりシュリンクし、線幅の大きいCはシュリンクしにくくなる。このSEM像から輪郭線抽出を行うと、本来得られる輪郭線よりポイントAではより内側へ入り込んだ輪郭線となってしまう。   FIG. 11 shows an example of the OPC pattern. A description will be given taking as an example a pattern in which a T-shaped portion is formed of an ArF resist. The shrinkage of the T pattern has different zero shrinkage amounts because the resist line widths are different at points A, B, and C in FIG. Therefore, when an SEM image for contour line extraction is acquired, the shrink amount increases in the order of A> B> C, A having a smaller line width shrinks more, and C having a larger line width is less likely to shrink. When the contour line is extracted from this SEM image, the contour line enters more inside at the point A than the originally obtained contour line.

また、図12のようにホールパターンが並んだ場合も、同様に一様なシュリンクとならない。ホールパターンの場合、周辺がレジストとなるため周辺パターン密度によりシュリンクが異なる。   Similarly, when the hole patterns are arranged as shown in FIG. In the case of a hole pattern, since the periphery is a resist, the shrink differs depending on the peripheral pattern density.

ホール上部は、レジストが広がっているのに対してホール側部は、別のホールが並んでいるためレジスト量が少なくなっている。よってゼロシュリンク量は水平方向に対して垂直方向が大きくなるためシュリンク後は、楕円形状のSEM像となり、本来と異なる輪郭線抽出となってしまう。   The resist spreads in the upper part of the hole, whereas the resist amount is reduced because another hole is arranged in the side part of the hole. Therefore, since the zero shrink amount is larger in the vertical direction than in the horizontal direction, after shrinking, an SEM image having an elliptical shape is obtained, resulting in a contour extraction different from the original.

本実施例では、このようなOPCパターンで正しい輪郭線へ補正する方法を示す。図13にシーケンスを示す。輪郭線補正を行うためには、実施例1同様にラインパターンを用いたΔSカーブを作成と標準ゼロシュリンク量の計測を行っておき、式(3)を取得しておく。次に輪郭線を抽出するためのSEM画像を取得し、パターンエッジに追従したエッジ点検出し輪郭線を抽出する。抽出した各エッジ点より、図14のように、パターンに垂直方向でレジスト方向に対してエッジ検出を行い、レジスト幅CD1を計測する。次に各エッジ点のレジスト幅をCD1として式(3)より寸法値を推測する。エッジが検出できない場合、レジスト量は無限にあると考えパターン形状,密度による影響を受けないと考え標準ゼロシュリンク量を補正値とする。なお、ΔSは、両エッジの変化をシュリンクとしているため片側エッジ単体のゼロシュリンクは、ゼロシュリンクの半分の値となる。 In the present embodiment, a method of correcting to a correct contour line using such an OPC pattern is shown. FIG. 13 shows a sequence. In order to perform contour correction, a ΔS curve using a line pattern is created and a standard zero shrink amount is measured in the same manner as in the first embodiment, and Equation (3) is obtained. Next, an SEM image for extracting a contour line is acquired, and an edge inspection contour line following the pattern edge is extracted. From the extracted edge points, as shown in FIG. 14, edge detection is performed in the resist direction in the direction perpendicular to the pattern, and the resist width CD 1 is measured. Next, assuming that the resist width at each edge point is CD 1 , the dimension value is estimated from equation (3). If the edge cannot be detected, the amount of resist is considered to be infinite, and the standard zero shrink amount is set as the correction value because it is not affected by the pattern shape and density. In addition, since ΔS uses the change of both edges as the shrink, the zero shrink of the single edge alone is half the value of the zero shrink.

次に取得したSEM像の倍率より補正量をピクセルへ変換し、現在のエッジ位置よりエッジ検出方向に対して、補正量の分だけエッジ位置をずらす。この補正を全エッジ点に行い、新たな輪郭線を表示する。これによりパターン形状と周辺パターンに依存せずシュリンク前の輪郭線を抽出することが可能となる。   Next, the correction amount is converted into a pixel based on the magnification of the acquired SEM image, and the edge position is shifted from the current edge position by the correction amount with respect to the edge detection direction. This correction is performed on all edge points, and a new contour line is displayed. This makes it possible to extract the outline before shrinking without depending on the pattern shape and the peripheral pattern.

図19は、図18の工程を経て形成された輪郭線(第2の輪郭線)に基づいて、シュリンク量を加味した輪郭線(第3の輪郭線)を形成する工程を説明する図である。まず、第2の輪郭線1901上の各点1902(画素)について、各線分に割り当てられた補正量を導出する(図19(2))。各点が属する片の属性情報は、第2の輪郭線を形成したときに、レイアウトデータ1703に基づいて、予め第2の輪郭線1901上の各片に付加されているので、その情報を利用する。各片の補正量は、予め所定の記憶媒体に記憶しておき、各点1902の指定に基づいて、読み出されるようにする。本例の場合、最も長いパターン寸法1903の補正量1904が最も小さく、2番目に長いパターン寸法1905の補正量1906が2番目に小さい。また、パターン寸法1903,1905のより短い寸法1907の補正量1908は、3つの補正量の中で最も小さいものとなっている。上述したように、パターン寸法が小さい程、シュリンクが大きく発生する傾向にあるため、補正量もそのように登録しておく。各片の補正量は、近接するパターンの存在等によっても変化するため、少なくともパターン寸法と、他のパターンの位置の組み合わせ毎に登録しておき、輪郭線を形成するパターン部位の状況に応じて、適用するようにすると良い。   FIG. 19 is a diagram illustrating a process of forming a contour line (third contour line) that takes into account the shrinkage amount based on the contour line (second contour line) formed through the process of FIG. . First, for each point 1902 (pixel) on the second outline 1901, a correction amount assigned to each line segment is derived (FIG. 19 (2)). The attribute information of the piece to which each point belongs is added in advance to each piece on the second contour line 1901 based on the layout data 1703 when the second contour line is formed. To do. The correction amount of each piece is stored in advance in a predetermined storage medium, and is read based on the designation of each point 1902. In this example, the correction amount 1904 of the longest pattern dimension 1903 is the smallest, and the correction amount 1906 of the second longest pattern dimension 1905 is the second smallest. Further, the correction amount 1908 of the shorter dimension 1907 of the pattern dimensions 1903 and 1905 is the smallest among the three correction amounts. As described above, the smaller the pattern dimension, the more the shrinkage tends to occur. Therefore, the correction amount is registered as such. Since the correction amount of each piece also changes depending on the presence of adjacent patterns, etc., it is registered for each combination of at least the pattern dimension and the position of another pattern, and according to the situation of the pattern part forming the contour line It is better to apply.

各点の補正量は、レイアウトデータ1703の各片の垂直方向の補正量を登録しておくことが望ましい。次に、補正によって位置調整された補正点1909を繋ぎ合わせるように、第3の輪郭線1910を形成する(図19(3),(4))。輪郭線補正量は、輪郭線補正量記憶部1615に予め記憶しておき、必要に応じて読み出せるようにしておく。補正量は、同じ材質からなるパターンの各部位について実際に測定した結果から補正量を抽出するようにすると良い。   As the correction amount of each point, it is desirable to register the correction amount in the vertical direction of each piece of the layout data 1703. Next, a third outline 1910 is formed so as to connect the correction points 1909 whose positions are adjusted by correction (FIGS. 19 (3) and (4)). The contour correction amount is stored in advance in the contour correction amount storage unit 1615 so that it can be read out as necessary. The correction amount may be extracted from the result of actual measurement for each part of the pattern made of the same material.

また、シュリンク量がある部分において一定と見なせる領域が存在するのであれば、片毎ではなくパターンの部位単位で補正量を登録しておくようにしても良い。   Further, if there is a region that can be regarded as constant in a portion where there is a shrinkage amount, the correction amount may be registered in units of parts of the pattern instead of each piece.

以上のような構成によれば、パターン、或いはパターンの部位毎にシュリンク量が異なるような場合であっても、高精度に輪郭線形成を行うことが可能となる。   According to the configuration as described above, it is possible to form a contour line with high accuracy even when the shrink amount differs for each pattern or pattern portion.

1501 電子源
1502 引出電極
1503 電子ビーム
1504 コンデンサレンズ
1505 走査偏向器
1506 対物レンズ
1507 試料室
1508 試料台
1509 試料
1510 電子
1511 二次電子
1512 変換電極
1513 検出器
1501 Electron source 1502 Extraction electrode 1503 Electron beam 1504 Condenser lens 1505 Scanning deflector 1506 Objective lens 1507 Sample chamber 1508 Sample stage 1509 Sample 1510 Electron 1511 Secondary electron 1512 Conversion electrode 1513 Detector

Claims (8)

試料に電子ビームを走査することによって得られる信号に基づいて、前記試料上に形成されたパターンの寸法を測定するパターン寸法測定装置において、
前記信号に基づいて得られる前記パターンの寸法値に、前記試料に対する電子ビームの照射によって発生する前記パターンのサイズに応じたシュリンク量に基づく補正量を加算することによって、前記パターンの寸法値を補正する演算装置を備えたことを特徴とするパターン寸法測定装置。
In a pattern dimension measuring apparatus for measuring the dimension of a pattern formed on the sample based on a signal obtained by scanning the sample with an electron beam,
The dimension value of the pattern is corrected by adding a correction amount based on the shrinkage amount according to the size of the pattern generated by irradiation of the electron beam to the sample to the dimension value of the pattern obtained based on the signal. An apparatus for measuring a pattern dimension, comprising:
請求項1において、
前記演算装置は、第1のサイズのパターンに電子ビームを照射したときの第1のシュリンク量に基づく補正量、或いは当該第1のシュリンク量に、当該第1のサイズより小さなパターンのサイズに応じて記憶された第2のシュリンク量を加算した補正量を用いて、前記パターンの寸法値を補正することを特徴とするパターン寸法測定装置。
In claim 1,
The arithmetic unit responds to the correction amount based on the first shrink amount when the pattern of the first size is irradiated with the electron beam, or the size of the pattern smaller than the first size according to the first shrink amount. A pattern dimension measuring apparatus for correcting the dimension value of the pattern using a correction amount obtained by adding the second shrink amount stored in the above.
請求項2において、
前記演算装置は、前記第1のサイズのパターンの第1回目の電子ビーム照射による測定値と第2回目の電子ビーム照射による測定値の差分と、前記第1のサイズのパターンとはサイズが異なる第2のサイズのパターンの第1回目の電子ビーム照射による測定値と第2回目の電子ビーム照射による測定値の差分との差異に基づいて、前記補正量を算出することを特徴とするパターン寸法測定装置。
In claim 2,
The arithmetic device has a difference in size between a measurement value obtained by first electron beam irradiation and a measurement value obtained by second electron beam irradiation of the first size pattern, and the first size pattern. The pattern size, wherein the correction amount is calculated based on a difference between a measurement value of the second size pattern by the first electron beam irradiation and a difference between the measurement value by the second electron beam irradiation. measuring device.
請求項において、
前記演算装置は、前記試料上に形成された異なるサイズのパターンについて、電子ビーム照射前の寸法値と、第1回目の電子ビーム照射による測定値の差分を求め、当該異なるサイズの測定値の差分に基づいて、前記パターンのサイズに応じた差分の変化を示す近似曲線を求めることを特徴とするパターン寸法測定装置。
In claim 1 ,
The arithmetic unit obtains a difference between a dimension value before irradiation with an electron beam and a measurement value obtained by the first electron beam irradiation for a pattern having a different size formed on the sample, and calculates a difference between the measurement values having the different size. based on the pattern dimension measuring apparatus according to claim Rukoto determined an approximate curve indicating the change in the difference according to the size of the pattern.
請求項において、
前記演算装置は、前記試料上に形成されたパターンに対する第1回目の電子ビーム照射による寸法値に、前記補正量を加算することによって、前記パターン寸法値を補正することを特徴とするパターン寸法測定装置。
In claim 1 ,
The arithmetic unit corrects the pattern dimension value by adding the correction amount to a dimension value obtained by first-time electron beam irradiation for a pattern formed on the sample. apparatus.
試料に電子ビームを走査することによって得られる信号に基づいて、前記試料上に形成されたパターンエッジの輪郭線を抽出する輪郭線形成部を備えた輪郭線抽出装置において、
当該輪郭線形成部は、前記信号に基づいて得られた輪郭線を構成する複数の片、或いは部位毎に登録され、前記試料に対する電子ビームの照射によって発生するシュリンク量に応じた補正量に基づいて、前記輪郭線を構成する各点の位置を補正し、当該補正された点に基づいて、新たな輪郭線を形成することを特徴とする輪郭線抽出装置
In a contour line extraction device including a contour line forming unit that extracts a contour line of a pattern edge formed on the sample based on a signal obtained by scanning an electron beam on the sample.
The contour line forming unit is registered for each of a plurality of pieces or parts constituting the contour line obtained based on the signal, and based on a correction amount corresponding to a shrink amount generated by irradiation of the electron beam to the sample. Then, the position of each point constituting the contour line is corrected, and a new contour line is formed based on the corrected point .
請求項6において、
前記輪郭線形成部は、前記信号に基づいて形成される画像のエッジ部を細線化することによって、前記輪郭線を抽出することを特徴とする輪郭線抽出装置。
In claim 6,
The contour line extracting apparatus extracts the contour line by thinning an edge portion of an image formed based on the signal .
請求項において、
前記補正量は、前記片によって形成されるパターンの幅が小さい程、大きくなることを特徴とする輪郭線抽出装置。
In claim 6 ,
The contour extraction apparatus according to claim 1, wherein the correction amount increases as the width of the pattern formed by the pieces decreases.
JP2010140057A 2010-06-21 2010-06-21 Pattern dimension measuring apparatus and contour line forming apparatus Active JP5460479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140057A JP5460479B2 (en) 2010-06-21 2010-06-21 Pattern dimension measuring apparatus and contour line forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140057A JP5460479B2 (en) 2010-06-21 2010-06-21 Pattern dimension measuring apparatus and contour line forming apparatus

Publications (2)

Publication Number Publication Date
JP2012002765A JP2012002765A (en) 2012-01-05
JP5460479B2 true JP5460479B2 (en) 2014-04-02

Family

ID=45534897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140057A Active JP5460479B2 (en) 2010-06-21 2010-06-21 Pattern dimension measuring apparatus and contour line forming apparatus

Country Status (1)

Country Link
JP (1) JP5460479B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5686627B2 (en) 2011-02-24 2015-03-18 株式会社日立ハイテクノロジーズ Pattern dimension measuring method and charged particle beam apparatus
JP6018803B2 (en) * 2012-05-31 2016-11-02 株式会社日立ハイテクノロジーズ Measuring method, image processing apparatus, and charged particle beam apparatus
JP6043529B2 (en) * 2012-07-20 2016-12-14 株式会社日立ハイテクノロジーズ Pattern measuring device and contour line extracting device
CN112099316B (en) * 2019-06-18 2023-02-21 中芯国际集成电路制造(上海)有限公司 Correction method and system of optical proximity correction model
JP7229138B2 (en) 2019-09-27 2023-02-27 Hoya株式会社 Pattern inspection method, photomask inspection apparatus, photomask manufacturing method, and display device manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4343880B2 (en) * 2001-08-29 2009-10-14 株式会社日立製作所 Sample size measuring method and scanning electron microscope
JP2005338102A (en) * 2002-05-20 2005-12-08 Hitachi High-Technologies Corp Sample dimension length measuring method and scanning electron microscope
JP2005057037A (en) * 2003-08-04 2005-03-03 Sony Corp Calculation method of amount of resist shrink
US7434199B2 (en) * 2005-09-27 2008-10-07 Nicolas Bailey Cobb Dense OPC
JP4791141B2 (en) * 2005-10-25 2011-10-12 株式会社日立ハイテクノロジーズ Electron beam dimension measuring apparatus and dimension measuring method using the same
JP4943304B2 (en) * 2006-12-05 2012-05-30 株式会社 Ngr Pattern inspection apparatus and method
JP4835481B2 (en) * 2007-03-20 2011-12-14 凸版印刷株式会社 Resist pattern measuring method and resist pattern measuring apparatus

Also Published As

Publication number Publication date
JP2012002765A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5948074B2 (en) Image forming apparatus and dimension measuring apparatus
JP5966087B2 (en) Pattern shape evaluation apparatus and method
US20060108527A1 (en) Scanning electron microscope
JP5460479B2 (en) Pattern dimension measuring apparatus and contour line forming apparatus
JP6043735B2 (en) Image evaluation apparatus and pattern shape evaluation apparatus
KR102055157B1 (en) Pattern measurement method, pattern measurement apparatus, and computer program
JP2009222454A (en) Pattern measuring method and device
US10665424B2 (en) Pattern measuring method and pattern measuring apparatus
JP5624999B2 (en) Scanning electron microscope
US7652249B2 (en) Charged particle beam apparatus
TWI567789B (en) A pattern measuring condition setting means, and a pattern measuring means
JP5859795B2 (en) Measuring method, data processing apparatus and electron microscope using the same
US9297649B2 (en) Pattern dimension measurement method and charged particle beam apparatus
KR101632011B1 (en) Measurement method, image processing device, and charged particle beam device
JP2011179819A (en) Pattern measuring method and computer program
JP6581835B2 (en) Semiconductor device evaluation condition setting method and evaluation condition setting apparatus
JP6101445B2 (en) Signal processing apparatus and charged particle beam apparatus
JP2013068519A (en) Pattern measuring method
JP2013093251A (en) Charged particle beam apparatus
JP2017020981A (en) Pattern measuring apparatus and computer program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5460479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350