JP5460170B2 - Imaging apparatus and control method thereof - Google Patents

Imaging apparatus and control method thereof Download PDF

Info

Publication number
JP5460170B2
JP5460170B2 JP2009180893A JP2009180893A JP5460170B2 JP 5460170 B2 JP5460170 B2 JP 5460170B2 JP 2009180893 A JP2009180893 A JP 2009180893A JP 2009180893 A JP2009180893 A JP 2009180893A JP 5460170 B2 JP5460170 B2 JP 5460170B2
Authority
JP
Japan
Prior art keywords
shake correction
shake
correction amount
imaging
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009180893A
Other languages
Japanese (ja)
Other versions
JP2011033890A (en
Inventor
進洋 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009180893A priority Critical patent/JP5460170B2/en
Publication of JP2011033890A publication Critical patent/JP2011033890A/en
Application granted granted Critical
Publication of JP5460170B2 publication Critical patent/JP5460170B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cameras In General (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Studio Devices (AREA)

Description

本発明は、複数の撮像手段と振れ補正手段を有する撮像装置及びその制御方法に関し、特に、撮像手段によるそれぞれの撮像が異なる撮影モードにおける振れ補正に関するものである。   The present invention relates to an image pickup apparatus having a plurality of image pickup means and shake correction means and a control method thereof, and more particularly to shake correction in shooting modes in which the respective image pickup by the image pickup means are different.

従来の1つの撮像手段による撮影形態とは別に、複数の撮像手段を用いた静止画及び動画の同時撮影、又は立体撮影への関心が高まっている。例えば、特許文献1には動画撮影中での静止画の撮影方法が開示されており、各撮像手段を用いて動画撮影と静止画撮影を同時に行うことができる。また特許文献2には、立体撮影モードと通常撮影モードを選択でき、各モードでの露出制御を変更することにより鑑賞者の疲労を軽減する方法が開示されている。   In addition to the conventional imaging mode using one imaging unit, interest in simultaneous imaging of still images and moving images using a plurality of imaging units, or stereoscopic imaging is increasing. For example, Patent Document 1 discloses a still image shooting method during moving image shooting, and moving image shooting and still image shooting can be simultaneously performed using each imaging unit. Patent Document 2 discloses a method for reducing viewer fatigue by changing the exposure control in each mode, in which a stereoscopic shooting mode and a normal shooting mode can be selected.

特開平1−185533号公報JP-A-1-185533 特開2008−187385号公報JP 2008-187385 A

ところで動画撮影と静止画撮影を同時に行う際、撮像装置の振れによる影響を低減する対策が講じられるが、振れ補正量の算出処理における補正特性は、静止画と動画の各場合で異なる。ここでいう補正特性には、振れ補正量の演算過程で使用されるゲイン、カットオフ周波数、又は出力値の範囲が含まれる。
一般的に、撮像装置の振れが大きくないときには、静止画と動画の各場合で補正特性は一致する。しかし、振れが大きいときには静止画と動画とで補正特性は一致せず、結果としてそれぞれの振れ補正手段の位置(補正位置)は異なることになる。この状態で例えば立体撮影モードを選択した場合、正確な立体画像が生成されない虞がある。
そこで本発明の目的は、立体撮影モードを有する撮像装置において、少なくとも1つの振れ補正手段の状態に応じて、他の振れ補正手段の補正特性を変更可能な撮像装置及びその制御方法を提供することである。
By the way, when moving image shooting and still image shooting are performed at the same time, measures are taken to reduce the influence of shake of the imaging device, but the correction characteristics in the shake correction amount calculation process differ between still images and moving images. The correction characteristics here include a gain, a cut-off frequency, or a range of output values used in the process of calculating the shake correction amount.
In general, when the shake of the imaging device is not large, the correction characteristics match in each case of a still image and a moving image. However, when the shake is large, the correction characteristics of the still image and the moving image do not match, and as a result, the position (correction position) of each shake correction means is different. If, for example, the stereoscopic shooting mode is selected in this state, there is a possibility that an accurate stereoscopic image may not be generated.
Accordingly, an object of the present invention is to provide an imaging apparatus capable of changing the correction characteristics of other shake correction means in accordance with the state of at least one shake correction means in an imaging apparatus having a stereoscopic shooting mode, and a control method therefor. It is.

上記課題を解決するために、本発明の第1の側面に係る装置は、同一被写体を異なる視点から撮影するために複数の撮像手段を備えた撮像装置であって、前記複数の撮像手段に対してそれぞれ撮影モードを選択するための操作手段と、前記撮像装置に加わる振れを検出する振れ検出手段と、前記振れ検出手段の出力に応じて前記撮像手段ごとに振れ補正量を演算する補正量演算手段と、前記振れ補正量に応じて光学像の振れを補正するために前記複数の撮像手段に対してそれぞれ設けられた複数の振れ補正手段と、前記複数の撮像手段に対して前記操作手段によってそれぞれ選択された撮影モードが異なる場合、前記複数の振れ補正手段について、前記振れ補正量の演算過程で用いるカットオフ周波数、前記振れ補正量の演算過程で用いるゲイン又は前記振れ補正量の演算過程で用いる演算出力の範囲の少なくとも1つを異ならせる補正特性変更手段と、を備える。
本発明の第2の側面に係る装置は、同一被写体を異なる視点から撮影するために複数の撮像手段を備えた撮像装置であって、前記複数の撮像手段に対してそれぞれ撮影モードを選択するための操作手段と、前記撮像装置に加わる振れを検出する振れ検出手段と、前記振れ検出手段の出力に応じて前記撮像手段ごとに振れ補正量を演算する補正量演算手段と、前記振れ補正量に応じて光学像の振れを補正するために前記複数の撮像手段に対してそれぞれ設けられた複数の振れ補正手段と、前記複数の振れ補正手段について、前記振れ補正手段の位置又は前記振れ補正量の演算過程で取得した情報に基づいて、前記振れ補正量の演算過程で用いるカットオフ周波数、前記振れ補正量の演算過程で用いるゲイン又は前記振れ補正量の演算過程で用いる演算出力の範囲の少なくとも1つの特性を異ならせる補正特性変更手段と、を備える。前記複数の撮像手段を用いて光学像を結像させて立体撮影を行う場合、前記補正特性変更手段は、前記複数の振れ補正手段のうち、いずれの振れ補正手段の位置が駆動範囲の中心に近いかを判定し、前記駆動範囲の中心に近いと判定した振れ補正手段の特性へと前記振れ補正手段の特性を一致させた後、前記複数の振れ補正手段の状態を、前記駆動範囲の中心に近いと判定した振れ補正手段の状態に一致させる。
In order to solve the above problems, the device according to the first aspect of the present invention is an imaging apparatus having a plurality of imaging means for imaging the same subject from different viewpoints, with respect to the plurality of image pickup means Operating means for selecting a shooting mode, a shake detecting means for detecting shake applied to the imaging device, and a correction amount calculation for calculating a shake correction amount for each imaging means according to an output of the shake detecting means Means, a plurality of shake correction means provided for each of the plurality of image pickup means for correcting shake of the optical image according to the shake correction amount, and the operation means for the plurality of image pickup means. When the selected shooting modes are different, the cut-off frequency used in the calculation process of the shake correction amount and the gain used in the calculation process of the shake correction amount for the plurality of shake correction units. Comprising a correction characteristic changing means for varying at least one of the range of operation output used in down or the shake correction amount calculation process, the.
An apparatus according to a second aspect of the present invention is an imaging apparatus including a plurality of imaging units for imaging the same subject from different viewpoints, and selects a shooting mode for each of the plurality of imaging units. Operating means, a shake detection means for detecting shake applied to the imaging device, a correction amount calculation means for calculating a shake correction amount for each imaging means in accordance with an output of the shake detection means, and a shake correction amount Accordingly, a plurality of shake correction units provided for the plurality of image pickup units in order to correct the shake of the optical image, and the plurality of shake correction units, the position of the shake correction unit or the shake correction amount Based on the information obtained in the calculation process, the cutoff frequency used in the calculation process of the shake correction amount, the gain used in the calculation process of the shake correction amount, or used in the calculation process of the shake correction amount And a correction characteristic changing means for varying at least one characteristic of the range of the operation output. In the case where stereoscopic imaging is performed by forming an optical image using the plurality of imaging units, the correction characteristic changing unit is configured such that any one of the plurality of shake correcting units has the position of the shake correcting unit at the center of the driving range. After determining whether they are close and matching the characteristics of the shake correction means to the characteristics of the shake correction means determined to be close to the center of the drive range, the state of the plurality of shake correction means is set to the center of the drive range. To match the state of the shake correction means determined to be close to.

本発明によれば、複数の撮像手段に対応する振れ補正手段の位置又は前記振れ補正量の演算過程で取得した情報に基づいて、複数の振れ補正手段の特性を変更することができる。例えば、それぞれの撮像手段が異なる撮影モードのときには、各モードに応じた振れ補正手段の補正特性を設定し、また立体撮影モードへ切り替えた時には、撮影者に与える不快感を軽減し、かつ正確な立体画像を提供できる。   According to the present invention, the characteristics of the plurality of shake correction units can be changed based on the position of the shake correction unit corresponding to the plurality of imaging units or the information acquired in the calculation process of the shake correction amount. For example, when each imaging unit is in a different shooting mode, the correction characteristic of the shake correction unit corresponding to each mode is set, and when switching to the stereoscopic shooting mode, the discomfort given to the photographer is reduced and accurate. A stereoscopic image can be provided.

図2乃至6と併せて本発明に係る実施形態を説明するために、振れ補正処理に関する要部の構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a main part related to shake correction processing in order to describe the embodiment according to the present invention in conjunction with FIGS. 撮像装置の外観を簡略化して例示した図である。It is the figure which simplified and illustrated the external appearance of the imaging device. 撮像装置全体の構成例を示すブロック図である。It is a block diagram which shows the structural example of the whole imaging device. 本発明の第1実施形態に係る振れ補正量の算出処理例を説明するフローチャートである。It is a flowchart explaining the calculation process example of the shake correction amount which concerns on 1st Embodiment of this invention. デジタルフィルタの構成例を示す説明図である。It is explanatory drawing which shows the structural example of a digital filter. 本発明の第2実施形態に係る振れ補正量の算出処理例を説明するフローチャートである。It is a flowchart explaining the example of a calculation process of the shake correction amount which concerns on 2nd Embodiment of this invention.

以下に、本発明に係る実施形態を添付図面に基づいて詳細に説明する。なお、図1の振れ補正制御の要部を説明する前に、図2及び図3に例示した撮像装置を説明する。
図2は、本発明の実施形態に係る撮像装置の外観構成を一例として示す。図2(a)は撮像装置の正面図である。撮像装置の本体上部には、ズームレバーとシャッタレリーズボタンが一体化された操作部材201が設けられている。ストロボ発光部202は本体前面の上部に位置し、その下方には鏡筒部203、204が所定の間隔で配置されている。各鏡筒部は、同一被写体を異なる視点から撮影するための撮像手段を構成し、光学系の構成部材(レンズや絞り等の光学部材)や保護部材を用いて構成される。鏡筒部204の右方に位置するグリップ部205は撮影者が撮像装置を把持する部分である。
Embodiments according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the imaging apparatus illustrated in FIGS. 2 and 3 will be described before the main part of the shake correction control in FIG. 1 is described.
FIG. 2 shows an example of the external configuration of the imaging apparatus according to the embodiment of the present invention. FIG. 2A is a front view of the imaging apparatus. An operation member 201 in which a zoom lever and a shutter release button are integrated is provided at the upper part of the main body of the imaging apparatus. The strobe light emitting unit 202 is located in the upper part of the front surface of the main body, and the lens barrel units 203 and 204 are arranged at a predetermined interval below the strobe light emitting unit 202. Each lens barrel portion constitutes an imaging means for photographing the same subject from different viewpoints, and is configured using an optical system component (an optical member such as a lens or a diaphragm) or a protection member. A grip portion 205 located on the right side of the lens barrel portion 204 is a portion where the photographer grips the imaging device.

図2(b)は撮像装置の背面図である。画像表示手段としての表示部206は本体背面の大半部を占め、その右方には操作部材207,208が配置されている。操作部材207は、撮影者が項目を選択するために方向操作等を行う十字ボタンである。また操作部材208は、撮影者がモードの切り替えを行うためのメニューボタンである。本図には説明の便宜上、これらの操作部材のみを代表的に示している。   FIG. 2B is a rear view of the imaging apparatus. A display unit 206 as an image display means occupies most of the back of the main body, and operation members 207 and 208 are arranged on the right side. The operation member 207 is a cross button for performing a direction operation or the like for the photographer to select an item. The operation member 208 is a menu button for the photographer to switch modes. In the figure, for convenience of explanation, only these operation members are representatively shown.

図3は、本発明の実施形態に係る撮像装置について内部の全体構成を例示したブロック図である。先ず、光学系と撮像素子を有する第1の撮像系について説明する。鏡筒部203に収容される光学部材にはズームユニット301、シフトレンズ303、絞り・シャッタユニット305、フォーカスユニット307を含む。ズームユニット301は変倍を行うズームレンズを含み、ズーム駆動制御部302がズームユニット301の駆動を制御する。シフトレンズ303は、撮像光学系の光軸に対して略垂直な平面での位置を変更することが可能な振れ補正用レンズであり、シフトレンズ駆動制御部304がシフトレンズ303の駆動を制御する。絞り・シャッタユニット305は露光制御に用いられ、絞り・シャッタ駆動制御部306が絞り・シャッタユニット305の駆動を制御する。フォーカスユニット307はピント調整用のレンズを含み、フォーカス駆動制御部308がフォーカスユニット307の駆動を制御する。   FIG. 3 is a block diagram illustrating the overall internal configuration of the imaging apparatus according to the embodiment of the invention. First, a first imaging system having an optical system and an imaging element will be described. Optical members housed in the lens barrel portion 203 include a zoom unit 301, a shift lens 303, an aperture / shutter unit 305, and a focus unit 307. The zoom unit 301 includes a zoom lens that performs zooming, and a zoom drive control unit 302 controls driving of the zoom unit 301. The shift lens 303 is a shake correction lens capable of changing the position on a plane substantially perpendicular to the optical axis of the imaging optical system, and the shift lens drive control unit 304 controls the drive of the shift lens 303. . The aperture / shutter unit 305 is used for exposure control, and the aperture / shutter drive control unit 306 controls the drive of the aperture / shutter unit 305. The focus unit 307 includes a focus adjustment lens, and the focus drive control unit 308 controls the drive of the focus unit 307.

撮像及び信号処理部は撮像部309、撮像信号処理部310、映像信号処理部311を備える。撮像部309は撮像素子を用いて構成され、各レンズ群を通ってきた光像を電気信号に変換して撮像信号処理部310に出力する。撮像信号処理部310は撮像部309から出力された電気信号を映像信号に変換する。映像信号処理部311は撮像信号処理部310から出力された映像信号に対して用途に応じて必要な加工処理を施す。   The imaging and signal processing unit includes an imaging unit 309, an imaging signal processing unit 310, and a video signal processing unit 311. The imaging unit 309 is configured using an imaging element, converts a light image that has passed through each lens group into an electrical signal, and outputs the electrical signal to the imaging signal processing unit 310. The imaging signal processing unit 310 converts the electrical signal output from the imaging unit 309 into a video signal. The video signal processing unit 311 performs necessary processing on the video signal output from the imaging signal processing unit 310 according to the application.

次に、同じく光学系と撮像素子を有する第2の撮像系(符号312乃至322参照)について説明する。なお符号312乃至322に示す各構成要素は符号301乃至311を付して説明した構成要素と同様であり、よって重複回避のためにそれらの説明を省略する。特に断りがない場合、第1の撮像系の説明は第2の撮像系にも同様に適用できる。つまり、第2の撮像系の各構成要素には、第1の撮像系の各構成要素に付した符号に11を加算した符号を用いることにする。   Next, a second imaging system (see reference numerals 312 to 322) having the same optical system and imaging element will be described. It should be noted that the constituent elements indicated by reference numerals 312 to 322 are the same as the constituent elements described with reference numerals 301 to 311, and thus description thereof is omitted to avoid duplication. Unless otherwise noted, the description of the first imaging system can be similarly applied to the second imaging system. That is, for each component of the second imaging system, a code obtained by adding 11 to the code assigned to each component of the first imaging system is used.

表示制御部325は、第1の撮像系と第2の撮像系により得られた左右の画像を合成して、立体画像を作成するために表示制御を行う。表示部326は、表示制御部325が出力した信号に基づいて、必要に応じた画像表示を行う。電源部323はシステムの各部に対して用途に応じて電源を供給する。振れ検出部324は、撮影装置に加えられた振れの度合いを検出し、検出結果を後述の制御部32に通知する。操作部327は撮像装置を操作するための操作手段を構成し、ユーザの操作信号を後述の制御部32に送出する。記憶部328は映像情報やプログラム等の、様々なデータを記憶する。
The display control unit 325 performs display control in order to create a stereoscopic image by combining the left and right images obtained by the first imaging system and the second imaging system. The display unit 326 performs image display as necessary based on the signal output from the display control unit 325. The power supply unit 323 supplies power to each part of the system according to the application. Shake detecting unit 324 detects a degree of deflection applied to the imaging device, and notifies the detection result to the control unit 32 9 to be described later. Operation unit 327 constitute operation means for operating the imaging device, and sends an operation signal of the user to the control unit 32 9 to be described later. The storage unit 328 stores various data such as video information and programs.

システム全体を制御する制御部32は中央演算処理装置(CPU)等を用いて構成され、前記の各駆動制御部、各信号処理部、表示制御部等に制御信号を送出し、また各種データの記憶制御を行う。
Controller 32 9 for controlling the entire system is constructed using a central processing unit (CPU) or the like, the drive control unit of the respective signal processing unit, sends a control signal to the display control unit, etc., also various data The memory control is performed.

次に、上記構成の撮像装置の動作を説明する。
操作部327は操作部材201、207及び208を含む。シャッタレリーズボタンの機能を有する操作部材201は、その押し込み量に応じて第1スイッチ(以下、SW1と記す)及び第2スイッチ(以下、SW2と記す)が順にオン状態となるように構成されている。つまりユーザがシャッタレリーズボタンを約半分押し込んだときにSW1がオン状態となり、該ボタンを最後まで押し込んだときにSW2がオン状態となる。SW1がオン状態になると、フォーカス駆動制御部308がフォーカスユニット307を駆動してピント調整を行うとともに、絞り・シャッタ駆動制御部306が絞り・シャッタユニット305を駆動して露光量を適正値に設定する。そしてSW2がオン状態になると、撮像部309に露光された光像から得られた画像データが記憶部328に記憶される。操作部材201はズームレバーとしての機能も有し、操作部材201を用いたズーム変倍の操作指示があると、制御部32を介して指示を受けたズーム駆動制御部302がズームユニット301を駆動する。これにより、ズームレンズが指示されたズーム位置へと移動する。操作部材207と208を用いた操作により、各撮像系について静止画撮影モードと動画撮影モードのうちの一方が選択可能であり、また立体撮影モードも選択可能である。
Next, the operation of the imaging apparatus having the above configuration will be described.
The operation unit 327 includes operation members 201, 207 and 208. The operation member 201 having the function of a shutter release button is configured such that a first switch (hereinafter referred to as SW1) and a second switch (hereinafter referred to as SW2) are sequentially turned on according to the amount of pressing. Yes. That is, SW1 is turned on when the user presses the shutter release button approximately half, and SW2 is turned on when the user presses the button to the end. When SW1 is turned on, the focus drive control unit 308 drives the focus unit 307 to perform focus adjustment, and the aperture / shutter drive control unit 306 drives the aperture / shutter unit 305 to set the exposure amount to an appropriate value. To do. When SW2 is turned on, image data obtained from the light image exposed to the imaging unit 309 is stored in the storage unit 328. The operation member 201 also functions as a zoom lever, if there is an operation instruction of zooming using the operation member 201, a zoom drive control section 302 is a zoom unit 301 receives the instruction via the control unit 32 9 To drive. As a result, the zoom lens moves to the instructed zoom position. By operation using the operation members 207 and 208, one of the still image shooting mode and the moving image shooting mode can be selected for each imaging system, and the stereoscopic shooting mode can also be selected.

図1は、本発明の実施形態に係る防振制御系の要部を例示したブロック図である。先ず、前記第1の撮像系に対応する第1の振れ補正系を説明する。第1の振れ補正系は、振れ補正量を求める補正量演算手段と、振れ補正量に従ってシフトレンズ303を駆動して振れ補正を行う振れ補正手段を含む。振れ検出部324の検出信号は、補正ブロック(振れ補正処理部)に送られて信号処理が行われる。AD変換部101は、振れ検出部324が検出した振れ情報であるアナログデータをデジタルデータに変換し、変換結果をデジタルローパスフィルタ102に送出する。デジタルローパスフィルタ102は所定の低周波帯域を通過させるフィルタである。振れ検出部324が検出したデータが角速度(又は速度)であって、かつシフトレンズ303の変位量としての角度(又は位置)に関する駆動を制御する形態の場合、デジタルローパスフィルタ102は積分器として作用する。即ち、デジタルローパスフィルタ102は、振れ検出部324が検出した角速度(又は速度)を、シフトレンズ303の変位量としての角度(又は位置)にする。駆動範囲制限部103は、デジタルローパスフィルタ102による演算出力の範囲を制限する。つまりデジタルローパスフィルタ102の出力結果である、振れ補正量が所定の範囲内に制限される。デジタルローパスフィルタ102と駆動範囲制限部103は補正量演算手段を構成しており、第1の撮像系の振れ補正量を算出する。補正特性変更部107は、デジタルローパスフィルタ102の特性を規定するカットオフ周波数、ゲイン、又は駆動範囲制限部103による制限範囲を変更する。補正特性変更部107には、操作部327や、後述するAD変換部106、112からの信号が入力される。なお操作部327には前記撮像系に対してそれぞれ撮影モードを選択するために使用される操作部材207,208が含まれる。   FIG. 1 is a block diagram illustrating a main part of an image stabilization control system according to an embodiment of the present invention. First, a first shake correction system corresponding to the first imaging system will be described. The first shake correction system includes a correction amount calculation unit that calculates a shake correction amount, and a shake correction unit that drives the shift lens 303 according to the shake correction amount to perform shake correction. The detection signal of the shake detection unit 324 is sent to a correction block (shake correction processing unit) for signal processing. The AD conversion unit 101 converts analog data, which is shake information detected by the shake detection unit 324, into digital data, and sends the conversion result to the digital low-pass filter 102. The digital low-pass filter 102 is a filter that passes a predetermined low frequency band. In the case where the data detected by the shake detection unit 324 is an angular velocity (or velocity) and the driving related to the angle (or position) as the displacement amount of the shift lens 303 is controlled, the digital low-pass filter 102 acts as an integrator. To do. That is, the digital low-pass filter 102 sets the angular velocity (or velocity) detected by the shake detection unit 324 to an angle (or position) as a displacement amount of the shift lens 303. The driving range limiting unit 103 limits the range of the calculation output by the digital low-pass filter 102. That is, the shake correction amount, which is the output result of the digital low-pass filter 102, is limited within a predetermined range. The digital low-pass filter 102 and the drive range limiting unit 103 constitute correction amount calculation means, and calculate the shake correction amount of the first imaging system. The correction characteristic changing unit 107 changes the cut-off frequency, gain, or limit range set by the drive range limiting unit 103 that defines the characteristics of the digital low-pass filter 102. Signals from the operation unit 327 and AD conversion units 106 and 112 described later are input to the correction characteristic changing unit 107. The operation unit 327 includes operation members 207 and 208 that are used to select a shooting mode for the imaging system.

シフトレンズ駆動制御部304はPID制御部104、DA変換部105、AD変換部106を備える。PID制御部104は、駆動範囲制限部103からの目標位置信号とシフトレンズ303の位置を示す現在位置信号との偏差から制御量を求め、シフトレンズ303の位置指令信号を出力する。このPID制御では比例制御(P)、積分制御(I)、及び微分制御(D)を選択的に組み合わせた制御が行われる。DA変換部105はPID制御部104からのデジタル信号をアナログ信号に変換し、シフトレンズ303を駆動させるためにその位置制御信号を図示しない駆動用アクチュエータに出力する。AD変換部106は、シフトレンズ303の位置を示す実位置信号を取得してアナログデータからデジタルデータに変換し、これをPID制御部104及び補正特性変更部107に送出する。   The shift lens drive control unit 304 includes a PID control unit 104, a DA conversion unit 105, and an AD conversion unit 106. The PID control unit 104 obtains a control amount from the deviation between the target position signal from the drive range limiting unit 103 and the current position signal indicating the position of the shift lens 303, and outputs a position command signal for the shift lens 303. In this PID control, control in which proportional control (P), integral control (I), and differential control (D) are selectively combined is performed. The DA converter 105 converts the digital signal from the PID controller 104 into an analog signal, and outputs the position control signal to a driving actuator (not shown) in order to drive the shift lens 303. The AD conversion unit 106 acquires an actual position signal indicating the position of the shift lens 303, converts it from analog data to digital data, and sends this to the PID control unit 104 and the correction characteristic changing unit 107.

次に、前記第2の撮像系に対応する第2の振れ補正系を説明する。第2の振れ補正系は、振れ補正量を求める補正量演算手段(108,109参照)と、振れ補正量に従ってシフトレンズ314を駆動して振れ補正を行う振れ補正手段を含む。符号108乃至112に示す各構成要素は第1の振れ補正系にて符号102乃至106を付して説明した構成要素と同様であり、よって重複回避のためにそれらの説明を省略する。特に断りがない場合、第1の振れ補正系に関する説明は第2の振れ補正系にも同様に適用できる。つまり、第2の振れ補正系の各構成要素(AD変換部101及び補正特性変更部107を除く)には、第1の振れ補正系の各構成要素に付した符号に6を加算した符号を用いる。   Next, a second shake correction system corresponding to the second imaging system will be described. The second shake correction system includes a correction amount calculation unit (see 108 and 109) for obtaining a shake correction amount, and a shake correction unit that drives the shift lens 314 according to the shake correction amount to perform shake correction. The constituent elements denoted by reference numerals 108 to 112 are the same as the constituent elements described with reference numerals 102 to 106 in the first shake correction system, and therefore their description is omitted to avoid duplication. Unless otherwise noted, the description relating to the first shake correction system can be similarly applied to the second shake correction system. That is, each component of the second shake correction system (excluding the AD conversion unit 101 and the correction characteristic changing unit 107) has a code obtained by adding 6 to the code attached to each component of the first shake correction system. Use.

補正特性変更部107は、シフトレンズ303,314のうちの一方のシフトレンズ位置に応じて他方の補正特性変更を行うことができる。なお操作部327は、操作部材207(十字ボタン)と、操作部材208(メニューボタン)を含み、これらを組み合わせた操作により、各撮像系のモードを任意に選択することができる。操作部327による信号は補正特性変更部107に送出される。   The correction characteristic changing unit 107 can change the other correction characteristic in accordance with the position of one of the shift lenses 303 and 314. The operation unit 327 includes an operation member 207 (cross button) and an operation member 208 (menu button), and the mode of each imaging system can be arbitrarily selected by combining these operations. A signal from the operation unit 327 is sent to the correction characteristic changing unit 107.

以下では、第1の撮像系及び第1の振れ補正系を用いたモードが動画撮影モードであって、第2の撮像系及び第2の振れ補正系を用いたモードが静止画撮影モードである場合について説明するが、両者の関係を逆転しても問題ない。この場合、第1の振れ補正系は補正特性変更部107によって、動画撮影に最適な補正特性が得られるようデジタルローパスフィルタ102の特性が設定される。一方で第2の振れ補正系は補正特性変更部107によって、静止画撮影に最適な補正特性が得られるようにデジタルローパスフィルタ108の特性が設定される。動画撮影に最適な補正特性では、撮像装置の振れに対して敏感に反応し、動画としての見え方を重視する。これに対し、静止画撮影に最適な補正特性では、撮像装置の振れに対して鈍感に反応し、静止画としての防振性能を重視する。一般的に動画の場合、静止画と比較して、補正特性に関してデジタルローパスフィルタのカットオフ周波数を上げ、ゲインを下げ、駆動範囲の制限を広げる傾向がある。このとき、ひとたび撮像装置に大きな振れが加わると、動画撮影モード時のシフトレンズ303が中央位置へ復帰しているのに対し、静止画撮影モード時のシフトレンズ314は機械的な末端(メカ端)に張り付いてしまう場合がある。結果として両撮像系の画角は大きく異なり、撮影者に不快感を与えるだけでなく、立体撮影モードに切り替えたときには、意図した立体画像を作成することができない虞がある。そこで、補正特性変更部107は、一方の振れ補正系の状態を監視して、その状態変化に応じて、他方の振れ補正系の補正特性を変更する。これにより、撮影者の不快感を軽減することができる。   Hereinafter, the mode using the first imaging system and the first shake correction system is the moving image shooting mode, and the mode using the second imaging system and the second shake correction system is the still image shooting mode. Although the case will be described, there is no problem even if the relationship between the two is reversed. In this case, in the first shake correction system, the characteristic of the digital low-pass filter 102 is set by the correction characteristic changing unit 107 so that the optimum correction characteristic for moving image shooting can be obtained. On the other hand, in the second shake correction system, the characteristic of the digital low-pass filter 108 is set by the correction characteristic changing unit 107 so that the optimal correction characteristic for still image shooting can be obtained. In the correction characteristic optimal for moving image shooting, it reacts sensitively to the shake of the imaging device, and emphasizes the appearance as a moving image. On the other hand, in the correction characteristics that are optimal for still image shooting, the image pickup apparatus responds insensitive to the shake of the imaging device, and emphasizes the image stabilization performance as a still image. In general, moving images tend to increase the cut-off frequency of the digital low-pass filter, decrease the gain, and widen the limit of the driving range as compared with still images. At this time, once a large shake is applied to the imaging apparatus, the shift lens 303 in the moving image shooting mode returns to the center position, whereas the shift lens 314 in the still image shooting mode has a mechanical end (mechanical end). ). As a result, the angle of view of both imaging systems is greatly different, which not only makes the photographer feel uncomfortable, but also when switching to the stereoscopic shooting mode, there is a possibility that an intended stereoscopic image cannot be created. Therefore, the correction characteristic changing unit 107 monitors the state of one shake correction system, and changes the correction characteristic of the other shake correction system in accordance with the state change. Thereby, a photographer's discomfort can be reduced.

〔第1実施形態〕
以下、図4を参照して、本発明の第1実施形態について説明する。図4は振れ検出部324が検出した振れ情報に基づいて振れ補正量を算出する際、少なくとも1つの振れ補正系の状態に応じて、他の振れ補正系の補正特性を変更する場合のフローチャートである。
S401にて振れ補正量の算出処理が開始し、S402では振れ情報の取得処理が行われる。つまり、振れ検出部324が検出した振れ情報を、AD変換部101によりアナログデータからデジタルデータに変換し、該データを各振れ補正系が取得する。なお第1及び第2の振れ補正系の処理を並行して説明するために、図4では、S402からS411に進むラインと、S402からS403に進むラインを条件判断なしで併記している。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. FIG. 4 is a flowchart in the case where the correction characteristic of another shake correction system is changed according to the state of at least one shake correction system when calculating the shake correction amount based on the shake information detected by the shake detection unit 324. is there.
In step S401, a shake correction amount calculation process is started, and in step S402, shake information acquisition processing is performed. That is, the shake information detected by the shake detection unit 324 is converted from analog data to digital data by the AD conversion unit 101, and each shake correction system acquires the data. In order to describe the processes of the first and second shake correction systems in parallel, in FIG. 4, the line that proceeds from S402 to S411 and the line that proceeds from S402 to S403 are shown together without condition determination.

S403では、現時点のモードが所定モードであるか否かの判定処理が行われる。ここで所定モードは、静止画モードと動画モードとして説明する。一般的に動画の場合は静止画と比較して、補正特性としてデジタルフィルタのカットオフ周波数を上げ、ゲインを下げ、駆動範囲の制限を広げる傾向がある。これにより静止画の場合は防振性能を重視し、動画の場合は見え方を重視することになる。S403での判定の結果、現時点でモードが静止画モードや動画モードの場合、S404に進むが、それ以外のモードの場合、S410に進む。   In S403, a process for determining whether or not the current mode is a predetermined mode is performed. Here, the predetermined mode will be described as a still image mode and a moving image mode. In general, moving images tend to increase the cutoff frequency of the digital filter, decrease the gain, and widen the drive range as compared with still images. As a result, in the case of a still image, importance is attached to the image stabilization performance, and in the case of a moving image, the appearance is emphasized. As a result of the determination in S403, if the current mode is the still image mode or the moving image mode, the process proceeds to S404. Otherwise, the process proceeds to S410.

S404では、AD変換部106により、第1の振れ補正系の状態として、シフトレンズ303の現在位置、又はPID制御部104における演算過程で算出される積分値を取得する。次のS405にて補正特性変更部107は、前記S404で取得した現在位置又は積分値を所定値と比較する。ここで所定値とは予め設定された判定基準値を意味し、現在位置又は積分値が所定値以上であればS406へ進むが、現在位置又は積分値が所定値未満であればS410に進む。   In S <b> 404, the AD conversion unit 106 acquires the current position of the shift lens 303 or the integral value calculated in the calculation process in the PID control unit 104 as the state of the first shake correction system. In next step S405, the correction characteristic changing unit 107 compares the current position or the integral value acquired in step S404 with a predetermined value. Here, the predetermined value means a predetermined determination reference value. If the current position or the integral value is greater than or equal to the predetermined value, the process proceeds to S406. If the current position or the integral value is less than the predetermined value, the process proceeds to S410.

S406で補正特性変更部107は、第2の振れ補正系に関する補正特性を変更する。ここで補正特性の変更とは、以下のいずれか一方を意味し、第1及び第2の振れ補正系が同一又は近似した補正特性をもつように変更することである。
・第2の振れ補正系に関する補正特性を、第1の振れ補正系に関する補正特性に一致させること。
・第2の振れ補正系に関する補正特性を、第1の振れ補正系に関する補正特性の近傍に設定すること(前者の特性値を後者の特性値の近傍値とすること)。
In step S406, the correction characteristic changing unit 107 changes the correction characteristic related to the second shake correction system. Here, the change of the correction characteristic means one of the following, and is to change the first and second shake correction systems so as to have the same or approximate correction characteristics.
Match the correction characteristic related to the second shake correction system with the correction characteristic related to the first shake correction system.
The correction characteristic related to the second shake correction system is set in the vicinity of the correction characteristic related to the first shake correction system (the former characteristic value is set to the vicinity value of the latter characteristic value).

次のS407では、第2の振れ補正系のデジタルローパスフィルタ108によってフィルタ演算が行われる。なおデジタルローパスフィルタは、所定の低周波数帯域を通過させるフィルタであり、積分器として作用をもつ。このフィルタ演算は、前記S406で変更された補正特性に基づいて行われる。そしてS408に進み、第2の振れ補正系の駆動範囲変更が行われる。駆動範囲制限部109は、S407で得られた出力値、すなわちデジタルローパスフィルタ108を経た振れ補正量の範囲に制限をかける。こうしてS409にて第2の振れ補正系について振れ補正量が算出される。その後、S413に進み、振れ補正量の算出処理が終了する。   In the next step S407, a filter operation is performed by the digital low-pass filter 108 of the second shake correction system. The digital low-pass filter is a filter that allows a predetermined low frequency band to pass through, and functions as an integrator. This filter calculation is performed based on the correction characteristic changed in S406. In step S408, the driving range of the second shake correction system is changed. The drive range limiting unit 109 limits the output value obtained in S407, that is, the range of the shake correction amount that has passed through the digital low-pass filter 108. In this way, the shake correction amount is calculated for the second shake correction system in S409. Thereafter, the process proceeds to S413, and the shake correction amount calculation processing ends.

前記S403やS405からS410へ進むと、ここで第2の振れ補正系のデジタルローパスフィルタ108によって演算が行われる。この場合、第2の振れ補正系に関する補正特性は変更前の特性である。そして、デジタルローパスフィルタ108の演算処理により、第2の振れ補正系についての振れ補正量が算出される(S409)。   When the process proceeds from S403 or S405 to S410, the calculation is performed by the digital low-pass filter 108 of the second shake correction system. In this case, the correction characteristic regarding the second shake correction system is the characteristic before the change. Then, the shake correction amount for the second shake correction system is calculated by the arithmetic processing of the digital low-pass filter 108 (S409).

一方、S411及び412のステップでは、第1の振れ補正系についての処理が行われる。すなわち、S411では第1の振れ補正系のデジタルローパスフィルタ102によって演算が行われる。そしてS412に進み、第1の振れ補正系について振れ補正量が算出され、S413に進んで振れ補正量の算出処理が終了する。なお第1の振れ補正系に対しては、補正特性に変更がない状態を想定している。   On the other hand, in steps S411 and 412, processing for the first shake correction system is performed. That is, in S411, the calculation is performed by the digital low-pass filter 102 of the first shake correction system. Then, the process proceeds to S412 and a shake correction amount is calculated for the first shake correction system, and the process proceeds to S413 and the shake correction amount calculation process ends. Note that the first shake correction system is assumed to have no change in the correction characteristics.

こうして算出した振れ補正量は、それぞれの振れ補正系に対応するシフトレンズ駆動制御部に送出される。以上の説明は、第1の振れ補正系と第2の振れ補正系を入れ替えて両者の関係を逆転させた場合にも同様に適用できる。   The shake correction amount calculated in this way is sent to the shift lens drive control unit corresponding to each shake correction system. The above description can be similarly applied to the case where the first shake correction system and the second shake correction system are replaced to reverse the relationship therebetween.

次に、前記した補正特性の変更について具体例を挙げて説明する。デジタルローパスフィルタには、カットオフ周波数及びゲインを決定する係数があり、以下、図5を用いて係数について説明する。   Next, the change of the correction characteristic will be described with a specific example. The digital low-pass filter has coefficients for determining a cutoff frequency and a gain, and the coefficients will be described below with reference to FIG.

図5(a)は非再帰型1次デジタルフィルタの構成を例示した図である。サンプリング周期をnで表し、今回のサンプリング時点における入力値をX[n]と記し、前回のサンプリング時点における入力値をX[n-1]と記す。「Z-1」は遅延子を表し、乗数要素を示す三角形枠内の定数a及びbは、このデジタルフィルタの特性を規定しており、その組み合わせに応じて、カットオフ周波数とゲインが変更される。なお「Σ」は加算要素を表す。
本例にてデジタルフィルタの出力値をY[n]と記すとき、これは、X[n]に定数aを乗じた項と、X[n-1]に定数bを乗じた項を加算した下式で求まる。
FIG. 5A is a diagram illustrating the configuration of a non-recursive primary digital filter. The sampling period is represented by n, the input value at the current sampling time is denoted as X [n], and the input value at the previous sampling time is denoted as X [n-1]. “Z −1 ” represents a delay element, and constants a and b in a triangular frame indicating a multiplier element define the characteristics of this digital filter, and the cutoff frequency and gain are changed according to the combination. The “Σ” represents an addition element.
In this example, when the output value of the digital filter is written as Y [n], this is the sum of a term obtained by multiplying X [n] by a constant a and a term obtained by multiplying X [n-1] by a constant b. Obtained by the following formula.

Figure 0005460170
上式中の定数a及びbの符号と大きさによりデジタルフィルタの特性が変化する。
図5(b)は再帰型1次デジタルフィルタを例示した図である。サンプリング周期をnとして今回のサンプリング時点における入力値をX[n]と記し、前段の加算要素を経た後の中間値をZ[n]を記し、出力値をY[n]と記す。「Z-1」や「Σ」の意味は前述した通りであり、三角形枠内に示す定数a,b及びcは、このデジタルフィルタの特性を規定しており、その組み合わせに応じて、カットオフ周波数とゲインが変更される。中間値Z[n]は、入力値X[n]と、前回のサンプリング時点における中間値Z[n-1]に定数aを乗じたものを加算することで下式のように求まる。
Figure 0005460170
The characteristics of the digital filter change depending on the signs and sizes of the constants a and b in the above equation.
FIG. 5B is a diagram illustrating a recursive primary digital filter. Assuming that the sampling period is n, the input value at the current sampling time is denoted as X [n], the intermediate value after passing through the previous addition element is denoted as Z [n], and the output value is denoted as Y [n]. The meanings of “Z −1 ” and “Σ” are as described above, and the constants a, b, and c shown in the triangular frame define the characteristics of this digital filter, and the cut-off depends on the combination. The frequency and gain are changed. The intermediate value Z [n] is obtained by adding the input value X [n] and the value obtained by multiplying the intermediate value Z [n-1] at the previous sampling time by a constant a as shown in the following equation.

Figure 0005460170
さらに出力値Y[n]については、今回のサンプリング時点における中間値Z[n]に定数bを乗じた項と、前回のサンプリング時点における中間値Z[n-1]に定数cを乗じた項を加算した下式から算出される。
Figure 0005460170
Furthermore, for the output value Y [n], the term obtained by multiplying the intermediate value Z [n] at the current sampling time by the constant b and the term obtained by multiplying the intermediate value Z [n-1] at the previous sampling time by the constant c. Is calculated from the following equation.

Figure 0005460170
上式中の定数a,b,cの符号や大きさによってデジタルフィルタの特性が変化する。
2次以上の高次デジタルフィルタについても同様の構成となり、次数に応じて定数の個数は増えるが、この場合にも本発明の考え方を同様に適用できる。補正特性変更部107は、上記定係数の値を変更することにより、デジタルローパスフィルタに関するカットオフ周波数とゲインを変更する。そして該フィルタの出力はさらに駆動範囲制限部103,109を通過する際に制限され、シフトレンズ303,314の駆動範囲が変更される。
Figure 0005460170
The characteristics of the digital filter vary depending on the sign and size of the constants a, b, and c in the above equation.
A second-order or higher-order digital filter has the same configuration, and the number of constants increases according to the order. However, the concept of the present invention can be applied in this case as well. The correction characteristic changing unit 107 changes the cutoff frequency and gain related to the digital low-pass filter by changing the value of the constant coefficient. The output of the filter is further restricted when passing through the drive range restriction units 103 and 109, and the drive ranges of the shift lenses 303 and 314 are changed.

〔第2実施形態〕
以下、図6を参照して本発明の第2実施形態について説明する。図6は、操作部327を用いたユーザ操作により立体撮影モードが選択された場合、両振れ補正系の状態及び補正特性を一致させる場合の処理例を示すフローチャートである。
S601で振れ補正量の算出処理が開始し、S602で振れ情報の取得処理が行われる。つまり、振れ検出部324によって振れ情報が検出され、このアナログデータはAD変換部101によってデジタルデータに変換されることで該データが取得される。S603にて補正特性変更部107は、現在のモードが立体撮影モードであるか否かを判定する。該モードは複数の撮像系によって光学像を結像させて立体撮影を行うためのモードを意味する。判定の結果、立体撮影モードの場合、S604に進むが、立体撮影モード以外の場合、S608に進む。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a flowchart illustrating a processing example in the case where the state and the correction characteristics of both shake correction systems are matched when the stereoscopic shooting mode is selected by a user operation using the operation unit 327.
In step S601, a shake correction amount calculation process starts. In step S602, a shake information acquisition process is performed. In other words, shake information is detected by the shake detection unit 324, and the analog data is converted into digital data by the AD conversion unit 101 to obtain the data. In step S603, the correction characteristic changing unit 107 determines whether or not the current mode is the stereoscopic shooting mode. The mode means a mode for performing stereoscopic shooting by forming an optical image with a plurality of imaging systems. As a result of the determination, in the case of the stereoscopic shooting mode, the process proceeds to S604, but in the case other than the stereoscopic shooting mode, the process proceeds to S608.

S604で補正特性変更部107は、AD変換部106及び112から検出結果を取得して第1の振れ補正系及び第2の振れ補正系の状態を判定する。前記したように、状態とはシフトレンズの現在位置やPID制御部での積分値によって表される。これらは判定基準値と比較されるが、例えば、シフトレンズの位置については、その駆動中心となる位置と比較される。その結果、各シフトレンズが中心近傍の位置にあると判定された場合、S605へ進むが、そうでない場合にはS608に進む。   In step S604, the correction characteristic changing unit 107 acquires detection results from the AD conversion units 106 and 112 and determines the states of the first shake correction system and the second shake correction system. As described above, the state is represented by the current position of the shift lens and the integrated value in the PID control unit. These are compared with the determination reference value. For example, the position of the shift lens is compared with the position serving as the drive center. As a result, if it is determined that each shift lens is in a position near the center, the process proceeds to S605. If not, the process proceeds to S608.

S605にて補正特性変更部107は第1及び第2の振れ補正系のうち、どちらの状態が駆動範囲の中心に近いか、つまり、どちらの振れ補正系のシフトレンズが、より駆動中心に近いかを判定する。その結果、第1の振れ補正系に係るシフトレンズ303の方が、駆動中心に近い位置にあると判定された場合、S606に進む。これとは逆に、第2の振れ補正系に係るシフトレンズ314の方が、駆動中心に近い位置にあると判定された場合、S607に進む。   In step S605, the correction characteristic changing unit 107 determines which state of the first and second shake correction systems is closer to the center of the drive range, that is, which shift lens of the shake correction system is closer to the drive center. Determine whether. As a result, if it is determined that the shift lens 303 related to the first shake correction system is closer to the drive center, the process proceeds to S606. On the contrary, if it is determined that the shift lens 314 related to the second shake correction system is closer to the drive center, the process proceeds to S607.

S606で補正特性変更部107は、第2の振れ補正系の特性を第1の振れ補正系の特性と一致させ、またS607では、第1の振れ補正系の特性を第2の振れ補正系の特性と一致させる。振れ補正系の状態としてシフトレンズが駆動中心に近い状態は、カットオフ周波数の変化やゲインの変化が小さい状態であり、そのため特性及び状態を一致させるのに適している。   In step S606, the correction characteristic changing unit 107 matches the characteristics of the second shake correction system with the characteristics of the first shake correction system. In step S607, the correction characteristic changing unit 107 changes the characteristics of the first shake correction system to those of the second shake correction system. Match the characteristics. The state where the shift lens is close to the drive center as the state of the shake correction system is a state where the change in the cut-off frequency and the gain are small, and is suitable for matching the characteristics and the state.

立体撮影モードの場合、S606及びS607に示すように、第1の振れ補正系の特性と第2の振れ補正系の特性を一致させている。つまり、第2の振れ補正系の特性を第1の振れ補正系の特性に一致させる場合とその逆の場合、そして、両者の特性を予め用意された固定の定数値に合わせる場合が挙げられる。なお、この定数値の設定については振れの周波数に基づいて行うことができる。通常の撮影では30Hz程度までの振れが想定されるが、例えば乗り物内での撮影時等ではそれ以上の周波数になる場合がある。このときは特性を変更しても制御限界に達しているので、振れ補正の効果が期待できず、そのため予め振れが収まった状況を想定して定数値を設定することが好ましい。また、第1の振れ補正系の状態と第2の振れ補正系の状態を一致させる前に特性を変更する理由は、状態が特性により変化するためである。従って、まず両者の特性を一致させておき、その後に両者の状態を一致させることが望ましい。   In the stereoscopic shooting mode, as shown in S606 and S607, the characteristics of the first shake correction system and the characteristics of the second shake correction system are matched. That is, there are a case where the characteristics of the second shake correction system are matched with the characteristics of the first shake correction system and vice versa, and a case where both characteristics are adjusted to a fixed constant value prepared in advance. The constant value can be set based on the frequency of vibration. In normal shooting, a shake up to about 30 Hz is assumed, but there may be a frequency higher than that when shooting in a vehicle. At this time, even if the characteristic is changed, the control limit has been reached, so that the effect of shake correction cannot be expected. Therefore, it is preferable to set a constant value assuming a situation in which the shake has subsided in advance. The reason why the characteristic is changed before the state of the first shake correction system and the state of the second shake correction system are matched is that the state changes depending on the characteristic. Therefore, it is desirable to first match the characteristics of both, and then match the states of both.

S606、S607の後、S608に進み、第1の振れ補正系のデジタルローパスフィルタ102によって演算が行われる。そしてS609では、第2の振れ補正系のデジタルローパスフィルタ108が演算を行う。S610にて、第1の振れ補正系と第2の振れ補正系との間で駆動範囲を一致させるための処理が補正特性変更部107によって行われる。以上により、両者の状態を一致させるための準備が整うことになる。   After S606 and S607, the process proceeds to S608, where calculation is performed by the digital low-pass filter 102 of the first shake correction system. In step S609, the digital low-pass filter 108 of the second shake correction system performs calculation. In S610, the correction characteristic changing unit 107 performs a process for matching the driving range between the first shake correction system and the second shake correction system. Thus, preparations for matching the states of the two are completed.

S611では、第1の振れ補正系の状態と第2の振れ補正系の状態を一致させる処理が行われる。このときに一致させるべき状態についても、第1の振れ補正系の状態を第2の振れ補正系の状態に一致させる場合とその逆の場合、そして両者の状態を予め用意された固定の状態に合わせる場合がある。入力値である振れ情報は両者にて共通であり、途中に行われる演算の特性も一致していることから、演算出力結果である振れ補正量も両者の間で一致することになる。そしてS612に進み、振れ補正量の算出処理が終了する。   In S611, processing for matching the state of the first shake correction system and the state of the second shake correction system is performed. Regarding the state to be matched at this time, when the state of the first shake correction system is matched with the state of the second shake correction system and vice versa, both states are set to a fixed state prepared in advance. May match. The shake information that is the input value is common to both, and the characteristics of the computation that is performed in the middle also match, so the shake correction amount that is the computation output result also matches. Then, the process proceeds to S612, and the shake correction amount calculation process ends.

以上のように本実施形態では、振れ補正系の特性を変更して所定の特性へと両系の特性を一致させた後で、振れ補正系の状態についても所定の状態へと一致させる。前記S606乃至611に示すように、振れ補正系の特性及び状態については、第1の振れ補正系又は第2の振れ補正系のどちらか一方の特性及び状態へ一致させている。このとき、例えば、第1及び第2の振れ補正系のうち、一方の振れ補正系の特性を他方の振れ補正系の特性と一致させる場合は、一方の振れ補正系の状態についても他方の振れ補正系の状態と一致させる。   As described above, in the present embodiment, after the characteristics of the shake correction system are changed to match the characteristics of both systems to the predetermined characteristics, the state of the shake correction system is also matched to the predetermined state. As shown in S606 to S611, the characteristics and state of the shake correction system are matched with the characteristics and states of either the first shake correction system or the second shake correction system. At this time, for example, when the characteristics of one shake correction system of the first and second shake correction systems are matched with the characteristics of the other shake correction system, the other shake correction system is also in the state of the other shake correction system. Match the state of the correction system.

前記S605乃至607で示したように補正特性変更部107は、駆動範囲の中心に近い状態であると判定した振れ補正系を基準として、その特性へと他の振れ補正系の特性を一致させる。2つの振れ補正系のうち、シフトレンズが駆動中心の近傍にある方の振れ補正系の特性へと、他方の振れ補正系の特性が一致することとなる。その後、振れ補正系の状態についても、シフトレンズが駆動中心の近傍にある方の振れ補正系の状態に一致させている。   As shown in steps S605 to S607, the correction characteristic changing unit 107 matches the characteristics of the other shake correction systems with the characteristics of the shake correction system determined to be close to the center of the driving range. Of the two shake correction systems, the characteristic of the other shake correction system coincides with the characteristic of the shake correction system having the shift lens near the drive center. Thereafter, the state of the shake correction system is also matched with the state of the shake correction system in which the shift lens is in the vicinity of the drive center.

最終的に2つの振れ補正系の特性及び状態が一致することになるので、デジタルローパスフィルタの演算処理を振れ補正系ごとに行う必要はなくなる。すなわち、少なくとも1つの撮像系においてのみ、振れ補正量の演算を行い、その演算結果を他の撮像系における振れ補正に流用する。立体撮影時には複数の振れ補正系の出力を揃える必要があるため、予め1つの振れ補正系だけが演算を行い、他の振れ補正系はその演算結果を使用することができる。複数の振れ補正系の間で特性及び状態が一致した後では、図6にてS604乃至607、及びS609乃至611を削除したフローチャートに従って処理が行われることになる。こうして重複した演算が回避され、演算負荷を軽減できる。   Eventually, the characteristics and states of the two shake correction systems coincide with each other, so that it is not necessary to perform the digital low-pass filter calculation process for each shake correction system. That is, the shake correction amount is calculated only in at least one image pickup system, and the calculation result is used for shake correction in other image pickup systems. Since it is necessary to align the outputs of a plurality of shake correction systems during stereoscopic shooting, only one shake correction system performs calculations in advance, and other shake correction systems can use the calculation results. After the characteristics and states are matched among the plurality of shake correction systems, the processing is performed according to the flowchart in which S604 to 607 and S609 to 611 are deleted in FIG. In this way, redundant calculations can be avoided and the calculation load can be reduced.

なお、上述した特性及び状態の一致については必ずしも厳密な一致のみを意味する訳ではなく、特性又は状態の差異が予め定められた許容範囲内にあれば、実際上、一致の範疇に入るとみなすことができる。
上記の第2実施形態によれば、立体撮影モードの選択時に、複数の振れ補正系について特性及び状態を揃えて、正確な立体画像を生成することができる。
It should be noted that the above-described matching of characteristics and states does not necessarily mean exact matching, but if the difference in characteristics or status is within a predetermined tolerance, it is considered that the matching actually falls within the category of matching. be able to.
According to the second embodiment described above, when a stereoscopic shooting mode is selected, it is possible to generate an accurate stereoscopic image by aligning characteristics and states for a plurality of shake correction systems.

以上、本発明の好ましい実施形態を説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。特に、撮像系及び振れ補正系の系統数を2つとして説明したが、3系統以上の手段に拡張しても上記の説明は同様に適用できる。また、上記実施形態では撮像装置を例示して説明したが、本発明はこれに限らず、撮像機能を有する各種の携帯機器等に幅広く適用可能である。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary. In particular, the description has been given assuming that the number of systems of the imaging system and the shake correction system is two, but the above description can be similarly applied even when the number of systems is increased to three or more. In the above embodiment, the image pickup apparatus has been described as an example. However, the present invention is not limited to this, and can be widely applied to various portable devices having an image pickup function.

101,106,112 AD変換部
102,108 デジタルローパスフィルタ
103,109 駆動範囲制限部
104,110 PID制御部
105,111 DA変換部
107 補正特性変更部
303,314 シフトレンズ(光学部材)
304,315 シフトレンズ駆動制御部
309,320 撮像部
324 振れ検出部
327 操作部
329 制御部
101, 106, 112 AD conversion unit 102, 108 Digital low-pass filter 103, 109 Drive range limiting unit 104, 110 PID control unit 105, 111 DA conversion unit 107 Correction characteristic changing unit 303, 314 Shift lens (optical member)
304, 315 Shift lens drive control unit 309, 320 Imaging unit
324 shake detection unit
327 Operation unit
329 control unit

Claims (10)

同一被写体を異なる視点から撮影するために複数の撮像手段を備えた撮像装置であって、
前記複数の撮像手段に対してそれぞれ撮影モードを選択するための操作手段と、
前記撮像装置に加わる振れを検出する振れ検出手段と、
前記振れ検出手段の出力に応じて前記撮像手段ごとに振れ補正量を演算する補正量演算手段と、
前記振れ補正量に応じて光学像の振れを補正するために前記複数の撮像手段に対してそれぞれ設けられた複数の振れ補正手段と、
前記複数の撮像手段に対して前記操作手段によってそれぞれ選択された撮影モードが異なる場合、前記複数の振れ補正手段について、前記振れ補正量の演算過程で用いるカットオフ周波数、前記振れ補正量の演算過程で用いるゲイン又は前記振れ補正量の演算過程で用いる演算出力の範囲の少なくとも1つを異ならせる補正特性変更手段と、を備えたことを特徴とする撮像装置。
An imaging apparatus including a plurality of imaging means for capturing the same subject from different viewpoints,
Operating means for selecting a shooting mode for each of the plurality of imaging means;
Shake detection means for detecting shake applied to the imaging device;
A correction amount calculation means for calculating a shake correction amount for each of the imaging means according to the output of the shake detection means;
A plurality of shake correction means provided for each of the plurality of imaging means in order to correct a shake of the optical image in accordance with the shake correction amount;
When the shooting modes selected by the operation unit for the plurality of imaging units are different, the cutoff frequency used in the calculation process of the shake correction amount and the calculation process of the shake correction amount for the plurality of shake correction units And a correction characteristic changing unit that changes at least one of a range of calculation output used in a calculation process of the gain or the shake correction amount .
前記補正特性変更手段は、前記複数の撮像手段に対して前記操作手段によってそれぞれ選択された撮影モードが異なる場合、前記振れ補正手段の位置又は前記振れ補正量の演算過程で取得した情報に基づいて、前記複数の振れ補正手段について、前記振れ補正量の演算過程で用いるカットオフ周波数、ゲイン又は演算出力の範囲を異ならせる請求項1に記載の撮像装置。 The correction characteristic changing means is based on the position acquired by the shake correction means or the information obtained in the calculation process of the shake correction amount when the shooting modes selected by the operation means are different for the plurality of image pickup means. The imaging apparatus according to claim 1 , wherein the plurality of shake correction units differ in cut-off frequency, gain, or calculation output range used in the calculation process of the shake correction amount . 比例制御と微分制御、積分制御を選択的に組み合わせて行うPID制御手段を更に備え、
前記振れ補正量の演算過程で取得した情報は、前記積分制御によって得られる積分値であり、前記補正特性変更手段は、前記積分値に基づいて前記振れ補正手段の特性を変更することを特徴とする、請求項1又は2に記載の撮像装置。
PID control means for selectively combining proportional control, differential control, and integral control is further provided.
The information acquired in the process of calculating the shake correction amount is an integral value obtained by the integration control, and the correction characteristic changing unit changes the characteristic of the shake correction unit based on the integral value. The imaging device according to claim 1 or 2.
前記操作手段にて動画撮影が選択された場合、前記補正特性変更手段は、前記操作手段にて静止画撮影が選択された場合に比べて、前記振れ補正量の演算過程で用いるカットオフ周波数を上げることを特徴とする、請求項1乃至3の何れか一項に記載の撮像装置。When moving image shooting is selected by the operation unit, the correction characteristic changing unit sets a cutoff frequency used in the calculation process of the shake correction amount compared to when still image shooting is selected by the operation unit. The imaging apparatus according to claim 1, wherein the imaging apparatus is raised. 前記操作手段にて動画撮影が選択された場合、前記補正特性変更手段は、前記操作手段にて静止画撮影が選択された場合に比べて、前記振れ補正量の演算過程で用いるゲインを下げることを特徴とする、請求項1乃至4の何れか一項に記載の撮像装置。When moving image shooting is selected by the operation unit, the correction characteristic changing unit lowers the gain used in the calculation process of the shake correction amount compared to the case where still image shooting is selected by the operation unit. The imaging device according to any one of claims 1 to 4, wherein 前記操作手段にて動画撮影が選択された場合、前記補正特性変更手段は、前記操作手段にて静止画撮影が選択された場合に比べて、前記振れ補正量の演算過程で用いる演算出力の範囲を広げることを特徴とする、請求項1乃至5の何れか一項に記載の撮像装置。When the moving image shooting is selected by the operation means, the correction characteristic changing means is a range of the calculation output used in the process of calculating the shake correction amount compared to the case where the still image shooting is selected by the operation means. The imaging apparatus according to claim 1, wherein the imaging device is widened. 同一被写体を異なる視点から撮影するために複数の撮像手段を備えた撮像装置であって、
前記複数の撮像手段に対してそれぞれ撮影モードを選択するための操作手段と、
前記撮像装置に加わる振れを検出する振れ検出手段と、
前記振れ検出手段の出力に応じて前記撮像手段ごとに振れ補正量を演算する補正量演算手段と、
前記振れ補正量に応じて光学像の振れを補正するために前記複数の撮像手段に対してそれぞれ設けられた複数の振れ補正手段と、
前記複数の振れ補正手段について、前記振れ補正手段の位置又は前記振れ補正量の演算過程で取得した情報に基づいて、前記振れ補正量の演算過程で用いるカットオフ周波数、前記振れ補正量の演算過程で用いるゲイン又は前記振れ補正量の演算過程で用いる演算出力の範囲の少なくとも1つの特性を異ならせる補正特性変更手段と、を備え、
前記複数の撮像手段を用いて光学像を結像させて立体撮影を行う場合、前記補正特性変更手段は、前記複数の振れ補正手段のうち、いずれの振れ補正手段の位置が駆動範囲の中心に近いかを判定し、前記駆動範囲の中心に近いと判定した振れ補正手段の特性へと前記振れ補正手段の特性を一致させた後、前記複数の振れ補正手段の状態を、前記駆動範囲の中心に近いと判定した振れ補正手段の状態に一致させることを特徴とする撮像装置。
An imaging apparatus including a plurality of imaging means for capturing the same subject from different viewpoints,
Operating means for selecting a shooting mode for each of the plurality of imaging means;
Shake detection means for detecting shake applied to the imaging device;
A correction amount calculation means for calculating a shake correction amount for each of the imaging means according to the output of the shake detection means;
A plurality of shake correction means provided for each of the plurality of imaging means in order to correct a shake of the optical image in accordance with the shake correction amount;
For the plurality of shake correction means, based on information obtained in the shake correction amount calculation process or the shake correction amount calculation process, the cutoff frequency used in the shake correction amount calculation process, and the shake correction amount calculation process Correction characteristic changing means for making different at least one characteristic of the range of the calculation output used in the calculation process of the gain used in the above or the shake correction amount,
In the case where stereoscopic imaging is performed by forming an optical image using the plurality of imaging units, the correction characteristic changing unit is configured such that any one of the plurality of shake correcting units has the position of the shake correcting unit at the center of the driving range. After determining whether they are close and matching the characteristics of the shake correction means to the characteristics of the shake correction means determined to be close to the center of the drive range, the state of the plurality of shake correction means is set to the center of the drive range. An image pickup apparatus that matches a state of a shake correction unit that is determined to be close to.
前記補正特性変更手段によって前記複数の振れ補正手段の位置又は前記振れ補正量の演算過程で取得した情報及び特性が一致した後、前記補正量演算手段によって前記振れ補正手段に係る振れ補正量を演算した演算結果を、当該振れ補正手段とは別の振れ補正手段に係る振れ補正量の演算結果とすることを特徴とする、請求項7に記載の撮像装置。   After the information and characteristics acquired in the process of calculating the position of the plurality of shake correction units or the shake correction amount are matched by the correction characteristic changing unit, the shake correction amount related to the shake correction unit is calculated by the correction amount calculation unit The imaging apparatus according to claim 7, wherein the calculated result is a calculation result of a shake correction amount related to a shake correction unit different from the shake correction unit. 同一被写体を異なる視点から撮影するために複数の撮像手段を備えた撮像装置の制御方法であって、
前記複数の撮像手段に対してそれぞれ撮影モードを操作手段により選択する操作ステップと、
前記撮像装置に加わる振れを検出する振れ検出ステップと、
前記振れ検出ステップで検出した振れに応じて前記撮像手段ごとに振れ補正量を演算する補正量演算ステップと、
前記振れ補正量に応じて光学像の振れを補正するために前記複数の撮像手段に対してそれぞれ設けられた複数の振れ補正手段によって振れ補正を行う振れ補正ステップと、
前記複数の撮像手段に対して前記操作手段によってそれぞれ選択された撮影モードが異なる場合、前記複数の振れ補正手段について、前記振れ補正量の演算過程で用いるカットオフ周波数、前記振れ補正量の演算過程で用いるゲイン又は前記振れ補正量の演算過程で用いる演算出力の範囲の少なくとも1つを異ならせる補正特性変更ステップと、を有することを特徴とする撮像装置の制御方法。
A method for controlling an image pickup apparatus including a plurality of image pickup means for shooting the same subject from different viewpoints,
An operation step of selecting a shooting mode for each of the plurality of imaging units by an operation unit;
A shake detection step for detecting shake applied to the imaging device;
A correction amount calculating step for calculating a shake correction amount for each of the imaging means according to the shake detected in the shake detecting step;
A shake correction step of performing shake correction by a plurality of shake correction means provided for each of the plurality of imaging means in order to correct a shake of an optical image in accordance with the shake correction amount;
When the shooting modes selected by the operation unit for the plurality of imaging units are different, the cutoff frequency used in the calculation process of the shake correction amount and the calculation process of the shake correction amount for the plurality of shake correction units And a correction characteristic changing step for varying at least one of the ranges of the calculation output used in the calculation process of the gain or the shake correction amount .
同一被写体を異なる視点から撮影するために複数の撮像手段を備えた撮像装置の制御方法であって、A method for controlling an image pickup apparatus including a plurality of image pickup means for shooting the same subject from different viewpoints,
前記複数の撮像手段に対してそれぞれ撮影モードを操作手段により選択する操作ステップと、An operation step of selecting a shooting mode for each of the plurality of imaging units by an operation unit;
前記撮像装置に加わる振れを検出する振れ検出ステップと、A shake detection step for detecting shake applied to the imaging device;
前記振れ検出ステップで検出した振れに応じて前記撮像手段ごとに振れ補正量を演算する補正量演算ステップと、A correction amount calculating step for calculating a shake correction amount for each of the imaging means according to the shake detected in the shake detecting step;
前記振れ補正量に応じて光学像の振れを補正するために前記複数の撮像手段に対してそれぞれ設けられた複数の振れ補正手段によって振れ補正を行う振れ補正ステップと、A shake correction step of performing shake correction by a plurality of shake correction means provided for each of the plurality of imaging means in order to correct a shake of an optical image in accordance with the shake correction amount;
前記複数の振れ補正手段について、前記振れ補正手段の位置又は前記振れ補正量の演算過程で取得した情報に基づいて、前記振れ補正量の演算過程で用いるカットオフ周波数、前記振れ補正量の演算過程で用いるゲイン又は前記振れ補正量の演算過程で用いる演算出力の範囲の少なくとも1つの特性を異ならせる補正特性変更ステップと、を有し、For the plurality of shake correction means, based on information obtained in the shake correction amount calculation process or the shake correction amount calculation process, the cutoff frequency used in the shake correction amount calculation process, and the shake correction amount calculation process A correction characteristic changing step that changes at least one characteristic of the range of the calculation output used in the calculation process of the gain or the shake correction amount used in
前記複数の撮像手段を用いて光学像を結像させて立体撮影を行う場合、前記補正特性変更ステップでは、前記複数の振れ補正手段のうち、いずれの振れ補正手段の位置が駆動範囲の中心に近いかを判定し、前記駆動範囲の中心に近いと判定した振れ補正手段の特性へと前記振れ補正手段の特性を一致させた後、前記複数の振れ補正手段の状態を、前記駆動範囲の中心に近いと判定した振れ補正手段の状態に一致させることを特徴とする撮像装置の制御方法。When stereoscopic imaging is performed by forming an optical image using the plurality of imaging units, in the correction characteristic changing step, among the plurality of shake correction units, the position of any shake correction unit is set to the center of the driving range. After determining whether they are close and matching the characteristics of the shake correction means to the characteristics of the shake correction means determined to be close to the center of the drive range, the state of the plurality of shake correction means is set to the center of the drive range. A control method for an image pickup apparatus, characterized by matching with a state of a shake correction unit determined to be close to.
JP2009180893A 2009-08-03 2009-08-03 Imaging apparatus and control method thereof Expired - Fee Related JP5460170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009180893A JP5460170B2 (en) 2009-08-03 2009-08-03 Imaging apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009180893A JP5460170B2 (en) 2009-08-03 2009-08-03 Imaging apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2011033890A JP2011033890A (en) 2011-02-17
JP5460170B2 true JP5460170B2 (en) 2014-04-02

Family

ID=43763011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009180893A Expired - Fee Related JP5460170B2 (en) 2009-08-03 2009-08-03 Imaging apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP5460170B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11190687B2 (en) 2019-06-25 2021-11-30 Canon Kabushiki Kaisha Image blur correction control apparatus, camera body, lens unit, image blur correction control method, and storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123099B1 (en) * 2010-06-29 2012-03-16 주식회사 레드로버 Stereo camera having shift lens
JP5868042B2 (en) * 2011-07-01 2016-02-24 キヤノン株式会社 Anti-shake control device, imaging device, and control method for anti-shake control device
JP6173134B2 (en) * 2013-09-02 2017-08-02 キヤノン株式会社 Image blur correction apparatus and control method thereof
WO2016158119A1 (en) * 2015-03-31 2016-10-06 ソニー株式会社 Medical observation device, information processing method, program and video microscope device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683929B2 (en) * 1995-03-02 2005-08-17 キヤノン株式会社 Blur correction device and optical device
JP4486482B2 (en) * 2004-11-26 2010-06-23 富士フイルム株式会社 Camera shake correction apparatus and imaging apparatus
JP4714176B2 (en) * 2007-03-29 2011-06-29 富士フイルム株式会社 Stereoscopic apparatus and optical axis adjustment method
JP5087519B2 (en) * 2008-10-31 2012-12-05 富士フイルム株式会社 Imaging device
JP5380184B2 (en) * 2009-07-09 2014-01-08 富士フイルム株式会社 Compound eye camera and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11190687B2 (en) 2019-06-25 2021-11-30 Canon Kabushiki Kaisha Image blur correction control apparatus, camera body, lens unit, image blur correction control method, and storage medium

Also Published As

Publication number Publication date
JP2011033890A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP6234151B2 (en) Imaging device
CN107135338B (en) Image pickup system, control method thereof, image pickup apparatus, and lens device
JP7277513B2 (en) a lens device, a lens device control method, and a lens device control program;
JP5948645B2 (en) Lens control device and interchangeable lens provided with lens control device
JP4968885B2 (en) IMAGING DEVICE AND ITS CONTROL METHOD, IMAGING SYSTEM, IMAGE PROCESSING METHOD, AND PROGRAM
WO2015156042A1 (en) Focal point adjustment device, camera system, and focal point adjustment method for imaging device
CN112584046B (en) Image pickup apparatus, lens unit, image pickup system, and control method thereof
WO2007058100A1 (en) In-focus detector
WO2012002307A1 (en) Single-lens stereoscopic image capture device
JP5460170B2 (en) Imaging apparatus and control method thereof
CN101491084A (en) Imaging apparatus
US9247112B2 (en) Imaging device and method for displaying electronic viewfinder
JP2008252522A (en) Camera
US8542301B2 (en) Electronic image pickup apparatus including an image forming optical system having a mark
JP2014006388A (en) Imaging apparatus, and its control method and program
JP6664177B2 (en) Focus detection device, prediction method, program, and storage medium
JP2006295238A (en) Image pickup device
JP2020076897A (en) Imaging system, control method of the same, lens unit, imaging apparatus, program, and storage medium
US8913148B2 (en) Information supplying apparatus, lens apparatus, camera apparatus and image pickup system
WO2007129444A1 (en) Image distortion correction method, distortion correction program, and optical device
JP5788197B2 (en) Image processing apparatus, image processing method, image processing program, and imaging apparatus
JP2019191515A (en) Imaging system, lens device, imaging device, and control method thereof
JP2022124048A (en) Lens device, imaging system, method for controlling lens device, and program
JP2023005847A (en) Image shake correction control device, imaging apparatus, interchangeable lens, and image shake correction control method
JP2005252680A (en) Lens system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R151 Written notification of patent or utility model registration

Ref document number: 5460170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees