JP5458933B2 - Variable magnification optical system, optical device - Google Patents

Variable magnification optical system, optical device Download PDF

Info

Publication number
JP5458933B2
JP5458933B2 JP2010030557A JP2010030557A JP5458933B2 JP 5458933 B2 JP5458933 B2 JP 5458933B2 JP 2010030557 A JP2010030557 A JP 2010030557A JP 2010030557 A JP2010030557 A JP 2010030557A JP 5458933 B2 JP5458933 B2 JP 5458933B2
Authority
JP
Japan
Prior art keywords
lens
optical
state
variable magnification
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010030557A
Other languages
Japanese (ja)
Other versions
JP2011164550A (en
Inventor
剛司 鈴木
哲史 三輪
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2010030557A priority Critical patent/JP5458933B2/en
Publication of JP2011164550A publication Critical patent/JP2011164550A/en
Application granted granted Critical
Publication of JP5458933B2 publication Critical patent/JP5458933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.
従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照。)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).
特開2006−227526号公報JP 2006-227526 A
しかしながら従来の変倍光学系は、良好な光学性能を達成できていないという問題があった。また従来の変倍光学系は、偏心誤差が生じると結像性能の劣化が生じてしまうという問題があった。
そこで本発明は上記問題点に鑑みてなされたものであり、良好な光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。
However, the conventional variable magnification optical system has a problem that it cannot achieve good optical performance. Further, the conventional variable magnification optical system has a problem that the imaging performance deteriorates when an eccentric error occurs.
Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system having good optical performance.
上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群との実質的に5個のレンズ群からなり
前記第3レンズ群は少なくとも1つの正レンズ成分を含み、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が変化し、
前記第5レンズ群を光軸と直交する方向を含むようにシフト偏心させて位置調整を行うことが可能な構成であり、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.67<(−f2)/f3<0.90
0.50<f2/f4<0.90
1.70<nd3b<1.85
ただし、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
nd3b:前記第3レンズ群における前記正レンズ成分のうち、屈折率の最も大きな正レンズ成分の硝材のd線に対する屈折率
In order to solve the above problems, the present invention
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power Substantially consisting of five lens groups, and a fifth lens group having a positive refractive power,
The third lens group includes at least one positive lens component;
Upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, The distance between the third lens group and the fourth lens group changes, the distance between the fourth lens group and the fifth lens group changes,
The fifth lens group is configured to be shift decentered so as to include a direction orthogonal to the optical axis and to adjust the position.
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
0.67 <(− f2) / f3 <0.90
0.50 <f2 / f4 <0.90
1.70 <nd3b <1.85
However,
f2: focal length of the second lens group f3: focal length of the third lens group f4: focal length of the fourth lens group
nd3b: refractive index of the positive lens component having the highest refractive index among the positive lens components in the third lens group with respect to the d-line of the glass material
また本発明は、
前記変倍光学系を有することを特徴とする光学装置を提供する
The present invention also provides
Provided is an optical device comprising the variable magnification optical system .
本発明によれば、良好な光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the variable magnification optical system, optical apparatus, and variable magnification optical system which have favorable optical performance can be provided.
本願の第1実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 1st Example of this application. 本願の第1実施例に係る変倍光学系の調整機構の構成を模式的に示す、(a)は断面図、(b)は(a)における第3保持部材及び第3摺動部材のA−A’断面図、(c)は(a)における第5保持部材を像側から見た図である。The structure of the adjustment mechanism of the variable magnification optical system which concerns on 1st Example of this application is shown typically, (a) is sectional drawing, (b) is A of 3rd holding member and 3rd sliding member in (a). -A 'sectional drawing, (c) is the figure which looked at the 5th holding member in (a) from the image side. (a)、及び(b)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.64°の回転ぶれに対して像ぶれ補正を行った際のメリディオナル横収差図である。(A) and (b) are various aberration diagrams at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the first example of the present application, and an image with respect to a rotation blur of 0.64 °. FIG. 5 is a meridional lateral aberration diagram when blur correction is performed. 本願の第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。FIG. 6 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example of the present application. (a)、及び(b)はそれぞれ、本願の第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.29°の回転ぶれに対して像ぶれ補正を行った際のメリディオナル横収差図である。(A) and (b) are various aberration diagrams at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the first example of the present application, and an image with respect to a rotational blur of 0.29 °. FIG. 5 is a meridional lateral aberration diagram when blur correction is performed. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系に偏心誤差が生じた場合、望遠端状態における無限遠合焦時に、第3レンズ群内の正レンズL31をシフト偏心させたときのメリディオナル横収差図、第5レンズ群全体をシフト偏心(シフトアップ)させたときの非点収差図、及び第5レンズ群全体をシフト偏心(シフトダウン)させたときの非点収差図である。(A), (b), and (c) are each in the third lens group when defocus error occurs in the variable magnification optical system according to the first example of the present application, and when focusing at infinity in the telephoto end state. Fig. 6 shows a meridional lateral aberration diagram when the positive lens L31 is shifted decentered, an astigmatism diagram when the entire fifth lens group is shifted decentered (shifted up), and a shift decentered (shifted down) the entire fifth lens group. It is an astigmatism figure when letting it be. 本願の第2実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 2nd Example of this application. (a)、及び(b)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.64°の回転ぶれに対して像ぶれ補正を行った際のメリディオナル横収差図である。(A) and (b) are various aberration diagrams at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the second example of the present application, and an image with respect to a rotation blur of 0.64 °. FIG. 5 is a meridional lateral aberration diagram when blur correction is performed. 本願の第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。It is an aberration diagram at the time of infinity focusing in the intermediate focal length state of the variable magnification optical system which concerns on 2nd Example of this application. (a)、及び(b)はそれぞれ、本願の第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.29°の回転ぶれに対して像ぶれ補正を行った際のメリディオナル横収差図である。(A) and (b) are various aberration diagrams at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the second example of the present application, and an image with respect to a rotational blur of 0.29 °. FIG. 5 is a meridional lateral aberration diagram when blur correction is performed. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系に偏心誤差が生じた場合、望遠端状態における無限遠合焦時に、第3レンズ群内の負メニスカスレンズL32と正レンズL33との接合レンズをシフト偏心させたときのメリディオナル横収差図、第5レンズ群全体をシフト偏心(シフトアップ)させたときの非点収差図、及び第5レンズ群全体をシフト偏心(シフトダウン)させたときの非点収差図である。(A), (b), and (c) are respectively in the third lens group when defocus error occurs in the variable magnification optical system according to the second example of the present application, and when focusing at infinity in the telephoto end state. Of the meridional lateral aberration when the cemented lens of the negative meniscus lens L32 and the positive lens L33 is shifted decentered, the astigmatism diagram when the entire fifth lens group is shifted decentered (shifted up), and the fifth lens. It is an astigmatism diagram when the entire group is shifted decentered (shifted down). 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法を示す図である。It is a figure which shows the manufacturing method of the variable magnification optical system of this application.
以下、本願の変倍光学系、光学装置、変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が変化し、前記第5レンズ群を光軸と直交する方向を含むようにシフト偏心させて位置調整を行うことが可能な構成であり、以下の条件式(1),(2)を満足することを特徴とする。
(1) 0.65<(−f2)/f3<0.90
(2) 0.42<f2/f4<0.90
ただし、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Hereinafter, the variable magnification optical system, the optical apparatus, and the method for manufacturing the variable magnification optical system of the present application will be described.
The variable magnification optical system of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens power. A fourth lens group having a refractive power of 5 and a fifth lens group having a positive refractive power, and at the time of zooming from the wide-angle end state to the telephoto end state, the first lens group and the second lens group The distance between the second lens group and the third lens group is changed, the distance between the third lens group and the fourth lens group is changed, and the fourth lens group and the fourth lens group are changed. The distance between the fifth lens group is changed, and the fifth lens group can be shifted and decentered so as to include a direction orthogonal to the optical axis. The following conditional expression (1) , (2) is satisfied.
(1) 0.65 <(− f2) / f3 <0.90
(2) 0.42 <f2 / f4 <0.90
However,
f2: focal length of the second lens group f3: focal length of the third lens group f4: focal length of the fourth lens group
本願の変倍光学系は、当該変倍光学系に偏心誤差が生じたことによる結像性能の劣化、特に望遠端状態における像面非対称を、第5レンズ群を光軸と直交する方向を含むようにシフト偏心させて位置調整を行うことで良好に補正することができる。   The variable magnification optical system of the present application includes a direction in which the fifth lens group is orthogonal to the optical axis, and the image formation performance is deteriorated due to the occurrence of a decentration error in the variable magnification optical system, particularly the image plane asymmetry in the telephoto end state. Thus, it can correct | amend favorably by carrying out shift eccentricity and performing position adjustment.
条件式(1)は、第2レンズ群の焦点距離に対する第3レンズ群の焦点距離を規定するための条件式である。本願の変倍光学系は、条件式(1)を満足することで良好な光学性能を実現し、かつ所定の変倍比を確保することができる。
本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、第3レンズ群の屈折力が大きくなり、望遠端状態において球面収差を補正することが困難になるため好ましくない。なお、本願の効果をより確実にするために、条件式(1)の上限値を0.80とすることが好ましく、これによってより良い光学性能を実現することができる。
一方、本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、第2レンズ群の屈折力が大きくなり、広角端状態において非点収差を補正することが困難になるため好ましくない。なお、本願の効果をより確実にするために、条件式(1)の下限値を0.67とすることが好ましい。これによって第2レンズ群の屈折力をより適切に設定することができ、変倍時のコマ収差の変動をより小さくすることができる。
Conditional expression (1) is a conditional expression for defining the focal length of the third lens group with respect to the focal length of the second lens group. The zooming optical system of the present application can satisfy the conditional expression (1) to achieve good optical performance and ensure a predetermined zooming ratio.
If the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the third lens unit increases, and it becomes difficult to correct spherical aberration in the telephoto end state, which is not preferable. . In order to secure the effect of the present application, it is preferable to set the upper limit value of conditional expression (1) to 0.80, and thereby better optical performance can be realized.
On the other hand, if the corresponding value of conditional expression (1) of the variable magnification optical system of the present application is below the lower limit value, the refractive power of the second lens group becomes large, and it becomes difficult to correct astigmatism in the wide-angle end state. Therefore, it is not preferable. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (1) to 0.67. As a result, the refractive power of the second lens group can be set more appropriately, and fluctuations in coma during zooming can be further reduced.
条件式(2)は、第2レンズ群の焦点距離に対する第4レンズ群の焦点距離を規定するための条件式である。本願の変倍光学系は、条件式(2)を満足することで良好な光学性能を実現し、かつ所定の変倍比を確保することができる。
本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、第2レンズ群の屈折力が小さくなる。このため、所定の変倍比を確保するために第1レンズ群を物体側へ大きく繰り出さなければならず、製造後の像面湾曲及び非点収差が劣化してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2)の上限値を0.75とすることが好ましく、これによってより良い光学性能を実現することができる。また、本願の効果をさらに確実にするために、条件式(2)の上限値を0.65とすることが好ましい。
一方、本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、第4レンズ群の屈折力が小さくなり、変倍時の像面湾曲の変動を補正することが困難になるため好ましくない。なお、本願の効果をより確実にするために、条件式(2)の下限値を0.50とすることが好ましい。これによって第2レンズ群の屈折力をより適切に設定することができ、変倍時のコマ収差の変動を小さくすることができる。また、本願の効果をさらに確実にするために、条件式(2)の下限値を0.55とすることが好ましい。
以上の構成により、良好な光学性能を有する変倍光学系を実現することができる。
Conditional expression (2) is a conditional expression for defining the focal length of the fourth lens group with respect to the focal length of the second lens group. The zooming optical system of the present application can satisfy the conditional expression (2) to realize good optical performance and to secure a predetermined zooming ratio.
When the corresponding value of conditional expression (2) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the second lens group becomes small. For this reason, in order to ensure a predetermined zoom ratio, the first lens unit must be extended largely to the object side, which is not preferable because the field curvature and astigmatism after manufacturing deteriorate. In order to secure the effect of the present application, it is preferable to set the upper limit value of conditional expression (2) to 0.75, which can realize better optical performance. In order to further secure the effect of the present application, it is preferable to set the upper limit of conditional expression (2) to 0.65.
On the other hand, if the corresponding value of conditional expression (2) of the variable magnification optical system of the present application is lower than the lower limit value, the refractive power of the fourth lens group becomes small, and it is difficult to correct fluctuations in field curvature at the time of zooming. This is not preferable. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (2) to 0.50. As a result, the refractive power of the second lens group can be set more appropriately, and fluctuations in coma during zooming can be reduced. In order to further secure the effect of the present application, it is preferable to set the lower limit of conditional expression (2) to 0.55.
With the above configuration, a variable magnification optical system having good optical performance can be realized.
また本願の変倍光学系は、前記第3レンズ群の少なくとも一部を光軸と直交する方向を含むようにシフト偏心させて位置調整を行うことが可能な構成であることが望ましい。
本願の変倍光学系は、当該変倍光学系に偏心誤差が生じたことによる結像性能の劣化、特に望遠端状態における偏心コマ収差を、第3レンズ群の少なくとも一部を光軸と直交する方向を含むようにシフト偏心させて位置調整を行うことで良好に補正することができる。
Further, it is desirable that the variable magnification optical system of the present application has a configuration capable of performing position adjustment by shifting and decentering at least a part of the third lens group so as to include a direction orthogonal to the optical axis.
The variable magnification optical system according to the present application is capable of deteriorating imaging performance due to the occurrence of a decentration error in the variable magnification optical system, particularly decentration coma in the telephoto end state, and at least a part of the third lens group orthogonal to the optical axis. It is possible to satisfactorily correct by adjusting the position by decentering so as to include the direction to be performed.
また本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 1.20<f5/(−f4)<2.00
ただし、
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (3).
(3) 1.20 <f5 / (− f4) <2.00
However,
f4: focal length of the fourth lens group f5: focal length of the fifth lens group
条件式(3)は、第5レンズ群の焦点距離に対する第4レンズ群の焦点距離を規定するための条件式である。本願の変倍光学系は、条件式(3)を満足することで良好な光学性能を実現し、かつ所定の変倍比を確保することができる。
本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、第4レンズ群の屈折力が大きくなり、望遠端状態においてコマ収差を補正することが困難になるため好ましくない。なお、本願の効果をより確実にするために、条件式(3)の上限値を1.80とすることが好ましい。これによって第4レンズ群の屈折力をより適切に設定することができ、望遠端状態においてコマ収差をより良好に補正することができる。また、本願の効果をさらに確実にするために、条件式(3)の上限値を1.60とすることが好ましい。
一方、本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、第5レンズ群の屈折力が大きくなり、広角端状態において非点収差を補正することが困難になるため好ましくない。なお、本願の効果を確実にするために、条件式(3)の下限値を1.20とすることが好ましく、これによってより良い光学性能を実現することができる。また、本願の効果をさらに確実にするために、条件式(3)の下限値を1.40とすることが好ましい。
Conditional expression (3) is a conditional expression for defining the focal length of the fourth lens group with respect to the focal length of the fifth lens group. The zooming optical system of the present application can satisfy the conditional expression (3) to realize good optical performance and ensure a predetermined zooming ratio.
If the corresponding value of conditional expression (3) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the fourth lens group becomes large, and it is difficult to correct coma in the telephoto end state, which is not preferable. . In order to secure the effect of the present application, it is preferable to set the upper limit of conditional expression (3) to 1.80. As a result, the refractive power of the fourth lens group can be set more appropriately, and coma can be corrected more favorably in the telephoto end state. In order to further secure the effect of the present application, it is preferable to set the upper limit of conditional expression (3) to 1.60.
On the other hand, if the corresponding value of conditional expression (3) of the variable magnification optical system of the present application is less than the lower limit value, the refractive power of the fifth lens unit increases, and it is difficult to correct astigmatism in the wide-angle end state. Therefore, it is not preferable. In order to secure the effect of the present application, it is preferable to set the lower limit value of the conditional expression (3) to 1.20, and thereby better optical performance can be realized. In order to further secure the effect of the present application, it is preferable to set the lower limit of conditional expression (3) to 1.40.
また本願の変倍光学系は、前記第4レンズ群の少なくとも一部を光軸と直交する方向を含むように移動させて像ぶれ補正を行う構成であることが望ましい。
本願の変倍光学系において第4レンズ群は、他のレンズ群に比べてレンズ枚数が少なく、レンズ径の小型化を図ることが可能であるため、像ぶれを補正するための機構を組み込むことに適している。したがって上記構成により、鏡筒の小型化と像ぶれ補正に伴うコマ収差の変動を良好に補正することができる。
また本願の変倍光学系は、前記第4レンズ群が接合レンズを有することが望ましい。これにより、球面収差等の諸収差を良好に補正することができる。
Further, it is desirable that the variable magnification optical system of the present application has a configuration in which image blur correction is performed by moving at least a part of the fourth lens group so as to include a direction orthogonal to the optical axis.
In the variable magnification optical system of the present application, the fourth lens group has a smaller number of lenses than the other lens groups, and the lens diameter can be reduced. Therefore, a mechanism for correcting image blur is incorporated. Suitable for Therefore, with the above configuration, it is possible to satisfactorily correct coma variation due to downsizing of the lens barrel and image blur correction.
In the variable magnification optical system of the present application, it is desirable that the fourth lens group has a cemented lens. Thereby, various aberrations such as spherical aberration can be corrected satisfactorily.
また本願の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.70<x5/(−f2)<2.10
ただし、
f2:前記第2レンズ群の焦点距離
x5:広角端状態から望遠端状態への変倍に際する前記第5レンズ群の光軸上の移動量
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (4).
(4) 0.70 <x5 / (− f2) <2.10
However,
f2: Focal length of the second lens group x5: Amount of movement of the fifth lens group on the optical axis during zooming from the wide-angle end state to the telephoto end state
条件式(4)は、第5レンズ群の移動量に対する第2レンズ群の焦点距離を規定するための条件式である。なお、第5レンズ群が像側から物体側へ移動する際の移動量を正とする。本願の変倍光学系は、条件式(4)を満足することで良好な光学性能を実現し、かつ所定の変倍比を確保することができる。
本願の変倍光学系の条件式(4)の対応値が上限値を上回ると、第2レンズ群の屈折力が大きくなり、広角端状態において非点収差を補正することが困難になるため好ましくない。なお、本願の効果をより確実にするために、条件式(4)の上限値を1.90とすることが好ましく、これによってより良い光学性能を実現することができる。また、本願の効果をさらに確実にするために、条件式(4)の上限値を1.70とすることが好ましい。
一方、本願の変倍光学系の条件式(4)の対応値が下限値を下回ると、第5レンズ群の移動量が小さくなる。このため、各レンズ群の屈折力を大きく設定しなければならず、高次のコマ収差が発生して光学性能が劣化してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(4)の下限値を0.90とすることが好ましい。これによって第5レンズ群の移動量をより適切に設定することができ、所定の変倍比を確保しつつ、より高次のコマ収差を補正することができる。また、本願の効果をさらに確実にするために、条件式(4)の下限値を1.10とすることが好ましい。
Conditional expression (4) is a conditional expression for defining the focal length of the second lens group with respect to the movement amount of the fifth lens group. The amount of movement when the fifth lens group moves from the image side to the object side is positive. The zooming optical system of the present application can satisfy the conditional expression (4) to realize good optical performance and ensure a predetermined zooming ratio.
If the corresponding value of the conditional expression (4) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the second lens unit increases, and it is difficult to correct astigmatism in the wide-angle end state, which is preferable. Absent. In order to secure the effect of the present application, it is preferable to set the upper limit value of the conditional expression (4) to 1.90, and thereby better optical performance can be realized. In order to further secure the effect of the present application, it is preferable to set the upper limit of conditional expression (4) to 1.70.
On the other hand, when the corresponding value of conditional expression (4) of the variable magnification optical system of the present application is lower than the lower limit value, the moving amount of the fifth lens group becomes small. For this reason, the refractive power of each lens group must be set large, which is not preferable because high-order coma aberration occurs and optical performance deteriorates. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (4) to 0.90. Accordingly, the amount of movement of the fifth lens group can be set more appropriately, and higher-order coma aberration can be corrected while ensuring a predetermined zoom ratio. In order to further secure the effect of the present application, it is preferable to set the lower limit of conditional expression (4) to 1.10.
また本願の変倍光学系は、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群が像側から物体側へ移動することが望ましい。これにより、球面収差と像面湾曲の変動を効果的に補正しつつ、所定の変倍比を確保することができる。
また本願の変倍光学系は、広角端状態から望遠端状態への変倍に際して、前記第5レンズ群が像側から物体側へ移動することが望ましい。これにより、球面収差と像面湾曲の変動を効果的に補正しつつ、所定の変倍比を確保することができる。
また本願の変倍光学系は、前記第2レンズ群の少なくとも一部を光軸に沿って移動させることにより、無限遠物点から近距離物点への合焦を行うことが望ましい。これにより、合焦時の球面収差や像面湾曲等の変動を効果的に補正することができる。
また本願の変倍光学系は、前記第2レンズ群が非球面レンズを有することが望ましい。これにより、広角端状態において歪曲収差と像面湾曲を同時に補正することができる。
In the zoom optical system according to the present application, it is desirable that the first lens unit moves from the image side to the object side during zooming from the wide-angle end state to the telephoto end state. As a result, it is possible to ensure a predetermined zoom ratio while effectively correcting variations in spherical aberration and field curvature.
In the zoom optical system according to the present application, it is desirable that the fifth lens group moves from the image side to the object side when zooming from the wide-angle end state to the telephoto end state. As a result, it is possible to ensure a predetermined zoom ratio while effectively correcting variations in spherical aberration and field curvature.
In the variable power optical system of the present application, it is desirable to perform focusing from an infinite object point to a short distance object point by moving at least a part of the second lens group along the optical axis. Thereby, it is possible to effectively correct variations such as spherical aberration and curvature of field during focusing.
In the variable magnification optical system of the present application, it is desirable that the second lens group has an aspheric lens. Thereby, distortion and field curvature can be corrected simultaneously in the wide-angle end state.
また本願の変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5) 0.65<x4/x3<0.90
ただし、
x3:広角端状態から望遠端状態への変倍に際する前記第3レンズ群の光軸上の移動量
x4:広角端状態から望遠端状態への変倍に際する前記第4レンズ群の光軸上の移動量
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (5).
(5) 0.65 <x4 / x3 <0.90
However,
x3: Amount of movement on the optical axis of the third lens group during zooming from the wide-angle end state to the telephoto end state x4: The amount of movement of the fourth lens group during zooming from the wide-angle end state to the telephoto end state Amount of movement on the optical axis
条件式(5)は、第4レンズ群の移動量に対する第3レンズ群の移動量を規定するための条件式である。なお、第3レンズ群が像側から物体側へ移動する際の移動量を正とし、第4レンズ群についても同様とする。本願の変倍光学系は、条件式(5)を満足することで良好な光学性能を実現し、かつ所定の変倍比を確保することができる。
本願の変倍光学系の条件式(5)の対応値が上限値を上回ると、第3レンズ群の移動量が小さくなり、望遠端状態において球面収差を補正することが困難になるため好ましくない。なお、本願の効果をより確実にするために、条件式(5)の上限値を0.82とすることが好ましく、これによってより良い光学性能を実現することができる。また、本願の効果をさらに確実にするために、条件式(5)の上限値を0.78とすることが好ましい。
一方、本願の変倍光学系の条件式(5)の対応値が下限値を下回ると、第4レンズ群の移動量が小さくなり、変倍時の像面湾曲の変動とコマ収差の変動を補正することが困難になるため好ましくない。なお、本願の効果をより確実にするために、条件式(5)の下限値を0.68とすることが好ましく、これによって変倍時の像面湾曲の変動とコマ収差の変動をより良好に補正することができる。また、本願の効果をさらに確実にするために、条件式(5)の下限値を0.70とすることが好ましい。
Conditional expression (5) is a conditional expression for defining the movement amount of the third lens group with respect to the movement amount of the fourth lens group. The amount of movement when the third lens group moves from the image side to the object side is positive, and the same applies to the fourth lens group. The zooming optical system according to the present application can satisfy the conditional expression (5) to realize good optical performance and ensure a predetermined zooming ratio.
If the corresponding value of conditional expression (5) of the variable magnification optical system of the present application exceeds the upper limit value, the amount of movement of the third lens unit becomes small, and it becomes difficult to correct spherical aberration in the telephoto end state, which is not preferable. . In order to secure the effect of the present application, it is preferable to set the upper limit value of conditional expression (5) to 0.82, thereby realizing better optical performance. In order to further secure the effect of the present application, it is preferable to set the upper limit of conditional expression (5) to 0.78.
On the other hand, when the corresponding value of conditional expression (5) of the zoom optical system of the present application is below the lower limit value, the amount of movement of the fourth lens group becomes small, and fluctuations in field curvature and coma change during zooming are reduced. This is not preferable because it becomes difficult to correct. In order to further secure the effect of the present application, it is preferable to set the lower limit value of conditional expression (5) to 0.68, which improves the variation in field curvature and coma during zooming. Can be corrected. In order to further secure the effect of the present application, it is preferable to set the lower limit of conditional expression (5) to 0.70.
また本願の変倍光学系は、前記第3レンズ群が少なくとも1つの正レンズ成分を含み、以下の条件式(6)を満足することが望ましい。
(6) 1.70<nd3b<1.85
ただし、
nd3b:前記第3レンズ群における前記正レンズ成分のうち、屈折率の最も大きな正レンズ成分の硝材のd線に対する屈折率
In the zoom optical system according to the present application, it is preferable that the third lens group includes at least one positive lens component and satisfies the following conditional expression (6).
(6) 1.70 <nd3b <1.85
However,
nd3b: refractive index of the positive lens component having the highest refractive index among the positive lens components in the third lens group with respect to the d-line of the glass material
条件式(6)は、第3レンズ群における前記正レンズ成分のうち、屈折率の最も大きな正レンズ成分の硝材のd線(波長λ=587.6nm)に対する屈折率を規定するための条件式である。本願の変倍光学系は、条件式(6)を満足することで良好な光学性能を実現し、かつ所定の変倍比を確保することができる。
本願の変倍光学系の条件式(6)の対応値が上限値を上回ると、ペッツバール和が小さくなり、広角端状態において像面湾曲を補正することが困難になるため好ましくない。なお、本願の効果をより確実にするために、条件式(6)の上限値を1.80とすることが好ましい。これによって、硝材の屈折率をより適切に設定することができ、広角端状態において像面湾曲をより良好に補正することができる。
一方、本願の変倍光学系の条件式(6)の対応値が下限値を下回ると、正レンズ成分の曲率が大きくなり、望遠端状態において高次の球面収差を補正することが困難になるため好ましくない。なお、本願の効果をより確実にするために、条件式(6)の下限値を1.75とすることが好ましく、これによってより良い光学性能を実現することができる。
Conditional expression (6) is a conditional expression for defining the refractive index for the d-line (wavelength λ = 587.6 nm) of the glass material of the positive lens component having the largest refractive index among the positive lens components in the third lens group. It is. The zooming optical system of the present application can satisfy the conditional expression (6) to realize good optical performance and ensure a predetermined zooming ratio.
If the corresponding value of conditional expression (6) of the variable magnification optical system of the present application exceeds the upper limit value, the Petzval sum becomes small, and it becomes difficult to correct curvature of field in the wide-angle end state. In order to secure the effect of the present application, it is preferable to set the upper limit of conditional expression (6) to 1.80. As a result, the refractive index of the glass material can be set more appropriately, and the field curvature can be corrected more favorably in the wide-angle end state.
On the other hand, if the corresponding value of conditional expression (6) of the variable magnification optical system of the present application is below the lower limit value, the curvature of the positive lens component increases, and it becomes difficult to correct higher-order spherical aberration in the telephoto end state. Therefore, it is not preferable. In order to secure the effect of the present application, it is preferable to set the lower limit value of the conditional expression (6) to 1.75, and thereby better optical performance can be realized.
また本願の光学装置は、上述した構成の変倍光学系を有することを特徴とする。これにより、良好な光学性能を有する光学装置を実現することができる。
また本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、前記第2レンズ群、前記第3レンズ群、及び前記第4レンズ群が以下の条件式(1),(2)を満足するようにし、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が変化するようにし、前記第5レンズ群を光軸と直交する方向を含むようにシフト偏心させて位置調整を行うことが可能な構成とすることを特徴とする。
(1) 0.65<(−f2)/f3<0.90
(2) 0.42<f2/f4<0.90
ただし、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
斯かる本願の変倍光学系の製造方法により、良好な光学性能を有する変倍光学系を製造することができる。
The optical device of the present application is characterized by having the variable magnification optical system having the above-described configuration. Thereby, an optical device having good optical performance can be realized.
In addition, the variable magnification optical system manufacturing method of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. And a fourth lens group having negative refracting power and a fifth lens group having positive refracting power, a method of manufacturing a variable magnification optical system, wherein the second lens group and the third lens group And the fourth lens group satisfy the following conditional expressions (1) and (2), and when zooming from the wide-angle end state to the telephoto end state, the first lens group and the second lens group: , The distance between the second lens group and the third lens group is changed, the distance between the third lens group and the fourth lens group is changed, and the fourth lens group and the fourth lens group are changed. The distance from the fifth lens group is changed so that the fifth lens group includes a direction orthogonal to the optical axis. Shifted eccentrically, characterized in that a capable of performing position adjustment configuration.
(1) 0.65 <(− f2) / f3 <0.90
(2) 0.42 <f2 / f4 <0.90
However,
f2: Focal length of the second lens group f3: Focal length of the third lens group f4: Focal length of the fourth lens group By the method of manufacturing a zoom optical system according to the present application, a variable having good optical performance is obtained. A double optical system can be manufactured.
以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1は、本願の第1実施例に係る変倍光学系のレンズ構成を示す断面図である。図2は、本実施例に係る変倍光学系に備えられた調整機構の構成を模式的に示す図である。
まず、本実施例に係る変倍光学系のレンズ形状について説明する。
図1に示すように本実施例に係る変倍光学系は、不図示の物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
Hereinafter, a variable magnification optical system according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a sectional view showing a lens configuration of a variable magnification optical system according to the first example of the present application. FIG. 2 is a diagram schematically illustrating a configuration of an adjustment mechanism provided in the variable magnification optical system according to the present embodiment.
First, the lens shape of the variable magnification optical system according to the present embodiment will be described.
As shown in FIG. 1, the variable magnification optical system according to the present embodiment includes, in order from the object side (not shown), a first lens group G1 having a positive refractive power, and a second lens group G2 having a negative refractive power. The third lens group G3 has a positive refractive power, the fourth lens group G4 has a negative refractive power, and the fifth lens group G5 has a positive refractive power.
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、負メニスカスレンズL21は物体側のガラスレンズ面に非球面を形成した非球面レンズであり、負メニスカスレンズL24は像側のガラスレンズ面に非球面を形成した非球面レンズである。
第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL32と両凸形状の正レンズL33との接合レンズと、両凸形状の正レンズL34とからなる。なお、開口絞りSは正レンズL31の像側に隣接している。
第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と両凹形状の負レンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とからなる。
第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズとからなる。なお、正レンズL51は物体側のガラスレンズ面に非球面を形成した非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, a biconvex positive lens L23, and an object side. And a negative meniscus lens L24 having a concave surface. The negative meniscus lens L21 is an aspheric lens in which an aspheric surface is formed on the object side glass lens surface, and the negative meniscus lens L24 is an aspheric lens in which an aspheric surface is formed on the image side glass lens surface.
The third lens group G3 includes, in order from the object side, a biconvex positive lens L31, an aperture stop S, a cemented lens of a negative meniscus lens L32 having a convex surface facing the object side, and a biconvex positive lens L33. And a biconvex positive lens L34. The aperture stop S is adjacent to the image side of the positive lens L31.
The fourth lens group G4 includes, in order from the object side, a cemented lens of a positive meniscus lens L41 having a concave surface facing the object side and a biconcave negative lens L42, and a negative meniscus lens L43 having a concave surface facing the object side. Become.
The fifth lens group G5 includes, in order from the object side, a biconvex positive lens L51, a cemented lens of a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object. The positive lens L51 is an aspheric lens in which an aspheric surface is formed on the object side glass lens surface.
本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群G4と第5レンズ群G5との空気間隔が減少するように、各レンズ群G1〜G5が光軸方向へ移動する。なお、このとき開口絞りSは第3レンズ群G3とともに光軸方向へ移動する。
また本実施例に係る変倍光学系では、第2レンズ群G2全体を光軸に沿って移動させることにより、無限遠物点から近距離物点への合焦を行う。詳細には、無限遠物点から0.45mmの近距離物点までの合焦に際して、第2レンズ群G2全体が像側から物体側へ、広角端状態で1.8mm、望遠端状態で6.2mm移動する。
また本実施例に係る変倍光学系では、第4レンズ群G4内の正メニスカスレンズL41と負レンズL42との接合レンズを防振レンズ群として光軸と直交する方向を含むように移動させて像ぶれ補正(防振)を行う。
以上に述べた構成の各レンズ群G1〜G5及び後述する調整機構は、図2に示すように、レンズ鏡筒のカム筒30内に収納されている。
In the zoom optical system according to the present embodiment, when zooming from the wide-angle end state to the telephoto end state, the air gap between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 and the second lens group G2 The air gap between the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5 decreases. In addition, each of the lens groups G1 to G5 moves in the optical axis direction. At this time, the aperture stop S moves in the optical axis direction together with the third lens group G3.
In the zoom optical system according to the present embodiment, the entire second lens group G2 is moved along the optical axis, thereby focusing from an infinite object point to a short-distance object point. Specifically, when focusing from an object point at infinity to a near object point of 0.45 mm, the entire second lens group G2 is 1.8 mm at the wide-angle end state and 6 at the telephoto end state from the image side to the object side. Move 2 mm.
In the variable magnification optical system according to the present example, the cemented lens of the positive meniscus lens L41 and the negative lens L42 in the fourth lens group G4 is moved as a vibration-proof lens group so as to include a direction orthogonal to the optical axis. Perform image blur correction (anti-vibration).
The lens groups G1 to G5 having the above-described configuration and an adjustment mechanism described later are housed in a cam barrel 30 of a lens barrel as shown in FIG.
次に、本実施例に係る変倍光学系において、所定のレンズの位置調整を行うための調整機構について説明する。
図2に示すように、第1,第2,第4,第5レンズ群G1,G2,G4,G5は、円筒状の第1,第2,第4,第5保持部材11,12,14,15にそれぞれ保持されている。また、第3レンズ群G3の正レンズL31は、円筒状の第3保持部材13に保持されている。なお、第3レンズ群G3内の正レンズL31以外のレンズL32〜L34は、第1保持部材11等と同様の構成である不図示の第6保持部材に保持されている。
第1〜第5保持部材11〜15及び第6保持部材は、円筒状の第1〜第5摺動部材21〜25及び不図示の第6摺動部材にそれぞれ固定されている。
第1〜第5摺動部材21〜25及び第6摺動部材は、不図示のカム機構を介して円筒状のカム筒30に保持されており、カム筒30の回動に伴ってカム筒30内を光軸方向へ移動するように構成されている。この構成により、各レンズ群G1〜G5を光軸方向へ移動させ、広角端状態から望遠端状態への変倍を行うことができる。
Next, an adjustment mechanism for adjusting the position of a predetermined lens in the variable magnification optical system according to the present embodiment will be described.
As shown in FIG. 2, the first, second, fourth, and fifth lens groups G1, G2, G4, and G5 are cylindrical first, second, fourth, and fifth holding members 11, 12, and 14, respectively. , 15 are held respectively. The positive lens L31 of the third lens group G3 is held by the cylindrical third holding member 13. The lenses L32 to L34 other than the positive lens L31 in the third lens group G3 are held by a sixth holding member (not shown) having the same configuration as the first holding member 11 and the like.
The first to fifth holding members 11 to 15 and the sixth holding member are fixed to cylindrical first to fifth sliding members 21 to 25 and a sixth sliding member (not shown), respectively.
The first to fifth sliding members 21 to 25 and the sixth sliding member are held by a cylindrical cam cylinder 30 via a cam mechanism (not shown), and the cam cylinder is rotated as the cam cylinder 30 rotates. 30 is configured to move in the optical axis direction. With this configuration, the lens groups G1 to G5 can be moved in the optical axis direction to perform zooming from the wide-angle end state to the telephoto end state.
本実施例に係る変倍光学系の調整機構は、第3レンズ群G3内の正レンズL31の位置調整を行う第1調整機構と、第5レンズ群G5全体の位置調整を行う第2調整機構とからなる。
第1調整機構は、第3保持部材13、第3摺動部材23、及びこれらを固定する3つのネジ31によって構成されている。
図2(a)に示すように、第3保持部材13の外周面には、外周方向へ延在した縁部13aが全周にわたって設けられている。第3摺動部材23の内周面には、内溝23aが全周にわたって形成されており、この内溝23aに第3保持部材13の縁部13aが挿入されている。なお、図2(b)に示すように第3摺動部材23の内溝23aの内径は第3保持部材13の縁部13aの外径よりも大きいため、第3保持部材13を第3摺動部材23の内溝23a内で光軸に垂直な方向へ移動させることが可能である。また第3摺動部材23には、外周面側から中心へ向かって内溝23aの底部まで貫通するネジ穴23bが、円周方向に沿って等間隔に3つ形成されている。
斯かる構成の下、3つのネジ31をそれぞれ第3摺動部材23のネジ穴23bにねじ込んで内溝23a内へ進入させ、各ネジ31の軸部を第3保持部材13の縁部13aに押し当てることにより、第3保持部材13を第3摺動部材23に対して固定することができる。
The adjustment mechanism of the variable magnification optical system according to the present embodiment includes a first adjustment mechanism that adjusts the position of the positive lens L31 in the third lens group G3 and a second adjustment mechanism that adjusts the position of the entire fifth lens group G5. It consists of.
The first adjustment mechanism includes a third holding member 13, a third sliding member 23, and three screws 31 for fixing them.
As shown in FIG. 2A, an outer peripheral surface of the third holding member 13 is provided with an edge 13 a extending in the outer peripheral direction over the entire periphery. An inner groove 23 a is formed over the entire inner circumferential surface of the third sliding member 23, and the edge 13 a of the third holding member 13 is inserted into the inner groove 23 a. 2B, since the inner diameter of the inner groove 23a of the third sliding member 23 is larger than the outer diameter of the edge 13a of the third holding member 13, the third holding member 13 is moved to the third sliding member. The moving member 23 can be moved in a direction perpendicular to the optical axis within the inner groove 23a. The third sliding member 23 is formed with three screw holes 23b penetrating from the outer peripheral surface side toward the center to the bottom of the inner groove 23a at equal intervals along the circumferential direction.
Under such a configuration, the three screws 31 are screwed into the screw holes 23b of the third sliding member 23 to enter the inner grooves 23a, and the shaft portions of the screws 31 are connected to the edge portions 13a of the third holding member 13. By pressing, the third holding member 13 can be fixed to the third sliding member 23.
以上の構成により、3つのネジ31をそれぞれ締める又は緩めることにより各ネジ31の軸部が第3摺動部材23の内溝23a内へ進入する量を調整することで、第3摺動部材23に対する第3保持部材13の光軸に垂直な方向における位置を調整して固定することができる。即ち、第3レンズ群G3内の正レンズL31を光軸と直交する方向へシフト偏心させて位置調整を行うことが可能となり、当該正レンズL31を偏心誤差を補正する位置に配置することができる。これにより、偏心誤差による結像性能の劣化、特に望遠端状態における偏心コマ収差を良好に補正することができる。
なお、図2(a)に示すように、レンズ鏡筒のカム筒30には、第1調整機構における3つのネジ31と対向する位置に3つの開口30aが形成されており、各開口30aから各ネジ31を露出させることができる。したがって、製造時に本実施例に係る変倍光学系を組み立てた後であっても、分解することなく前述した第3レンズ群G3内の正レンズL31の位置調整を行うことが可能となる。
With the above configuration, the third sliding member 23 is adjusted by adjusting the amount of the shaft portion of each screw 31 entering the inner groove 23a of the third sliding member 23 by tightening or loosening the three screws 31 respectively. The position in the direction perpendicular to the optical axis of the third holding member 13 can be adjusted and fixed. That is, the positive lens L31 in the third lens group G3 can be shifted and decentered in the direction perpendicular to the optical axis, and the position can be adjusted, and the positive lens L31 can be arranged at a position for correcting the decentration error. . Thereby, it is possible to satisfactorily correct the deterioration of the imaging performance due to the decentration error, particularly the decentration coma in the telephoto end state.
As shown in FIG. 2A, the cam barrel 30 of the lens barrel has three openings 30a formed at positions facing the three screws 31 in the first adjustment mechanism. Each screw 31 can be exposed. Accordingly, it is possible to adjust the position of the positive lens L31 in the third lens group G3 described above without disassembling even after the zooming optical system according to the present embodiment is assembled at the time of manufacture.
第2調整機構は、第5保持部材15、第5摺動部材25、及びこれらを固定する3つのネジ32によって構成されている。
図2(a)及び図2(c)に示すように、第5保持部材15の外周面には、外周方向へ延在した縁部15aが全周にわたって設けられており、この縁部15aには光軸に平行な方向へ貫通する貫通穴15bが円周方向に沿って等間隔に3つ形成されている。なお、貫通穴15bの内径はネジ32の軸部の外径よりも大きい。
第5摺動部材25の内周面には、内周方向へ延在した縁部25aが全周にわたって設けられており、この縁部25aには光軸に平行な方向へ延びる3つのネジ穴(不図示)が、第5保持部材15の縁部15aの貫通穴15bに対向するように形成されている。
斯かる構成の下、3つのネジ32をそれぞれ第5保持部材15の縁部15aの貫通穴15bを通して第5摺動部材25の縁部25aのネジ穴にねじ込むことにより、第5保持部材15を第5摺動部材25に対して固定することができる。なお、上述のように第5保持部材15における縁部15aの貫通穴15bの内径がネジ32の軸部の外径よりも大きいため、各ネジ32を緩めた状態においては第5保持部材15を光軸に垂直な方向へ移動させることができる。
The second adjustment mechanism includes a fifth holding member 15, a fifth sliding member 25, and three screws 32 for fixing them.
As shown in FIG. 2A and FIG. 2C, the outer peripheral surface of the fifth holding member 15 is provided with an edge portion 15a extending in the outer peripheral direction over the entire periphery. Three through-holes 15b penetrating in a direction parallel to the optical axis are formed at equal intervals along the circumferential direction. The inner diameter of the through hole 15b is larger than the outer diameter of the shaft portion of the screw 32.
On the inner peripheral surface of the fifth sliding member 25, an edge portion 25a extending in the inner peripheral direction is provided over the entire periphery, and three screw holes extending in a direction parallel to the optical axis are formed in the edge portion 25a. (Not shown) is formed so as to face the through hole 15b of the edge 15a of the fifth holding member 15.
Under such a configuration, the fifth holding member 15 is screwed into the screw holes of the edge 25a of the fifth sliding member 25 through the three screws 32 through the through holes 15b of the edge 15a of the fifth holding member 15, respectively. It can be fixed to the fifth sliding member 25. As described above, since the inner diameter of the through hole 15b of the edge 15a of the fifth holding member 15 is larger than the outer diameter of the shaft portion of the screw 32, the fifth holding member 15 is moved in a state where each screw 32 is loosened. It can be moved in a direction perpendicular to the optical axis.
以上の構成により、3つのネジ32を緩めて第5摺動部材25に対する第5保持部材15の光軸に垂直な方向における位置を調整した後で、各ネジ32を締めてその位置を固定することができる。即ち、第5レンズ群G5全体を光軸と直交する方向へシフト偏心させて位置調整を行うことが可能となり、第5レンズ群G5全体を偏心誤差を補正する位置に配置することができる。これにより、偏心誤差による結像性能の劣化、特に望遠端状態における像面非対称を良好に補正することができる。
なお、図2(a)に示すように、上記構成の第2調整機構はカム筒30内の最も像側に位置しており、3つのネジ32は第5保持部材15に対して像側からねじ込まれる。このため、各ネジ32はカム筒30内において像側へ向かって常に露出されている。したがって、製造時に本実施例に係る変倍光学系を組み立てた後であっても、分解することなく前述した第5レンズ群G5の位置調整を行うことができる。
With the above configuration, after loosening the three screws 32 and adjusting the position of the fifth holding member 15 in the direction perpendicular to the optical axis with respect to the fifth sliding member 25, each screw 32 is tightened to fix the position. be able to. That is, it is possible to adjust the position by shifting the entire fifth lens group G5 in the direction orthogonal to the optical axis, and it is possible to arrange the entire fifth lens group G5 at a position for correcting the eccentric error. As a result, it is possible to satisfactorily correct image quality deterioration due to an eccentric error, particularly image plane asymmetry in the telephoto end state.
As shown in FIG. 2A, the second adjustment mechanism having the above-described configuration is located closest to the image side in the cam barrel 30, and the three screws 32 are located on the image side with respect to the fifth holding member 15. Screwed. Therefore, each screw 32 is always exposed toward the image side in the cam cylinder 30. Therefore, even after the variable magnification optical system according to the present embodiment is assembled at the time of manufacture, the above-described position adjustment of the fifth lens group G5 can be performed without disassembly.
なお、第4保持部材14の一部は、手ブレ発生時に不図示のボイスコイルモータ機構等によって、光軸と直交する方向の成分を含むように第4摺動部材24内で移動するように構成されている。これにより、第4レンズ群G4内の接合レンズを防振レンズ群として光軸と直交する方向の成分を含むように移動させて、手ブレによって生じる像ブレを良好に補正することができる。   A part of the fourth holding member 14 is moved in the fourth sliding member 24 so as to include a component in a direction orthogonal to the optical axis by a voice coil motor mechanism (not shown) or the like when camera shake occurs. It is configured. Accordingly, the cemented lens in the fourth lens group G4 can be moved as a vibration-proof lens group so as to include a component in a direction orthogonal to the optical axis, and image blur caused by camera shake can be corrected well.
以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカスを示す。
[面データ]において、面番号は物体側から数えたレンズ面の順番、rはレンズ面の曲率半径、dはレンズ面の間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示し、空気の屈折率nd=1.00000の記載は省略している。また、レンズ面が非球面である場合には面番号に*印を付して曲率半径rの欄には近軸曲率半径を示している。
Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
In Table 1, f indicates the focal length, and BF indicates the back focus.
In [Surface data], the surface number is the order of the lens surfaces counted from the object side, r is the radius of curvature of the lens surfaces, d is the distance between the lens surfaces, nd is the refractive index with respect to the d-line (wavelength λ = 587.6 nm), νd represents the Abbe number for the d-line (wavelength λ = 587.6 nm). Further, the object plane indicates the object plane, the variable indicates the variable plane spacing, the stop S indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane, and the description of the refractive index nd of air = 1.000 is omitted. When the lens surface is an aspheric surface, the surface number is marked with * and the paraxial radius of curvature is shown in the column of the radius of curvature r.
[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h2/r)/[1+{1−κ(h/r)21/2
+A4h4+A6h6+A8h8+A10h10
ここで、xは光軸から垂直方向の高さhにおける各非球面の頂点の接平面から光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。また、「E−n」(n:整数)は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1−κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, x is the distance (sag amount) along the optical axis direction from the tangent plane of each aspherical surface at a height h in the vertical direction from the optical axis, κ is the conic constant, and A4, A6, A8, and A10 are non- The spherical coefficient r is defined as the radius of curvature of the reference spherical surface (paraxial radius of curvature). “E−n” (n: integer) represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”.
[各種データ]において、FNOはFナンバー、2ωは画角、Yは像高、TLは光学系全長、di(i:整数)は第i面の可変の面間隔をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
ここで、表1に掲載されている焦点距離fや曲率半径r、及びその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する第2実施例の表においても同様に用いるものとする。
In [various data], FNO is the F number, 2ω is the angle of view, Y is the image height, TL is the total length of the optical system, and di (i: integer) is the variable surface interval of the i-th surface. W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state.
Here, “mm” is generally used as a unit of the focal length f, the radius of curvature r, and other lengths listed in Table 1. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
It should be noted that the symbols in Table 1 described above are similarly used in the table of the second embodiment described later.
ここで、レンズ全系の焦点距離がf、防振係数(ブレ補正時の防振レンズ群の移動量に対する像面I上での像の移動量の比)がKであるレンズにおいて、角度θの回転ぶれを補正するためには、防振レンズ群を(f・tanθ)/Kだけ光軸と直交する方向へ移動させればよい。したがって、本実施例に係る変倍光学系は、広角端状態において防振係数が0.98、焦点距離が24.60(mm)であるため、0.64°の回転ぶれを補正するための防振レンズ群の移動量は0.28(mm)となる。また、望遠端状態においては防振係数が1.47、焦点距離が117.00(mm)であるため、0.29°の回転ぶれを補正するための防振レンズ群の移動量は0.40(mm)となる。   Here, in a lens in which the focal length of the entire lens system is f and the image stabilization coefficient (ratio of the amount of image movement on the image plane I to the amount of movement of the image stabilization lens group during blur correction) is K, the angle θ In order to correct the rotational blur of the lens, the anti-vibration lens group may be moved in a direction orthogonal to the optical axis by (f · tan θ) / K. Therefore, the variable magnification optical system according to the present example has a vibration proof coefficient of 0.98 and a focal length of 24.60 (mm) in the wide-angle end state. The moving amount of the anti-vibration lens group is 0.28 (mm). In the telephoto end state, since the image stabilization coefficient is 1.47 and the focal length is 117.00 (mm), the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.29 ° is 0. 40 (mm).
(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 214.7722 2.0000 1.846660 23.77
2 87.5000 7.4635 1.593189 67.87
3 -1279.2497 0.1000
4 58.9352 5.2795 1.755000 52.29
5 147.0393 可変
*6 244.7505 1.3500 1.834810 42.72
7 15.8707 7.5000
8 -34.1921 1.0000 1.834810 42.72
9 -306.6108 0.1000
10 64.5088 4.7500 1.846660 23.77
11 -28.6256 0.5082
12 -24.9541 1.0000 1.806100 40.94
*13 -142.4696 可変
14 53.3000 2.5581 1.755000 52.29
15 -319.1136 1.4000
16(絞りS) ∞ 0.5000
17 31.1069 2.0000 1.846660 23.77
18 17.5705 7.2500 1.487490 70.45
19 -90.7232 0.1000
20 40.8460 2.7000 1.593189 67.87
21 -3872.3835 可変
22 -56.1850 3.3307 1.850260 32.35
23 -16.8047 1.0000 1.755000 52.29
24 69.3978 2.7459
25 -49.7769 1.0000 1.755000 52.29
26 -208.3941 可変
*27 131.4027 5.5000 1.589130 61.18
28 -24.1216 0.1000
29 471.8066 6.6400 1.487490 70.45
30 -20.9950 1.2000 1.850260 32.35
31 -99.6677 BF
像面 ∞

[非球面データ]
第6面
κ = 1.0000
A4 = 9.85080E-06
A6 = -2.64620E-08
A8 = 4.20250E-11
A10 = -2.74520E-14

第13面
κ = 10.0000
A4 = -9.97690E-07
A6 = -1.34120E-08
A8 = -3.09280E-11
A10 = 1.00000E-14

第27面
κ = -30.0000
A4 = -1.12040E-05
A6 = 1.08940E-08
A8 = -4.34270E-11
A10 = 9.85800E-14

[各種データ]
変倍比 4.76
W M T
f 24.6 50.6 117.1
FNO 4.1 4.1 4.1
2ω 85.4 45.1 20.4
Y 21.6 21.6 21.6
TL 145.9 162.0 190.8
BF 38.4 49.7 65.7

d5 2.9 22.0 44.2
d13 24.8 10.8 1.2
d21 2.5 6.2 9.1
d26 8.2 4.2 1.4

[レンズ群データ]
群 始面 f
1 1 107.1
2 6 -18.1
3 14 25.3
4 22 -30.3
5 27 45.4

[条件式対応値]
(1) (−f2)/f3 = 0.72
(2) f2/f4 = 0.60
(3) f5/(−f4) = 1.50
(4) x5/(−f2) = 1.18
(5) x4/x3 = 0.72
(6) nd3b = 1.76
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞
1 214.7722 2.0000 1.846660 23.77
2 87.5000 7.4635 1.593189 67.87
3 -1279.2497 0.1000
4 58.9352 5.2795 1.755000 52.29
5 147.0393 Variable * 6 244.7505 1.3500 1.834810 42.72
7 15.8707 7.5000
8 -34.1921 1.0000 1.834810 42.72
9 -306.6108 0.1000
10 64.5088 4.7500 1.846660 23.77
11 -28.6256 0.5082
12 -24.9541 1.0000 1.806100 40.94
* 13 -142.4696 Variable
14 53.3000 2.5581 1.755000 52.29
15 -319.1136 1.4000
16 (Aperture S) ∞ 0.5000
17 31.1069 2.0000 1.846660 23.77
18 17.5705 7.2500 1.487490 70.45
19 -90.7232 0.1000
20 40.8460 2.7000 1.593189 67.87
21 -3872.3835 Variable
22 -56.1850 3.3307 1.850260 32.35
23 -16.8047 1.0000 1.755000 52.29
24 69.3978 2.7459
25 -49.7769 1.0000 1.755000 52.29
26 -208.3941 Variable * 27 131.4027 5.5000 1.589130 61.18
28 -24.1216 0.1000
29 471.8066 6.6400 1.487490 70.45
30 -20.9950 1.2000 1.850260 32.35
31 -99.6677 BF
Image plane ∞

[Aspherical data]
6th surface κ = 1.0000
A4 = 9.85080E-06
A6 = -2.64620E-08
A8 = 4.20250E-11
A10 = -2.74520E-14

13th surface κ = 10.0000
A4 = -9.97690E-07
A6 = -1.34120E-08
A8 = -3.09280E-11
A10 = 1.00000E-14

27th surface κ = -30.0000
A4 = -1.12040E-05
A6 = 1.08940E-08
A8 = -4.34270E-11
A10 = 9.85800E-14

[Various data]
Scaling ratio 4.76
W M T
f 24.6 50.6 117.1
FNO 4.1 4.1 4.1
2ω 85.4 45.1 20.4
Y 21.6 21.6 21.6
TL 145.9 162.0 190.8
BF 38.4 49.7 65.7

d5 2.9 22.0 44.2
d13 24.8 10.8 1.2
d21 2.5 6.2 9.1
d26 8.2 4.2 1.4

[Lens group data]
Group start surface f
1 1 107.1
2 6 -18.1
3 14 25.3
4 22 -30.3
5 27 45.4

[Conditional expression values]
(1) (−f2) /f3=0.72
(2) f2 / f4 = 0.60
(3) f5 / (− f4) = 1.50
(4) x5 / (− f2) = 1.18
(5) x4 / x3 = 0.72
(6) nd3b = 1.76
図3(a)、及び図3(b)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.64°の回転ぶれに対して像ぶれ補正を行った際のメリディオナル横収差図である。
図4は、本願の第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。
図5(a)、及び図5(b)はそれぞれ、本願の第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.29°の回転ぶれに対して像ぶれ補正を行った際のメリディオナル横収差図である。
図6(a)、図6(b)、及び図6(c)はそれぞれ、本願の第1実施例に係る変倍光学系に偏心誤差が生じた場合、望遠端状態における無限遠合焦時に、第1調整機構によって第3レンズ群G3内の正レンズL31を0.03mmシフト偏心させたときのメリディオナル横収差図、第2調整機構によって第5レンズ群G5全体を0.03mmシフト偏心させたときの非点収差図、及び第5レンズ群G5全体を−0.03mmシフト偏心させたときの非点収差図である。なお、各シフト偏心量は、第3レンズ群G3内の正レンズL31、第5レンズ群G5全体を図1紙面内で上方へ向かって光軸に垂直にシフト偏心させた場合を正とする。
FIGS. 3A and 3B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the first example of the present application, and a rotation blur of 0.64 °, respectively. FIG. 6 is a meridional lateral aberration diagram when image blur correction is performed on the image.
FIG. 4 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example of the present application.
FIGS. 5A and 5B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the zoom optical system according to the first example of the present application, and a rotational blur of 0.29 °, respectively. FIG. 6 is a meridional lateral aberration diagram when image blur correction is performed on the image.
6 (a), 6 (b), and 6 (c), respectively, when a decentering error occurs in the variable magnification optical system according to the first example of the present application, at the time of focusing at infinity in the telephoto end state. The meridional lateral aberration diagram when the positive lens L31 in the third lens group G3 is decentered by 0.03 mm by the first adjusting mechanism, and the entire fifth lens group G5 is decentered by 0.03 mm by the second adjusting mechanism. FIG. 6 is an astigmatism diagram when the entire fifth lens group G5 is shifted by −0.03 mm. Each shift decentering amount is positive when the positive lens L31 and the fifth lens group G5 in the third lens group G3 are shifted and decentered perpendicularly to the optical axis upward in FIG.
図3〜図6の各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す第2実施例の収差図においても、本実施例と同様の符号を用いる。
図3〜図5より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。また図6より、本実施例に係る変倍光学系に偏心誤差が生じた場合でも、結像性能の劣化、特に望遠端状態における偏心コマ収差及び像面非対称を良好に補正可能であることがわかる。
In each aberration diagram of FIGS. 3 to 6, FNO represents an F number, and Y represents an image height. The spherical aberration diagram shows the F-number value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the coma diagram shows the value of each image height. d represents a d-line (λ = 587.6 nm), and g represents a g-line (λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the aberration diagrams of the second embodiment shown below, the same reference numerals as in this embodiment are used.
From FIG. 3 to FIG. 5, the variable magnification optical system according to the present example has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and is also excellent at the time of image stabilization. It can be seen that the imaging performance is excellent. In addition, as shown in FIG. 6, even when a decentration error occurs in the variable magnification optical system according to the present embodiment, it is possible to satisfactorily correct the deterioration of the imaging performance, particularly the decentration coma aberration and the image plane asymmetry in the telephoto end state. Recognize.
(第2実施例)
図7は、本願の第2実施例に係る変倍光学系のレンズ構成を示す断面図である。
まず、本実施例に係る変倍光学系のレンズ形状について説明する。
図7に示すように本実施例に係る変倍光学系は、不図示の物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。なお、開口絞りSは第3レンズ群G3の物体側に隣接している。
(Second embodiment)
FIG. 7 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the second example of the present application.
First, the lens shape of the variable magnification optical system according to the present embodiment will be described.
As shown in FIG. 7, the variable magnification optical system according to this example includes, in order from the object side (not shown), a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, And an aperture stop S, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power. The aperture stop S is adjacent to the object side of the third lens group G3.
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、負メニスカスレンズL21は物体側のガラスレンズ面に非球面を形成した非球面レンズであり、負メニスカスレンズL24は像側のガラスレンズ面に非球面を形成した非球面レンズである。
第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と両凸形状の正レンズL33との接合レンズと、両凸形状の正レンズL34とからなる。
第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と両凹形状の負レンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とからなる。
第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズとからなる。なお、正レンズL51は物体側のガラスレンズ面に非球面を形成した非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, a biconvex positive lens L23, and an object side. And a negative meniscus lens L24 having a concave surface. The negative meniscus lens L21 is an aspheric lens in which an aspheric surface is formed on the object side glass lens surface, and the negative meniscus lens L24 is an aspheric lens in which an aspheric surface is formed on the image side glass lens surface.
The third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented lens of a negative meniscus lens L32 having a convex surface facing the object side, and a biconvex positive lens L33, and a biconvex lens. And a positive lens L34.
The fourth lens group G4 includes, in order from the object side, a cemented lens of a positive meniscus lens L41 having a concave surface facing the object side and a biconcave negative lens L42, and a negative meniscus lens L43 having a concave surface facing the object side. Become.
The fifth lens group G5 includes, in order from the object side, a biconvex positive lens L51, a cemented lens of a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object. The positive lens L51 is an aspheric lens in which an aspheric surface is formed on the object side glass lens surface.
本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群G4と第5レンズ群G5との空気間隔が減少するように、各レンズ群G1〜G5が光軸方向へ移動する。なお、このとき開口絞りSは第3レンズ群G3とともに光軸方向へ移動する。
また本実施例に係る変倍光学系では、第2レンズ群G2全体を光軸に沿って移動させることにより、無限遠物点から近距離物点への合焦を行う。詳細には、無限遠物点から0.45mmの近距離物点までの合焦に際して、第2レンズ群G2全体が像側から物体側へ、広角端状態で1.7mm、望遠端状態で5.6mm移動する。
また本実施例に係る変倍光学系では、第4レンズ群G4内の正メニスカスレンズL41と負レンズL42との接合レンズを防振レンズ群として光軸と直交する方向を含むように移動させて像ぶれ補正(防振)を行う。
In the zoom optical system according to the present embodiment, when zooming from the wide-angle end state to the telephoto end state, the air gap between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 and the second lens group G2 The air gap between the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5 decreases. In addition, each of the lens groups G1 to G5 moves in the optical axis direction. At this time, the aperture stop S moves in the optical axis direction together with the third lens group G3.
In the zoom optical system according to the present embodiment, the entire second lens group G2 is moved along the optical axis, thereby focusing from an infinite object point to a short-distance object point. Specifically, upon focusing from an infinite object point to a near object point of 0.45 mm, the entire second lens group G2 is 1.7 mm in the wide-angle end state and 5 in the telephoto end state from the image side to the object side. Move 6 mm.
In the variable magnification optical system according to the present example, the cemented lens of the positive meniscus lens L41 and the negative lens L42 in the fourth lens group G4 is moved as a vibration-proof lens group so as to include a direction orthogonal to the optical axis. Perform image blur correction (anti-vibration).
次に、本実施例に係る変倍光学系に備えられた調整機構について説明する。
本実施例の調整機構は、上記第1実施例の調整機構と略同様であるため、第1実施例の図2を参照して説明する。
本実施例において、第3保持部材13は第3レンズ群G3内の負メニスカスレンズL32と正レンズL33との接合レンズを保持している。なお、第3レンズ群G3内のその他のレンズL31,L34は、不図示の第6保持部材に保持されている。本実施例の調整機構は、斯かる構成のみが上記第1実施例の調整機構と異なっている。
Next, an adjustment mechanism provided in the variable magnification optical system according to the present embodiment will be described.
The adjustment mechanism of the present embodiment is substantially the same as the adjustment mechanism of the first embodiment, and will be described with reference to FIG. 2 of the first embodiment.
In the present embodiment, the third holding member 13 holds the cemented lens of the negative meniscus lens L32 and the positive lens L33 in the third lens group G3. The other lenses L31 and L34 in the third lens group G3 are held by a sixth holding member (not shown). The adjustment mechanism of the present embodiment is different from the adjustment mechanism of the first embodiment only in this configuration.
したがって本実施例の調整機構によれば、第1調整機構によって第3レンズ群G3内の前記接合レンズを光軸と直交する方向へシフト偏心させて位置調整を行い、これによって偏心誤差による結像性能の劣化、特に望遠端状態における偏心コマ収差を良好に補正することができる。また、上記第1実施例と同様に第2調整機構によって第5レンズ群G5全体を光軸と直交する方向へシフト偏心させて位置調整を行い、これによって偏心誤差による結像性能の劣化、特に望遠端状態における像面非対称を良好に補正することができる。なお、上記第1実施例と同様、製造時に本実施例に係る変倍光学系を組み立てた後であっても、分解することなく第3レンズ群G3内の前記接合レンズや第5レンズ群G5全体の位置調整を行うことができる。   Therefore, according to the adjusting mechanism of the present embodiment, the first adjusting mechanism shifts and decenters the cemented lens in the third lens group G3 in the direction orthogonal to the optical axis, thereby performing image formation due to the decentering error. Degradation of performance, particularly decentration coma in the telephoto end state can be corrected well. Similarly to the first embodiment, the second adjustment mechanism shifts and decenters the entire fifth lens group G5 in the direction perpendicular to the optical axis, thereby adjusting the imaging performance due to decentering error, in particular. The image plane asymmetry in the telephoto end state can be corrected well. As in the first example, the cemented lens and the fifth lens group G5 in the third lens group G3 are not disassembled even after the variable magnification optical system according to the present example is assembled at the time of manufacture. The overall position can be adjusted.
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が0.83、焦点距離が24.60(mm)であるため、0.64°の回転ぶれを補正するための防振レンズ群の移動量は0.30(mm)となる。また、望遠端状態においては防振係数が1.23、焦点距離が117.00(mm)であるため、0.29°の回転ぶれを補正するための防振レンズ群の移動量は0.45(mm)となる。
Table 2 below provides values of specifications of the variable magnification optical system according to the present example.
Here, since the zoom optical system according to the present example has an image stabilization coefficient of 0.83 and a focal length of 24.60 (mm) in the wide-angle end state, it corrects a rotational shake of 0.64 °. The moving amount of the anti-vibration lens group is 0.30 (mm). In the telephoto end state, since the image stabilization coefficient is 1.23 and the focal length is 117.00 (mm), the movement amount of the image stabilization lens group for correcting the rotation blur of 0.29 ° is 0. 45 (mm).
(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 246.0491 2.0000 1.846660 23.77
2 84.7836 7.7000 1.593189 67.87
3 -885.6521 0.1000
4 59.1074 5.4790 1.816000 46.63
5 140.2546 可変
*6 824.4655 0.1000 1.553890 38.09
7 195.0000 1.5000 1.816000 46.63
8 15.9678 8.0000
9 -34.9410 1.0000 1.834810 42.72
10 -201.2418 0.1000
11 54.8341 4.5000 1.846660 23.77
12 -33.9457 0.5374
13 -29.1034 1.2000 1.806100 40.94
*14 -537.4230 可変
15(絞りS) ∞ 1.5000
16 55.6400 3.0000 1.755000 52.29
17 -194.6988 0.1000
18 29.1963 2.2576 1.846660 23.77
19 16.8888 6.8000 1.487490 70.45
20 -196.1439 0.5000
21 49.6966 3.0000 1.593189 67.87
22 -205.9500 可変
23 -62.4232 3.3000 1.850260 32.35
24 -17.7266 1.0000 1.755000 52.29
25 85.0141 2.4116
26 -40.4411 1.0000 1.696800 55.52
27 -241.7912 可変
*28 115.7889 6.4000 1.589130 61.18
29 -22.7957 0.1000
30 -433.8211 6.5000 1.487490 70.45
31 -19.6120 1.3500 1.850260 32.35
32 -85.0846 BF
像面 ∞

[非球面データ]
第6面
κ = 1.0000
A4 = 1.59500E-05
A6 = -3.85270E-08
A8 = 5.99450E-11
A10 = -5.06110E-14

第14面
κ = 1.0000
A4 = 6.16800E-07
A6 = -1.55190E-08
A8 = -1.73480E-11
A10 = 0.00000E+00

第28面
κ = -30.0000
A4 = -1.26410E-05
A6 = -2.71420E-10
A8 = 6.17710E-11
A10 = -2.07970E-13

[各種データ]
変倍比 4.53
W M T
f 24.7 49.0 111.8
FNO 4.1 4.1 4.1
2ω 85.4 45.1 20.4
Y 21.6 21.6 21.6
TL 147.6 162.2 190.9
BF 34.7 46.1 59.2

d5 3.1 20.1 44.7
d14 24.0 10.2 1.2
d22 4.0 8.2 11.1
d27 10.3 6.1 3.3

[レンズ群データ]
群 始面 f
1 1 107.2
2 6 -17.8
3 16 25.3
4 23 -30.7
5 28 45.5

[条件式対応値]
(1) (−f2)/f3 = 0.70
(2) f2/f4 = 0.58
(3) f5/(−f4) = 1.48
(4) x5/(−f2) = 1.38
(5) x4/x3 = 0.71
(6) nd3b = 1.76
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞
1 246.0491 2.0000 1.846660 23.77
2 84.7836 7.7000 1.593189 67.87
3 -885.6521 0.1000
4 59.1074 5.4790 1.816000 46.63
5 140.2546 Variable * 6 824.4655 0.1000 1.553890 38.09
7 195.0000 1.5000 1.816000 46.63
8 15.9678 8.0000
9 -34.9410 1.0000 1.834810 42.72
10 -201.2418 0.1000
11 54.8341 4.5000 1.846660 23.77
12 -33.9457 0.5374
13 -29.1034 1.2000 1.806100 40.94
* 14 -537.4230 Variable
15 (Aperture S) ∞ 1.5000
16 55.6400 3.0000 1.755000 52.29
17 -194.6988 0.1000
18 29.1963 2.2576 1.846660 23.77
19 16.8888 6.8000 1.487490 70.45
20 -196.1439 0.5000
21 49.6966 3.0000 1.593189 67.87
22 -205.9500 Variable
23 -62.4232 3.3000 1.850260 32.35
24 -17.7266 1.0000 1.755000 52.29
25 85.0141 2.4116
26 -40.4411 1.0000 1.696800 55.52
27 -241.7912 Variable * 28 115.7889 6.4000 1.589130 61.18
29 -22.7957 0.1000
30 -433.8211 6.5000 1.487490 70.45
31 -19.6120 1.3500 1.850 260 32.35
32 -85.0846 BF
Image plane ∞

[Aspherical data]
6th surface κ = 1.0000
A4 = 1.59500E-05
A6 = -3.85270E-08
A8 = 5.99450E-11
A10 = -5.06110E-14

14th surface κ = 1.0000
A4 = 6.16800E-07
A6 = -1.55190E-08
A8 = -1.73480E-11
A10 = 0.00000E + 00

28th surface κ = -30.0000
A4 = -1.26410E-05
A6 = -2.71420E-10
A8 = 6.17710E-11
A10 = -2.07970E-13

[Various data]
Scaling ratio 4.53
W M T
f 24.7 49.0 111.8
FNO 4.1 4.1 4.1
2ω 85.4 45.1 20.4
Y 21.6 21.6 21.6
TL 147.6 162.2 190.9
BF 34.7 46.1 59.2

d5 3.1 20.1 44.7
d14 24.0 10.2 1.2
d22 4.0 8.2 11.1
d27 10.3 6.1 3.3

[Lens group data]
Group start surface f
1 1 107.2
2 6 -17.8
3 16 25.3
4 23 -30.7
5 28 45.5

[Conditional expression values]
(1) (−f2) /f3=0.70
(2) f2 / f4 = 0.58
(3) f5 / (− f4) = 1.48
(4) x5 / (− f2) = 1.38
(5) x4 / x3 = 0.71
(6) nd3b = 1.76
図8(a)、及び図8(b)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.64°の回転ぶれに対して像ぶれ補正を行った際のメリディオナル横収差図である。
図9は、本願の第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。
図10(a)、及び図10(b)はそれぞれ、本願の第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.29°の回転ぶれに対して像ぶれ補正を行った際のメリディオナル横収差図である。
図11(a)、図11(b)、及び図11(c)はそれぞれ、本願の第2実施例に係る変倍光学系に偏心誤差が生じた場合、望遠端状態における無限遠合焦時に、第1調整機構によって第3レンズ群G3内の負メニスカスレンズL32と正レンズL33との接合レンズを0.03mmシフト偏心させたときのメリディオナル横収差図、第2調整機構によって第5レンズ群G5全体を0.03mmシフト偏心させたときの非点収差図、及び第5レンズ群G5全体を−0.03mmシフト偏心させたときの非点収差図である。なお、各シフト偏心量は、第3レンズ群G3内の前記接合レンズ、第5レンズ群G5全体を図7紙面内で上方へ向かって光軸に垂直にシフト偏心させた場合を正とする。
FIGS. 8A and 8B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the second example of the present application, and a rotation blur of 0.64 °, respectively. FIG. 6 is a meridional lateral aberration diagram when image blur correction is performed on the image.
FIG. 9 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the second example of the present application.
FIGS. 10A and 10B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the zoom optical system according to the second example of the present application, and a rotational blur of 0.29 °, respectively. FIG. 6 is a meridional lateral aberration diagram when image blur correction is performed on the image.
11 (a), 11 (b), and 11 (c), respectively, when a decentering error occurs in the variable magnification optical system according to the second example of the present application, at the time of focusing at infinity in the telephoto end state. The meridional lateral aberration diagram when the cemented lens of the negative meniscus lens L32 and the positive lens L33 in the third lens group G3 is shifted by 0.03 mm by the first adjustment mechanism, and the fifth lens group G5 by the second adjustment mechanism. FIG. 5 is an astigmatism diagram when the entire lens is shifted by 0.03 mm, and an astigmatism graph when the fifth lens group G5 is shifted by -0.03 mm. Each shift decentering amount is positive when the cemented lens in the third lens group G3 and the entire fifth lens group G5 are shifted decentered vertically to the optical axis in the plane of FIG.
図8〜図10より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。また図11より、本実施例に係る変倍光学系に偏心誤差が生じた場合でも、結像性能の劣化、特に望遠端状態における偏心コマ収差及び像面非対称を良好に補正可能であることがわかる。   8 to 10, the variable magnification optical system according to the present example has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and is also excellent during image stabilization. It can be seen that the imaging performance is excellent. In addition, as shown in FIG. 11, even when a decentration error occurs in the variable magnification optical system according to the present embodiment, it is possible to satisfactorily correct the deterioration of the imaging performance, particularly the decentration coma aberration and the image plane asymmetry in the telephoto end state. Recognize.
以上、上記各実施例によれば、良好な光学性能を有する変倍光学系を実現することができる。
なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
本願の変倍光学系の数値実施例として5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
As described above, according to each of the above embodiments, a variable magnification optical system having good optical performance can be realized.
In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.
Although a five-group configuration is shown as a numerical example of the variable magnification optical system of the present application, the present application is not limited to this, and a variable magnification optical system of another group configuration (for example, six groups) can also be configured. . Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
また、本願の変倍光学系は、無限遠物点から近距離物点への合焦を行うために、レンズ群の一部、1つのレンズ群全体、又は複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に垂直な成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることで、手ブレによって生じる像ブレを補正する構成とすることもできる。特に、本願の変倍光学系では第4レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。
Further, the variable magnification optical system of the present application includes a part of a lens group, an entire lens group, or a plurality of lens groups for focusing from an infinite object point to a short-distance object point. It is good also as a structure moved to an optical axis direction. In particular, it is preferable that at least a part of the second lens group is a focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.
In the zoom optical system of the present application, either the entire lens group or a part thereof is moved as an anti-vibration lens group so as to include a component perpendicular to the optical axis, or rotated in an in-plane direction including the optical axis. It can also be configured to correct image blur caused by camera shake by moving (swinging). In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the fourth lens group is an anti-vibration lens group.
また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
また、本願の変倍光学系は、変倍比が3〜10倍程度である。
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
Further, the zoom optical system of the present application has a zoom ratio of about 3 to 10 times.
次に、本願の変倍光学系を備えたカメラを図12に基づいて説明する。
図12は、本願の変倍光学系を備えたカメラの構成を示す図である。
本カメラ1は、図12に示すように撮影レンズ2として上記第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
Next, a camera equipped with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 12 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
This camera 1 is a digital single-lens reflex camera provided with the variable magnification optical system according to the first embodiment as a photographing lens 2 as shown in FIG.
In the camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 and imaged on the focusing screen 4 through the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.
また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
以上の構成により、上記第1実施例に係る変倍光学系を撮影レンズ2として搭載した本カメラ1は、良好な光学性能を実現することができる。なお、上記第2実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても上記カメラ1と同様の効果を奏することができる。
When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
With the above configuration, the present camera 1 in which the variable magnification optical system according to the first embodiment is mounted as the photographing lens 2 can achieve good optical performance. Even if a camera equipped with the variable magnification optical system according to the second embodiment as the taking lens 2 is configured, the same effect as the camera 1 can be obtained.
以下、本願の変倍光学系の製造方法の概略を図13に基づいて説明する。
図13は、本願の変倍光学系の製造方法を示す図である。
本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、以下の各ステップS1〜S3を含むものである。
ステップS1:第2レンズ群、第3レンズ群、及び第4レンズ群が以下の条件式(1),(2)を満足するように各レンズ群を用意し、鏡筒内に物体側から順に配置する。
(1) 0.65<(−f2)/f3<0.90
(2) 0.42<f2/f4<0.90
ただし、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
The outline of the manufacturing method of the variable magnification optical system of the present application will be described below with reference to FIG.
FIG. 13 is a diagram showing a manufacturing method of the variable magnification optical system of the present application.
The variable magnification optical system manufacturing method of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And a variable magnification optical system that includes a fourth lens group having a negative refractive power and a fifth lens group having a positive refractive power, and includes the following steps S1 to S3.
Step S1: Each lens group is prepared so that the second lens group, the third lens group, and the fourth lens group satisfy the following conditional expressions (1) and (2). Deploy.
(1) 0.65 <(− f2) / f3 <0.90
(2) 0.42 <f2 / f4 <0.90
However,
f2: focal length of the second lens group f3: focal length of the third lens group f4: focal length of the fourth lens group
ステップS2:鏡筒内に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍に際して、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と第3レンズ群との間隔が変化し、第3レンズ群と第4レンズ群との間隔が変化し、第4レンズ群と第5レンズ群との間隔が変化するようにする。
ステップS3:鏡筒内に公知の移動機構を設ける等することで、第5レンズ群を光軸と直交する方向を含むようにシフト偏心させて位置調整を行うことが可能な構成とする。
斯かる本願の変倍光学系の製造方法によれば、良好な光学性能を有する変倍光学系を製造することができる。
Step S2: By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group changes upon zooming from the wide-angle end state to the telephoto end state, and the second lens The distance between the third lens group and the third lens group is changed, the distance between the third lens group and the fourth lens group is changed, and the distance between the fourth lens group and the fifth lens group is changed.
Step S3: A known moving mechanism is provided in the lens barrel so that the fifth lens group can be shifted and decentered so as to include a direction orthogonal to the optical axis to adjust the position.
According to the method for manufacturing a variable magnification optical system of the present application, it is possible to manufacture a variable magnification optical system having good optical performance.
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
I 像面
S 開口絞り
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group I Image surface S Aperture stop

Claims (12)

  1. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群との実質的に5個のレンズ群からなり
    前記第3レンズ群は少なくとも1つの正レンズ成分を含み、
    広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が変化し、
    前記第5レンズ群を光軸と直交する方向を含むようにシフト偏心させて位置調整を行うことが可能な構成であり、
    以下の条件式を満足することを特徴とする変倍光学系。
    0.67<(−f2)/f3<0.90
    0.50<f2/f4<0.90
    1.70<nd3b<1.85
    ただし、
    f2:前記第2レンズ群の焦点距離
    f3:前記第3レンズ群の焦点距離
    f4:前記第4レンズ群の焦点距離
    nd3b:前記第3レンズ群における前記正レンズ成分のうち、屈折率の最も大きな正レンズ成分の硝材のd線に対する屈折率
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power Substantially consisting of five lens groups, and a fifth lens group having a positive refractive power,
    The third lens group includes at least one positive lens component;
    Upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, The distance between the third lens group and the fourth lens group changes, the distance between the fourth lens group and the fifth lens group changes,
    The fifth lens group is configured to be shift decentered so as to include a direction orthogonal to the optical axis and to adjust the position.
    A zoom optical system characterized by satisfying the following conditional expression:
    0.67 <(− f2) / f3 <0.90
    0.50 <f2 / f4 <0.90
    1.70 <nd3b <1.85
    However,
    f2: focal length of the second lens group f3: focal length of the third lens group f4: focal length of the fourth lens group
    nd3b: refractive index of the positive lens component having the highest refractive index among the positive lens components in the third lens group with respect to the d-line of the glass material
  2. 前記第3レンズ群の少なくとも一部を光軸と直交する方向を含むようにシフト偏心させて位置調整を行うことが可能な構成であることを特徴とする請求項1に記載の変倍光学系。   2. The variable magnification optical system according to claim 1, wherein a position adjustment is possible by performing shift decentering so that at least a part of the third lens group includes a direction orthogonal to the optical axis. .
  3. 以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の変倍光学系。
    1.20<f5/(−f4)<2.00
    ただし、
    f4:前記第4レンズ群の焦点距離
    f5:前記第5レンズ群の焦点距離
    The zoom lens system according to claim 1 or 2, wherein the following conditional expression is satisfied.
    1.20 <f5 / (− f4) <2.00
    However,
    f4: focal length of the fourth lens group f5: focal length of the fifth lens group
  4. 前記第4レンズ群の少なくとも一部を光軸と直交する方向を含むように移動させて像ぶれ補正を行う構成であることを特徴とする請求項1から請求項3のいずれか一項に記載の変倍光学系。   4. The image blur correction is performed by moving at least a part of the fourth lens group so as to include a direction orthogonal to the optical axis. 5. Variable magnification optical system.
  5. 前記第4レンズ群が接合レンズを有することを特徴とする請求項1から請求項4のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 4, wherein the fourth lens group includes a cemented lens.
  6. 以下の条件式を満足することを特徴とする請求項1から請求項5のいずれか一項に記載の変倍光学系。
    0.70<x5/(−f2)<2.10
    ただし、
    f2:前記第2レンズ群の焦点距離
    x5:広角端状態から望遠端状態への変倍に際する前記第5レンズ群の光軸上の移動量
    The zoom lens system according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
    0.70 <x5 / (− f2) <2.10
    However,
    f2: Focal length of the second lens group x5: Amount of movement of the fifth lens group on the optical axis during zooming from the wide-angle end state to the telephoto end state
  7. 広角端状態から望遠端状態への変倍に際して、前記第1レンズ群が像側から物体側へ移動することを特徴とする請求項1から請求項6のいずれか一項に記載の変倍光学系。   The zoom optical system according to any one of claims 1 to 6, wherein the first lens unit moves from the image side to the object side during zooming from the wide-angle end state to the telephoto end state. system.
  8. 広角端状態から望遠端状態への変倍に際して、前記第5レンズ群が像側から物体側へ移動することを特徴とする請求項1から請求項7のいずれか一項に記載の変倍光学系。   8. The zoom optical system according to claim 1, wherein the fifth lens unit moves from the image side to the object side during zooming from the wide-angle end state to the telephoto end state. 9. system.
  9. 前記第2レンズ群の少なくとも一部を光軸に沿って移動させることにより、無限遠物点から近距離物点への合焦を行うことを特徴とする請求項1から請求項8のいずれか一項に記載の変倍光学系。   The focusing from an object point at infinity to an object point at a short distance is performed by moving at least a part of the second lens group along the optical axis. The zoom optical system according to one item.
  10. 前記第2レンズ群が非球面レンズを有することを特徴とする請求項1から請求項9のいずれか一項に記載の変倍光学系。   The variable magnification optical system according to claim 1, wherein the second lens group includes an aspheric lens.
  11. 以下の条件式を満足することを特徴とする請求項1から請求項10のいずれか一項に記載の変倍光学系。
    0.65<x4/x3<0.90
    ただし、
    x3:広角端状態から望遠端状態への変倍に際する前記第3レンズ群の光軸上の移動量
    x4:広角端状態から望遠端状態への変倍に際する前記第4レンズ群の光軸上の移動量
    The zoom lens system according to any one of claims 1 to 10, wherein the following conditional expression is satisfied.
    0.65 <x4 / x3 <0.90
    However,
    x3: Amount of movement on the optical axis of the third lens group during zooming from the wide-angle end state to the telephoto end state x4: The amount of movement of the fourth lens group during zooming from the wide-angle end state to the telephoto end state Amount of movement on the optical axis
  12. 請求項1から請求項11のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。 An optical apparatus comprising the variable magnification optical system according to any one of claims 1 to 11 .
JP2010030557A 2010-02-15 2010-02-15 Variable magnification optical system, optical device Active JP5458933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030557A JP5458933B2 (en) 2010-02-15 2010-02-15 Variable magnification optical system, optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030557A JP5458933B2 (en) 2010-02-15 2010-02-15 Variable magnification optical system, optical device

Publications (2)

Publication Number Publication Date
JP2011164550A JP2011164550A (en) 2011-08-25
JP5458933B2 true JP5458933B2 (en) 2014-04-02

Family

ID=44595260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030557A Active JP5458933B2 (en) 2010-02-15 2010-02-15 Variable magnification optical system, optical device

Country Status (1)

Country Link
JP (1) JP5458933B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230285A (en) * 1993-02-02 1994-08-19 Canon Inc Zoom lens
JP2004233750A (en) * 2003-01-31 2004-08-19 Nikon Corp Zoom lens
JP4817876B2 (en) * 2006-02-20 2011-11-16 キヤノン株式会社 Lens barrel and camera system
JP5064837B2 (en) * 2007-03-01 2012-10-31 キヤノン株式会社 Zoom lens with anti-vibration function
JP5344279B2 (en) * 2008-07-28 2013-11-20 株式会社ニコン Zoom lens, optical apparatus having the same, and zooming method
JP5426653B2 (en) * 2009-02-26 2014-02-26 株式会社タムロン Zoom lens

Also Published As

Publication number Publication date
JP2011164550A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP4642386B2 (en) Zoom lens and imaging apparatus having the same
JP4669294B2 (en) Zoom lens and imaging apparatus having the same
JP4959236B2 (en) High magnification zoom lens
JP5423190B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
US7428107B2 (en) Zoom lens and image pickup apparatus having the same
CN108490592B (en) Zoom optical system
JP5111059B2 (en) Zoom lens and imaging apparatus having the same
US8736968B2 (en) Zoom lens, optical apparatus having same, and method of manufacturing zoom lens
JP5288238B2 (en) Magnifying optical system, optical apparatus equipped with the magnifying optical system, and magnifying method of the magnifying optical system
JP5104084B2 (en) Wide-angle lens, optical device, and wide-angle lens focusing method
JP5082499B2 (en) Zoom lens and optical apparatus having the same
JP5358902B2 (en) Variable-magnification optical system and image pickup device with anti-vibration function
JP5498259B2 (en) High magnification zoom lens
JP5521496B2 (en) Variable magnification optical system, optical device
JP5407119B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP2010217535A (en) Imaging lens, optical apparatus equipped therewith and method for manufacturing the imaging lens
JP5168641B2 (en) Magnification optical system, optical apparatus having the same and magnifying method
EP2360504A1 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP5414205B2 (en) Zoom lens and imaging apparatus having the same
JP5344549B2 (en) Zoom lens and imaging apparatus having the same
JP5904273B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP2007078834A (en) Zoom lens and imaging apparatus having the same
JP2010181518A (en) Zoom lens, optical apparatus with the zoom lens, and method for manufacturing zoom lens
JP5742100B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2009150970A (en) Zoom lens and imaging device provided with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250