JP5458702B2 - UV sensor - Google Patents

UV sensor Download PDF

Info

Publication number
JP5458702B2
JP5458702B2 JP2009157376A JP2009157376A JP5458702B2 JP 5458702 B2 JP5458702 B2 JP 5458702B2 JP 2009157376 A JP2009157376 A JP 2009157376A JP 2009157376 A JP2009157376 A JP 2009157376A JP 5458702 B2 JP5458702 B2 JP 5458702B2
Authority
JP
Japan
Prior art keywords
electrode
terminal electrode
substrate
terminal
ultraviolet sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009157376A
Other languages
Japanese (ja)
Other versions
JP2011014710A (en
Inventor
和敬 中村
拓哉 中里
剛司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009157376A priority Critical patent/JP5458702B2/en
Publication of JP2011014710A publication Critical patent/JP2011014710A/en
Application granted granted Critical
Publication of JP5458702B2 publication Critical patent/JP5458702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、紫外線を検知する紫外線センサに関し、特に、紫外線を受光する部分に酸化物半導体を用いた紫外線センサに関する。   The present invention relates to an ultraviolet sensor that detects ultraviolet rays, and more particularly, to an ultraviolet sensor that uses an oxide semiconductor in a portion that receives ultraviolet rays.

従来の紫外線を検知する紫外線センサでは、紫外線を受光する部分に紫外線光電管が用いられていた。しかし、紫外線光電管は、非常に高い駆動電圧が必要であり、紫外線センサ自体が大型化するという問題点があった。近年、斯かる問題点を解消するために、紫外線を受光する部分に酸化物半導体を用いた紫外線センサが開発されている。   In a conventional ultraviolet sensor that detects ultraviolet rays, an ultraviolet photoelectric tube is used in a portion that receives ultraviolet rays. However, the ultraviolet phototube requires a very high driving voltage, and there is a problem that the ultraviolet sensor itself becomes large. In recent years, in order to solve such a problem, an ultraviolet sensor using an oxide semiconductor in a portion that receives ultraviolet rays has been developed.

例えば、特許文献1には、紫外線を受光する部分に酸化物半導体を用いた紫外線センサが開示されている。特許文献1に開示されている紫外線センサは、ZnOを含む酸化物半導体で構成されたZnO層と、ZnOがNiOに固溶してなる酸化物半導体で構成された(Ni,Zn)O層と、ZnO層に電気的に接続される第1の端子電極と、(Ni,Zn)O層に電気的に接続される第2の端子電極とを備えている。特許文献1に開示されている紫外線センサでは、ZnO層と(Ni,Zn)O層との接合部に紫外線が当たった場合、光電効果により接合部に光電子が生じることで第1の端子電極と第2の端子電極との間の抵抗値が低下する。したがって、第1の端子電極と第2の端子電極との間の電圧(電流)値の変化によって紫外線を検知することができる。   For example, Patent Document 1 discloses an ultraviolet sensor using an oxide semiconductor in a portion that receives ultraviolet light. The ultraviolet sensor disclosed in Patent Document 1 includes a ZnO layer made of an oxide semiconductor containing ZnO, and a (Ni, Zn) O layer made of an oxide semiconductor in which ZnO is dissolved in NiO. , A first terminal electrode electrically connected to the ZnO layer, and a second terminal electrode electrically connected to the (Ni, Zn) O layer. In the ultraviolet sensor disclosed in Patent Document 1, when ultraviolet light hits the junction between the ZnO layer and the (Ni, Zn) O layer, photoelectrons are generated in the junction by the photoelectric effect, and the first terminal electrode and The resistance value between the second terminal electrode is lowered. Therefore, ultraviolet rays can be detected by a change in voltage (current) value between the first terminal electrode and the second terminal electrode.

特許第3952076号公報Japanese Patent No. 3952076

酸化物半導体は、温度により抵抗値が変化するという温度特性を有している。そのため、紫外線を受光する部分に酸化物半導体を用いた紫外線センサでは、使用される周辺環境の温度により酸化物半導体の抵抗値が変化し、測定する第1の端子電極と第2の端子電極との間の電圧(電流)値が変化する。したがって、酸化物半導体の温度特性に応じて、測定した第1の端子電極と第2の端子電極との間の電圧(電流)値を適正に補正しないと正しく紫外線を検知することができないという問題点があった。そこで、従来の紫外線センサでは、酸化物半導体の温度特性に応じて、測定した第1の端子電極と第2の端子電極との間の電圧(電流)値を、OPアンプ等を用いて補正していた。   An oxide semiconductor has a temperature characteristic in which a resistance value changes with temperature. Therefore, in an ultraviolet sensor using an oxide semiconductor in a portion that receives ultraviolet light, the resistance value of the oxide semiconductor changes depending on the temperature of the surrounding environment used, and the first terminal electrode and the second terminal electrode to be measured The voltage (current) value during the period changes. Therefore, there is a problem in that ultraviolet rays cannot be correctly detected unless the measured voltage (current) value between the first terminal electrode and the second terminal electrode is appropriately corrected according to the temperature characteristics of the oxide semiconductor. There was a point. Therefore, in the conventional ultraviolet sensor, the measured voltage (current) value between the first terminal electrode and the second terminal electrode is corrected using an OP amplifier or the like according to the temperature characteristics of the oxide semiconductor. It was.

しかし、OPアンプ等を用いて第1の端子電極と第2の端子電極との間の電圧(電流)値を補正する場合、OPアンプ等を用いた補正回路の設計によっては、使用が予定される周辺環境の所定の温度範囲については適性に補正することができるものの、所定の温度範囲外については適正に補正することができない場合が生じるという問題点があった。また、従来の紫外線センサは、OPアンプ等の製品バラツキにより、測定した第1の端子電極と第2の端子電極との間の電圧(電流)値の補正自体にもバラツキが生じるという問題点があった。さらに、従来の紫外線センサは、OPアンプ等を用いた補正回路を備える必要があるため、製造コストが高くなるという問題点もあった。   However, when the voltage (current) value between the first terminal electrode and the second terminal electrode is corrected using an OP amplifier or the like, it is planned to be used depending on the design of the correction circuit using the OP amplifier or the like. Although the predetermined temperature range of the surrounding environment can be appropriately corrected, there is a problem that it may not be appropriately corrected outside the predetermined temperature range. In addition, the conventional ultraviolet sensor has a problem in that the correction of the measured voltage (current) value between the first terminal electrode and the second terminal electrode itself varies due to variations in the product such as the OP amplifier. there were. Furthermore, since the conventional ultraviolet sensor needs to include a correction circuit using an OP amplifier or the like, there is a problem that the manufacturing cost is increased.

本発明は、上記事情に鑑みてなされたものであり、製造コストが安く、酸化物半導体の温度特性に応じて電圧(電流)値を適正に補正することが可能な紫外線センサを提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an ultraviolet sensor capable of correcting a voltage (current) value appropriately according to temperature characteristics of an oxide semiconductor at a low manufacturing cost. Objective.

上記目的を達成するために第1発明に係る紫外線センサは、ZnOがNiOに固溶してなる酸化物半導体で構成された直方体形状の基板と、該基板内に形成された内部電極と、前記基板の第1面の一部に形成された、ZnOからなる外部電極と、前記内部電極の一部が外部へ露出した前記基板の第2面に形成され、前記内部電極と接続された第1端子電極と、前記外部電極が形成された前記第1面及び前記第1端子電極が形成された第2面と異なる前記基板の第3面に形成された第2端子電極とを備え、前記第1端子電極及び前記第2端子電極は、前記基板の長手方向の両端面にそれぞれ形成されており、前記内部電極の一端は、前記第1端子電極に接続され、前記内部電極の他端は、前記第2端子電極に接続されておらず、前記外部電極は、前記第1端子電極及び前記第2端子電極に接続されておらず、前記基板の第1面から平面視した場合に、前記外部電極と前記第2端子電極との間隔よりも、前記内部電極の他端と前記第2端子電極との間隔の方が短く、前記外部電極と前記第2端子電極との間に印加する所定の電圧を、前記内部電極で分圧する。 In order to achieve the above object, an ultraviolet sensor according to a first invention includes a rectangular parallelepiped substrate made of an oxide semiconductor in which ZnO is dissolved in NiO, an internal electrode formed in the substrate, An external electrode made of ZnO formed on a part of the first surface of the substrate, and a first surface formed on the second surface of the substrate where a part of the internal electrode is exposed to the outside and connected to the internal electrode. A terminal electrode; and a second terminal electrode formed on a third surface of the substrate different from the first surface on which the external electrode is formed and the second surface on which the first terminal electrode is formed, The one terminal electrode and the second terminal electrode are respectively formed on both end surfaces of the substrate in the longitudinal direction, one end of the internal electrode is connected to the first terminal electrode, and the other end of the internal electrode is The external electrode is not connected to the second terminal electrode, Not connected to the first terminal electrode and the second terminal electrode, when viewed in plan from the first surface of the substrate, than the distance between the external electrode and the second terminal electrode, the inner electrode A distance between the other end and the second terminal electrode is shorter , and a predetermined voltage applied between the external electrode and the second terminal electrode is divided by the internal electrode.

また、第2発明に係る紫外線センサは、第1発明において、前記内部電極で分圧された、前記外部電極と前記内部電極との間の電圧及び/又は前記内部電極と前記第2端子電極との間の電圧を測定する。   The ultraviolet sensor according to a second aspect of the present invention is the ultraviolet sensor according to the first aspect, wherein the voltage between the external electrode and the internal electrode is divided by the internal electrode and / or the internal electrode and the second terminal electrode. Measure the voltage between.

また、第発明に係る紫外線センサは、第1又は第2発明において、前記外部電極は、紫外線を透過する材料で形成してある。 In the ultraviolet sensor according to a third aspect of the present invention, in the first or second aspect , the external electrode is made of a material that transmits ultraviolet light.

また、第発明に係る紫外線センサは、第1乃至第発明のいずれか一つにおいて、前記外部電極と、前記第1端子電極及び前記第2端子電極との間の前記基板の前記第1面に形成された絶縁層を備える。 An ultraviolet sensor according to a fourth aspect of the present invention is the ultraviolet sensor according to any one of the first to third aspects, wherein the first electrode of the substrate between the external electrode and the first terminal electrode and the second terminal electrode is provided. An insulating layer is provided on the surface.

第1発明では、ZnOがNiOに固溶してなる酸化物半導体で構成された直方体形状の基板と、該基板内に形成された内部電極と、基板の第1面の一部に形成された、ZnOからなる外部電極と、内部電極の一部が外部へ露出した基板の第2面に形成され、内部電極と接続された第1端子電極と、外部電極が形成された第1面及び第1端子電極が形成された第2面と異なる基板の第3面に形成された第2端子電極とを備える。第1端子電極及び第2端子電極は、基板の長手方向の両端面にそれぞれ形成されており、内部電極の一端は、第1端子電極に接続され、内部電極の他端は、第2端子電極に接続されておらず、外部電極は、第1端子電極及び第2端子電極に接続されておらず、基板の第1面から平面視した場合に、外部電極と第2端子電極との間隔よりも、内部電極の他端と第2端子電極との間隔の方が短い。外部電極と第2端子電極との間に印加する所定の電圧を、基板内に形成された内部電極で分圧することにより、使用される周辺環境の温度による外部電極と内部電極との間の酸化物半導体の抵抗値の変化と、内部電極と第2端子電極との間の酸化物半導体の抵抗値の変化とを相殺するので、酸化物半導体の温度特性に応じて適正に補正した電圧(電流)値を得ることができる。また、OPアンプ等を用いた補正回路を備える必要がないため、製造コストを安くすることができる。 In the first invention, a rectangular parallelepiped substrate made of an oxide semiconductor in which ZnO is dissolved in NiO, an internal electrode formed in the substrate, and a part of the first surface of the substrate are formed. , An external electrode made of ZnO, a first terminal electrode connected to the internal electrode, formed on the second surface of the substrate, a part of the internal electrode being exposed to the outside, the first surface on which the external electrode is formed, and the first surface A second terminal electrode formed on a third surface of the substrate different from the second surface on which the one terminal electrode is formed. The first terminal electrode and the second terminal electrode are respectively formed on both end faces of the substrate in the longitudinal direction, one end of the internal electrode is connected to the first terminal electrode, and the other end of the internal electrode is the second terminal electrode. The external electrode is not connected to the first terminal electrode and the second terminal electrode, and when viewed in plan from the first surface of the substrate, the distance between the external electrode and the second terminal electrode In addition, the distance between the other end of the internal electrode and the second terminal electrode is shorter. By dividing a predetermined voltage applied between the external electrode and the second terminal electrode by the internal electrode formed in the substrate, oxidation between the external electrode and the internal electrode due to the temperature of the surrounding environment to be used is performed. Since the change in the resistance value of the physical semiconductor cancels out the change in the resistance value of the oxide semiconductor between the internal electrode and the second terminal electrode, the voltage (current) appropriately corrected according to the temperature characteristics of the oxide semiconductor ) Value can be obtained. Further, since it is not necessary to provide a correction circuit using an OP amplifier or the like, the manufacturing cost can be reduced.

第2発明では、外部電極と内部電極との間の電圧及び/又は内部電極と第2端子電極との間の電圧を測定することにより、基板と外部電極とが接する部分で生じる光電子により外部電極と内部電極との間の抵抗値が低下したことを検知することで、紫外線を検知することができる。   In the second invention, by measuring the voltage between the external electrode and the internal electrode and / or the voltage between the internal electrode and the second terminal electrode, the external electrode is generated by photoelectrons generated at the portion where the substrate and the external electrode are in contact with each other. UV light can be detected by detecting that the resistance value between the electrode and the internal electrode has decreased.

発明では、外部電極は、紫外線を透過する材料を用いて形成することにより、基板と外部電極とが接する部分で光電効果により光電子を効率よく生じさせることができる。 In the third invention, the external electrode is formed using a material that transmits ultraviolet rays, whereby photoelectrons can be efficiently generated by a photoelectric effect at a portion where the substrate and the external electrode are in contact with each other.

発明では、外部電極と、第1端子電極及び第2端子電極との間の基板の第1面に形成された絶縁層を備えることにより、外部電極と第1端子電極及び第2端子電極との間を流れるリーク電流を抑えることで、より広い周辺環境の温度範囲で酸化物半導体の温度特性に応じて適正に補正した電圧(電流)値を得ることができる。 In the fourth invention, the external electrode, the first terminal electrode, and the second terminal electrode are provided by including an insulating layer formed on the first surface of the substrate between the external electrode and the first terminal electrode and the second terminal electrode. By suppressing the leakage current flowing between the two, a voltage (current) value appropriately corrected according to the temperature characteristics of the oxide semiconductor can be obtained in a wider temperature range of the surrounding environment.

本発明に係る紫外線センサは、ZnOがNiOに固溶してなる酸化物半導体で構成された直方体形状の基板と、基板内に形成された内部電極と、基板の第1面の一部に形成された、ZnOからなる外部電極と、内部電極の一部が外部へ露出した基板の第2面に形成され、内部電極と接続された第1端子電極と、外部電極が形成された第1面及び第1端子電極が形成された第2面と異なる基板の第3面に形成された第2端子電極とを備える。第1端子電極及び第2端子電極は、基板の長手方向の両端面にそれぞれ形成されており、内部電極の一端は、第1端子電極に接続され、内部電極の他端は、第2端子電極に接続されておらず、外部電極は、第1端子電極及び第2端子電極に接続されておらず、基板の第1面から平面視した場合に、外部電極と第2端子電極との間隔よりも、内部電極の他端と第2端子電極との間隔の方が短い。外部電極と第2端子電極との間に印加する所定の電圧を、内部電極で分圧することにより、使用される周辺環境の温度による外部電極と内部電極との間の酸化物半導体の抵抗値の変化と、内部電極と第2端子電極との間の酸化物半導体の抵抗値の変化とを相殺するので、酸化物半導体の温度特性に応じて適正に補正した電圧(電流)値を得ることができる。つまり、周辺環境の温度に依存することなく、紫外線を検知することができる。また、OPアンプ等を用いた補正回路を備える必要がないため、製造コストを安くすることができる。 An ultraviolet sensor according to the present invention is formed on a part of a first surface of a substrate, a rectangular parallelepiped substrate made of an oxide semiconductor formed by dissolving ZnO in NiO, an internal electrode formed in the substrate, and the like. The first surface on which the external electrode made of ZnO, the first terminal electrode connected to the internal electrode, and the external electrode are formed on the second surface of the substrate where a part of the internal electrode is exposed to the outside. And a second terminal electrode formed on a third surface of the substrate different from the second surface on which the first terminal electrode is formed. The first terminal electrode and the second terminal electrode are respectively formed on both end faces of the substrate in the longitudinal direction, one end of the internal electrode is connected to the first terminal electrode, and the other end of the internal electrode is the second terminal electrode. The external electrode is not connected to the first terminal electrode and the second terminal electrode, and when viewed in plan from the first surface of the substrate, the distance between the external electrode and the second terminal electrode In addition, the distance between the other end of the internal electrode and the second terminal electrode is shorter. By dividing a predetermined voltage applied between the external electrode and the second terminal electrode by the internal electrode, the resistance value of the oxide semiconductor between the external electrode and the internal electrode due to the temperature of the surrounding environment to be used can be reduced. Since the change and the change in resistance value of the oxide semiconductor between the internal electrode and the second terminal electrode are canceled out, it is possible to obtain a voltage (current) value appropriately corrected according to the temperature characteristics of the oxide semiconductor. it can. That is, ultraviolet rays can be detected without depending on the temperature of the surrounding environment. Further, since it is not necessary to provide a correction circuit using an OP amplifier or the like, the manufacturing cost can be reduced.

本発明の実施の形態1に係る紫外線センサの構成を示す概略図である。It is the schematic which shows the structure of the ultraviolet sensor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る紫外線センサの基板を形成する方法を説明するための概略図である。It is the schematic for demonstrating the method to form the board | substrate of the ultraviolet sensor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る紫外線センサの回路構成を示す模式図である。It is a schematic diagram which shows the circuit structure of the ultraviolet sensor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る紫外線センサの回路図である。It is a circuit diagram of the ultraviolet sensor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る紫外線センサの周辺環境の温度による外部電極と内部電極との間及び内部電極と端子電極との間の抵抗の変化、外部電極と内部電極との間の電圧の変化を示すグラフである。The change in resistance between the external electrode and the internal electrode and the internal electrode and the terminal electrode due to the temperature of the surrounding environment of the ultraviolet sensor according to Embodiment 1 of the present invention, the voltage between the external electrode and the internal electrode It is a graph which shows a change. 本発明の実施の形態1に係る紫外線センサの周辺環境の温度による外部電極と内部電極との間の電圧の変化を示すグラフである。It is a graph which shows the change of the voltage between an external electrode and an internal electrode by the temperature of the surrounding environment of the ultraviolet sensor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る紫外線センサの構成を示す概略図である。It is the schematic which shows the structure of the ultraviolet sensor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る紫外線センサの周辺環境の温度による外部電極と内部電極との間の電圧の変化を示すグラフである。It is a graph which shows the change of the voltage between an external electrode and an internal electrode by the temperature of the surrounding environment of the ultraviolet sensor which concerns on Embodiment 2 of this invention. 従来の紫外線センサの回路構成を示す模式図である。It is a schematic diagram which shows the circuit structure of the conventional ultraviolet sensor. 従来の紫外線センサの回路図である。It is a circuit diagram of the conventional ultraviolet sensor. 抵抗を追加した従来の紫外線センサの回路図である。It is a circuit diagram of the conventional ultraviolet sensor which added resistance.

以下、本発明の実施の形態における紫外線センサについて、図面を用いて具体的に説明する。以下の実施の形態は、特許請求の範囲に記載された発明を限定するものではなく、実施の形態の中で説明されている特徴的事項の組み合わせの全てが解決手段の必須事項であるとは限らないことは言うまでもない。   Hereinafter, an ultraviolet sensor according to an embodiment of the present invention will be specifically described with reference to the drawings. The following embodiments do not limit the invention described in the claims, and all combinations of characteristic items described in the embodiments are essential to the solution. It goes without saying that it is not limited.

(実施の形態1)
図1は、本発明の実施の形態1に係る紫外線センサの構成を示す概略図である。図1(a)は、本発明の実施の形態1に係る紫外線センサの平面図である。図1(b)は、図1(a)に示す紫外線センサのA−A断面図である。図1(a)に示すように、紫外線センサ1は、酸化物半導体で構成された直方体形状の基板2のそれぞれ異なる面に形成された、外部電極3、端子電極4、端子電極5(第1端子電極)、端子電極6(第2端子電極)を備えている。外部電極3は、端子電極4と接続しているが、端子電極5及び端子電極6とは接続していない。端子電極4は、基板2の、外部電極3が形成されている面(第1面)に対して垂直な面に形成されている。端子電極5、6は、基板2の長手方向にある両端面(第2面、第3面)にそれぞれ形成されている。図1(b)に示すように、紫外線センサ1は、基板2内に、外部電極3と平行に形成された内部電極7を備えている。端子電極5は、基板2の端面(第2面)から外部へ露出した内部電極7の一部と接続している。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a configuration of an ultraviolet sensor according to Embodiment 1 of the present invention. Fig.1 (a) is a top view of the ultraviolet sensor which concerns on Embodiment 1 of this invention. FIG.1 (b) is AA sectional drawing of the ultraviolet sensor shown to Fig.1 (a). As shown in FIG. 1A, the ultraviolet sensor 1 includes an external electrode 3, a terminal electrode 4, and a terminal electrode 5 (first electrodes) formed on different surfaces of a rectangular parallelepiped substrate 2 made of an oxide semiconductor. Terminal electrode) and a terminal electrode 6 (second terminal electrode). The external electrode 3 is connected to the terminal electrode 4 but is not connected to the terminal electrode 5 and the terminal electrode 6. The terminal electrode 4 is formed on a surface of the substrate 2 that is perpendicular to the surface (first surface) on which the external electrode 3 is formed. The terminal electrodes 5 and 6 are respectively formed on both end surfaces (second surface and third surface) in the longitudinal direction of the substrate 2. As shown in FIG. 1B, the ultraviolet sensor 1 includes an internal electrode 7 formed in a substrate 2 in parallel with the external electrode 3. The terminal electrode 5 is connected to a part of the internal electrode 7 exposed to the outside from the end surface (second surface) of the substrate 2.

基板2を構成する酸化物半導体は、20〜40モル%のZnOがNiOに固溶してなる(Ni,Zn)Oの酸化物半導体である。ただし、基板2を構成する酸化物半導体は、(Ni,Zn)Oに限定されるものではなく、NiO、ZnO、TiO2 等でも良い。なお、紫外線センサ1は、基板2を構成する酸化物半導体のバンドギャップ値によって検知することができる紫外線の波長領域が異なる。例えば、基板2を構成する酸化物半導体がNiOである紫外線センサ1は、波長が280nm以下の紫外線を検知することができ、酸化物半導体がZnOである紫外線センサ1は、波長が380nm以下の紫外線を検知することができる。また、基板2を構成する酸化物半導体が(Ni,Zn)Oである紫外線センサ1は、波長が400nm以下の紫外線を検知することができる。 The oxide semiconductor constituting the substrate 2 is a (Ni, Zn) O oxide semiconductor in which 20 to 40 mol% of ZnO is dissolved in NiO. However, the oxide semiconductor constituting the substrate 2 is not limited to (Ni, Zn) O, and may be NiO, ZnO, TiO 2 or the like. The ultraviolet sensor 1 differs in the wavelength range of ultraviolet rays that can be detected depending on the band gap value of the oxide semiconductor constituting the substrate 2. For example, the ultraviolet sensor 1 in which the oxide semiconductor constituting the substrate 2 is NiO can detect ultraviolet light having a wavelength of 280 nm or less, and the ultraviolet sensor 1 in which the oxide semiconductor is ZnO has ultraviolet light having a wavelength of 380 nm or less. Can be detected. Moreover, the ultraviolet sensor 1 whose oxide semiconductor which comprises the board | substrate 2 is (Ni, Zn) O can detect the ultraviolet-ray whose wavelength is 400 nm or less.

ここで、基板2を形成する方法について、以下に説明する。図2は、本発明の実施の形態1に係る紫外線センサ1の基板2を形成する方法を説明するための概略図である。まず、(Ni,Zn)Oの酸化物半導体からなるグリーンシート21を形成する。グリーンシート21の形成処理は、NiOとZnOとの割合が65モル%と35モル%となるように、原料のNiO及びZnOの無機粉末を秤量し、秤量した無機粉末に純水を加え、PSZ(安定化ジルコニア)ビーズをメディア(粉砕用ボール(球石))として、ボールミルにて平均粒径0.5μm以下となるように混合粉砕する。さらに、混合粉砕によりスラリーとなった無機粉末を、脱水乾燥し、50μm程度の粒径の粉末に造粒した後、1200℃の温度で2時間仮焼する。仮焼した無機粉末に、純水を加え、PSZビーズをメディアとしてボールミルにて平均粒径0.5μmになるまで混合粉砕する。混合粉砕した無機粉末は、脱水乾燥した後、有機溶剤及び分散剤を加えて混合し、さらにバインダ及び可塑剤を加えスラリーとし、ドクターブレード法を用いて、厚み10μmのシートに成形する。成形したシートを板状にカットし、複数枚のグリーンシート21として形成する。   Here, a method for forming the substrate 2 will be described below. FIG. 2 is a schematic diagram for explaining a method of forming the substrate 2 of the ultraviolet sensor 1 according to Embodiment 1 of the present invention. First, the green sheet 21 made of an (Ni, Zn) O oxide semiconductor is formed. The green sheet 21 is formed by weighing the raw material NiO and ZnO inorganic powder so that the ratio of NiO and ZnO is 65 mol% and 35 mol%, adding pure water to the weighed inorganic powder, The (stabilized zirconia) beads are used as media (balls for crushing (spheroids)) and mixed and ground by a ball mill so that the average particle size is 0.5 μm or less. Further, the inorganic powder that has become a slurry by mixing and pulverizing is dehydrated and dried, granulated to a powder having a particle size of about 50 μm, and then calcined at a temperature of 1200 ° C. for 2 hours. Pure water is added to the calcined inorganic powder and mixed and pulverized with a ball mill using PSZ beads as a medium until the average particle size becomes 0.5 μm. The mixed and pulverized inorganic powder is dehydrated and dried, mixed with an organic solvent and a dispersant, further added with a binder and a plasticizer to form a slurry, and formed into a sheet having a thickness of 10 μm using a doctor blade method. The formed sheet is cut into a plate shape and formed as a plurality of green sheets 21.

次に、形成した複数枚のグリーンシート21のいずれか1枚に、Pdペーストをスクリーン印刷し、60℃の温度で1時間乾燥して内部電極7を形成する。図2に示すように、内部電極7を形成したグリーンシート21は、内部電極7を形成した面側に他のグリーンシート21を1枚積層し、反対の面側に他のグリーンシート21を複数枚積層する。なお、積層したグリーンシート21の厚みが0.2mmとなるように、積層するグリーンシート21の枚数を20枚とする。   Next, the Pd paste is screen-printed on any one of the formed green sheets 21 and dried at a temperature of 60 ° C. for 1 hour to form the internal electrodes 7. As shown in FIG. 2, in the green sheet 21 on which the internal electrode 7 is formed, another green sheet 21 is laminated on the surface side on which the internal electrode 7 is formed, and a plurality of other green sheets 21 are formed on the opposite surface side. Laminate the sheets. The number of stacked green sheets 21 is 20 so that the thickness of the stacked green sheets 21 is 0.2 mm.

次に、積層したグリーンシート21を、金型に入れて20MPaの圧力で圧着した後、所定の形状に合わせてカットする。カットしたグリーンシート21は、300℃の温度でゆっくりと、十分に脱脂した後、1250℃の温度で5時間焼成することにより、基板2を形成する。なお、積層したグリーンシート21を、後述するZnOシートに載せて焼成することで、焼成中に揮発成分であるZnOが揮発するのを抑制することもできる。   Next, the stacked green sheets 21 are put into a mold and pressed with a pressure of 20 MPa, and then cut according to a predetermined shape. The cut green sheet 21 is sufficiently degreased slowly at a temperature of 300 ° C. and then fired at a temperature of 1250 ° C. for 5 hours to form the substrate 2. In addition, it can also suppress that ZnO which is a volatile component volatilizes during baking by mounting and laminating | stacking the laminated | stacked green sheet 21 on the ZnO sheet mentioned later.

形成した基板2は、3.2mm×1.6mm×0.2mmの直方体形状となる。さらに、基板2は、直径が3mmのアルミナビーズとともに塩化ビニル製のポットに入れ、遊星ミルを用いて端面に丸みを形成する。基板2の端面に丸みを形成することで、基板2の端面から外部へ露出した内部電極7の一部と端子電極5とを容易に接続することができる。   The formed substrate 2 has a rectangular parallelepiped shape of 3.2 mm × 1.6 mm × 0.2 mm. Further, the substrate 2 is put into a vinyl chloride pot together with alumina beads having a diameter of 3 mm, and the end surface is rounded using a planetary mill. By forming roundness on the end surface of the substrate 2, a part of the internal electrode 7 exposed to the outside from the end surface of the substrate 2 and the terminal electrode 5 can be easily connected.

図1に戻って、外部電極3は、スパッタ法によって、基板2の一面にZnO層を成膜することにより形成されている。ZnO層の厚みは、約0.5μmである。また、外部電極3は、端子電極4と接続しているが、端子電極5、6とは接続していない。なお、外部電極3を形成する材料は、特にZnOに限定されるものではなく、紫外線を透過する材料であればITO、TiO2 、Au−Ti合金、PEDOT(ポリエチレンジオキシチオフェン):PSS(ポリスチレンスルホン酸)等であっても良い。また、外部電極3の形成方法は、特にスパッタ法に限定されるものではなく、構成する材料によって蒸着法、塗布法等を用いても良い。 Returning to FIG. 1, the external electrode 3 is formed by forming a ZnO layer on one surface of the substrate 2 by sputtering. The thickness of the ZnO layer is about 0.5 μm. The external electrode 3 is connected to the terminal electrode 4, but is not connected to the terminal electrodes 5 and 6. The material for forming the external electrode 3 is not particularly limited to ZnO, and may be ITO, TiO 2 , Au—Ti alloy, PEDOT (polyethylenedioxythiophene): PSS (polystyrene) as long as it is a material that transmits ultraviolet rays. Sulfonic acid) or the like. Moreover, the formation method of the external electrode 3 is not particularly limited to the sputtering method, and a vapor deposition method, a coating method, or the like may be used depending on the constituent material.

ZnO層を成膜するスパッタ法に用いるスパッタターゲットを形成する処理について、以下に説明する。まず、ZnとGaとのモル比が95:5となるように、ZnO及びGa2 3 の粉末を秤量し、秤量した粉末に純水を加え、PSZビーズをメディアとしてボールミルにて平均粒径0.5μm以下となるように混合粉砕する。さらに、混合粉砕によりスラリーとなった粉末を、脱水乾燥し、50μm程度の粒径の粉末に造粒した後、1200℃の温度で2時間仮焼する。仮焼した粉末に、純水を加え、PSZビーズをメディアとしてボールミルにて平均粒径0.5μmになるまで混合粉砕する。混合粉砕した粉末を、脱水乾燥した後、有機溶剤及び分散剤を加えて混合し、さらにバインダ及び可塑剤を加えスラリーとし、ドクターブレード法を用いて、厚み20μmのシートに成形する。成形したシートを板状にカットし、複数枚のZnOシートとして形成する。形成したZnOシートを、厚みが20mmとなるように、複数枚積層する。積層したZnOシートは、250MPaの圧力で5分間圧着した後、十分に脱脂して、1200℃の温度で1時間焼成することでスパッタターゲットを形成する。 A process for forming a sputtering target used in a sputtering method for forming a ZnO layer will be described below. First, ZnO and Ga 2 O 3 powders are weighed so that the molar ratio of Zn to Ga is 95: 5, pure water is added to the weighed powders, and the average particle diameter is measured with a ball mill using PSZ beads as a medium. Mix and pulverize to 0.5 μm or less. Further, the powder that has become a slurry by mixing and pulverizing is dehydrated and dried, granulated into a powder having a particle size of about 50 μm, and calcined at a temperature of 1200 ° C. for 2 hours. Pure water is added to the calcined powder, and the mixture is pulverized using a PSZ bead as a medium to an average particle size of 0.5 μm using a ball mill. The mixed and pulverized powder is dehydrated and dried, mixed with an organic solvent and a dispersant, further added with a binder and a plasticizer to form a slurry, and formed into a sheet having a thickness of 20 μm using a doctor blade method. The formed sheet is cut into a plate shape and formed as a plurality of ZnO sheets. A plurality of the formed ZnO sheets are laminated so that the thickness becomes 20 mm. The laminated ZnO sheets are pressure-bonded at a pressure of 250 MPa for 5 minutes, sufficiently degreased, and fired at a temperature of 1200 ° C. for 1 hour to form a sputtering target.

図1(a)に戻って、端子電極4は、基板2の、外部電極3が形成されている面(第1面)に対して垂直な面にAgペーストを塗布して、800℃の温度で10分間焼成して形成する。なお、端子電極4は、外部電極3が形成されている基板2の面(第1面)に形成した一部が外部電極3と接続している。端子電極5は、内部電極7の一部が外部へ露出した基板2の面(第2面)にAgペーストを塗布して、800℃の温度で10分間焼成して形成する。端子電極6は、端子電極5が形成してある基板2の面(第2面)と対向する面(第3面)にAgペーストを塗布して、800℃の温度で10分間焼成して形成する。さらに、端子電極4、5、6には、Ni、Snの順に電解メッキを施している。   Referring back to FIG. 1A, the terminal electrode 4 has a temperature of 800 ° C. applied to the surface of the substrate 2 perpendicular to the surface (first surface) on which the external electrode 3 is formed. And baked for 10 minutes. Note that a part of the terminal electrode 4 formed on the surface (first surface) of the substrate 2 on which the external electrode 3 is formed is connected to the external electrode 3. The terminal electrode 5 is formed by applying an Ag paste to the surface (second surface) of the substrate 2 where a part of the internal electrode 7 is exposed to the outside, and baking it at a temperature of 800 ° C. for 10 minutes. The terminal electrode 6 is formed by applying an Ag paste to a surface (third surface) opposite to the surface (second surface) of the substrate 2 on which the terminal electrode 5 is formed, and baking it at a temperature of 800 ° C. for 10 minutes. To do. Further, the terminal electrodes 4, 5, 6 are subjected to electrolytic plating in the order of Ni and Sn.

次に、本実施の形態1に係る紫外線センサ1の動作について、以下に説明する。図3は、本発明の実施の形態1に係る紫外線センサ1の回路構成を示す模式図である。図4は、本発明の実施の形態1に係る紫外線センサ1の回路図である。図3に示すように、紫外線センサ1は、電源11のプラス側が端子電極4に、電源11のマイナス側が端子電極6にそれぞれ接続されている。   Next, operation | movement of the ultraviolet sensor 1 which concerns on this Embodiment 1 is demonstrated below. FIG. 3 is a schematic diagram showing a circuit configuration of the ultraviolet sensor 1 according to Embodiment 1 of the present invention. FIG. 4 is a circuit diagram of the ultraviolet sensor 1 according to Embodiment 1 of the present invention. As shown in FIG. 3, in the ultraviolet sensor 1, the positive side of the power source 11 is connected to the terminal electrode 4, and the negative side of the power source 11 is connected to the terminal electrode 6.

紫外線センサ1は、ZnO層の外部電極3と酸化物半導体((Ni,Zn)O)の基板2とが接する部分に紫外線が当たった場合、光電効果により当該部分に光電子が生じることで外部電極3と内部電極7との間の抵抗値が低下し、測定する外部電極3と内部電極7との間の電圧(電流)値が変化する。したがって、紫外線センサ1は、外部電極3と内部電極7との間の電圧(電流)の値を測定することで紫外線を検知することができる。紫外線センサ1は、電源11により端子電極4と端子電極6との間にバイアス電圧を印加した場合、端子電極4から外部電極3、内部電極7、端子電極6へ電流が流れることになるので、外部電極3と内部電極7との間に抵抗31、内部電極7と端子電極6との間に抵抗32を設けた回路構成とみなすことができる。   When the ultraviolet sensor 1 hits a portion where the external electrode 3 of the ZnO layer and the oxide semiconductor ((Ni, Zn) O) substrate 2 are in contact with each other, photoelectrons are generated in the portion due to the photoelectric effect. The resistance value between the external electrode 3 and the internal electrode 7 decreases, and the voltage (current) value between the external electrode 3 and the internal electrode 7 to be measured changes. Therefore, the ultraviolet sensor 1 can detect ultraviolet rays by measuring the voltage (current) value between the external electrode 3 and the internal electrode 7. In the ultraviolet sensor 1, when a bias voltage is applied between the terminal electrode 4 and the terminal electrode 6 by the power supply 11, a current flows from the terminal electrode 4 to the external electrode 3, the internal electrode 7, and the terminal electrode 6. It can be regarded as a circuit configuration in which a resistor 31 is provided between the external electrode 3 and the internal electrode 7 and a resistor 32 is provided between the internal electrode 7 and the terminal electrode 6.

つまり、紫外線センサ1は、図4に示すように、端子電極4(外部電極3)と端子電極6との間に、抵抗31、32を直列に接続した回路とみなすことができるため、端子電極4と端子電極6との間(外部電極3と端子電極6との間)に印加するバイアス電圧は、抵抗31、32により外部電極3と内部電極7との間の電圧、及び内部電極7と端子電極6との間の電圧に分圧される。なお、紫外線40が当たった場合、ZnO層の外部電極3と酸化物半導体((Ni,Zn)O)の基板2とが接する部分に生じた光電子により、抵抗31の抵抗値は低下するが、抵抗32の抵抗値は変化しない。   That is, the ultraviolet sensor 1 can be regarded as a circuit in which resistors 31 and 32 are connected in series between the terminal electrode 4 (external electrode 3) and the terminal electrode 6 as shown in FIG. 4 and the terminal electrode 6 (between the external electrode 3 and the terminal electrode 6) are bias voltages applied between the external electrode 3 and the internal electrode 7 by the resistors 31 and 32, and the internal electrode 7 The voltage is divided between the terminal electrodes 6. In addition, when the ultraviolet ray 40 hits, the resistance value of the resistor 31 decreases due to photoelectrons generated in the portion where the external electrode 3 of the ZnO layer and the substrate 2 of the oxide semiconductor ((Ni, Zn) O) are in contact with each other. The resistance value of the resistor 32 does not change.

ここで、従来の紫外線センサの回路構成について説明する。図9は、従来の紫外線センサの回路構成を示す模式図である。図10は、従来の紫外線センサの回路図である。図9に示すように、従来の紫外線センサ101は、電源111のプラス側が外部電極103に接続された端子電極106に、電源111のマイナス側が内部電極107に接続された端子電極105にそれぞれ接続されている。   Here, a circuit configuration of a conventional ultraviolet sensor will be described. FIG. 9 is a schematic diagram showing a circuit configuration of a conventional ultraviolet sensor. FIG. 10 is a circuit diagram of a conventional ultraviolet sensor. As shown in FIG. 9, the conventional ultraviolet sensor 101 is connected to the terminal electrode 106 connected to the external electrode 103 on the positive side of the power supply 111 and to the terminal electrode 105 connected to the internal electrode 107 on the negative side of the power supply 111. ing.

従来の紫外線センサ101も、ZnO層の外部電極103と酸化物半導体((Ni,Zn)O)の基板102とが接する部分に紫外線が当たった場合、光電効果により当該部分に光電子が生じることで外部電極103と内部電極107との間の抵抗値が低下する。したがって、従来の紫外線センサ101は、外部電極103と内部電極107との間の電流値を測定することで紫外線を検知することができる。従来の紫外線センサ101は、電源111により端子電極106と端子電極105との間にバイアス電圧を印加した場合、端子電極105から内部電極107、外部電極103、端子電極106へ電流が流れることになるので、外部電極103と内部電極107との間に抵抗131を設けた回路構成とみなすことができる。   In the conventional ultraviolet sensor 101, when ultraviolet light hits a portion where the external electrode 103 of the ZnO layer and the oxide semiconductor ((Ni, Zn) O) substrate 102 are in contact with each other, photoelectrons are generated in the portion due to the photoelectric effect. The resistance value between the external electrode 103 and the internal electrode 107 decreases. Therefore, the conventional ultraviolet sensor 101 can detect ultraviolet rays by measuring the current value between the external electrode 103 and the internal electrode 107. In the conventional ultraviolet sensor 101, when a bias voltage is applied between the terminal electrode 106 and the terminal electrode 105 by the power source 111, a current flows from the terminal electrode 105 to the internal electrode 107, the external electrode 103, and the terminal electrode 106. Therefore, it can be regarded as a circuit configuration in which the resistor 131 is provided between the external electrode 103 and the internal electrode 107.

つまり、従来の紫外線センサ101は、図10に示すように、端子電極106と端子電極105との間に抵抗131を設けた回路とみなすことができるため、端子電極106と端子電極105との間に印加するバイアス電圧は、抵抗131に印加される。なお、従来の紫外線センサ101も、紫外線40が当たった場合、ZnO層の外部電極103と酸化物半導体((Ni,Zn)O)の基板102とが接する部分に生じた光電子により、抵抗131の抵抗値が低下し、端子電極105と端子電極106との間の電流値の変化によって紫外線を検知することができる。   That is, the conventional ultraviolet sensor 101 can be regarded as a circuit in which a resistor 131 is provided between the terminal electrode 106 and the terminal electrode 105 as shown in FIG. The bias voltage applied to is applied to the resistor 131. Note that the conventional ultraviolet sensor 101 also has a resistance 131 due to photoelectrons generated in a portion where the external electrode 103 of the ZnO layer and the oxide semiconductor ((Ni, Zn) O) substrate 102 are in contact with each other when the ultraviolet ray 40 is irradiated. The resistance value decreases, and ultraviolet rays can be detected by a change in the current value between the terminal electrode 105 and the terminal electrode 106.

本実施の形態1に係る紫外線センサ1の回路は、図4に示す回路図と図10に示す回路図とを比較することで分かるように、従来の紫外線センサ101の回路に、内部電極7と端子電極6との間に抵抗32を追加してある。追加した抵抗32は、外部電極3と基板2とが接する部分に生じる光電子の影響を受けないが、図3に示すように基板2内に設けてあるので、抵抗31と同じように酸化物半導体の温度特性の影響を受ける。   As can be seen by comparing the circuit diagram shown in FIG. 4 with the circuit diagram shown in FIG. 10, the circuit of the ultraviolet sensor 1 according to the first embodiment includes the internal electrode 7 and the circuit of the conventional ultraviolet sensor 101. A resistor 32 is added between the terminal electrode 6. The added resistor 32 is not affected by the photoelectrons generated at the portion where the external electrode 3 and the substrate 2 are in contact with each other, but is provided in the substrate 2 as shown in FIG. Affected by the temperature characteristics of

また、基板2は、3.2mm×1.6mm×0.2mm程度の大きさであるため、紫外線センサ1を使用する周辺環境の温度によって、抵抗31の温度と抵抗32の温度との間に差は生じないものと考えられる。したがって、周辺環境の温度による抵抗32の抵抗値の変化は、抵抗31の抵抗値の変化と略同じになるため、紫外線センサ1は、外部電極3と端子電極6との間に印加するバイアス電圧を、抵抗31と抵抗32とにより外部電極3と内部電極7との間の電圧、及び内部電極7と端子電極6との間の電圧に分圧することにより、抵抗31の抵抗値の変化と抵抗32の抵抗値の変化とを相殺するので、酸化物半導体の温度特性に応じて補正した外部電極3と内部電極7との間の電圧値を得ることができる。   Moreover, since the board | substrate 2 is a magnitude | size of about 3.2 mm x 1.6 mm x 0.2 mm, depending on the temperature of the surrounding environment where the ultraviolet sensor 1 is used, it is between the temperature of the resistor 31 and the temperature of the resistor 32. It is considered that there will be no difference. Therefore, since the change in the resistance value of the resistor 32 due to the temperature of the surrounding environment is substantially the same as the change in the resistance value of the resistor 31, the ultraviolet sensor 1 applies a bias voltage applied between the external electrode 3 and the terminal electrode 6. Is divided into a voltage between the external electrode 3 and the internal electrode 7 and a voltage between the internal electrode 7 and the terminal electrode 6 by the resistor 31 and the resistor 32, thereby changing the resistance value and resistance of the resistor 31. Therefore, the voltage value between the external electrode 3 and the internal electrode 7 corrected according to the temperature characteristics of the oxide semiconductor can be obtained.

図5は、本発明の実施の形態1に係る紫外線センサ1の周辺環境の温度による外部電極3と内部電極7との間及び内部電極7と端子電極6との間の抵抗31、32の変化、外部電極3と内部電極7との間の電圧の変化を示すグラフである。特に、図5(a)は、周辺環境の温度による外部電極3と内部電極7との間の抵抗31の変化を示すグラフである。図5(b)は、周辺環境の温度による内部電極7と端子電極6との間の抵抗32の変化を示すグラフである。図5(c)は、周辺環境の温度による外部電極3と内部電極7との間の電圧の変化を示すグラフである。図5に示すように、抵抗31及び抵抗32は、周辺環境の温度が高くなるにつれて抵抗値が低下する。周辺環境の温度による抵抗31の抵抗値の変化と、抵抗32の抵抗値の変化とは略同じであるため、端子電極4と端子電極6との間に印加するバイアス電圧を抵抗31と抵抗32とで分圧した外部電極3と内部電極7との間の電圧は、周辺環境の温度による変化はなく略一定となる。従って、紫外線センサ1は、外部電極3と内部電極7との間の電圧を測定することで、酸化物半導体の温度特性に応じて適正に補正した電圧値を得ることができ、紫外線を検知することができる。なお、内部電極7と端子電極6との間の電圧を測定すれば、外部電極3と内部電極7との間の電圧を求めることができるので、測定する電圧は、特に外部電極3と内部電極7との間の電圧に限定されるものではなく、外部電極3と内部電極7との間の電圧及び/又は内部電極7と端子電極6との間の電圧を測定しても良い。   FIG. 5 shows changes in resistances 31 and 32 between the external electrode 3 and the internal electrode 7 and between the internal electrode 7 and the terminal electrode 6 depending on the temperature of the surrounding environment of the ultraviolet sensor 1 according to the first embodiment of the present invention. 4 is a graph showing a change in voltage between the external electrode 3 and the internal electrode 7. In particular, FIG. 5A is a graph showing a change in the resistance 31 between the external electrode 3 and the internal electrode 7 due to the temperature of the surrounding environment. FIG. 5B is a graph showing a change in the resistance 32 between the internal electrode 7 and the terminal electrode 6 due to the temperature of the surrounding environment. FIG. 5C is a graph showing a change in voltage between the external electrode 3 and the internal electrode 7 due to the temperature of the surrounding environment. As shown in FIG. 5, the resistance values of the resistor 31 and the resistor 32 decrease as the temperature of the surrounding environment increases. The change in the resistance value of the resistor 31 due to the temperature of the surrounding environment and the change in the resistance value of the resistor 32 are substantially the same. The voltage between the external electrode 3 and the internal electrode 7 divided by the above is substantially constant without change due to the temperature of the surrounding environment. Therefore, the ultraviolet sensor 1 can obtain a voltage value appropriately corrected according to the temperature characteristics of the oxide semiconductor by measuring the voltage between the external electrode 3 and the internal electrode 7, and detects ultraviolet light. be able to. Note that if the voltage between the internal electrode 7 and the terminal electrode 6 is measured, the voltage between the external electrode 3 and the internal electrode 7 can be obtained. The voltage between the external electrode 3 and the internal electrode 7 and / or the voltage between the internal electrode 7 and the terminal electrode 6 may be measured.

図6は、本発明の実施の形態1に係る紫外線センサ1の周辺環境の温度による外部電極3と内部電極7との間の電圧の変化を示すグラフである。図6は、紫外線センサ1に紫外線が当たらない状態で、周辺環境の温度が0℃から80℃まで変化した場合の外部電極3と内部電極7との間の電圧の変化を示している。ここで、説明を簡単にするために、紫外線センサ1は、紫外線が当たらないときの抵抗31と抵抗32の抵抗値が同じになるように構成し、端子電極4と端子電極6との間に印加するバイアス電圧を3.0Vとする。紫外線が当たらない場合、外部電極3と内部電極7との間の電圧は約1.5Vになる。紫外線センサ1は、端子電極4と端子電極6との間に印加するバイアス電圧を内部電極7で分圧しているので、周辺環境の温度が変化しても、外部電極3と内部電極7との間の電圧は略一定となる。ただし、周辺環境の温度が50℃以上になると外部電極3と内部電極7(端子電極5)との間の抵抗値が低下するので、外部電極3と内部電極7との間の電圧が少し低下している。例えば、周辺環境の温度が0℃の時、波長が370nm、放射強度1mW/cm2 の紫外線を紫外線センサ1に当てると、抵抗31の抵抗値が低下し、外部電極3と内部電極7との間の電圧は約1.0Vまで低下し、紫外線を検知することができる。紫外線が当たったことにより低下した電圧は、周辺環境の温度が0℃から50℃まで変化しても、約1.0Vのままで略一定となるので、同様に紫外線を検知することができる。 FIG. 6 is a graph showing a change in voltage between the external electrode 3 and the internal electrode 7 due to the temperature of the surrounding environment of the ultraviolet sensor 1 according to Embodiment 1 of the present invention. FIG. 6 shows a change in voltage between the external electrode 3 and the internal electrode 7 when the temperature of the surrounding environment changes from 0 ° C. to 80 ° C. in a state where the ultraviolet sensor 1 is not exposed to ultraviolet rays. Here, in order to simplify the explanation, the ultraviolet sensor 1 is configured so that the resistance values of the resistor 31 and the resistor 32 when the ultraviolet rays are not applied are the same, and between the terminal electrode 4 and the terminal electrode 6. The bias voltage to be applied is set to 3.0V. When ultraviolet rays do not hit, the voltage between the external electrode 3 and the internal electrode 7 is about 1.5V. Since the ultraviolet sensor 1 divides the bias voltage applied between the terminal electrode 4 and the terminal electrode 6 by the internal electrode 7, even if the temperature of the surrounding environment changes, the external electrode 3 and the internal electrode 7 The voltage between them is substantially constant. However, since the resistance value between the external electrode 3 and the internal electrode 7 (terminal electrode 5) decreases when the temperature of the surrounding environment becomes 50 ° C. or higher, the voltage between the external electrode 3 and the internal electrode 7 slightly decreases. doing. For example, when the temperature of the surrounding environment is 0 ° C., when ultraviolet light having a wavelength of 370 nm and a radiation intensity of 1 mW / cm 2 is applied to the ultraviolet sensor 1, the resistance value of the resistor 31 decreases, and the external electrode 3 and the internal electrode 7 The voltage between them decreases to about 1.0 V, and ultraviolet rays can be detected. Since the voltage that has decreased due to exposure to ultraviolet rays remains substantially constant at about 1.0 V even when the temperature of the surrounding environment changes from 0 ° C. to 50 ° C., the ultraviolet rays can be detected in the same manner.

図11は、抵抗を追加した従来の紫外線センサの回路図である。図11に示す従来の紫外線センサ101は、紫外線が当たらないときの抵抗131と同程度の抵抗値を有する抵抗132を追加し、追加した抵抗132を抵抗131に対して直列に接続している。端子電極106と抵抗132の一端108との間に3.0Vのバイアス電圧を印加し、紫外線センサ101に紫外線が当たらない状態で、周辺環境の温度が0℃から80℃まで変化した場合の端子電極105と端子電極106との間の電圧の変化を図6のグラフに示す。紫外線が当たらない場合、端子電極105と端子電極106との間の電圧は約1.5Vになる。周辺環境の温度が高くなると、従来の紫外線センサ101の抵抗131は周辺環境の温度により抵抗値が低下するが、抵抗132は外付けの抵抗であるので周辺環境の温度が変化しても抵抗値は変化しない。周辺環境の温度が高くなると端子電極105と端子電極106との間の電圧は約1.5Vよりも低下し、周辺環境の温度が80℃の時、端子電極105と端子電極106との間の電圧は約1.1Vになる。例えば、周辺環境の温度が0℃の時、波長が370nm、放射強度1mW/cm2 の紫外線を紫外線センサ101に当てると、抵抗131の抵抗値が低下し、端子電極105と端子電極106との間の電圧は約1.0Vまで低下するが、該電圧の低下が紫外線を検知したことによるものか、周辺環境の温度が変化したことによるものかを判断することができない。 FIG. 11 is a circuit diagram of a conventional ultraviolet sensor to which a resistor is added. In the conventional ultraviolet sensor 101 shown in FIG. 11, a resistor 132 having a resistance value comparable to that of the resistor 131 when ultraviolet rays do not hit is added, and the added resistor 132 is connected to the resistor 131 in series. A terminal when the bias voltage of 3.0 V is applied between the terminal electrode 106 and one end 108 of the resistor 132 and the temperature of the surrounding environment changes from 0 ° C. to 80 ° C. in a state where the ultraviolet sensor 101 is not exposed to ultraviolet rays. The change in voltage between the electrode 105 and the terminal electrode 106 is shown in the graph of FIG. When ultraviolet rays do not hit, the voltage between the terminal electrode 105 and the terminal electrode 106 is about 1.5V. When the temperature of the surrounding environment increases, the resistance value of the resistor 131 of the conventional ultraviolet sensor 101 decreases depending on the temperature of the surrounding environment. However, since the resistor 132 is an external resistor, the resistance value is maintained even if the temperature of the surrounding environment changes. Does not change. When the temperature of the surrounding environment increases, the voltage between the terminal electrode 105 and the terminal electrode 106 decreases below about 1.5 V. When the temperature of the surrounding environment is 80 ° C., the voltage between the terminal electrode 105 and the terminal electrode 106 is increased. The voltage will be about 1.1V. For example, when the temperature of the surrounding environment is 0 ° C., when ultraviolet light having a wavelength of 370 nm and a radiation intensity of 1 mW / cm 2 is applied to the ultraviolet sensor 101, the resistance value of the resistor 131 decreases, and the terminal electrode 105 and the terminal electrode 106 In the meantime, the voltage drops to about 1.0 V, but it cannot be determined whether the voltage drop is due to the detection of ultraviolet rays or the temperature of the surrounding environment has changed.

以上のように、本発明の実施の形態1に係る紫外線センサ1は、基板2内に形成された内部電極7と、基板2の面(第1面)に形成された外部電極3と、内部電極7の一部が外部へ露出した基板2の面(第2面)に形成され、内部電極7と接続された端子電極5と、外部電極3が形成された基板2の面(第1面)及び端子電極5が形成された基板2の面(第2面)と異なる基板2の面(第3面)に形成された端子電極6とを備えているので、外部電極3と端子電極6との間に印加するバイアス電圧を、内部電極7で分圧する回路構成とすることができる。紫外線センサ1は、外部電極3と端子電極6との間に印加するバイアス電圧を、外部電極3と内部電極7との間の電圧、及び内部電極7と端子電極6との間の電圧に分圧することにより、使用される周辺環境の温度による外部電極3と内部電極7との間の抵抗31の抵抗値の変化と、内部電極7と端子電極6との間の抵抗32の抵抗値の変化とを相殺するので、酸化物半導体の温度特性に応じて補正した外部電極3と内部電極7との間の電圧値を得ることができる。つまり、紫外線センサ1は、周辺環境の温度に依存することなく、紫外線を検知することができる。また、紫外線センサ1は、OPアンプ等を用いた補正回路が不要なので、製造コストが安くなる。   As described above, the ultraviolet sensor 1 according to Embodiment 1 of the present invention includes the internal electrode 7 formed in the substrate 2, the external electrode 3 formed on the surface (first surface) of the substrate 2, the internal A part of the electrode 7 is formed on the surface (second surface) of the substrate 2 exposed to the outside, the terminal electrode 5 connected to the internal electrode 7 and the surface of the substrate 2 on which the external electrode 3 is formed (first surface) ) And the terminal electrode 6 formed on the surface (third surface) of the substrate 2 different from the surface (second surface) of the substrate 2 on which the terminal electrode 5 is formed, the external electrode 3 and the terminal electrode 6 are provided. A circuit configuration in which the bias voltage applied between the two electrodes is divided by the internal electrode 7 can be employed. The ultraviolet sensor 1 divides a bias voltage applied between the external electrode 3 and the terminal electrode 6 into a voltage between the external electrode 3 and the internal electrode 7 and a voltage between the internal electrode 7 and the terminal electrode 6. The resistance value of the resistor 31 between the external electrode 3 and the internal electrode 7 and the resistance value of the resistor 32 between the internal electrode 7 and the terminal electrode 6 are changed by the temperature of the surrounding environment. Therefore, the voltage value between the external electrode 3 and the internal electrode 7 corrected according to the temperature characteristics of the oxide semiconductor can be obtained. That is, the ultraviolet sensor 1 can detect ultraviolet rays without depending on the temperature of the surrounding environment. Further, since the ultraviolet sensor 1 does not require a correction circuit using an OP amplifier or the like, the manufacturing cost is reduced.

なお、紫外線センサ1は、特に紫外線が当たらないときの抵抗31と抵抗32の抵抗値が同じになるように構成する場合に限定されるものではなく、抵抗31と抵抗32の抵抗値が異なるように構成しても良い。また、紫外線センサ1は、紫外線を検知するために、外部電極3と内部電極7との間の電圧及び/又は内部電極7と端子電極6との間の電圧を測定する場合に限定されるものではなく、外部電極3と内部電極7との間の電流及び/又は内部電極7と端子電極6との間の電流を測定しても良い。   The ultraviolet sensor 1 is not particularly limited to the case where the resistance values of the resistor 31 and the resistor 32 are the same when the ultraviolet rays are not applied, and the resistance values of the resistor 31 and the resistor 32 are different. You may comprise. The ultraviolet sensor 1 is limited to measuring the voltage between the external electrode 3 and the internal electrode 7 and / or the voltage between the internal electrode 7 and the terminal electrode 6 in order to detect ultraviolet light. Instead, the current between the external electrode 3 and the internal electrode 7 and / or the current between the internal electrode 7 and the terminal electrode 6 may be measured.

さらに、内部電極7と端子電極6との間の抵抗32は、内部電極7の長さや端子電極6に内部電極を設ける等の設計変更で容易に抵抗値を変更することができる。   Further, the resistance 32 between the internal electrode 7 and the terminal electrode 6 can be easily changed in the design value such as the length of the internal electrode 7 or the provision of the internal electrode on the terminal electrode 6.

(実施の形態2)
図7は、本発明の実施の形態2に係る紫外線センサ1の構成を示す概略図である。図7(a)は、本発明の実施の形態2に係る紫外線センサ1の平面図である。図7(b)は、図7(a)に示す紫外線センサ1のB−B断面図である。図7(a)に示すように、紫外線センサ1は、酸化物半導体で構成された直方体形状の基板2のそれぞれ異なる面に形成された外部電極3、端子電極4、端子電極5、端子電極6を備えている。さらに、紫外線センサ1は、外部電極3と、端子電極5及び端子電極6との間の基板2の面(第1面)に形成された絶縁層8を備えている。また、図7(b)に示すように、紫外線センサ1は、基板2内に、外部電極3と平行に形成された内部電極7を備えている。なお、実施の形態2に係る紫外線センサ1について、図1に示した実施の形態1に係る紫外線センサ1と同じ構成要素については、同じ符号を付して詳細な説明を省略する。
(Embodiment 2)
FIG. 7 is a schematic diagram showing the configuration of the ultraviolet sensor 1 according to Embodiment 2 of the present invention. FIG. 7A is a plan view of the ultraviolet sensor 1 according to Embodiment 2 of the present invention. FIG.7 (b) is BB sectional drawing of the ultraviolet sensor 1 shown to Fig.7 (a). As shown in FIG. 7A, the ultraviolet sensor 1 includes an external electrode 3, a terminal electrode 4, a terminal electrode 5, and a terminal electrode 6 formed on different surfaces of a rectangular parallelepiped substrate 2 made of an oxide semiconductor. It has. Further, the ultraviolet sensor 1 includes an insulating layer 8 formed on the surface (first surface) of the substrate 2 between the external electrode 3 and the terminal electrode 5 and the terminal electrode 6. Further, as shown in FIG. 7B, the ultraviolet sensor 1 includes an internal electrode 7 formed in the substrate 2 in parallel with the external electrode 3. In addition, about the ultraviolet sensor 1 which concerns on Embodiment 2, the same code | symbol is attached | subjected about the same component as the ultraviolet sensor 1 which concerns on Embodiment 1 shown in FIG. 1, and detailed description is abbreviate | omitted.

実施の形態1に係る紫外線センサ1は、図6で示したように、周辺環境の温度が50℃以上になると、外部電極3と内部電極7との間の電圧が低下する。外部電極3と内部電極7との間の電圧が低下するのは、実施の形態1の図3に示したように外部電極3から端子電極5、及び/又は外部電極3から端子電極6へリーク電流(基板2の表面を流れる電流)が流れているためと考えられる。そこで、本実施の形態2に係る紫外線センサ1では、外部電極3から端子電極5、6へ流れるリーク電流を低減するため、外部電極3と、端子電極5(第1端子電極)及び端子電極6(第2端子電極)との間の基板2の面(第1面)に形成した絶縁層8を備えている。   In the ultraviolet sensor 1 according to the first embodiment, as shown in FIG. 6, when the temperature of the surrounding environment becomes 50 ° C. or higher, the voltage between the external electrode 3 and the internal electrode 7 decreases. The voltage between the external electrode 3 and the internal electrode 7 decreases because of leakage from the external electrode 3 to the terminal electrode 5 and / or from the external electrode 3 to the terminal electrode 6 as shown in FIG. It is considered that current (current flowing through the surface of the substrate 2) flows. Therefore, in the ultraviolet sensor 1 according to the second embodiment, the external electrode 3, the terminal electrode 5 (first terminal electrode), and the terminal electrode 6 are reduced in order to reduce the leakage current flowing from the external electrode 3 to the terminal electrodes 5 and 6. An insulating layer 8 formed on the surface (first surface) of the substrate 2 between the (second terminal electrode) is provided.

絶縁層8を形成する方法は、端子電極4、5、6を形成する前に、すなわち端子電極4、5、6を形成する基板2の異なるそれぞれの面にAgペーストを塗布する前に、外部電極3を形成する基板2の面(第1面)にガラスペーストを塗布し、塗布したガラスペーストをAgペーストと同時に焼成して絶縁層8を形成する。なお、基板2の面(第1面)の外部電極3を形成する領域にはガラスペーストを塗布しないで、絶縁層8を形成後に、スパッタ法等を用いて外部電極3を形成する。   The method of forming the insulating layer 8 is performed before the terminal electrodes 4, 5, 6 are formed, that is, before the Ag paste is applied to different surfaces of the substrate 2 on which the terminal electrodes 4, 5, 6 are formed. A glass paste is applied to the surface (first surface) of the substrate 2 on which the electrode 3 is to be formed, and the applied glass paste is baked simultaneously with the Ag paste to form the insulating layer 8. It should be noted that the glass paste is not applied to the surface of the substrate 2 (first surface) where the external electrode 3 is to be formed, and the external electrode 3 is formed by sputtering or the like after the insulating layer 8 is formed.

図8は、本発明の実施の形態2に係る紫外線センサ1の周辺環境の温度による外部電極3と内部電極7との間の電圧の変化を示すグラフである。図8は、紫外線センサ1に紫外線が当たらない状態で、周辺環境の温度が0℃から80℃まで変化した場合の外部電極3と内部電極7との間の電圧の変化を示している。紫外線が当たらない場合、本発明の実施の形態1と同じように、外部電極3と内部電極7との間の電圧は約1.5Vになるが、本実施の形態2に係る紫外線センサ1は、外部電極3と、端子電極5及び端子電極6との間の基板2の面(第1面)に絶縁層8を形成して、外部電極3から端子電極5、6へ流れるリーク電流を低減しているので、周辺環境の温度が50℃以上でも外部電極3と内部電極7との間の電圧は略一定となる。例えば、周辺環境の温度が0℃の時、波長が370nm、放射強度1mW/cm2 の紫外線を紫外線センサ1に当てると、抵抗31の抵抗値が低下し、外部電極3と内部電極7との間の電圧は約1.0Vまで低下し、紫外線を検知することができる。紫外線が当たったことにより周辺環境の温度が50℃以上に変化しても、外部電極3と内部電極7との間の電圧は約1.0Vのままで略一定となるので、同様に紫外線を検知することができる。 FIG. 8 is a graph showing a change in voltage between the external electrode 3 and the internal electrode 7 due to the temperature of the surrounding environment of the ultraviolet sensor 1 according to Embodiment 2 of the present invention. FIG. 8 shows a change in voltage between the external electrode 3 and the internal electrode 7 when the temperature of the surrounding environment changes from 0 ° C. to 80 ° C. in a state where the ultraviolet sensor 1 is not exposed to ultraviolet rays. When the ultraviolet rays do not hit, the voltage between the external electrode 3 and the internal electrode 7 is about 1.5 V, as in the first embodiment of the present invention, but the ultraviolet sensor 1 according to the second embodiment is The insulating layer 8 is formed on the surface (first surface) of the substrate 2 between the external electrode 3 and the terminal electrode 5 and the terminal electrode 6 to reduce leakage current flowing from the external electrode 3 to the terminal electrodes 5 and 6. Therefore, even when the temperature of the surrounding environment is 50 ° C. or higher, the voltage between the external electrode 3 and the internal electrode 7 becomes substantially constant. For example, when the temperature of the surrounding environment is 0 ° C., when ultraviolet light having a wavelength of 370 nm and a radiation intensity of 1 mW / cm 2 is applied to the ultraviolet sensor 1, the resistance value of the resistor 31 decreases, and the external electrode 3 and the internal electrode 7 The voltage between them decreases to about 1.0 V, and ultraviolet rays can be detected. Even if the temperature of the surrounding environment changes to 50 ° C. or more due to the exposure to ultraviolet rays, the voltage between the external electrode 3 and the internal electrode 7 remains substantially constant at about 1.0 V. Can be detected.

以上のように、本発明の実施の形態2に係る紫外線センサ1は、外部電極3と、端子電極5及び端子電極6との間の基板2の面(第1面)に絶縁層8を形成しているので、外部電極3から端子電極5、6へ流れるリーク電流(基板2の表面を流れる電流)を低減することができ、より広い周辺環境の温度範囲で酸化物半導体の温度特性に応じて補正した外部電極3と内部電極7との間の電圧値を得ることができる。つまり、本実施の形態2に係る紫外線センサ1は、より広い温度範囲で周辺環境の温度に依存することなく、紫外線を検知することができる。また、本実施の形態2に係る紫外線センサ1は、OPアンプ等を用いた補正回路が不要なので、製造コストが安くなる。   As described above, in the ultraviolet sensor 1 according to Embodiment 2 of the present invention, the insulating layer 8 is formed on the surface (first surface) of the substrate 2 between the external electrode 3 and the terminal electrode 5 and the terminal electrode 6. As a result, the leakage current flowing from the external electrode 3 to the terminal electrodes 5 and 6 (current flowing on the surface of the substrate 2) can be reduced, and the temperature characteristics of the oxide semiconductor can be adjusted in a wider temperature range of the surrounding environment. Thus, the corrected voltage value between the external electrode 3 and the internal electrode 7 can be obtained. That is, the ultraviolet sensor 1 according to the second embodiment can detect ultraviolet rays without depending on the temperature of the surrounding environment in a wider temperature range. Further, since the ultraviolet sensor 1 according to the second embodiment does not require a correction circuit using an OP amplifier or the like, the manufacturing cost is reduced.

1 紫外線センサ
2 基板
3 外部電極
4、5、6 端子電極
7 内部電極
8 絶縁層
11 電源
21 グリーンシート
31、32 抵抗
DESCRIPTION OF SYMBOLS 1 Ultraviolet sensor 2 Board | substrate 3 External electrode 4, 5, 6 Terminal electrode 7 Internal electrode 8 Insulating layer 11 Power supply 21 Green sheet 31, 32 Resistance

Claims (4)

ZnOがNiOに固溶してなる酸化物半導体で構成された直方体形状の基板と、
該基板内に形成された内部電極と、
前記基板の第1面の一部に形成された、ZnOからなる外部電極と、
前記内部電極の一部が外部へ露出した前記基板の第2面に形成され、前記内部電極と接続された第1端子電極と、
前記外部電極が形成された前記第1面及び前記第1端子電極が形成された第2面と異なる前記基板の第3面に形成された第2端子電極と
を備え、
前記第1端子電極及び前記第2端子電極は、前記基板の長手方向の両端面にそれぞれ形成されており、
前記内部電極の一端は、前記第1端子電極に接続され、前記内部電極の他端は、前記第2端子電極に接続されておらず、
前記外部電極は、前記第1端子電極及び前記第2端子電極に接続されておらず、
前記基板の第1面から平面視した場合に、前記外部電極と前記第2端子電極との間隔よりも、前記内部電極の他端と前記第2端子電極との間隔の方が短く
前記外部電極と前記第2端子電極との間に印加する所定の電圧を、前記内部電極で分圧することを特徴とする紫外線センサ。
A rectangular parallelepiped substrate made of an oxide semiconductor in which ZnO is dissolved in NiO;
An internal electrode formed in the substrate;
An external electrode made of ZnO formed on a part of the first surface of the substrate;
A first terminal electrode formed on the second surface of the substrate that is partially exposed to the outside and connected to the internal electrode;
A second terminal electrode formed on a third surface of the substrate different from the first surface on which the external electrode is formed and the second surface on which the first terminal electrode is formed;
The first terminal electrode and the second terminal electrode are respectively formed on both end faces in the longitudinal direction of the substrate,
One end of the internal electrode is connected to the first terminal electrode, the other end of the internal electrode is not connected to the second terminal electrode,
The external electrode is not connected to the first terminal electrode and the second terminal electrode,
When viewed in plan from the first surface of the substrate, the distance between the other end of the internal electrode and the second terminal electrode is shorter than the distance between the external electrode and the second terminal electrode .
An ultraviolet sensor characterized in that a predetermined voltage applied between the external electrode and the second terminal electrode is divided by the internal electrode.
前記内部電極で分圧された、前記外部電極と前記内部電極との間の電圧及び/又は前記内部電極と前記第2端子電極との間の電圧を測定することを特徴とする請求項1に記載の紫外線センサ。   2. The voltage between the external electrode and the internal electrode and / or the voltage between the internal electrode and the second terminal electrode, which is divided by the internal electrode, is measured. The ultraviolet sensor described. 前記外部電極は、紫外線を透過する材料で形成してあることを特徴とする請求項1又は2に記載の紫外線センサ。   The ultraviolet sensor according to claim 1, wherein the external electrode is made of a material that transmits ultraviolet light. 前記外部電極と、前記第1端子電極及び前記第2端子電極との間の前記基板の前記第1面に形成された絶縁層を備えることを特徴とする請求項1乃至3のいずれか一項に記載の紫外線センサ。   4. The semiconductor device according to claim 1, further comprising an insulating layer formed on the first surface of the substrate between the external electrode and the first terminal electrode and the second terminal electrode. 5. The ultraviolet sensor described in 1.
JP2009157376A 2009-07-02 2009-07-02 UV sensor Active JP5458702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157376A JP5458702B2 (en) 2009-07-02 2009-07-02 UV sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157376A JP5458702B2 (en) 2009-07-02 2009-07-02 UV sensor

Publications (2)

Publication Number Publication Date
JP2011014710A JP2011014710A (en) 2011-01-20
JP5458702B2 true JP5458702B2 (en) 2014-04-02

Family

ID=43593319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157376A Active JP5458702B2 (en) 2009-07-02 2009-07-02 UV sensor

Country Status (1)

Country Link
JP (1) JP5458702B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459566B2 (en) * 2010-08-20 2014-04-02 株式会社村田製作所 Manufacturing method of ultraviolet sensor
JP5445989B2 (en) 2011-03-09 2014-03-19 株式会社村田製作所 Ultraviolet sensor and method for manufacturing ultraviolet sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931235B2 (en) * 1974-05-07 1984-07-31 電気音響株式会社 Temperature compensation circuit for semiconductor resistance effect elements
JPH03241777A (en) * 1989-11-15 1991-10-28 Mitsui Toatsu Chem Inc Photoconductive ultraviolet sensor
JPH06160185A (en) * 1992-11-25 1994-06-07 Matsushita Electric Works Ltd Infrared ray detecting element
JP3349036B2 (en) * 1995-06-14 2002-11-20 三菱電機株式会社 Temperature measuring resistor, method for producing the same, and infrared detecting element using the temperature measuring resistor
JPH09229763A (en) * 1996-02-22 1997-09-05 Osaka Gas Co Ltd Flame sensor
JPH09325068A (en) * 1996-06-05 1997-12-16 Osaka Gas Co Ltd Flame sensor and flame detector
JPH10182290A (en) * 1996-12-20 1998-07-07 Sekisui Plastics Co Ltd Ultraviolet-ray detecting element and detection of ultraviolet rays, using the same
JP2003142700A (en) * 2001-11-05 2003-05-16 Tdk Corp Photosensor
JP3604130B2 (en) * 2001-12-04 2004-12-22 株式会社アイ・エイチ・アイ・エアロスペース Thermal infrared detecting element, method of manufacturing the same, and thermal infrared detecting element array
JP3952076B1 (en) * 2006-04-25 2007-08-01 株式会社村田製作所 UV sensor
JP2008305815A (en) * 2007-06-05 2008-12-18 Murata Mfg Co Ltd Ultraviolet sensor

Also Published As

Publication number Publication date
JP2011014710A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP3952076B1 (en) UV sensor
TWI333664B (en) Production method of multilayer ceramic electronic device
TW514622B (en) Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass and transparent EL
JP5446587B2 (en) Ultraviolet sensor and manufacturing method thereof
JP5458702B2 (en) UV sensor
TWI433827B (en) NTC thermal resistors for semiconductor porcelain compositions and NTC thermal resistors
JP5062422B2 (en) UV sensor
WO2011162127A1 (en) Ultraviolet sensor and method for manufacturing ultraviolet sensor
WO2011052518A1 (en) Resistive element, infrared light sensor, and electrical device
JP5445989B2 (en) Ultraviolet sensor and method for manufacturing ultraviolet sensor
US20160161443A1 (en) Gas sensor, method for manufacturing gas sensor, and method for detecting gas concentration
CN101759431A (en) Zinc oxide piezoresistor material with low electric potential gradient and preparation method thereof
JP5459566B2 (en) Manufacturing method of ultraviolet sensor
JP5251282B2 (en) Manufacturing method of ultraviolet sensor
JP5392414B2 (en) Photodiode and ultraviolet sensor
JP2010093054A (en) Electronic component
JP7324973B2 (en) Varistor and its manufacturing method
WO2016084562A1 (en) Barium titanate semiconductor ceramic, barium titanate semiconductor ceramic composition, and ptc thermistor for temperature detection
JP2004111914A (en) Varistor and manufacturing method therefor
JP2006332118A (en) Varistor
JP2011009323A (en) Ultraviolet sensor
JP2007080950A (en) Method of manufacturing paste for varistor sheet, laminated chip varistor and manufacturing method thereof
JP2008305815A (en) Ultraviolet sensor
JP5534564B2 (en) Manufacturing method of ultraviolet sensor
WO2011158827A1 (en) Ultraviolet ray sensor, and process for production of ultraviolet ray sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150