JP5458701B2 - Steel ingot casting method - Google Patents

Steel ingot casting method Download PDF

Info

Publication number
JP5458701B2
JP5458701B2 JP2009157006A JP2009157006A JP5458701B2 JP 5458701 B2 JP5458701 B2 JP 5458701B2 JP 2009157006 A JP2009157006 A JP 2009157006A JP 2009157006 A JP2009157006 A JP 2009157006A JP 5458701 B2 JP5458701 B2 JP 5458701B2
Authority
JP
Japan
Prior art keywords
mold
steel
gas
molten steel
steel ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009157006A
Other languages
Japanese (ja)
Other versions
JP2011011227A (en
Inventor
和久 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009157006A priority Critical patent/JP5458701B2/en
Publication of JP2011011227A publication Critical patent/JP2011011227A/en
Application granted granted Critical
Publication of JP5458701B2 publication Critical patent/JP5458701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、インゴットの表皮下に、ブローホール性の表面欠陥を生成することの少ない、鋼の下注造塊方法に関するものである。   The present invention relates to a method for steel ingot casting that produces less blowhole surface defects in the epidermis of an ingot.

下注造塊方法は、例えば図2に示すように、定盤1の上面に設置した注入管2から、定盤1の内部に形成された湯道1a及び湯上り1bを介して、同じく定盤1の上面に配した鋳型3内に溶鋼を注入することによりインゴット4を製造する方法である。なお、図2中の5は押湯スリーブ、6は鋼塊被覆剤を示す。   For example, as shown in FIG. 2, the ingot casting method is similarly performed from a pouring pipe 2 installed on the upper surface of the surface plate 1 via a runner 1a and a hot water 1b formed inside the surface plate 1. 1 is a method of manufacturing an ingot 4 by injecting molten steel into a mold 3 disposed on the upper surface of 1. In addition, 5 in FIG. 2 shows a feeder sleeve and 6 shows a steel ingot coating agent.

前記下注造塊方法によるインゴットの造塊時、溶鋼が大気と接触するのを避け、溶鋼の酸化、窒化、あるいは水素のピックアップの発生を防止するために、取鍋と注入管の間をアルゴンガスによってシールしている。   When the ingot is ingot-made by the above-mentioned ingot casting method, the gap between the ladle and the injection pipe is prevented in order to prevent the molten steel from coming into contact with the atmosphere and prevent the molten steel from oxidizing, nitriding, or picking up hydrogen. Sealed with gas.

このシールをより完全なものとするために供給するアルゴンガス量が多すぎると、アルゴンガスが溶鋼に混入することになって、凝固時、インゴットの表面の凝固前面のデンドライトアーム間にアルゴンガス気泡として捕捉され、欠陥となる場合がある。   If there is too much argon gas supplied to make this seal more complete, argon gas will be mixed into the molten steel, and during solidification, argon gas bubbles will be generated between the dendrite arms on the solidification front of the ingot surface. May be captured as a defect.

このようなインゴットの表皮下に生成するブローホール性の欠陥は、圧延や鍛造により圧着されることがないので、製品の外面における線状疵や表面直下の空隙欠陥として残存する有害な欠陥である。   The blowhole defect generated in the epidermis of such an ingot is a harmful defect remaining as a linear flaw on the outer surface of the product or a void defect immediately below the surface because it is not crimped by rolling or forging. .

前記ブローホール性欠陥の原因となる、溶鋼へのアルゴンガスの溶け込みや、水素の吸収を防止するため、注入管と注入管煉瓦の間を真空ポンプで吸引しながら、減圧鋳造する方法が開示されている(特許文献1)。   In order to prevent the argon gas from being melted into the molten steel and the absorption of hydrogen, which cause the blowhole defect, a method of casting under reduced pressure while sucking between the injection pipe and the injection pipe brick with a vacuum pump is disclosed. (Patent Document 1).

しかしながら、この特許文献1で開示された技術では、鋳型の内面で反応したH2ガスやCOガス等の鋳込み中に反応したガスに起因するブローホール性表面欠陥に対する改善効果を得ることができない。 However, the technique disclosed in Patent Document 1 cannot obtain an improvement effect for blowhole surface defects caused by gas reacted during casting such as H 2 gas and CO gas reacted on the inner surface of the mold.

特開平5−318027号公報JP-A-5-318027

本発明が解決しようとする問題点は、注入管と注入管煉瓦の間を真空ポンプで吸引しながら減圧鋳造する技術では、鋳込み中に反応したガスに起因するブローホール性表面欠陥に対する改善効果も得ることができないという点である。   The problem to be solved by the present invention is that, in the technique of vacuum casting while sucking between the injection pipe and the injection pipe brick with a vacuum pump, there is also an improvement effect on blowhole surface defects caused by the gas reacted during casting. It is a point that cannot be obtained.

本発明の鋼の下注造塊方法は、
鋳型の内面で反応したH2ガスやCOガス等の鋳込み中に反応したガスに起因するブローホール性表面欠陥の発生を防止するために、
鋳型の底部から溶鋼を注入する鋼の下注造塊方法であって、
鋳型内部への溶鋼の注入前に、鋳型上部に蓋をして鋳型内部を大気と遮断した後、鋳型内部に不活性ガスまたは窒素ガスを吹き込んで鋳型内部の雰囲気中の酸素濃度を1質量%以下にしておき、
その後の鋳型内部への溶鋼注入中も、鋳型内部に不活性ガスまたは窒素ガスを吹き込んで鋳型内部の雰囲気中の酸素濃度を1質量%以下に維持し、
かつ、鋳型内に注入された溶鋼への外気の接触を断絶すべく溶鋼表面に添加する鋼塊被覆剤におけるH2OおよびCO2のそれぞれの含有量を1質量%以下とすることを主要な特徴としている。
The steel ingot casting method of the present invention comprises:
In order to prevent the occurrence of blowhole surface defects caused by the gas reacted during casting such as H 2 gas and CO gas reacted on the inner surface of the mold,
A steel ingot casting method in which molten steel is injected from the bottom of a mold,
Before pouring the molten steel into the mold, cover the mold and shut off the mold from the atmosphere, and then blow an inert gas or nitrogen gas into the mold to reduce the oxygen concentration in the mold to 1% by mass. Keep it below,
Even then in the molten steel injection into the mold interior to maintain the oxygen concentration in the internal template atmosphere by blowing cast type internal inert gas or nitrogen gas to 1% by mass or less,
In addition, the H 2 O and CO 2 contents in the steel ingot coating agent added to the molten steel surface in order to cut off the contact of outside air to the molten steel injected into the mold are mainly set to 1% by mass or less. It is a feature.

本発明では、不活性ガスまたは窒素ガスにより、鋳型内部の雰囲気中の酸素濃度を1質量%以下に保持したまま鋳込を実施するので、大気の侵入を抑制でき、大気中酸素と造塊被覆剤中Cや鋼中Cとの反応によるCOガスの発生を抑制できる。   In the present invention, casting is performed with an inert gas or nitrogen gas while maintaining the oxygen concentration in the atmosphere inside the mold at 1% by mass or less. Generation of CO gas due to reaction with C in agent and C in steel can be suppressed.

また、H2OおよびCO2のそれぞれの含有量が1質量%以下の鋼塊被覆剤を使用することにより、鋼塊被覆剤から溶鋼中へのH2ガスやCOガスの混入を防止できる。 Further, since the content of each of H 2 O and CO 2 uses 1% by mass of the steel ingot coatings, can prevent mixing of the H 2 gas and CO gas from the steel ingot coating into the molten steel.

本発明によれば、鋳込み中に反応したガスに起因してインゴットに形成されるブローホール性の表面欠陥を防止でき、その欠陥を起源とした製品の外面における線状疵や表面直下の空隙欠陥を低減できる。   According to the present invention, blowhole surface defects formed in the ingot due to the gas reacted during casting can be prevented, and linear defects on the outer surface of the product originating from the defects and void defects immediately below the surface Can be reduced.

本発明方法の概略説明図である。It is a schematic explanatory drawing of the method of this invention. 下注造塊方法の概略説明図である。It is a schematic explanatory drawing of the bottom casting ingot method.

本発明では、鋳込み中に反応したガスに起因するブローホール性表面欠陥の発生を防止するという目的を、不活性ガスまたは窒素ガスにより、鋳型内部の雰囲気中の酸素濃度を1質量%以下に保持したまま鋳込を実施し、また、H2OおよびCO2のそれぞれの含有量が1質量%以下の鋼塊被覆剤を使用することによって実現した。 In the present invention, the oxygen concentration in the atmosphere inside the mold is kept at 1% by mass or less with an inert gas or nitrogen gas for the purpose of preventing the occurrence of blowhole surface defects caused by the gas reacted during casting. The casting was carried out as it was, and it was realized by using a steel ingot coating material in which each content of H 2 O and CO 2 was 1% by mass or less.

以下、本発明の着想から課題解決に至るまでの過程と共に本発明を実施するための最良の形態について、図1を用いて説明する。
発明者は、2程度の鍛造比で鋼塊を鍛伸した後、欠陥の位置を超音波検査で特定し、鋼塊の表面付近に存在していたと推定される空隙性欠陥に、真空中で特殊なドリルで穴を開け、放出したガスの分析を行った。その結果を下記表1に示すが、H2ガスならびCO2ガスが検出された。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIG. 1 together with the process from the idea of the present invention to the solution of the problem.
After forging the steel ingot at a forging ratio of about 2, the inventor identified the position of the defect by ultrasonic inspection, and in a vacuum defect presumed to exist near the surface of the steel ingot. Holes were drilled with a special drill and the released gas was analyzed. The results are shown in Table 1 below. H 2 gas and CO 2 gas were detected.

Figure 0005458701
Figure 0005458701

このうちのH2ガスは、鋼材中のHの拡散により空隙部に集積したものが主因と考えられるが、CO2ガスは拡散により生成するとは考え難く、外部から混入したものと考えられる。 Of these, the H 2 gas is thought to be mainly due to the accumulation of H in the steel material due to the diffusion of H in the steel material, but the CO 2 gas is unlikely to be generated by diffusion and is thought to have been mixed from the outside.

そこで、外部から混入したと考えられるCOガス、CO2ガスの混入原因について検討したところ、大気と、鋼中あるいは鋼塊被覆剤の主成分であるCとの反応により混入する場合と、鋼塊被覆剤からの供給により混入する場合の2つの要因が推定された。 Therefore, we investigated the cause of CO gas and CO 2 gas mixing from the outside, and the case of mixing with the atmosphere and C, which is the main component of the steel ingot coating, Two factors in the case of contamination by supply from the coating agent were estimated.

〔大気と、鋼中あるいは鋼塊被覆剤の主成分であるCとの反応による混入について〕
鋳込が開始されて鋳型内に溶鋼が注がれると、溶鋼の熱により鋳型内の中央に大気の上昇流が生じ、外周部からそれを補うため外気が流入して、空気の対流が生じる。この対流によって、鋳型内の溶鋼表面に酸素が供給され、この酸素が鋼中あるいは鋼塊被覆剤の主成分であるCと反応することでCOガスが発生する。
[Contamination due to reaction between the atmosphere and C, which is the main component of steel or ingot coating material]
When casting starts and molten steel is poured into the mold, the heat of the molten steel creates an upward flow of air in the center of the mold, and outside air flows in to compensate for it from the outer periphery, resulting in air convection. . By this convection, oxygen is supplied to the surface of the molten steel in the mold, and this oxygen reacts with C, which is the main component of the steel or steel ingot coating material, to generate CO gas.

これが、湯面の躍動によって鋼中に巻き込まれ、ブローホールとして存在することが判明した。また、ブローホールばかりでなく、酸化物化して介在物として鋼中に捕捉されることもある。   It was found that this was entrained in the steel by the hot water surface and existed as a blowhole. Further, not only blowholes but also oxides may be trapped in steel as inclusions.

以上の検討結果より、前者によるCOガスの混入を抑制するには、大気との反応を抑制する必要があり、鋳型の上部に蓋を設置し、上昇流によって外部から大気が巻き込まれることを防止することが効果的であることが分かった。   From the above examination results, it is necessary to suppress the reaction with the atmosphere to suppress the mixing of CO gas by the former, and a lid is installed on the upper part of the mold to prevent the atmosphere from being caught from the outside due to the upward flow It turned out to be effective.

〔鋼塊被覆剤からの供給について〕
鋼塊被覆剤は、SiO2,Al2O3,CaO,Na2O,K2O,CaF2,Cを主成分とし、所定の組成になるように原料を配合して製造されるが、H2O,CO2を化合物として含んだ原料(例えばフライアッシュ、ポルトランドセメント)を使用する場合もある。
[Supply from steel ingot coating]
The steel ingot coating is manufactured by mixing SiO 2 , Al 2 O 3 , CaO, Na 2 O, K 2 O, CaF 2 , C as main components and blending raw materials so as to have a predetermined composition, In some cases, raw materials containing H 2 O and CO 2 as compounds (for example, fly ash and Portland cement) are used.

なお、フライアッシュとは、シリカ(SiO2)とアルミナ(Al2O3)を主成分とし、少量の酸化第2鉄(Fe2O3)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)等を含むものである。また、ポルトランドセメントとは、ケイ酸三カルシウム(エーライト、3CaO・SiO2)、ケイ酸二カルシウム(ビーライト、2CaO・SiO2)、カルシウムアルミネート(アルミネート、3CaO・Al2O3)、カルシウムアルミノフェライト(フェライト、4CaO・Al2O3・Fe2O3)、硫酸カルシウム(石膏、CaSO4・2H2O)の混合物である。 Fly ash is mainly composed of silica (SiO 2 ) and alumina (Al 2 O 3 ), and a small amount of ferric oxide (Fe 2 O 3 ), magnesium oxide (MgO), calcium oxide (CaO), etc. Is included. In addition, the portland cement, tricalcium silicate (alite, 3CaO · SiO 2), dicalcium silicate (belite, 2CaO · SiO 2), calcium aluminate (aluminate, 3CaO · Al 2 O 3) , It is a mixture of calcium aluminoferrite (ferrite, 4CaO · Al 2 O 3 · Fe 2 O 3 ) and calcium sulfate (gypsum, CaSO 4 · 2H 2 O).

そして、大気中の酸素と反応してCOを生成するCのうち、粒径が小さいものは、基材を覆って溶融速度を制御する効果や、潤滑性が良くなるために安息角が低下して鋼塊被覆剤を均一に広がらせる効果がある。これらは、鋼塊肌を著しく改善する効果を有しているので、Cは適度に添加しなければならず、鋼塊被覆剤から排除することはできない。   Of the C that generates CO by reacting with oxygen in the atmosphere, the one with a small particle size reduces the angle of repose due to the effect of controlling the melting rate by covering the base material and lubricity. This has the effect of spreading the steel ingot coating material uniformly. Since these have the effect of significantly improving the steel ingot skin, C must be added appropriately and cannot be excluded from the steel ingot coating.

以上より、COガスの発生を抑制するには、鋼中のCを下げる、鋼塊被覆剤中のC含有量を下げる、或いは雰囲気中の酸素を低減することにより可能であるものの、鋼中Cの低減は材料性能への影響があるため採用することはできない。また、鋼材被覆剤中のCの低減も鋼塊肌の悪化を招くことからできる限り避けることが望ましい。   From the above, it is possible to suppress the generation of CO gas by lowering C in steel, lowering the C content in steel ingot coating, or reducing oxygen in the atmosphere. This reduction has an effect on material performance and cannot be adopted. Moreover, it is desirable to avoid the reduction | decrease of C in a steel material coating material as much as possible because it causes deterioration of the steel ingot skin.

従って、COガスの発生を抑制するために採用できる第1の手段は、雰囲気中の酸素を低減することであり、そのためには、鋳型内への大気侵入を防ぐために鋳型内を大気から遮断し、不活性ガスまたは窒素ガスで置換することが有効であることが判明した。   Therefore, the first means that can be adopted to suppress the generation of CO gas is to reduce the oxygen in the atmosphere. For this purpose, the inside of the mold is cut off from the atmosphere in order to prevent the air from entering the mold. It has been found effective to replace with inert gas or nitrogen gas.

次に、鋼塊被覆剤自体からの気体供給であるが、鋳型内に吊り下げる方法と二重定盤上に入れ置く方法が一般的である。   Next, as for the gas supply from the steel ingot coating material itself, a method of suspending in a mold and a method of placing on a double surface plate are general.

何れの方法も、鋳型内への溶鋼の流入時、鋼塊被覆剤を二重以上で梱包しているビニール袋及び紙袋が、湯上りから鋳型内に跳ね上がった溶鋼の熱によって燃焼し、鋼塊被覆剤が溶鋼上に広がって溶融することで、溶鋼への外気の接触を断絶する。   In both methods, when the molten steel flows into the mold, the plastic bag and paper bag packing the steel ingot coating agent in double or more are burned by the heat of the molten steel jumping into the mold from the hot water, and the steel ingot coating As the agent spreads on the molten steel and melts, the contact of outside air with the molten steel is interrupted.

この溶融する段階で鋼塊被覆剤自体にH2O,CO2分が含有されている場合、これらが外気側に放出されず溶鋼中に捕捉される可能性がある。また、多数回使用した鋳型の場合、鋳型に溶融して凹んだ部分が存在する。湯面上昇と共にこのような部位に鋼塊被覆剤が捕捉されると、H2O,CO2分は外気へ抜けることなく、溶鋼中に捕捉される可能性が高くなる。従って、鋼塊被覆剤中のH2O,CO2はできる限り低減することが必要である。 If the steel ingot coating material itself contains H 2 O and CO 2 components at this stage of melting, they may be trapped in the molten steel without being released to the outside air side. In the case of a mold that has been used many times, there are melted and recessed portions in the mold. When the steel ingot coating agent is captured at such a site as the molten metal rises, the possibility that H 2 O and CO 2 components are trapped in the molten steel is increased without escape to the outside air. Therefore, it is necessary to reduce H 2 O and CO 2 in the steel ingot coating as much as possible.

本発明の鋼の下注造塊方法は、以上の知見に基づいてなされたものであり、例えば以下のようにして鋼の造塊を行う。   The steel ingot casting method of the present invention is made on the basis of the above knowledge. For example, the steel is ingoted as follows.

先ず、溶鋼4aの流入により発生する大気の対流を抑制するため、鋳型3の内部への溶鋼4aの注入前に、図1のように、鋳型3の上部に、中央に孔を開けた鉄製の蓋7を載せて鋳型3の内部を大気と遮断する。その際、蓋7と鋳型3の隙間に耐火性の布を置いて密閉性を高めることが望ましい。   First, in order to suppress the convection of the atmosphere generated by the inflow of the molten steel 4a, before the injection of the molten steel 4a into the mold 3, as shown in FIG. The lid 7 is placed to block the inside of the mold 3 from the atmosphere. At this time, it is desirable to place a fire-resistant cloth in the gap between the lid 7 and the mold 3 to improve the sealing performance.

そして、蓋7の前記孔からArガスを吹き込む直径10mmのゴムホース8と、鋼塊被覆剤6を吊り下げる荒縄、ならびに本発明方法の効果を確認するための酸素濃度分析用のガス吸引用の直径10mmのシリカチューブを差し込む。   Then, a rubber hose 8 having a diameter of 10 mm for blowing Ar gas from the hole of the lid 7, a rough rope for suspending the steel ingot coating 6, and a diameter for gas suction for oxygen concentration analysis for confirming the effect of the method of the present invention. Insert a 10 mm silica tube.

その後、鋳型3の内部にArガスを吹き込み、鋳型3の内部の雰囲気中の酸素濃度を1質量%以下にする。   Thereafter, Ar gas is blown into the mold 3 to reduce the oxygen concentration in the atmosphere inside the mold 3 to 1% by mass or less.

この1質量%の酸素濃度は、一般的な測定で時間の経過と酸素濃度の変化を見た場合に、酸素濃度低減速度の変化が1分当り0質量%前後となる酸素濃度であり、ほぼ鋳型内の大気(酸素)が排出されたと考えられる酸素濃度である。   This oxygen concentration of 1% by mass is an oxygen concentration at which the change in the oxygen concentration reduction rate becomes around 0% by mass per minute when the passage of time and the change in oxygen concentration are observed in general measurements. This is the oxygen concentration at which the atmosphere (oxygen) in the mold is considered to have been exhausted.

この鋳型内部の雰囲気中の酸素濃度が1質量%以下かどうかは、実際に酸素濃度を測定しなくても、ガス投入時間と酸素濃度の関係を事前に調査して両者の相関を把握し、所定の時間が経過したことで酸素濃度が1質量%以下となったと判断しても良い。   Whether or not the oxygen concentration in the atmosphere inside the mold is 1% by mass or less, without actually measuring the oxygen concentration, the relationship between the gas input time and the oxygen concentration is investigated in advance and the correlation between the two is grasped. You may judge that oxygen concentration became 1 mass% or less because predetermined time passed.

次に、注入管2から鋳型3の内部に溶鋼4aを注入する。その際、溶鋼4aの注入中も、必要に応じて鋳型3の内部にArガスを吹き込んで鋳型3内部の雰囲気中の酸素濃度を1質量%以下に維持する。また、鋳型3内の溶鋼4a表面に添加する鋼塊被覆剤6は、H2OおよびCO2のそれぞれの含有量が1質量%以下のものを使用する。 Next, molten steel 4 a is injected into the mold 3 from the injection tube 2. At that time, even during the injection of the molten steel 4a, Ar gas is blown into the mold 3 as necessary to maintain the oxygen concentration in the atmosphere inside the mold 3 at 1% by mass or less. Moreover, the steel ingot coating material 6 added to the surface of the molten steel 4a in the mold 3 is one having a content of H 2 O and CO 2 of 1% by mass or less.

H2OおよびCO2のそれぞれの含有量が1質量%以下の鋼塊被覆剤6を採用するのは、ブローホール性表面欠陥の発生原因となるH2ガスやCOガスの発生を抑制するためである。 The reason why the steel ingot coating material 6 having a H 2 O and CO 2 content of 1% by mass or less is adopted is to suppress the generation of H 2 gas and CO gas that cause blowhole surface defects. It is.

また、原料を厳選した鋼塊被覆剤でも0.3質量%程度のH2Oがやむを得ず含まれている。一方で原料を厳選しない鋼塊被覆剤の場合は、0.5質量%程度の付着水・結晶水に加えて1質量%以上のCO2が含まれている。さらに数か月の保管によって付着水が増加する。防湿梱包の実績では、一か月に0.1質量%程度付着水が増加する。 Also, H 2 O of about 0.3 wt% is unavoidably included in steel ingot coating carefully selected raw materials. On the other hand, in the case of a steel ingot coating material in which raw materials are not carefully selected, 1 mass% or more of CO 2 is contained in addition to about 0.5 mass% of adhering water / crystal water. Furthermore, the amount of water attached increases with storage for several months. In the results of moisture-proof packaging, the amount of adhered water increases by about 0.1% by mass per month.

従って、鋼塊被覆剤中のH2OおよびCO2のそれぞれの含有量を1質量%以下としたのは、鋼塊被覆剤の原料対策と、数カ月の保管を考慮したためでもある。 Therefore, the reason why the respective contents of H 2 O and CO 2 in the steel ingot coating material are set to 1% by mass or less is also due to consideration of raw material measures for the steel ingot coating material and storage for several months.

発明者は、前記鋼塊被覆剤に含有されるH2O,CO2のうち、H2Oはカール・フィッシャー法により、またCO2はTDS(昇温脱離ガス分析)法によって測定したが、H2OはTDS法によっても測定できる。 Inventors, H 2 O contained in the steel ingot coating, of CO 2, the H 2 O Karl Fischer method, also CO 2 has been measured by TDS (Atsushi Nobori spectrometry) H 2 O can also be measured by the TDS method.

上記の本発明では、大気と遮断した鋳型に例えばArガスを吹き込み、大気の侵入を抑制しつつ雰囲気中の酸素濃度を1質量%以下に保持したまま鋳込を実施し、大気中酸素と造塊被覆剤中Cや鋼中Cとの反応によるCOガスの発生を抑制する。   In the present invention described above, for example, Ar gas is blown into a mold cut off from the atmosphere, and casting is performed while maintaining the oxygen concentration in the atmosphere at 1% by mass or less while suppressing the intrusion of the atmosphere. Suppresses the generation of CO gas due to reaction with C in the lump coating and C in the steel.

その際、H2OおよびCO2のそれぞれの含有量が1質量%以下の鋼塊被覆剤を使用して、鋼塊被覆剤からのガスの混入を防止する。
これにより、ブローホール性の表面欠陥を生成することの少ない鋼材を溶製することができる。
At that time, a steel ingot coating material having a content of H 2 O and CO 2 of 1% by mass or less is used to prevent gas mixture from the steel ingot coating material.
As a result, a steel material that hardly generates blowhole surface defects can be produced.

以下、本発明方法の効果を確認するために行なった実験結果について説明する。
試験に使用した鋳型は10トン鋼塊用の、内接円の直径が約1100mm、高さが約2300mmの、水平断面が八角形の鋳型で、2本同時に鋳込を実施した。
The results of experiments conducted to confirm the effect of the method of the present invention will be described below.
The mold used for the test was a 10-ton steel ingot, an inscribed circle having a diameter of about 1100 mm, a height of about 2300 mm, and an octagonal horizontal section, and two were cast simultaneously.

下記表2に示す化学成分の溶鋼を注入して製造した鋼塊を自由鍛造して外径が600mmの丸棒に仕上げた後、表面を黒皮がなくなる程度までピーリングし、その後、その表面から空隙性欠陥の分布状況を超音波探傷することで表面疵の評価をした。なお、探傷条件は、表面から5mmの深さまでは15Q10N、表面から5〜15mmの深さまでは10Q10N、表面から15〜40mmの深さまでは5Q15Nの超音波探触子を用いて行なった。   The steel ingot produced by injecting molten steel of the chemical composition shown in Table 2 below is free-forged and finished into a round bar with an outer diameter of 600 mm, and then the surface is peeled to the extent that there is no black skin. Surface flaws were evaluated by ultrasonic inspection of the distribution of void defects. The flaw detection conditions were 15Q10N at a depth of 5 mm from the surface, 10Q10N at a depth of 5-15 mm from the surface, and a 5Q15N ultrasonic probe at a depth of 15-40 mm from the surface.

Figure 0005458701
Figure 0005458701

試験条件を下記表3に、欠陥の発生個数を下記表4に示す。下記表3中の鋼塊被覆剤は下記表5に示した成分組成を有するもので、種類AはH2O,CO2の少ない原料を厳選配合して原料中のH2O,CO2分析量をそれぞれ1質量%以下としたもの、種類Bは原料中のH2O,CO2分析量が1質量%を超えるものである。 The test conditions are shown in Table 3 below, and the number of defects generated is shown in Table 4 below. The steel ingot coating material in Table 3 below has the component composition shown in Table 5 below. Type A is carefully selected from H 2 O and CO 2 raw materials and analyzed for H 2 O and CO 2 in the raw materials. The amount is 1% by mass or less, and the type B is one in which the amount of analysis of H 2 O and CO 2 in the raw material exceeds 1% by mass.

Figure 0005458701
Figure 0005458701

Figure 0005458701
Figure 0005458701

Figure 0005458701
Figure 0005458701

表4より明らかなように、本発明方法(番号1、2、4、6、13、14、16、17)は、本発明の要件を満たさない比較例(番号3、5、7〜12、15)に比べて欠陥の低減効果は明白である。   As is clear from Table 4, the method of the present invention (numbers 1, 2, 4, 6, 13, 14, 16, 17) is a comparative example (numbers 3, 5, 7-12, which does not satisfy the requirements of the present invention). Compared with 15), the effect of reducing defects is obvious.

本発明は上記した例に限らないことは勿論であり、各請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   It goes without saying that the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in each claim.

以上の本発明は、二相ステンレス鋼、高炭素鋼、S45Cに限らず、インゴットの表面にH2ガスやCOガス等の鋳込み中に反応したガスに起因するブローホール性表面欠陥が発生するものであれば、他の鋼種の造塊にも適用できる。 The present invention described above is not limited to duplex stainless steel, high carbon steel, S45C, and blowhole surface defects caused by the gas reacted during casting of H 2 gas, CO gas, etc. on the surface of the ingot. If so, it can be applied to ingots of other steel types.

1 定盤
2 注入管
3 鋳型
4a 溶鋼
5 押湯スリーブ
6 鋼塊被覆剤
7 蓋
8 ゴムホース
DESCRIPTION OF SYMBOLS 1 Surface plate 2 Injection pipe 3 Mold 4a Molten steel 5 Feeding sleeve 6 Steel lump coating agent 7 Lid 8 Rubber hose

Claims (1)

鋳型の底部から溶鋼を注入する鋼の下注造塊方法であって、
鋳型内部への溶鋼の注入前に、鋳型上部に蓋をして鋳型内部を大気と遮断した後、鋳型内部に不活性ガスまたは窒素ガスを吹き込んで鋳型内部の雰囲気中の酸素濃度を1質量%以下にしておき、
その後の鋳型内部への溶鋼注入中も、鋳型内部に不活性ガスまたは窒素ガスを吹き込んで鋳型内部の雰囲気中の酸素濃度を1質量%以下に維持し、
かつ、鋳型内に注入された溶鋼への外気の接触を断絶すべく溶鋼表面に添加する鋼塊被覆剤におけるH2OおよびCO2のそれぞれの含有量を1質量%以下とすることを特徴とする鋼の下注造塊方法。
A steel ingot casting method in which molten steel is injected from the bottom of a mold,
Before pouring the molten steel into the mold, cover the mold and shut off the mold from the atmosphere, and then blow an inert gas or nitrogen gas into the mold to reduce the oxygen concentration in the mold to 1% by mass. Keep it below,
Even then in the molten steel injection into the mold interior to maintain the oxygen concentration in the internal template atmosphere by blowing cast type internal inert gas or nitrogen gas to 1% by mass or less,
And a feature that the content of each of H 2 O and CO 2 in the steel ingot coating agent added to the molten steel surface in order to break the contact of the outside air into the molten steel injected into a mold with 1 wt% or less Steel ingot casting method.
JP2009157006A 2009-07-01 2009-07-01 Steel ingot casting method Active JP5458701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157006A JP5458701B2 (en) 2009-07-01 2009-07-01 Steel ingot casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157006A JP5458701B2 (en) 2009-07-01 2009-07-01 Steel ingot casting method

Publications (2)

Publication Number Publication Date
JP2011011227A JP2011011227A (en) 2011-01-20
JP5458701B2 true JP5458701B2 (en) 2014-04-02

Family

ID=43590600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157006A Active JP5458701B2 (en) 2009-07-01 2009-07-01 Steel ingot casting method

Country Status (1)

Country Link
JP (1) JP5458701B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007278A (en) * 2013-06-26 2015-01-15 新日鐵住金株式会社 Method for producing die steel for plastic molding and die for plastic molding
CN112091187B (en) * 2020-08-31 2021-08-24 帅翼驰(河南)新材料科技有限公司 Casting device of aluminum ingot continuous casting production line
CN116673452B (en) * 2023-08-03 2024-01-26 东北大学 Method for controlling magnesium content in steel in casting process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4613515B1 (en) * 1968-02-13 1971-04-10
JPS5240435A (en) * 1975-09-26 1977-03-29 Kawasaki Steel Co Manufacture of composite metals block
JPS63157753A (en) * 1986-12-19 1988-06-30 Nippon Steel Corp Two-directional solidifying method for composite steel plate
JPH03204141A (en) * 1989-12-29 1991-09-05 Daido Steel Co Ltd Method for casting clean steel ingot

Also Published As

Publication number Publication date
JP2011011227A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
CN104694819B (en) A kind of production method of low-carbon low-silicon steel
JP5458701B2 (en) Steel ingot casting method
JP2010116611A (en) Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
TW201130989A (en) Top lance for refining, and method for refining molten iron using the same
RU2375150C2 (en) Stopper adapted for gas feeding into molten metal
Li et al. Insights into ZrO2-and Al2O3-based submerged entry nozzle clogging for the continuous casting of RE-treating sulfur resistant casing steel
CN105682827B (en) Continuous casing
JP6228524B2 (en) Continuous casting method
JP2013208641A (en) Continuous casting method
JP4042657B2 (en) Continuous casting method of steel to prevent contamination of molten steel in tundish
WO2015029106A1 (en) Continuous casting method
Park et al. Reoxidation phenomena of liquid steel in secondary refining and continuous casting processes: a review
JP2013208643A (en) Continuous casting method
JP2010116610A (en) Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
ES2328895T3 (en) STEEL DEOXIDATION PROCESS IN COLADA SPOON.
RU2380194C2 (en) Heat insulation slag-generating mixture
TWI486454B (en) Steel manufacturing method
JPWO2020004501A1 (en) Steel manufacturing method
CN106311998A (en) Preparation and application method of molten steel covering flux
JP2008050700A (en) Method for treating chromium-containing steel slag
JP3724236B2 (en) Manufacturing method of ultra-high clean ultra-low carbon steel
RU2816888C1 (en) Method of producing steel with specified limit on sulphur content
RU2681961C1 (en) Method of producing extremely low-carbon steel
KR101258776B1 (en) Manufacturing method of duplex stainless steel
JP3689375B2 (en) Flux for preventing reoxidation and continuous casting method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R151 Written notification of patent or utility model registration

Ref document number: 5458701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350