JP5457962B2 - Carbon dioxide capture material - Google Patents
Carbon dioxide capture material Download PDFInfo
- Publication number
- JP5457962B2 JP5457962B2 JP2010162517A JP2010162517A JP5457962B2 JP 5457962 B2 JP5457962 B2 JP 5457962B2 JP 2010162517 A JP2010162517 A JP 2010162517A JP 2010162517 A JP2010162517 A JP 2010162517A JP 5457962 B2 JP5457962 B2 JP 5457962B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- porous body
- capturing material
- capturing
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3483—Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Description
本発明は、二酸化炭素を捕捉するための材料に関する。 The present invention relates to a material for capturing carbon dioxide.
温室効果ガスの排出による地球温暖化が世界的な問題となっている。 Global warming due to greenhouse gas emissions has become a global problem.
温室効果ガスには、二酸化炭素(CO2)、メタン(CH4)、フロン類(CFCs)等がある。影響が最も大きいものは二酸化炭素であり、排出量の削減が緊急の課題となっている。上記課題の解決策としては、化学吸収法、物理吸収法、膜分離法、吸収分離法などがあるが、その中でも特に効率よくCO2を回収できる材料の必要性が高まってきている。
特許文献1には、Si/Al原子比が1.0〜1.5のA型もしくはX型のゼオライトにアルカリ金属イオンまたはアルカリ土類金属イオンをイオン交換により担持した二酸化炭素吸着材が開示されている。
Greenhouse gases include carbon dioxide (CO 2 ), methane (CH 4 ), and chlorofluorocarbons (CFCs). Carbon dioxide has the greatest impact, and reducing emissions is an urgent issue. There are chemical absorption methods, physical absorption methods, membrane separation methods, absorption separation methods, and the like as solutions for the above-mentioned problems. Among them, there is an increasing need for materials that can recover CO 2 particularly efficiently.
特許文献2には、アルカリ土類金属、希土類金属及び遷移金属の複合酸化物とCO2を反応させて、炭酸塩として吸収させることを特徴とする二酸化炭素吸収材が開示されている。
特許文献3には、リチウムメタシリケートを5重量%以上、40重量%以下含むリチウムシリケートを用い、600℃で二酸化炭素を下記反応式(1)で示した反応を用いて吸収する二酸化炭素吸収材が記載されている。
Li4SiO4+CO2→Li2SiO3+Li2CO3 …反応式(1) Li 4 SiO 4 + CO 2 → Li 2 SiO 3 + Li 2 CO 3 ... Reaction formula (1)
特許文献1に記載されているゼオライトを用いた二酸化炭素吸着材は、二酸化炭素の吸着容量が混合ガス中の二酸化炭素の濃度に依存するため、安定して二酸化炭素を回収できず、また、低濃度の二酸化炭素に対しては回収効率が低い。
The carbon dioxide adsorbent using zeolite described in
また、特許文献2及び3に記載されている複合酸化物による炭酸塩の形成及び分解による二酸化炭素の吸収及び脱離を用いた二酸化炭素の分離回収法は、炭酸塩の分解温度が高く、分離回収に大きな熱量を必要とする。
本発明は、二酸化炭素の濃度が低いガスから二酸化炭素を捕捉・分離するための二酸化炭素捕捉材を提供することを目的とする。
In addition, the carbon dioxide separation and recovery method using carbon dioxide absorption and desorption by the formation and decomposition of carbonate by the composite oxide described in
An object of the present invention is to provide a carbon dioxide capturing material for capturing and separating carbon dioxide from a gas having a low carbon dioxide concentration.
本発明の二酸化炭素捕捉材は、細孔容積分布のピーク細孔径が1.5〜10nmのセリウム酸化物を含有する多孔体を含み、二酸化炭素を含有するガスから二酸化炭素を捕捉・分離するものである。 The carbon dioxide capturing material of the present invention includes a porous body containing a cerium oxide having a pore volume distribution with a peak pore diameter of 1.5 to 10 nm, and captures and separates carbon dioxide from a gas containing carbon dioxide. It is.
本発明によれば、濃度が5体積%以下の二酸化炭素を効率よく捕捉する二酸化炭素捕捉材を提供できる。 According to the present invention, it is possible to provide a carbon dioxide capturing material that efficiently captures carbon dioxide having a concentration of 5% by volume or less.
本発明者は、上記課題について鋭意検討した結果、細孔容積分布のピーク細孔径が1.5〜10nmのCe酸化物(セリウム酸化物)を含有する多孔体である二酸化炭素捕捉材を用いることにより、効率よく二酸化炭素を捕捉できることを見出した。これは、細孔径が1.5nm未満である場合、多孔体の内部に二酸化炭素が拡散しにくく、表面上の塩基点を効率的に使用できず、細孔径が10nmを超える場合、二酸化炭素と多孔体の表面との接触効率が減少するためと考えている。 As a result of intensive studies on the above problems, the present inventor uses a carbon dioxide capturing material which is a porous body containing Ce oxide (cerium oxide) having a peak pore diameter of 1.5 to 10 nm in the pore volume distribution. Thus, it was found that carbon dioxide can be captured efficiently. This is because when the pore diameter is less than 1.5 nm, carbon dioxide is difficult to diffuse inside the porous body, the base points on the surface cannot be used efficiently, and when the pore diameter exceeds 10 nm, carbon dioxide and This is thought to be due to a decrease in contact efficiency with the surface of the porous body.
細孔容積分布のピーク細孔径の更に望ましい範囲は、1.5〜5nmである。 A more desirable range of the peak pore diameter of the pore volume distribution is 1.5 to 5 nm.
また、前記多孔体に第二成分としてNa、Mg、Y、La及びSmからなる群から選ばれた少なくとも一種類の元素を添加することにより、更に効率よく二酸化炭素を捕捉できることを見出した。これは、Ce酸化物がこれらの元素と複合酸化物を形成することにより、塩基点が増加するためと考えている。 Further, it has been found that carbon dioxide can be captured more efficiently by adding at least one element selected from the group consisting of Na, Mg, Y, La and Sm as the second component to the porous body. This is considered to be because the base point increases when Ce oxide forms a complex oxide with these elements.
さらに、Na、Mg、Y、La及びSmからなる群から選ばれた少なくとも一種類の元素の含有量は、Ceに対するモル比で0.1〜10であることが望ましく、特に、0.1〜1である場合に効率的に二酸化炭素を捕捉できる。 Furthermore, the content of at least one element selected from the group consisting of Na, Mg, Y, La and Sm is preferably 0.1 to 10 in terms of a molar ratio to Ce, When it is 1, carbon dioxide can be captured efficiently.
第二成分の含有量は、モル比で0.1未満の場合、第二成分の効果が低く、10を超えると構造が不安定になり、比表面積が低くなると考えている。 When the molar ratio of the second component is less than 0.1, the effect of the second component is low, and when it exceeds 10, the structure becomes unstable and the specific surface area becomes low.
前記多孔体の比表面積が30m2/g以上である場合、更に効率的に二酸化炭素を捕捉できる。これは、酸化物表面上に露出する塩基点が増加するためと考えている。前記多孔体の比表面積は、50m2/g以上であることが特に望ましい。 When the specific surface area of the porous body is 30 m 2 / g or more, carbon dioxide can be captured more efficiently. This is thought to be due to an increase in the number of base sites exposed on the oxide surface. As for the specific surface area of the said porous body, it is especially desirable that it is 50 m < 2 > / g or more.
前記多孔体中に含まれる塩素の量が3重量%以下である場合、効率的に二酸化炭素を捕捉できる。1重量%以下である場合、更に効率的に二酸化炭素を捕捉でき、0.01重量%以下である場合、特に効率的に二酸化炭素を捕捉できる。これは、塩素による塩基点の被毒を抑えるためと考えている。 When the amount of chlorine contained in the porous body is 3% by weight or less, carbon dioxide can be captured efficiently. When it is 1% by weight or less, carbon dioxide can be captured more efficiently, and when it is 0.01% by weight or less, carbon dioxide can be captured particularly efficiently. This is considered to suppress poisoning of base points by chlorine.
これらの多孔体の調製方法としては、例えば、含浸法、混練法、共沈法、ゾルゲル法、イオン交換法、蒸着法などの物理的調製方法や化学反応を利用した調製方法などを用いることができる。中でも、化学反応を利用した調製方法を用い、酸素を含むガス中で300℃以上の高温で焼成することで捕捉材の結晶性が高くなり、二酸化炭素捕捉能が高まる。
前記多孔体の出発原料としては、硝酸化合物、塩化物、酢酸化合物、錯体化合物、水酸化物、炭酸化合物(炭酸塩)、有機化合物などの種々の化合物、金属、金属酸化物を用いることができる。
前記多孔体をアルミナ(Al2O3)、シリカ(SiO2)、ゼオライトなどの多孔体に担持してもよい。この場合、含浸法、混練法、共沈法、ゾルゲル法、イオン交換法、蒸着法などの物理的調製方法や化学反応を利用した調製方法などを用いることができる。中でも、化学反応を利用した調製方法を用いることにより、担体と二酸化炭素捕捉材成分との結合が強固になり、シンタリング等を防止できる。
As a preparation method of these porous bodies, for example, a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, a vapor deposition method, or a preparation method using a chemical reaction may be used. it can. Among these, by using a preparation method using a chemical reaction and baking at a high temperature of 300 ° C. or higher in a gas containing oxygen, the crystallinity of the capturing material is increased, and the carbon dioxide capturing ability is increased.
As the starting material of the porous body, various compounds such as nitric acid compounds, chlorides, acetic acid compounds, complex compounds, hydroxides, carbonate compounds (carbonates), organic compounds, metals, metal oxides can be used. .
The porous body may be supported on a porous body such as alumina (Al 2 O 3 ), silica (SiO 2 ), or zeolite. In this case, a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, or a vapor deposition method, a preparation method using a chemical reaction, or the like can be used. Among these, by using a preparation method using a chemical reaction, the bond between the carrier and the carbon dioxide capturing material component becomes strong, and sintering and the like can be prevented.
上記の二酸化炭素捕捉材の形状は、用途に応じて適宜調整できる。例えば、コージェライト、SiC(炭化ケイ素)、ステンレス鋼等の各種材料で形成されたハニカム構造体に、上記の二酸化炭素捕捉材をコーティングして得られるハニカム形状をはじめ、ペレット状、板状、粒状、粉末状などが挙げられる。ハニカム形状の場合、その基材はコージェライトが最適であるが、二酸化炭素捕捉材の温度が高まるおそれがある場合には、二酸化炭素捕捉材の成分と反応しにくい基材、例えばFeを主成分とするメタルハニカム等の基材を用いることが好ましい。また、多孔体、及び二酸化炭素捕捉材の成分のみを用いてハニカムを形成しても良い。 The shape of the carbon dioxide capturing material can be appropriately adjusted according to the application. For example, the honeycomb structure obtained by coating the above carbon dioxide capturing material on the honeycomb structure formed of various materials such as cordierite, SiC (silicon carbide), stainless steel, etc., pellets, plates, granules And powder form. In the case of the honeycomb shape, cordierite is optimal as the base material. It is preferable to use a base material such as a metal honeycomb. Moreover, you may form a honeycomb using only the component of a porous body and a carbon dioxide capture material.
二酸化炭素捕捉材は、どのような温度で使用しても良いが、600℃以下であることが好ましい。二酸化炭素捕捉材の温度が600℃以上である場合、シンタリングにより比表面積が低下する等、二酸化炭素捕捉材の性能が低下する。また、二酸化炭素を捕捉する際は、0〜100℃の温度で使用することが好ましい。二酸化炭素の捕捉を促進できるからである。 The carbon dioxide capturing material may be used at any temperature, but is preferably 600 ° C. or lower. When the temperature of the carbon dioxide capturing material is 600 ° C. or higher, the performance of the carbon dioxide capturing material is deteriorated, for example, the specific surface area is decreased by sintering. Moreover, when capturing carbon dioxide, it is preferably used at a temperature of 0 to 100 ° C. This is because the capture of carbon dioxide can be promoted.
上記二酸化炭素捕捉材は、二酸化炭素を1〜5体積%含有する混合ガスから二酸化炭素を捕捉することができる。混合ガスの成分は、酸素、窒素、水、窒素酸化物、硫黄酸化物などが挙げられるが、塩基点の被毒を抑制するため、二酸化炭素以外の酸性ガスの含有量が低いことが望ましい。 The carbon dioxide capturing material can capture carbon dioxide from a mixed gas containing 1 to 5% by volume of carbon dioxide. Examples of the components of the mixed gas include oxygen, nitrogen, water, nitrogen oxides, sulfur oxides, and the like, but it is desirable that the content of acidic gases other than carbon dioxide is low in order to suppress poisoning at the base point.
本発明によれば、濃度5体積%以下の二酸化炭素を比較的低温で効率よく捕捉する二酸化炭素捕捉材を提供できる。 According to the present invention, it is possible to provide a carbon dioxide capturing material that efficiently captures carbon dioxide having a concentration of 5% by volume or less at a relatively low temperature.
以下、実施例を用いて詳細に説明する。 Hereinafter, it demonstrates in detail using an Example.
界面活性剤としてPluronic−123(商品名、BASF社製:(HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20)H)1gをビーカー内に仕込み、10gのエタノールを加え、攪拌して前記界面活性剤を溶解した。これに塩化セリウム七水和物 (CeCl3・7H2O)8mmolを加え、10分間攪拌して溶解した。攪拌後、得られたゾル溶液をシャーレーに移し、空気中で60℃の温度に保たれたオーブンの中で7日間熟成し、ゲルを形成させた。 1 g of Pluronic-123 (trade name, manufactured by BASF: (HO (CH 2 CH 2 O) 20 (CH 2 CH (CH 3 ) O) 70 (CH 2 CH 2 O) 20 ) H) H) as a surfactant 10 g of ethanol was added and stirred to dissolve the surfactant. This cerium chloride heptahydrate and (CeCl 3 · 7H 2 O) 8mmol added and dissolved with stirring for 10 minutes. After stirring, the obtained sol solution was transferred to a petri dish and aged for 7 days in an oven maintained at a temperature of 60 ° C. in air to form a gel.
次いで、得られたゲルを真空中350℃で10時間の加熱を行った後、空気雰囲気下の電気炉でサンプルを300℃で10時間焼成することにより、メソポーラス酸化セリウムを得た。このメソポーラス酸化セリウムを二酸化炭素捕捉材とした。 Next, the obtained gel was heated in a vacuum at 350 ° C. for 10 hours, and then the sample was baked in an electric furnace in an air atmosphere at 300 ° C. for 10 hours to obtain mesoporous cerium oxide. This mesoporous cerium oxide was used as a carbon dioxide scavenger.
界面活性剤としてPluronic−1231gをビーカー内に仕込み、10gのエタノールを加え、一時間攪拌して前記界面活性剤を溶解した。これに塩化セリウム水和物(CeCl3・H2O)4mmolと塩化ランタン(LaCl3)4mmolとを加え、30分間攪拌して溶解した。攪拌後、得られたゾル溶液をシャーレーに移し、空気中で40℃の温度に保たれたオーブンの中で7日間熟成し、ゲルを形成させた。 Pluronic-1231g as a surfactant was charged into a beaker, 10g of ethanol was added, and the mixture was stirred for 1 hour to dissolve the surfactant. To this, 4 mmol of cerium chloride hydrate (CeCl 3 .H 2 O) and 4 mmol of lanthanum chloride (LaCl 3 ) were added and dissolved by stirring for 30 minutes. After stirring, the obtained sol solution was transferred to a petri dish and aged for 7 days in an oven kept at a temperature of 40 ° C. in air to form a gel.
次いで、得られたゲルを空気雰囲気下の電気炉を用いて500℃で5時間焼成することにより、メソポーラスセリウムランタン複合酸化物を得た。このメソポーラスセリウムランタン複合酸化物を二酸化炭素捕捉材とした。 Next, the obtained gel was baked at 500 ° C. for 5 hours using an electric furnace in an air atmosphere to obtain a mesoporous cerium lanthanum composite oxide. This mesoporous cerium lanthanum composite oxide was used as a carbon dioxide scavenger.
実施例2において、塩化ランタンの代わりに塩化イットリウム(YCl3)4mmolを加えたこと以外は同様の調製法でメソポーラスセリウムイットリウム複合酸化物を得た。このメソポーラスセリウムイットリウム複合酸化物を二酸化炭素捕捉材とした。 In Example 2, a mesoporous cerium yttrium composite oxide was obtained by the same preparation method except that 4 mmol of yttrium chloride (YCl 3 ) was added instead of lanthanum chloride. This mesoporous cerium yttrium composite oxide was used as a carbon dioxide scavenger.
実施例2において、塩化ランタンの代わりに塩化サマリウム(SmCl3)4mmolを加えたこと以外は同様の調製法でメソポーラスセリウムサマリウム複合酸化物を得た。このメソポーラスセリウムサマリウム複合酸化物を二酸化炭素捕捉材とした。 In Example 2, mesoporous cerium samarium composite oxide was obtained by the same preparation method except that 4 mmol of samarium chloride (SmCl 3 ) was added instead of lanthanum chloride. This mesoporous cerium samarium composite oxide was used as a carbon dioxide scavenger.
実施例2において、塩化ランタンの代わりに塩化ナトリウム4mmol(NaCl)を加え、空気雰囲気下の電気炉を用いて500℃で5時間焼成させる代わりに空気雰囲気下の電気炉にて400℃で10時間焼成させたこと以外は同様の調製法でメソポーラスセリウムナトリウム複合酸化物を得た。このメソポーラスセリウムナトリウム複合酸化物を二酸化炭素捕捉材とした。 In Example 2, 4 mmol (NaCl) of sodium chloride was added in place of lanthanum chloride, and instead of firing at 500 ° C. for 5 hours using an electric furnace in an air atmosphere, the electric furnace in an air atmosphere was used at 400 ° C. for 10 hours. A mesoporous cerium sodium composite oxide was obtained by the same preparation method except that it was calcined. This mesoporous cerium sodium composite oxide was used as a carbon dioxide scavenger.
実施例5において、塩化ナトリウムの代わりに塩化マグネシウム(MgCl2)4mmolを加えたこと以外は同様の調製法でメソポーラスセリウムマグネシウム複合酸化物を得た。このメソポーラスセリウムマグネシウム複合酸化物を二酸化炭素捕捉材とした。 In Example 5, a mesoporous cerium magnesium composite oxide was obtained by the same preparation method except that 4 mmol of magnesium chloride (MgCl 2 ) was added instead of sodium chloride. This mesoporous cerium magnesium composite oxide was used as a carbon dioxide scavenger.
硝酸セリウム六水和物(Ce(NO3)3・6H2O)10mmolに対し、水1736gを加えて激しく攪拌しながら濃度28重量%のアンモニア水溶液4.4gを滴下した。12時間の攪拌の後、遠心分離によって沈着した粉末を電気炉で70℃に保ちながら12時間乾燥させた。その後、空気雰囲気下の電気炉にて500℃で5時間焼成し、セリウム酸化物を得た。このセリウム酸化物を二酸化炭素捕捉材とした。 To cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O) 10mmol, was added dropwise with vigorous stirring a concentration of 28 wt% aqueous ammonia solution 4.4g Water was added to 1736G. After stirring for 12 hours, the powder deposited by centrifugation was dried for 12 hours while maintaining the temperature at 70 ° C. in an electric furnace. Then, it baked at 500 degreeC for 5 hours with the electric furnace of an air atmosphere, and obtained cerium oxide. This cerium oxide was used as a carbon dioxide scavenger.
実施例7において硝酸セリウム六水和物を加える代わりに硝酸セリウム六水和物9mmolと硝酸サマリウム六水和物(Sm(NO3)3・6H2O)1mmolとを加えたこと以外は同様の調製法でセリウムサマリウム酸化物を得た。このセリウムサマリウム酸化物を二酸化炭素捕捉材とした。 Cerium nitrate hexahydrate 9mmol and samarium nitrate hexahydrate instead of adding cerium nitrate hexahydrate in Example 7 (Sm (NO 3) 3 · 6H 2 O) is similar except that the addition of a 1mmol Cerium samarium oxide was obtained by the preparation method. This cerium samarium oxide was used as a carbon dioxide scavenger.
実施例7において硝酸セリウム六水和物を加える代わりに硝酸セリウム六水和物7mmolと硝酸サマリウム六水和物3mmolとを加えたこと以外は同様の調製法でセリウムサマリウム酸化物を得た。このセリウム−サマリウム酸化物を二酸化炭素捕捉材とした。 A cerium samarium oxide was obtained in the same manner as in Example 7, except that 7 mmol of cerium nitrate hexahydrate and 3 mmol of samarium nitrate hexahydrate were added instead of adding cerium nitrate hexahydrate. This cerium-samarium oxide was used as a carbon dioxide scavenger.
(比較例1)
酸化マグネシウム(和光純薬工業(株)製)を二酸化炭素捕捉材とした。
(Comparative Example 1)
Magnesium oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the carbon dioxide capturing material.
(比較例2)
酸化セリウム(和光純薬工業(株)製)を二酸化炭素捕捉材とした。
(Comparative Example 2)
Cerium oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the carbon dioxide capturing material.
表1に調製した二酸化炭素捕捉材一覧を示す。 Table 1 shows a list of carbon dioxide capturing materials prepared.
(比表面積測定)
実施例1〜9及び比較例1〜2の二酸化炭素捕捉材について窒素の77Kにおける吸着等温線測定を行うことにより、比表面積及び細孔分布を測定した。
(Specific surface area measurement)
Specific surface area and pore distribution were measured by measuring adsorption isotherms of nitrogen at 77K for the carbon dioxide capturing materials of Examples 1 to 9 and Comparative Examples 1 and 2.
(二酸化炭素捕捉材の評価方法)
二酸化炭素捕捉材の性能を評価するため、次の条件で二酸化炭素捕捉量を計測した。
(Method for evaluating carbon dioxide capture material)
In order to evaluate the performance of the carbon dioxide capture material, the carbon dioxide capture amount was measured under the following conditions.
実施例1〜9及び比較例1〜2で得られた二酸化炭素捕捉材を0.5mm〜1.0mmの粒状に成型し、石英ガラス製反応管の中に固定した。石英ガラス製反応管にHeを流通させながら、二酸化炭素捕捉材の温度を500℃とすることにより、不純物を除去した。 The carbon dioxide capturing materials obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were molded into 0.5 mm to 1.0 mm granules and fixed in a quartz glass reaction tube. Impurities were removed by setting the temperature of the carbon dioxide capturing material to 500 ° C. while allowing He to flow through the reaction tube made of quartz glass.
その後、電気炉で試料温度を50℃に保ちながら二酸化炭素パルス捕捉試験を実施し、二酸化炭素の捕捉量を測定した。サンプルガスとしては、4体積%の二酸化炭素と96体積%のヘリウムとを含む混合ガスを使用し、キャリアガスとしてヘリウムガスを使用した。 Thereafter, a carbon dioxide pulse capture test was carried out while maintaining the sample temperature at 50 ° C. in an electric furnace, and the captured amount of carbon dioxide was measured. As the sample gas, a mixed gas containing 4% by volume of carbon dioxide and 96% by volume of helium was used, and helium gas was used as the carrier gas.
(含有塩素量の評価方法)
実施例4の塩素含有量をX線光電子分光により測定した。また、実施例8及び9の塩素含有量を燃焼・吸収−イオンクロマトグラフィーにより測定した。
(Evaluation method of chlorine content)
The chlorine content of Example 4 was measured by X-ray photoelectron spectroscopy. Moreover, the chlorine content of Examples 8 and 9 was measured by combustion / absorption-ion chromatography.
表2に比表面積、細孔容積のピーク細孔径及びCO2捕捉量を示す。 Table 2 shows the specific surface area, the peak pore diameter of the pore volume, and the CO 2 capture amount.
(検討結果)
実施例1〜9及び比較例1〜2の二酸化炭素捕捉材の二酸化炭素捕捉量を評価した。
(Study results)
The carbon dioxide trapping amounts of the carbon dioxide trapping materials of Examples 1 to 9 and Comparative Examples 1 and 2 were evaluated.
図1は、表2の結果をグラフに示したものであり、実施例1〜6及び比較例1〜2の比表面積と二酸化炭素捕捉量との相関を示したものである。 FIG. 1 is a graph showing the results of Table 2, and shows the correlation between the specific surface areas of Examples 1 to 6 and Comparative Examples 1 and 2 and the amount of carbon dioxide trapped.
本図から、比表面積が30m2/g以上の場合に二酸化炭素捕捉量が多くなり、比表面積が大きい二酸化炭素捕捉材ほど、二酸化炭素捕捉量が大きい傾向がわかる。したがって、比表面積の大きい多孔体を用いることにより、効率的に二酸化炭素を捕捉できることが分かる。 From this figure, it can be seen that when the specific surface area is 30 m 2 / g or more, the carbon dioxide trapping amount increases, and the carbon dioxide trapping material having a larger specific surface area tends to have a larger carbon dioxide trapping amount. Therefore, it can be seen that carbon dioxide can be efficiently captured by using a porous body having a large specific surface area.
また、表2から、細孔容積のピーク細孔径が1.5〜10nmのCe酸化物を含有する多孔体である実施例1〜9の二酸化炭素捕捉材を用いることにより、効率的に二酸化炭素を捕捉できることがわかる。 Further, from Table 2, by using the carbon dioxide capturing material of Examples 1 to 9, which is a porous body containing Ce oxide having a pore volume peak pore diameter of 1.5 to 10 nm, carbon dioxide can be efficiently produced. It can be seen that can be captured.
図2は、実施例4、8及び9の塩素含有量と二酸化炭素捕捉量との相関を示したものである。 FIG. 2 shows the correlation between the chlorine content of Examples 4, 8 and 9 and the amount of carbon dioxide trapped.
本図から、塩素含有量が0.01重量%以下である多孔体の場合に効率的に二酸化炭素を捕捉できることが分かる。 This figure shows that carbon dioxide can be efficiently captured in the case of a porous body having a chlorine content of 0.01% by weight or less.
図3は、実施例1及び4の二酸化炭素捕捉量を比較して示したものである。 FIG. 3 shows a comparison of the carbon dioxide capture amounts of Examples 1 and 4.
図4は、実施例7〜9の二酸化炭素捕捉量を比較して示したものである。 FIG. 4 shows a comparison of the carbon dioxide capture amounts of Examples 7-9.
実施例1及び7は、表1に示すように、組成がCeO2であり、Smを含まない。これに対して、実施例4、8及び9は、SmをCeに対するモル比で0.1〜1含む。 As shown in Table 1, Examples 1 and 7 have a composition of CeO 2 and do not contain Sm. On the other hand, Examples 4, 8 and 9 contain 0.1 to 1 in a molar ratio of Sm to Ce.
したがって、SmをCeに対するモル比で0.1〜1含有する二酸化炭素捕捉材を使用する方が、二酸化炭素捕捉量が大きいことがわかる。すなわち、Ceとのモル比でSmを0.1〜1添加することにより、効率的に二酸化炭素を捕捉できる。 Therefore, it is understood that the amount of carbon dioxide trapped is larger when a carbon dioxide trapping material containing 0.1 to 1 of Sm in molar ratio to Ce is used. That is, carbon dioxide can be efficiently captured by adding 0.1 to 1 of Sm in a molar ratio with Ce.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010162517A JP5457962B2 (en) | 2010-07-20 | 2010-07-20 | Carbon dioxide capture material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010162517A JP5457962B2 (en) | 2010-07-20 | 2010-07-20 | Carbon dioxide capture material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012024648A JP2012024648A (en) | 2012-02-09 |
JP5457962B2 true JP5457962B2 (en) | 2014-04-02 |
Family
ID=45778265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010162517A Active JP5457962B2 (en) | 2010-07-20 | 2010-07-20 | Carbon dioxide capture material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5457962B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130101936A (en) * | 2012-03-06 | 2013-09-16 | 삼성전자주식회사 | Adsorbent for carbon dioxide, method preparing the same and capture module for carbon dioxide |
EP3287185A4 (en) * | 2015-03-26 | 2018-12-26 | Hitachi Chemical Company, Ltd. | Co2 concentration reducing device |
WO2017057756A1 (en) * | 2015-10-02 | 2017-04-06 | 株式会社三徳 | Carbon dioxide adsorbent material and molded body containing same |
JPWO2017199919A1 (en) * | 2016-05-16 | 2019-03-14 | 日立化成株式会社 | Adsorbent, carbon dioxide removal method, carbon dioxide remover, and air conditioner |
CN109153000A (en) * | 2016-05-16 | 2019-01-04 | 日立化成株式会社 | Adsorbent, the removing method of carbon dioxide, carbon dioxide removing device and carbon dioxide remove system |
JPWO2017199920A1 (en) * | 2016-05-16 | 2019-03-14 | 日立化成株式会社 | Air conditioner, air conditioning system, carbon dioxide removal method, adsorbent and carbon dioxide remover |
WO2017199917A1 (en) * | 2016-05-16 | 2017-11-23 | 日立化成株式会社 | Adsorbent, method for producing same, method for removing carbon dioxide, device for removing carbon dioxide, and air conditioner |
JPWO2018150582A1 (en) * | 2017-02-20 | 2019-12-12 | 日立化成株式会社 | Air conditioning apparatus and air conditioning system |
TW202104669A (en) | 2019-04-23 | 2021-02-01 | 日商出光興產股份有限公司 | Electrode, solid electrolyte electrolysis device, and synthetic gas production method |
JPWO2022145217A1 (en) * | 2020-12-28 | 2022-07-07 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3816662B2 (en) * | 1998-03-18 | 2006-08-30 | 株式会社東芝 | Carbon dioxide absorbing member |
JP4596233B2 (en) * | 2004-02-12 | 2010-12-08 | 株式会社豊田中央研究所 | Mesoporous material, air purification material, and method for producing mesoporous material |
FR2931699B1 (en) * | 2008-05-28 | 2011-02-11 | Rhodia Operations | PROCESS FOR TREATING GAS TO DECREASE CARBON DIOXIDE CONTENT |
-
2010
- 2010-07-20 JP JP2010162517A patent/JP5457962B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012024648A (en) | 2012-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5457962B2 (en) | Carbon dioxide capture material | |
JP5589996B2 (en) | Carbon dioxide capture material | |
JP6317066B2 (en) | Carbon dioxide adsorbent, method for producing the same, and carbon dioxide collecting module including the same | |
JP5706339B2 (en) | Composite oxide, method for producing the same and exhaust gas purification catalyst | |
JP6242807B2 (en) | Composite oxide, method for producing the same, and catalyst for exhaust gas purification | |
JP2016523800A (en) | Molded ceramic substrate composition for catalyst integration | |
JP6223354B2 (en) | Composite oxide, method for producing the same, and catalyst for purification of exhaust gas | |
JP3938212B2 (en) | Carbon dioxide absorbent, carbon dioxide separation method using the same, and carbon dioxide separator | |
CN105903458A (en) | Preparation method and application of calcium-based adsorbent | |
JP5681460B2 (en) | Carbon dioxide capture material | |
JP7461364B2 (en) | Composite oxide powder containing cerium and zirconium elements, catalytic composition for exhaust gas purification using the same, and method for producing the same | |
JP6392859B2 (en) | Molded ceramic substrate composition for catalyst integration | |
JP2016526006A (en) | Molded ceramic substrate composition for catalyst integration | |
JP2008080211A (en) | Carbon dioxide absorber, carbon dioxide separating method using the same, and carbon dioxide separation apparatus | |
KR102376491B1 (en) | Adsorbent for carbon dioxide, method preparing the same and capture module for carbon dioxide | |
KR102713845B1 (en) | A porous acidic gas adsorbent combined with a metal oxide and an acidic gas adsorption method using the same | |
JP6149757B2 (en) | Engine exhaust gas purification catalyst material and particulate filter | |
JP2008104992A (en) | Carbon dioxide absorber, carbon dioxide separation method and carbon dioxide separation apparatus using the same | |
WO2021193851A1 (en) | Catalyst, honeycomb structure, and exhaust gas purification device | |
WO2022030593A1 (en) | Adsorption method and mesoporous alumina for use in said method | |
JP2020195993A (en) | Adsorption agent and production method thereof, adsorbent and production method thereof, and method for removing carbon dioxide | |
JP2008142635A (en) | Carbon dioxide gas-absorbing material, and carbon dioxide gas separation method and apparatus using the gas-absorbing material | |
KR20200026228A (en) | Adsorbent for carbon dioxide, method preparing the same and capture module for carbon dioxide | |
JP2018176054A (en) | Exhaust gas purification catalyst, and exhaust gas purification filter, and exhaust gas purification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121016 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121217 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130618 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130918 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20131031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5457962 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S801 | Written request for registration of abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311801 |
|
ABAN | Cancellation of abandonment | ||
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |