JP4596233B2 - Mesoporous material, air purification material, and method for producing mesoporous material - Google Patents

Mesoporous material, air purification material, and method for producing mesoporous material Download PDF

Info

Publication number
JP4596233B2
JP4596233B2 JP2004035140A JP2004035140A JP4596233B2 JP 4596233 B2 JP4596233 B2 JP 4596233B2 JP 2004035140 A JP2004035140 A JP 2004035140A JP 2004035140 A JP2004035140 A JP 2004035140A JP 4596233 B2 JP4596233 B2 JP 4596233B2
Authority
JP
Japan
Prior art keywords
mesoporous material
mesoporous
present
oxide
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004035140A
Other languages
Japanese (ja)
Other versions
JP2005225705A (en
Inventor
アニール シンハ
賢一郎 鈴木
和広 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004035140A priority Critical patent/JP4596233B2/en
Publication of JP2005225705A publication Critical patent/JP2005225705A/en
Application granted granted Critical
Publication of JP4596233B2 publication Critical patent/JP4596233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、メソ多孔体、それを用いた空気浄化材料、並びにそのメソ多孔体の製造方法に関する。   The present invention relates to a mesoporous material, an air purification material using the mesoporous material, and a method for producing the mesoporous material.

従来、様々な物質の吸着、貯蔵等のためにメソ多孔体についての研究がなされており、吸着材、分離材、触媒担体等の用途への適用が検討されている。かかるメソ多孔体として、例えば、界面活性剤の濃厚溶液中でシリカを重合して得られるシリカメソ多孔体MCM−41(C. T. Kresge et al., J. Am. Chem. Soc.,
114, 10834(1992):非特許文献1)や、層状粘土鉱物の一種であるカネマイトに界面活性剤を作用させて得られるシリカメソ多孔体FSM−16(特開平10−68719号公報:特許文献1)の合成例が報告されているが、これらのメソ多孔体は一次元チャンネル構造を有する細孔が六方構造に配列したものであった。このような一次元チャンネル構造を有するメソ多孔体は、その細孔構造から吸着物質や反応基質が細孔内に拡散しにくく、得られる吸着性能や触媒性能が未だ十分なものではなかった。
Conventionally, research on mesoporous materials for adsorption and storage of various substances has been conducted, and application to applications such as adsorbents, separation materials, and catalyst carriers has been studied. As such a mesoporous material, for example, silica mesoporous material MCM-41 obtained by polymerizing silica in a concentrated solution of a surfactant (CT Kresge et al., J. Am. Chem. Soc.,
114, 10834 (1992): Non-Patent Document 1) and silica mesoporous material FSM-16 obtained by allowing a surfactant to act on Kanemite, which is a kind of layered clay mineral (Japanese Patent Laid-Open No. 10-68719): Patent Document 1 However, these mesoporous materials have pores having a one-dimensional channel structure arranged in a hexagonal structure. The mesoporous material having such a one-dimensional channel structure is difficult to diffuse the adsorbing substance and the reaction substrate into the pores due to the pore structure, and the obtained adsorption performance and catalytic performance are not yet sufficient.

また、米国特許第5098684号公報(特許文献2)には、MCM−41と共に3次元チャンネル構造を有するシリカメソ多孔体であるMCM−48が開示されている。しかしながら、MCM−48は、3次元チャンネル構造を有しているものの、トンネル構造の細孔同士が相互に連結しない3D−Cubic Ia3d構造であるため、その細孔内における吸着物質等の拡散速度は必ずしも十分なものではなかった。   In addition, US Pat. No. 5,098,684 (Patent Document 2) discloses MCM-48, which is a silica mesoporous material having a three-dimensional channel structure together with MCM-41. However, although MCM-48 has a three-dimensional channel structure, it has a 3D-Cubic Ia3d structure in which the pores of the tunnel structure are not connected to each other. It was not always enough.

さらに、特開2003−221209号公報(特許文献3)には、3次元チャンネル構造である3D−Cubic Fm3m構造を有する金属酸化物からなるメソ多孔体が開示されている。しかしながら、Fm3m構造を有する金属酸化物からなるメソ多孔体であっても、現実には細孔径の拡大に限界があり、特に建築資材等から空気中に発散されるアルデヒド類、ベンゼン、トルエン、塩化ビニル等のVOCのような有害物質に対してその細孔内における吸着物質等の拡散速度は必ずしも十分なものではなかった。
特開平10−68719号公報 米国特許第5098684号公報 特開2003−221209号公報 C.T.Kresge et al.,J.Am.Chem.Soc.,114,10834(1992)
Furthermore, Japanese Patent Application Laid-Open No. 2003-221209 (Patent Document 3) discloses a mesoporous material made of a metal oxide having a 3D-Cubic Fm3m structure which is a three-dimensional channel structure. However, even a mesoporous material made of a metal oxide having an Fm3m structure has a limit to the enlargement of the pore diameter, and in particular, aldehydes, benzene, toluene, The diffusion rate of adsorbed substances and the like in the pores is not always sufficient for harmful substances such as vinyl and other VOCs.
Japanese Patent Laid-Open No. 10-68719 US Pat. No. 5,098,684 JP 2003-221209 A CTKresge et al., J. Am. Chem. Soc., 114, 10834 (1992)

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、吸着物質や反応基質を細孔内に速やかに拡散することができ、吸着材、分離材、触媒担体等として有用であり、特に空気中のVOC等の有害物質を除去する空気浄化材料として優れているメソ多孔体及びその製造方法、並びにそのメソ多孔体を用いた空気浄化材料を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and can quickly diffuse an adsorbed substance and a reaction substrate into pores, and is useful as an adsorbent, a separating material, a catalyst carrier, and the like. In particular, an object of the present invention is to provide a mesoporous material excellent as an air purification material for removing harmful substances such as VOC in the air, a method for producing the same, and an air purification material using the mesoporous material.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、水分含有量が低い非水溶媒中に特定のブロックコポリマー型のポリアルキレンオキサイド界面活性剤と特定の金属塩とを添加して多孔体の前駆体を生成させることにより、従来は得ることができなかった中心細孔直径2〜10nmの細孔が相互に連結して3D−Cubic Im3m構造の3次元チャンネルを形成している金属酸化物からなるメソ多孔体が得られるようになり、そのようなメソ多孔体によれば前記目的が達成されることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have added a specific block copolymer type polyalkylene oxide surfactant and a specific metal salt in a non-aqueous solvent having a low water content. By generating a porous precursor, pores having a central pore diameter of 2 to 10 nm, which could not be obtained conventionally, are interconnected to form a 3D channel having a 3D-Cubic Im3m structure. A mesoporous material made of a metal oxide has been obtained, and it has been found that the object can be achieved by such a mesoporous material, and the present invention has been completed.

すなわち、本発明のメソ多孔体は、金属酸化物からなるメソ多孔体であって、中心細孔直径2〜10nmの細孔が相互に連結して3D−Cubic Im3m構造の3次元チャンネルを形成しており、
前記金属酸化物が、コバルト、銅、クロム及びセリウムからなる群より選ばれる少なくとも1種の金属の酸化物であること特徴とするものである。
That is, the mesoporous material of the present invention is a mesoporous material made of a metal oxide, and pores having a central pore diameter of 2 to 10 nm are interconnected to form a 3D channel having a 3D-Cubic Im3m structure. And
Wherein the metal oxide, cobalt, copper, characterized in that an oxide of at least one metal selected from the group consisting of chromium and cerium.

また、本発明の空気浄化材料は、前記本発明のメソ多孔体からなることを特徴とするものである。   The air purification material of the present invention is characterized by comprising the mesoporous material of the present invention.

なお、前記本発明のメソ多孔体が吸着材、分離材、触媒担体等として優れた性能を発揮し、また、前記本発明の空気浄化材料が空気中のVOC等の有害物質に対する除去性能に優れたものとなる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明のメソ多孔体においては、中心細孔直径2〜10nmの細孔相互の連結により3D−Cubic Im3m構造の3次元チャンネルが形成されており、細孔構造が比較的シンプルでかつ細孔径の拡大も可能であるため、吸着物質や反応基質が細孔構造による制限を受けずに細孔内に速やかに拡散することができ、しかも細孔構造がケージ(Cage)構造を有しているため吸着物質や反応基質が再放出され難くなっているためと本発明者らは推察する。   The mesoporous material of the present invention exhibits excellent performance as an adsorbent, separation material, catalyst carrier, etc., and the air purification material of the present invention is excellent in removal performance against harmful substances such as VOC in the air. The reason for this is not necessarily clear, but the present inventors speculate as follows. That is, in the mesoporous material of the present invention, a 3D channel having a 3D-Cubic Im3m structure is formed by connecting pores having a central pore diameter of 2 to 10 nm, and the pore structure is relatively simple and fine. Since the pore size can be expanded, the adsorbent and reaction substrate can diffuse quickly into the pore without being restricted by the pore structure, and the pore structure has a cage structure. Therefore, the present inventors infer that the adsorbed substance and the reaction substrate are hardly re-released.

また、本発明のメソ多孔体の製造方法は、
水分含有量が1重量%以下である非水溶媒中に、下記一般式(1):
HO(CHCHO)(CHCH(CH)O)(CHCHO)H (1)
[式(1)中、aは20〜150、bは20〜100、cは20〜150の整数をそれぞれ表す]
及び/又は下記一般式(2):
HO(CHCHO)(CHCHCH(CH)O)H (2)
[式(2)中、xは30〜60、yは50〜150の整数をそれぞれ表す]
で表されるブロックコポリマー型の界面活性剤と、コバルト、銅、クロム及びセリウムからなる群より選ばれる少なくとも1種の金属の硝酸塩、硫酸塩、ハロゲン化物及び酢酸塩からなる群より選ばれる少なくとも1種の金属塩とを添加し、多孔体前駆体を生成させる第一の工程と、
前記多孔体前駆体から前記界面活性剤を除去してメソ多孔体を得る第二の工程と、
を含むことを特徴とする、上記本発明のメソ多孔体の製造方法である。
The method for producing a mesoporous material of the present invention includes:
In a non-aqueous solvent having a water content of 1% by weight or less, the following general formula (1):
HO (CH 2 CH 2 O) a (CH 2 CH (CH 3 ) O) b (CH 2 CH 2 O) c H (1)
[In Formula (1), a represents an integer of 20 to 150, b represents 20 to 100, and c represents an integer of 20 to 150, respectively]
And / or the following general formula (2):
HO (CH 2 CH 2 O) x (CH 2 CHCH (CH 3) O) y H (2)
[In Formula (2), x represents an integer of 30 to 60, and y represents an integer of 50 to 150, respectively]
And at least one selected from the group consisting of nitrates, sulfates, halides and acetates of at least one metal selected from the group consisting of cobalt, copper, chromium and cerium A first step of adding a seed metal salt to produce a porous precursor;
A second step of obtaining the mesoporous material by removing the surfactant from the porous material precursor;
It is the manufacturing method of the mesoporous material of the said invention characterized by including this .

かかる本発明のメソ多孔体の製造方法により、従来は得ることができなかった前記本発明のメソ多孔体、すなわち中心細孔直径2〜10nmの細孔が相互に連結して3D−Cubic Im3m構造の3次元チャンネルを形成している金属酸化物からなるメソ多孔体が得られるようになる。なお、前記本発明のメソ多孔体の製造方法により3D−Cubic Im3m構造の3次元チャンネルを形成するメソ多孔体が得られるようになる理由は定かではないが、界面活性剤である特定のブロックコポリマー型のポリアルキレンオキサイドと特定の金属塩に由来する金属酸化物前駆体との共同的な組織化が重要であると本発明者らは推察する。   According to the method for producing a mesoporous material of the present invention, the mesoporous material of the present invention that could not be obtained conventionally, that is, a pore having a central pore diameter of 2 to 10 nm is interconnected to form a 3D-Cubic Im3m structure. Thus, a mesoporous material made of a metal oxide forming the three-dimensional channel can be obtained. The reason why a mesoporous material that forms a three-dimensional channel having a 3D-Cubic Im3m structure can be obtained by the method for producing a mesoporous material of the present invention is not clear, but a specific block copolymer that is a surfactant. The inventors speculate that the joint organization of a type of polyalkylene oxide and a metal oxide precursor derived from a specific metal salt is important.

なお、本発明でいう「3D−Cubic Im3m」とは、空間群の表記法に基づいて決定されるものであり、細孔構造の対称性を表すものである。そして、このような3D−Cubic Im3m構造の3次元チャンネルはX線回折分析法によるX線回折パターンの測定により確認することができ、本発明のメソ多孔体においては、2Θ=0.5〜3°の領域に(110)、(200)、(211)、(310)、(222)に指数付けされる5つの回折ピークが認められることが好ましい。すなわち、このような5つの回折ピークはdスペース比が√2:√4:√6:√10:√12であることを示すことから、3D−Cubic Im3m構造であることが確認されることとなる。   The “3D-Cubic Im3m” in the present invention is determined based on the space group notation and represents the symmetry of the pore structure. And the three-dimensional channel of such 3D-Cubic Im3m structure can be confirmed by measuring the X-ray diffraction pattern by the X-ray diffraction analysis method. In the mesoporous material of the present invention, 2Θ = 0.5-3 It is preferable that five diffraction peaks indexed by (110), (200), (211), (310), (222) are observed in the region of °. That is, since these five diffraction peaks indicate that the d-space ratio is √2: √4: √6: √10: √12, it is confirmed that the structure has a 3D-Cubic Im3m structure. Become.

本発明によれば、吸着物質や反応基質を細孔内に速やかに拡散することができ、吸着材、分離材、触媒担体等として優れた性能を発揮するメソ多孔体、並びに、空気中のVOC等の有害物質に対する除去性能に優れた空気浄化材料を提供することが可能となる。   According to the present invention, a mesoporous material that can quickly diffuse an adsorbent and a reaction substrate into pores and exhibits excellent performance as an adsorbent, a separation material, a catalyst carrier, etc., and a VOC in the air Thus, it is possible to provide an air purification material having excellent removal performance against harmful substances such as the above.

また、本発明のメソ多孔体の製造方法によれば、従来は得ることができなかった前記本発明のメソ多孔体、すなわち中心細孔直径2〜10nmの細孔が相互に連結して3D−Cubic Im3m構造の3次元チャンネルを形成している金属酸化物からなるメソ多孔体を得ることが可能となる。さらに、本発明のメソ多孔体の製造方法においては、界面活性剤として環境に対して安全なノニオン系界面活性剤である特定のブロックコポリマー型のポリアルキレンオキサイドを用いているため、環境負荷物質の排出が十分に防止される。   In addition, according to the method for producing a mesoporous material of the present invention, the mesoporous material of the present invention that could not be obtained conventionally, that is, a pore having a central pore diameter of 2 to 10 nm is connected to each other to form a 3D- It becomes possible to obtain a mesoporous material made of a metal oxide forming a three-dimensional channel having a cubic Im3m structure. Furthermore, in the method for producing a mesoporous material of the present invention, since a specific block copolymer type polyalkylene oxide which is a nonionic surfactant that is safe for the environment is used as the surfactant, Emission is sufficiently prevented.

以下、本発明のメソ多孔体、その製造方法、並びにそれを用いた空気浄化材料について、それらの好適な実施形態に即して詳細に説明する。   Hereinafter, the mesoporous material, the production method thereof, and the air purification material using the mesoporous material of the present invention will be described in detail according to preferred embodiments thereof.

(メソ多孔体)
本発明のメソ多孔体は、金属酸化物からなるメソ多孔体であって、中心細孔直径2〜10nmの細孔が相互に連結して3D−Cubic Im3m構造の3次元チャンネルを形成しているものである。本発明のメソ多孔体は、このような細孔構造を有しているため、細孔内に吸着物質や反応基質を拡散させる際における拡散抵抗が非常に小さいものとなり、チャンネル同士が相互に交差していないMCM−48やチャンネルの細孔径が実際には小さい従来の3次元チャンネルを有するメソ多孔体に比べて、吸着物質や反応基質の拡散速度が著しく向上する。
(Mesoporous material)
The mesoporous material of the present invention is a mesoporous material made of a metal oxide, and pores having a central pore diameter of 2 to 10 nm are connected to each other to form a three-dimensional channel having a 3D-Cubic Im3m structure. Is. Since the mesoporous material of the present invention has such a pore structure, the diffusion resistance when the adsorbed substance and the reaction substrate are diffused into the pores is extremely small, and the channels cross each other. The diffusion rate of the adsorbed substance and the reaction substrate is remarkably improved as compared with MCM-48 that is not used and a mesoporous material having a conventional three-dimensional channel in which the pore diameter of the channel is actually small.

発明にかかる金属酸化物に含まれる金属元素としては、コバルト、銅、クロム及びセリウムが挙げられる。 Examples of the metal element contained in the metal oxide according to the present invention include cobalt, copper, chromium and cerium .

また、このような金属元素として遷移金属を用いると、本発明のメソ多孔体の骨格(フレームワーク)が触媒能を有する金属の酸化物で構成されることによって特異な吸着特性や触媒活性が奏され易くなる傾向にあることから好ましく、中でも、コバルト、銅、クロム及びセリウムを用いることがより好ましい。なお、本発明にかかる金属酸化物は、上記の金属元素のうちの1種のみを含有するものであってもよく、2種以上の金属元素を含む複合酸化物であってもよい。 Moreover, the use of transition metals as the metal element, mesoporous skeleton (framework) specificity by is composed of an oxide of a metal having a catalytic capability adsorption properties and catalytic activity of the present invention It is preferable because it tends to be played, and among these, it is more preferable to use cobalt, copper, chromium and cerium . In addition, the metal oxide concerning this invention may contain only 1 type of said metal element, and may be complex oxide containing 2 or more types of metal elements.

本発明のメソ多孔体は、前述の金属酸化物からなり、いわゆるメソサイズの細孔(メソ孔)を有するものであり、その中心細孔直径は2〜10nmであり、より好ましくは4〜10nmである。本発明のメソ多孔体において、中心細孔直径が2nm未満の場合は、吸着物質や反応基質が細孔内に十分な速度で拡散せず、十分な吸着特性や触媒活性が発揮されない。他方、中心細孔直径が10nmを超える場合は、比表面積が低下して、吸着特性や触媒活性が低下してしまう。   The mesoporous material of the present invention comprises the above-mentioned metal oxide and has so-called mesosize pores (mesopores), and the central pore diameter is 2 to 10 nm, more preferably 4 to 10 nm. is there. In the mesoporous material of the present invention, when the central pore diameter is less than 2 nm, the adsorbed substance and the reaction substrate do not diffuse at a sufficient rate in the pores, and sufficient adsorption characteristics and catalytic activity are not exhibited. On the other hand, when the center pore diameter exceeds 10 nm, the specific surface area decreases, and the adsorption characteristics and catalytic activity decrease.

前記中心細孔直径とは、細孔容積(V)を細孔直径(D)で微分した値(dV/dD)を細孔直径(D)に対してプロットした曲線(細孔径分布曲線)の最大ピークにおける細孔直径である。なお、細孔径分布曲線は、次に述べる方法により求めることができる。すなわち、メソ多孔体を液体窒素温度(−196℃)に冷却して窒素ガスを導入し、定容量法あるいは重量法によりその吸着量を求め、次いで、導入する窒素ガスの圧力を徐々に増加させ、各平衡圧に対する窒素ガスの吸着量をプロットし、吸着等温線を得る。この吸着等温線を用い、Cranston−Inklay法、Pollimore−Heal法、BJH法等の計算法により細孔径分布曲線を求めることができる。   The central pore diameter is a curve (pore diameter distribution curve) in which a value (dV / dD) obtained by differentiating the pore volume (V) with respect to the pore diameter (D) is plotted against the pore diameter (D). It is the pore diameter at the maximum peak. The pore size distribution curve can be obtained by the method described below. That is, the mesoporous material is cooled to a liquid nitrogen temperature (−196 ° C.), nitrogen gas is introduced, the adsorption amount is determined by a constant volume method or a gravimetric method, and then the pressure of the introduced nitrogen gas is gradually increased. Then, the adsorption amount of nitrogen gas with respect to each equilibrium pressure is plotted to obtain an adsorption isotherm. Using this adsorption isotherm, a pore size distribution curve can be obtained by a calculation method such as Cranston-Inklay method, Pollimore-Heal method, BJH method or the like.

このような本発明のメソ多孔体においては、細孔径分布曲線における中心細孔直径の±40%の範囲に全細孔容積の60%以上が含まれることが好ましい。ここで、「細孔径分布曲線における最大ピークを示す細孔直径の±40%の範囲に全細孔容積の60%以上が含まれる」とは、例えば、中心細孔直径が3.00nmである場合、この3.00nmの±40%、すなわち1.80〜4.20nmの範囲にある細孔の容積の合計が、全細孔容積の60%以上を占めていることを意味する。この条件を満たすメソ多孔体は、細孔の直径が非常に均一であることを意味する。   In such a mesoporous material of the present invention, it is preferable that 60% or more of the total pore volume is included in the range of ± 40% of the central pore diameter in the pore size distribution curve. Here, “60% or more of the total pore volume is included in the range of ± 40% of the pore diameter showing the maximum peak in the pore diameter distribution curve” means that the central pore diameter is 3.00 nm, for example. In this case, it means that the total volume of pores in the range of ± 40% of 3.00 nm, that is, 1.80 to 4.20 nm occupies 60% or more of the total pore volume. A mesoporous material satisfying this condition means that the pore diameter is very uniform.

また、本発明のメソ多孔体の比表面積については特に制限はないが、50m2/g以上であることが好ましい。比表面積は、吸着等温線からBET等温吸着式を用いてBET比表面積として算出することができる。 The specific surface area of the mesoporous material of the present invention is not particularly limited, but is preferably 50 m 2 / g or more. The specific surface area can be calculated as a BET specific surface area from the adsorption isotherm using the BET isotherm adsorption equation.

さらに、本発明のメソ多孔体は、そのX線回折パターンにおいて1nm以上のd値に相当する回折角度に1本以上のピークを有することが好ましい。X線回折ピークはそのピーク角度に相当するd値の周期構造が試料中にあることを意味する。したがって、1nm以上のd値に相当する回折角度に1本以上のピークがあることは、細孔が1nm以上の間隔で規則的に配列していることを意味する。   Furthermore, the mesoporous material of the present invention preferably has one or more peaks at a diffraction angle corresponding to a d value of 1 nm or more in the X-ray diffraction pattern. The X-ray diffraction peak means that a periodic structure having a d value corresponding to the peak angle is present in the sample. Therefore, having one or more peaks at a diffraction angle corresponding to a d value of 1 nm or more means that the pores are regularly arranged at intervals of 1 nm or more.

また、本発明のメソ多孔体が有する細孔は、多孔体の表面のみならず内部にも形成される。そして、本発明のメソ多孔体においては前記の細孔が相互に連結して3D−Cubic Im3m構造の3次元チャンネルを形成している。このような3D−Cubic Im3m構造の3次元チャンネルは、前述の通り、X線回折分析法によるX線回折パターンの測定により確認することができ、2Θ=0.5〜3°の領域に(110)、(200)、(211)、(310)、(222)に指数付けされる5つの回折ピークが認められれば、このような5つの回折ピークはdスペース比が√2:√4:√6:√10:√12であることを示すことから、3D−Cubic Im3m構造であることが確認される。   Further, the pores of the mesoporous material of the present invention are formed not only on the surface of the porous material but also on the inside. In the mesoporous material of the present invention, the pores are interconnected to form a three-dimensional channel having a 3D-Cubic Im3m structure. As described above, the three-dimensional channel having such a 3D-Cubic Im3m structure can be confirmed by measuring an X-ray diffraction pattern by an X-ray diffraction analysis method, and in a region of 2Θ = 0.5 to 3 ° (110 ), (200), (211), (310), and (222), if five diffraction peaks indexed, such five diffraction peaks have a d-space ratio of √2: √4: √. 6: √10: √12 indicates that it is a 3D-Cubic Im3m structure.

なお、本発明のメソ多孔体における細孔の全てが3D−Cubic Im3m構造である必要はなく、全ての細孔のうち70%以上が3D−Cubic Im3m構造となっていることが好ましい。   In addition, it is not necessary for all the pores in the mesoporous material of the present invention to have a 3D-Cubic Im3m structure, and 70% or more of all the pores preferably have a 3D-Cubic Im3m structure.

本発明のメソ多孔体の形状は特に限定されないが、粉末、顆粒、支持膜、自立膜、透明膜、配向膜、球状、繊維状、基板上のバーニング、μmサイズの明瞭な形態をもつ粒子などを挙げることができる。また、必要に応じて、成形して使用してもよい。成形する手段はどのようなものでも良いが、押出成形、打錠成形、転動造粒、圧縮成形、CIPなどが好ましい。その形状は使用箇所、方法に応じて決めることができ、たとえば円柱状、破砕状、球状、ハニカム状、凹凸状、波板状等が挙げられる。   The shape of the mesoporous material of the present invention is not particularly limited, but powders, granules, support films, free-standing films, transparent films, alignment films, spheres, fibers, burning on a substrate, particles having a clear form of μm size, etc. Can be mentioned. Moreover, you may shape | mold and use as needed. Any molding means may be used, but extrusion molding, tablet molding, rolling granulation, compression molding, CIP and the like are preferable. The shape can be determined according to the place of use and method, and examples thereof include a columnar shape, a crushed shape, a spherical shape, a honeycomb shape, an uneven shape, and a corrugated plate shape.

(メソ多孔体の製造方法)
本発明のメソ多孔体の製造方法においては、先ず、水分含有量が1重量%以下である非水溶媒中に、下記一般式(1):
HO(CHCHO)(CHCH(CH)O)(CHCHO)H (1)
[式(1)中、aは20〜150、bは20〜100、cは20〜150の整数をそれぞれ表す]
及び/又は下記一般式(2):
HO(CHCHO)(CHCHCH(CH)O)H (2)
[式(2)中、xは30〜60、yは50〜150の整数をそれぞれ表す]
で表されるブロックコポリマー型の界面活性剤と、コバルト、銅、クロム及びセリウムからなる群より選ばれる少なくとも1種の金属の硝酸塩、硫酸塩、ハロゲン化物及び酢酸塩からなる群より選ばれる少なくとも1種の金属塩とを添加し、多孔体前駆体を生成させる(第一の工程)。
(Method for producing mesoporous material)
In the method for producing a mesoporous material of the present invention, first, in a nonaqueous solvent having a water content of 1% by weight or less, the following general formula (1):
HO (CH 2 CH 2 O) a (CH 2 CH (CH 3 ) O) b (CH 2 CH 2 O) c H (1)
[In Formula (1), a represents an integer of 20 to 150, b represents 20 to 100, and c represents an integer of 20 to 150, respectively]
And / or the following general formula (2):
HO (CH 2 CH 2 O) x (CH 2 CHCH (CH 3) O) y H (2)
[In Formula (2), x represents an integer of 30 to 60, and y represents an integer of 50 to 150, respectively]
And at least one selected from the group consisting of nitrates, sulfates, halides and acetates of at least one metal selected from the group consisting of cobalt, copper, chromium and cerium A seed metal salt is added to produce a porous precursor (first step).

本発明において用いられる非水溶媒は、水分含有量が1重量%以下である非水溶媒であればよく、特に制限されないが、プロパノール、エチレングリコール、エタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類等が挙げられ、中でも取り扱い易さ、安全性並びにコストという観点からプロパノール、エチレングリコール、エタノールが好ましい。なお、上記非水溶媒は、単独で用いることもできるが、2種類以上を組み合わせて用いることも可能である。   The non-aqueous solvent used in the present invention is not particularly limited as long as it is a non-aqueous solvent having a water content of 1% by weight or less, but alcohols such as propanol, ethylene glycol, and ethanol, and ketones such as acetone and methyl ethyl ketone. Among them, propanol, ethylene glycol, and ethanol are preferable from the viewpoint of easy handling, safety, and cost. In addition, although the said non-aqueous solvent can also be used independently, it can also be used in combination of 2 or more types.

また、本発明で用いる非水溶媒中の水分含有量は1重量%以下であることが必要であり、0.5重量%以下であることが特に好ましい。非水溶媒中の水分含有量が1重量%を超えている場合は、界面活性剤と金属酸化物前駆体との共同組織化が不安定となって、3D−Cubic Im3m構造の3次元チャンネルが形成されない。   Further, the water content in the non-aqueous solvent used in the present invention is required to be 1% by weight or less, and particularly preferably 0.5% by weight or less. When the water content in the non-aqueous solvent exceeds 1% by weight, the co-organization of the surfactant and the metal oxide precursor becomes unstable, and a 3D channel having a 3D-Cubic Im3m structure is formed. Not formed.

また、本発明において用いられる金属塩は、前述の金属の硝酸塩、硫酸塩、ハロゲン化物(弗化物、塩化物等)及び酢酸塩の中から目的のメソ多孔体を構成する金属酸化物の種類に応じて選択され、中でも焼成時にアニオンが加熱分解されやすいという観点からコバルト、銅、クロム及びセリウムからなる群より選ばれる少なくとも1種の金属の硝酸塩が特に好ましい。なお、上記金属塩は、単独で用いることもできるが、2種類以上を組み合わせて用いることも可能である。
The metal salt used in the present invention is selected from the above-mentioned metal nitrates, sulfates, halides (fluorides, chlorides, etc.), and acetates, which are the types of metal oxides constituting the target mesoporous material. is selected depending on, inter alia cobalt from the viewpoint of the anion is easily thermally decomposed during baking, copper, at least one metal nitrate salt is selected from the group consisting of chromium and cerium are particularly preferable. In addition, although the said metal salt can also be used independently, it can also be used in combination of 2 or more types.

さらに、本発明においてテンプレートとして用いられるブロックコポリマー型の界面活性剤は、下記一般式(1):
HO(CHCHO)(CHCH(CH)O)(CHCHO)H (1)
[式(1)中、aは20〜150、bは20〜100、cは20〜150の整数をそれぞれ表す]
で表される酸化エチレン/酸化プロピレン/酸化エチレン(EO−PO−EO)トリブロックコポリマー、及び/又は、下記一般式(2):
HO(CHCHO)(CHCHCH(CH)O)H (2)
[式(2)中、xは30〜60、yは50〜150の整数をそれぞれ表す]
で表される酸化エチレン/酸化ブチレン(EO−BO)ジブロックコポリマーである。
Furthermore, the block copolymer type surfactant used as a template in the present invention is represented by the following general formula (1):
HO (CH 2 CH 2 O) a (CH 2 CH (CH 3 ) O) b (CH 2 CH 2 O) c H (1)
[In Formula (1), a represents an integer of 20 to 150, b represents 20 to 100, and c represents an integer of 20 to 150, respectively]
An ethylene oxide / propylene oxide / ethylene oxide (EO-PO-EO) triblock copolymer represented by: and / or the following general formula (2):
HO (CH 2 CH 2 O) x (CH 2 CHCH (CH 3) O) y H (2)
[In Formula (2), x represents an integer of 30 to 60, and y represents an integer of 50 to 150, respectively]
An ethylene oxide / butylene oxide (EO-BO) diblock copolymer represented by:

なお、これらのブロックコポリマー型のポリアルキレンオキサイド界面活性剤以外の界面活性剤をテンプレートとして用いても、得られるメソ多孔体の結晶構造の規則性が低下して3D−Cubic Im3m構造の3次元チャンネルが形成されない。また、前記一般式(1)中のa、b、c又は前記一般式(2)中のx、yが前記下限未満である界面活性剤をテンプレートとして用いても、得られるメソ多孔体の結晶構造の規則性が低下して3D−Cubic Im3m構造の3次元チャンネルが形成されない。さらに、前記一般式(1)中のa、b、c又は前記一般式(2)中のx、yが前記上限を超える界面活性剤は入手が困難である。   In addition, even when a surfactant other than these block copolymer type polyalkylene oxide surfactants is used as a template, the regularity of the crystal structure of the obtained mesoporous material is lowered, resulting in a 3D channel having a 3D-Cubic Im3m structure. Is not formed. Moreover, even if it uses as a template the surfactant whose a, b, c in the said General formula (1) or x, y in the said General formula (2) is less than the said minimum, the crystal | crystallization of the mesoporous body obtained The regularity of the structure is lowered, and a 3D channel having a 3D-Cubic Im3m structure is not formed. Furthermore, it is difficult to obtain a surfactant in which a, b and c in the general formula (1) or x and y in the general formula (2) exceed the upper limit.

本発明のメソ多孔体の製造方法においては、前記非水溶媒中に出発物質としての前記金属塩とテンプレートとしての前記ブロックコポリマー型界面活性剤とを共存させて多孔体前駆体を生成せしめるが、その際、先ず有機/無機複合体のゲルが生成し、次いで有機/無機複合体を熟成せしめて多孔体前駆体を得る方法が一般的である。   In the method for producing a mesoporous material of the present invention, the metal salt as a starting material and the block copolymer type surfactant as a template coexist in the non-aqueous solvent to produce a porous precursor, In this case, a method is generally used in which an organic / inorganic composite gel is first formed, and then the organic / inorganic composite is aged to obtain a porous precursor.

すなわち、先ず、テンプレートとしての前記ブロックコポリマー型界面活性剤を前記非水溶媒に溶かし、ミセルを形成させる。このような界面活性剤のミセルは規則正しく配列し、界面活性剤の周囲に金属塩が集合することによって有機/無機複合体のゲルが生成される。このときの界面活性剤溶液の温度は10〜80℃が好ましく、室温程度がより好ましい。   That is, first, the block copolymer type surfactant as a template is dissolved in the non-aqueous solvent to form micelles. Such surfactant micelles are regularly arranged, and an organic / inorganic composite gel is formed by aggregation of metal salts around the surfactant. The temperature of the surfactant solution at this time is preferably 10 to 80 ° C., more preferably about room temperature.

次に、前記の界面活性剤溶液に金属先駆物質である前記金属塩を添加し、攪拌する。こうすると、有機/無機複合体の加水分解が促進して熟成され、三次元的に配列された界面活性剤の周囲に金属酸化物が3D−Cubic Im3m構造の3次元チャンネルを形成している多孔体前駆体が得られる。   Next, the metal salt which is a metal precursor is added to the surfactant solution and stirred. By doing so, the hydrolysis of the organic / inorganic composite is promoted and ripened, and the metal oxide forms a three-dimensional channel having a 3D-Cubic Im3m structure around the three-dimensionally arranged surfactant. A body precursor is obtained.

このような熟成過程における温度は、15℃〜200℃が好ましく、30℃〜80℃がより好ましい。この温度が上記下限未満では加水分解が十分に促進されない傾向にあり、他方、上記上限を超えると耐圧性に優れた反応容器が必要になりコスト高となる傾向にある。また、熟成過程における時間は、1分〜14日間が好ましく、1時間〜14日間がより好ましく、3日間〜7日間が特に好ましい。この時間が上記下限未満では加水分解が十分に促進されない傾向にあり、他方、上記上限を超えると加水分解は飽和に達し、無意味な時間を費やすこととなる。さらに、熟成過程における溶液のpHは1〜14が好ましく、3〜8がより好ましい。このpHが上記下限未満では金属の溶媒への溶解が進み目的の多孔体の収率が悪くなる傾向にあり、他方、上記上限を超えると金属が水酸化物として沈殿する割合が多くなり目的の多孔体の収率が悪くなる傾向にある。なお、熟成過程における溶液のpHは目的とするメソ多孔体を構成する金属酸化物に応じて好適範囲が更に選択され、例えば、酸化銅から成るメソ多孔体を得る場合は4〜7が好ましい。   The temperature in such an aging process is preferably 15 ° C to 200 ° C, more preferably 30 ° C to 80 ° C. If this temperature is less than the above lower limit, hydrolysis tends not to be promoted sufficiently. On the other hand, if it exceeds the above upper limit, a reaction vessel having excellent pressure resistance is required and the cost tends to increase. The time in the aging process is preferably 1 minute to 14 days, more preferably 1 hour to 14 days, and particularly preferably 3 days to 7 days. If this time is less than the above lower limit, hydrolysis tends not to be promoted sufficiently. On the other hand, if the upper limit is exceeded, the hydrolysis reaches saturation, meaningless time is spent. Further, the pH of the solution in the aging process is preferably 1 to 14, and more preferably 3 to 8. If this pH is less than the above lower limit, the dissolution of the metal in the solvent tends to progress and the yield of the target porous body tends to deteriorate. On the other hand, if the upper limit is exceeded, the proportion of the metal precipitated as a hydroxide increases. The yield of the porous body tends to deteriorate. The pH of the solution in the aging process is further selected within a suitable range depending on the metal oxide constituting the target mesoporous material. For example, when obtaining a mesoporous material composed of copper oxide, 4 to 7 is preferable.

前記本発明のメソ多孔体の製造方法の第一の工程において、前記金属塩と前記非水溶媒と前記ブロックコポリマー型界面活性剤との比率(モル比)は、ブロックコポリマー型界面活性剤のモル数を1とした場合に、金属塩:非水溶媒:ブロックコポリマー型界面活性=50〜150:1000〜2500:1の範囲(モル比)であることが好ましい。前記金属塩の比率が前記下限未満では、金属塩に対する界面活性剤の量が過度に多くなり、未反応の界面活性剤が増大して細孔の均一性が低下する傾向にあり、他方、前記上限を超えると、金属塩に対する界面活性剤の量が過度に少なくなり、細孔の形成が不完全となる傾向にある。また、非水溶媒の比率が前記下限未満では、界面活性剤の金属塩中への導入量が飽和し、未反応で非水溶媒中に残留する界面活性剤の量が増大して細孔の均一性が低下する傾向にあり、他方、前記上限を超えると、界面活性剤が金属塩中に十分に導入されず細孔の形成が不完全となる傾向にある。   In the first step of the method for producing a mesoporous material of the present invention, the ratio (molar ratio) of the metal salt, the non-aqueous solvent, and the block copolymer type surfactant is the mole of the block copolymer type surfactant. When the number is 1, it is preferable that the metal salt: nonaqueous solvent: block copolymer type surface activity = 50 to 150: 1000 to 2500: 1 (molar ratio). When the ratio of the metal salt is less than the lower limit, the amount of the surfactant with respect to the metal salt is excessively increased, and the unreacted surfactant tends to increase and the uniformity of the pores tends to decrease. When the upper limit is exceeded, the amount of the surfactant with respect to the metal salt becomes excessively small, and the pore formation tends to be incomplete. In addition, when the ratio of the non-aqueous solvent is less than the lower limit, the amount of the surfactant introduced into the metal salt is saturated, the amount of the unreacted surfactant remaining in the non-aqueous solvent is increased, and the pores are reduced. On the other hand, when the upper limit is exceeded, the surfactant is not sufficiently introduced into the metal salt and the formation of pores tends to be incomplete.

さらに、前記本発明のメソ多孔体の製造方法の第一の工程においては、前記有機/無機複合体の熟成を加速するため、更なる金属塩を添加してもよい。このような更なる金属塩としては、IUPACが提唱する長周期型周期表における1族元素の金属塩(アルカリ金属塩)及び2族元素の金属塩(アルカリ土類金属塩)が好適なものとして挙げられ、中でもアルカリ金属のハロゲン化物(例えば、塩化カリウム)が特に好ましい。このような更なる金属塩の添加量は、メソ多孔体を構成する金属酸化物の先駆物質である前記金属塩に対し、0.1〜20.0等量程度であることが好ましく、0.5〜2.0等量程度であることがより好ましい。   Furthermore, in the first step of the method for producing a mesoporous material of the present invention, a further metal salt may be added in order to accelerate the aging of the organic / inorganic composite. As such further metal salts, metal salts of group 1 elements (alkali metal salts) and metal salts of group 2 elements (alkaline earth metal salts) in the long-period periodic table proposed by IUPAC are suitable. Among them, alkali metal halides (for example, potassium chloride) are particularly preferable. The addition amount of such a metal salt is preferably about 0.1 to 20.0 equivalents relative to the metal salt that is a precursor of the metal oxide constituting the mesoporous material. More preferably, it is about 5 to 2.0 equivalents.

次に、本発明のメソ多孔体の製造方法においては、前記第二の工程において得られた多孔体前駆体から前記ブロックコポリマー型界面活性剤を除去してメソ多孔体を得る(第二の工程)。   Next, in the method for producing a mesoporous material of the present invention, the block copolymer type surfactant is removed from the porous material precursor obtained in the second step to obtain a mesoporous material (second step). ).

このように界面活性剤を除去する方法としては、例えば、(i)界面活性剤に対する溶解度が高い溶媒(例えば、メタノール、エタノール、アセトン、水)中に前記多孔体前駆体を浸漬して界面活性剤を除去する方法、(ii)前記多孔体前駆体を空気中又は不活性ガス中において400〜700℃で4〜6時間焼成して界面活性剤を除去する方法を挙げることができる。このような第二の工程によって、中心細孔直径2〜10nmの細孔が相互に連結して3D−Cubic Im3m構造の3次元チャンネルを形成している金属酸化物からなる本発明のメソ多孔体が得られる。   As a method for removing the surfactant in this way, for example, (i) the porous body precursor is immersed in a solvent having a high solubility in the surfactant (for example, methanol, ethanol, acetone, water), and the surfactant is And (ii) a method of removing the surfactant by firing the porous precursor in air or in an inert gas at 400 to 700 ° C. for 4 to 6 hours. According to the second step, the mesoporous material of the present invention comprising a metal oxide in which pores having a central pore diameter of 2 to 10 nm are interconnected to form a three-dimensional channel having a 3D-Cubic Im3m structure. Is obtained.

なお、本発明の製造方法において前記ブロックコポリマー型界面活性剤を焼成除去した際に発生する分解生成物の主成分は水と二酸化炭素であり、他のカチオン系又はアニオン系界面活性剤を焼成除去した際に発生する分解生成物に比べて環境に与える影響が小さい。このように、本発明のメソ多孔体の製造方法は、環境負荷物質の排出が十分に防止されるという点においても利点がある。   In the production method of the present invention, the main components of decomposition products generated when the block copolymer type surfactant is removed by baking are water and carbon dioxide, and other cationic or anionic surfactants are removed by baking. The impact on the environment is small compared to the decomposition products that are produced. Thus, the method for producing a mesoporous material of the present invention is advantageous in that the discharge of environmentally hazardous substances is sufficiently prevented.

(空気浄化材料)
本発明の空気浄化材料は、前記本発明のメソ多孔体を備えるものであればよく、本発明のメソ多孔体そのものが本発明の空気浄化材料を構成していても、或いは本発明のメソ多孔体を他の基材に担持せしめて本発明の空気浄化材料が構成されていてもよい。また、本発明の空気浄化材料においては、前記本発明のメソ多孔体に貴金属等の触媒微粒子を担持せしめたものを用いてもよい。
(Air purification material)
The air purification material of the present invention only needs to have the mesoporous material of the present invention. Even if the mesoporous material of the present invention itself constitutes the air purification material of the present invention, or the mesoporous material of the present invention. The air purification material of the present invention may be configured by supporting the body on another substrate. In the air purification material of the present invention, a material in which catalyst fine particles such as noble metals are supported on the mesoporous material of the present invention may be used.

本発明の空気浄化材料の形状も特に限定されず、粉末、顆粒、支持膜、自立膜、透明膜、配向膜、球状、繊維状、基板上のバーニング、μmサイズの明瞭な形態をもつ粒子などを挙げることができる。また、円柱状、破砕状、球状、ハニカム状、凹凸状、波板状等に成形したものであってもよい。   The shape of the air purification material of the present invention is not particularly limited, either powder, granule, support film, self-supporting film, transparent film, alignment film, spherical shape, fibrous shape, burning on the substrate, particles having a clear form of μm size, etc. Can be mentioned. Further, it may be formed into a columnar shape, a crushed shape, a spherical shape, a honeycomb shape, an uneven shape, a corrugated plate shape, or the like.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

なお、実施例及び比較例において有機テンプレートとして用いたF−127ブロック共重合体及びP−123ブロック共重合体は、いずれもアルドリッチ社製のブロックコポリマー型界面活性剤であり、それぞれ以下の化学式:
(F−127)
HO(CHCHO)106(CHCH(CH)O)70(CHCHO)106
(P−123)
HO(CHCHO)20(CHCH(CH)O)70(CHCHO)20
で表わされるものである。
The F-127 block copolymer and the P-123 block copolymer used as the organic template in the examples and comparative examples are both block copolymer type surfactants manufactured by Aldrich, each having the following chemical formula:
(F-127)
HO (CH 2 CH 2 O) 106 (CH 2 CH (CH 3 ) O) 70 (CH 2 CH 2 O) 106 H
(P-123)
HO (CH 2 CH 2 O) 20 (CH 2 CH (CH 3 ) O) 70 (CH 2 CH 2 O) 20 H
It is represented by

(実施例1)
F−127ブロック共重合体1gをプロパノール10gに加えて攪拌し、溶解した。得られた溶液に、Cu(NO・3HO(0.01mol)を加えて30分間激しく攪拌した。このときのゲル組成は、モル比で134(Cu):2230(プロパノール):1(F−127)であった。その後、得られたゾルを40℃で7日間熟成し、次いで毎分1℃の昇温速度で200℃まで加熱した。そして最後に、有機テンプレート、すなわちF−127ブロック共重合体をエタノールで抽出することにより、酸化銅からなるメソ多孔体を得た。
Example 1
1 g of F-127 block copolymer was added to 10 g of propanol and stirred to dissolve. To the resulting solution, Cu (NO 3 ) 2 .3H 2 O (0.01 mol) was added and stirred vigorously for 30 minutes. The gel composition at this time was 134 (Cu): 2230 (propanol): 1 (F-127) in molar ratio. Thereafter, the obtained sol was aged at 40 ° C. for 7 days, and then heated to 200 ° C. at a temperature rising rate of 1 ° C. per minute. Finally, an organic template, that is, an F-127 block copolymer was extracted with ethanol to obtain a mesoporous material made of copper oxide.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example. Further, the d value, central pore diameter and specific surface area of the obtained mesoporous material were determined, and the obtained results are shown in Table 1.

(実施例2)
Cu(NO・3HOの添加量を0.005molとし、ゲル組成をモル比で67(Cu):2230(プロパノール):1(F−127)とした以外は実施例1と同様にして酸化銅からなるメソ多孔体を得た。
(Example 2)
The same as Example 1 except that the addition amount of Cu (NO 3 ) 2 .3H 2 O was 0.005 mol and the gel composition was 67 (Cu): 2230 (propanol): 1 (F-127) in molar ratio. Thus, a mesoporous material made of copper oxide was obtained.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example.

(実施例3)
プロパノール10gに代えてエチレングリコール5gとプロパノール5gとの混合溶媒を用い、ゲル組成をモル比で134(Cu):1115(プロパノール):1080(エチレングリコール):1(F−127)とした以外は実施例1と同様にして酸化銅からなるメソ多孔体を得た。
(Example 3)
A mixed solvent of 5 g of ethylene glycol and 5 g of propanol was used in place of 10 g of propanol, and the gel composition was 134 (Cu): 1115 (propanol): 1080 (ethylene glycol): 1 (F-127) in molar ratio. A mesoporous material made of copper oxide was obtained in the same manner as in Example 1.

X線回折パターンを測定したところ、図1に示すように、本実施例で得られたメソ多孔体には2Θ=0.5〜3°の領域に(110)、(200)、(211)、(310)、(222)に指数付けされる5つの回折ピークが認められ、これらの5つの回折ピークはdスペース比が√2:√4:√6:√10:√12であることを示すことから、3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。   When the X-ray diffraction pattern was measured, as shown in FIG. 1, the mesoporous material obtained in this example had (110), (200), (211) in the region of 2Θ = 0.5-3 °. , (310), and (222) are recognized as five diffraction peaks, and these five diffraction peaks have a d-space ratio of √2: √4: √6: √10: √12. As shown, it was confirmed that a three-dimensional channel having a 3D-Cubic Im3m structure was formed. Further, the d value, central pore diameter and specific surface area of the obtained mesoporous material were determined, and the obtained results are shown in Table 1.

(実施例4)
ゾルの熟成温度を60℃とした以外は実施例3と同様にして酸化銅からなるメソ多孔体を得た。
Example 4
A mesoporous material made of copper oxide was obtained in the same manner as in Example 3 except that the aging temperature of the sol was 60 ° C.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体を透過型電子顕微鏡により撮影したところ、図2に示すように、明るく見えるスポットの規則正しい配列と秩序ある大きなチャンネルが観察され、このメソ多孔体が3次元ケージ構造を有していることが確認された。また、本実施例で得られたメソ多孔体について得られたN吸着等温線を図3に、SJK法により求めた細孔分布曲線を図4にそれぞれ示す。 When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example. Further, when the obtained mesoporous material was photographed with a transmission electron microscope, as shown in FIG. 2, a regular arrangement of bright spots and an orderly large channel were observed, and this mesoporous material had a three-dimensional cage structure. It was confirmed to have. In addition, FIG. 3 shows an N 2 adsorption isotherm obtained for the mesoporous material obtained in this example, and FIG. 4 shows a pore distribution curve obtained by the SJK method.

(実施例5)
ゾルの熟成時間を3日間とした以外は実施例3と同様にして酸化銅からなるメソ多孔体を得た。
(Example 5)
A mesoporous material made of copper oxide was obtained in the same manner as in Example 3 except that the aging time of the sol was 3 days.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example. Further, the d value, central pore diameter and specific surface area of the obtained mesoporous material were determined, and the obtained results are shown in Table 1.

(実施例6)
F−127ブロック共重合体1gをプロパノール10gに加えて攪拌し、溶解した。得られた溶液に、Co(NO・3HO(0.01mol)を加えて30分間激しく攪拌した。このときのゲル組成は、モル比で134(Co):2230(プロパノール):1(F−127)であった。その後、得られたゾルを40℃で7日間熟成し、次いで毎分1℃の昇温速度で200℃まで加熱した。そして最後に、有機テンプレート、すなわちF−127ブロック共重合体をエタノールで抽出することにより、酸化コバルトからなるメソ多孔体を得た。
(Example 6)
1 g of F-127 block copolymer was added to 10 g of propanol and stirred to dissolve. To the resulting solution, Co (NO 3 ) 2 .3H 2 O (0.01 mol) was added and stirred vigorously for 30 minutes. The gel composition at this time was 134 (Co): 2230 (propanol): 1 (F-127) in molar ratio. Thereafter, the obtained sol was aged at 40 ° C. for 7 days, and then heated to 200 ° C. at a temperature rising rate of 1 ° C. per minute. Finally, an organic template, that is, an F-127 block copolymer was extracted with ethanol to obtain a mesoporous material made of cobalt oxide.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example. Further, the d value, central pore diameter and specific surface area of the obtained mesoporous material were determined, and the obtained results are shown in Table 1.

(実施例7)
Co(NO・3HOの添加量を0.005molとし、ゲル組成をモル比で67(Co):2230(プロパノール):1(F−127)とした以外は実施例6と同様にして酸化コバルトからなるメソ多孔体を得た。
(Example 7)
The same as Example 6 except that the addition amount of Co (NO 3 ) 2 .3H 2 O was 0.005 mol, and the gel composition was 67 (Co): 2230 (propanol): 1 (F-127) in molar ratio. Thus, a mesoporous material composed of cobalt oxide was obtained.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example.

(実施例8)
プロパノール10gに代えてエチレングリコール5gとプロパノール5gとの混合溶媒を用い、ゲル組成をモル比で134(Co):1115(プロパノール):1080(エチレングリコール):1(F−127)とした以外は実施例6と同様にして酸化コバルトからなるメソ多孔体を得た。
(Example 8)
A mixed solvent of 5 g of ethylene glycol and 5 g of propanol was used in place of 10 g of propanol, and the gel composition was 134 (Co): 1115 (propanol): 1080 (ethylene glycol): 1 (F-127) in molar ratio. A mesoporous material made of cobalt oxide was obtained in the same manner as in Example 6.

X線回折パターンを測定したところ、図5に示すように、本実施例で得られたメソ多孔体には2Θ=0.5〜3°の領域に(110)、(200)、(211)、(310)、(222)に指数付けされる5つの回折ピークが認められ、これらの5つの回折ピークはdスペース比が√2:√4:√6:√10:√12であることを示すことから、3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。   When the X-ray diffraction pattern was measured, as shown in FIG. 5, the mesoporous material obtained in this example had (110), (200), (211) in the region of 2Θ = 0.5-3 °. , (310), and (222) are recognized as five diffraction peaks, and these five diffraction peaks have a d-space ratio of √2: √4: √6: √10: √12. As shown, it was confirmed that a three-dimensional channel having a 3D-Cubic Im3m structure was formed. Further, the d value, central pore diameter and specific surface area of the obtained mesoporous material were determined, and the obtained results are shown in Table 1.

(実施例9)
ゾルの熟成温度を60℃とした以外は実施例8と同様にして酸化コバルトからなるメソ多孔体を得た。X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。
Example 9
A mesoporous material made of cobalt oxide was obtained in the same manner as in Example 8 except that the sol aging temperature was 60 ° C. When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example.

(実施例10)
ゾルの熟成時間を3日間とした以外は実施例8と同様にして酸化コバルトからなるメソ多孔体を得た。X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。
(Example 10)
A mesoporous material made of cobalt oxide was obtained in the same manner as in Example 8 except that the aging time of the sol was 3 days. When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example.

(実施例11)
ゾルを熟成した後に毎分1℃の昇温速度で400℃まで加熱するようにした以外は実施例6と同様にして酸化コバルトからなるメソ多孔体を得た。
(Example 11)
A mesoporous material made of cobalt oxide was obtained in the same manner as in Example 6 except that after the sol was aged, it was heated to 400 ° C. at a rate of 1 ° C. per minute.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example. Further, the d value, central pore diameter and specific surface area of the obtained mesoporous material were determined, and the obtained results are shown in Table 1.

(実施例12)
F−127ブロック共重合体1gをプロパノール10gに加えて攪拌し、溶解した。得られた溶液に、Ce(NO・3HO(0.01mol)を加えて30分間激しく攪拌した。このときのゲル組成は、モル比で134(Ce):2230(プロパノール):1(F−127)であった。その後、得られたゾルを40℃で7日間熟成し、次いで毎分1℃の昇温速度で200℃まで加熱した。そして最後に、有機テンプレート、すなわちF−127ブロック共重合体をエタノールで抽出することにより、酸化セリウムからなるメソ多孔体を得た。
(Example 12)
1 g of F-127 block copolymer was added to 10 g of propanol and stirred to dissolve. Ce (NO 3 ) 2 .3H 2 O (0.01 mol) was added to the resulting solution and stirred vigorously for 30 minutes. The gel composition at this time was 134 (Ce): 2230 (propanol): 1 (F-127) in molar ratio. Thereafter, the obtained sol was aged at 40 ° C. for 7 days, and then heated to 200 ° C. at a temperature rising rate of 1 ° C. per minute. Finally, an organic template, that is, an F-127 block copolymer was extracted with ethanol to obtain a mesoporous material composed of cerium oxide.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example. Further, the d value, central pore diameter and specific surface area of the obtained mesoporous material were determined, and the obtained results are shown in Table 1.

(実施例13)
Ce(NO・3HOの添加量を0.005molとし、ゲル組成をモル比で67(Ce):2230(プロパノール):1(F−127)とした以外は実施例12と同様にして酸化セリウムからなるメソ多孔体を得た。
(Example 13)
Example 12 except that the addition amount of Ce (NO 3 ) 2 .3H 2 O was 0.005 mol and the gel composition was 67 (Ce): 2230 (propanol): 1 (F-127) in molar ratio. Thus, a mesoporous material composed of cerium oxide was obtained.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example.

(実施例14)
ゾルを熟成した後に毎分1℃の昇温速度で400℃まで加熱するようにした以外は実施例12と同様にして酸化セリウムからなるメソ多孔体を得た。
(Example 14)
A mesoporous material made of cerium oxide was obtained in the same manner as in Example 12 except that after the sol was aged, it was heated to 400 ° C. at a rate of 1 ° C. per minute.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example. Further, the d value, central pore diameter and specific surface area of the obtained mesoporous material were determined, and the obtained results are shown in Table 1.

(実施例15)
プロパノール10gに代えてエチレングリコール5gとプロパノール5gとの混合溶媒を用い、ゲル組成をモル比で134(Ce):1115(プロパノール):1080(エチレングリコール):1(F−127)とした以外は実施例12と同様にして酸化セリウムからなるメソ多孔体を得た。
(Example 15)
A mixed solvent of 5 g of ethylene glycol and 5 g of propanol was used in place of 10 g of propanol, and the gel composition was 134 (Ce): 1115 (propanol): 1080 (ethylene glycol): 1 (F-127) in molar ratio. A mesoporous material composed of cerium oxide was obtained in the same manner as in Example 12.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example.

(実施例16)
ゾルの熟成温度を60℃とした以外は実施例15と同様にして酸化セリウムからなるメソ多孔体を得た。X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。
(Example 16)
A mesoporous material composed of cerium oxide was obtained in the same manner as in Example 15 except that the aging temperature of the sol was 60 ° C. When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example.

(実施例17)
ゾルの熟成時間を3日間とした以外は実施例15と同様にして酸化セリウムからなるメソ多孔体を得た。
(Example 17)
A mesoporous material composed of cerium oxide was obtained in the same manner as in Example 15 except that the aging time of the sol was 3 days.

X線回折パターンを測定したところ、図6に示すように、本実施例で得られたメソ多孔体には2Θ=0.5〜3°の領域に(110)、(200)、(211)、(310)、(222)に指数付けされる5つの回折ピークが認められ、これらの5つの回折ピークはdスペース比が√2:√4:√6:√10:√12であることを示すことから、3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。   When the X-ray diffraction pattern was measured, as shown in FIG. 6, the mesoporous material obtained in this example had (110), (200), (211) in the region of 2Θ = 0.5-3 °. , (310), and (222) are recognized as five diffraction peaks, and these five diffraction peaks have a d-space ratio of √2: √4: √6: √10: √12. As shown, it was confirmed that a three-dimensional channel having a 3D-Cubic Im3m structure was formed. Further, the d value, central pore diameter and specific surface area of the obtained mesoporous material were determined, and the obtained results are shown in Table 1.

(実施例18)
F−127ブロック共重合体1gをプロパノール10gに加えて攪拌し、溶解した。得られた溶液に、Cr(NO・9HO(0.01mol)を加えて30分間激しく攪拌した。このときのゲル組成は、モル比で134(Cr):2230(プロパノール):1(F−127)であった。その後、得られたゾルを40℃で7日間熟成し、次いで毎分1℃の昇温速度で200℃まで加熱した。そして最後に、有機テンプレート、すなわちF−127ブロック共重合体をエタノールで抽出することにより、酸化クロムからなるメソ多孔体を得た。
(Example 18)
1 g of F-127 block copolymer was added to 10 g of propanol and stirred to dissolve. Cr (NO 3 ) 2 · 9H 2 O (0.01 mol) was added to the resulting solution and vigorously stirred for 30 minutes. The gel composition at this time was 134 (Cr): 2230 (propanol): 1 (F-127) by molar ratio. Thereafter, the obtained sol was aged at 40 ° C. for 7 days, and then heated to 200 ° C. at a temperature rising rate of 1 ° C. per minute. Finally, an organic template, that is, an F-127 block copolymer was extracted with ethanol to obtain a mesoporous material made of chromium oxide.

X線回折パターンを測定したところ、本実施例で得られたメソ多孔体には3D−Cubic Im3m構造の3次元チャンネルが形成されていることが確認された。また、得られたメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。   When the X-ray diffraction pattern was measured, it was confirmed that a 3D channel having a 3D-Cubic Im3m structure was formed in the mesoporous material obtained in this example. Further, the d value, central pore diameter and specific surface area of the obtained mesoporous material were determined, and the obtained results are shown in Table 1.

(比較例1)
以下の手順により3D−Cubic Ia3d構造を有するシリカメソ多孔体を作製し、比較試料として用いた。すなわち、先ず、テフロン容器中にP−123ブロック共重合体1.92g及びヨウ化ナトリウム11.24gを入れ、更に水45g及び4M HCl30gとを加えて溶解した。得られた溶液の温度を55℃に保ち、次いでシリカ前駆体としてテトラエチルオルソシリケート(TEOS)4gを加えて攪拌したところ、TEOSを添加した直後に結晶が析出し始めた。更に24時間攪拌した後、80℃の恒温槽に移して更に24時間熟成させた。このようにして得られた有機/無機複合体をろ過し、イオン交換水で洗浄した後、空気中において500℃で6時間焼成することによって、有機/無機複合体中の有機テンプレート、すなわちP−123ブロック共重合体を除去することにより、シリカメソ多孔体を得た。得られたシリカメソ多孔体のd値、中心細孔直径及び比表面積を求め、得られた結果を表1に示す。
(Comparative Example 1)
A silica mesoporous material having a 3D-Cubic Ia3d structure was prepared by the following procedure and used as a comparative sample. That is, first, 1.92 g of P-123 block copolymer and 11.24 g of sodium iodide were placed in a Teflon container, and further 45 g of water and 30 g of 4M HCl were added and dissolved. When the temperature of the obtained solution was maintained at 55 ° C. and then 4 g of tetraethyl orthosilicate (TEOS) was added as a silica precursor and stirred, crystals began to precipitate immediately after the addition of TEOS. After further stirring for 24 hours, the mixture was transferred to a constant temperature bath at 80 ° C. and further aged for 24 hours. The organic / inorganic composite thus obtained is filtered, washed with ion-exchanged water, and then fired in air at 500 ° C. for 6 hours, whereby the organic template in the organic / inorganic composite, ie, P− By removing the 123 block copolymer, a silica mesoporous material was obtained. The d value, central pore diameter and specific surface area of the obtained silica mesoporous material were determined, and the results obtained are shown in Table 1.

(吸着性能評価)
実施例18及び比較例1で得られたメソ多孔体について、以下の手順に従って吸着性能を評価した。すなわち、先ず、実施例18で得られたメソ多孔体1.0g及び比較例1で得られたメソ多孔体1.0gをそれぞれ、80ppmのトルエンを含む空気5リットルを封入したガス非透過性の袋に入れて密封し、それぞれの袋を25℃に保った恒温槽内に静置した。その後、所定時間毎に各袋内のトルエン濃度を測定し、袋にメソ多孔体を入れないで同様に測定したブランク濃度との差に基づいて、実施例18で得られたメソ多孔体及び比較例1で得られたメソ多孔体によるトルエン除去率を求めた。
(Adsorption performance evaluation)
The adsorption performance of the mesoporous material obtained in Example 18 and Comparative Example 1 was evaluated according to the following procedure. That is, first, 1.0 g of the mesoporous material obtained in Example 18 and 1.0 g of the mesoporous material obtained in Comparative Example 1 were each gas-impermeable and sealed with 5 liters of air containing 80 ppm of toluene. Each bag was sealed and placed in a thermostatic bath maintained at 25 ° C. Thereafter, the toluene concentration in each bag was measured every predetermined time, and the mesoporous material obtained in Example 18 and the comparison were compared based on the difference from the blank concentration measured similarly without putting the mesoporous material in the bag. The toluene removal rate by the mesoporous material obtained in Example 1 was determined.

得られたトルエン除去率を経過時間に対してプロットした結果を図7に示す。図7に示した結果から明らかな通り、実施例18で得られたメソ多孔体は比較例1で得られたメソ多孔体に比べてトルエン除去性能が非常に優れていることが確認された。   The result of plotting the obtained toluene removal rate against the elapsed time is shown in FIG. As is clear from the results shown in FIG. 7, it was confirmed that the mesoporous material obtained in Example 18 was very excellent in toluene removal performance as compared with the mesoporous material obtained in Comparative Example 1.

(比較例2)
有機テンプレートとして、HO(CHCHO)13(CHCH(CH)O)13(CHCHO)13H〔以下、EO13PO13EO13と略記する〕で表わされるブロック共重合体を用いて酸化クロムからなるメソ多孔体を得た。
(Comparative Example 2)
As an organic template, a block represented by HO (CH 2 CH 2 O) 13 (CH 2 CH (CH 3 ) O) 13 (CH 2 CH 2 O) 13 H (hereinafter abbreviated as EO 13 PO 13 EO 13 ). A mesoporous material composed of chromium oxide was obtained using the copolymer.

すなわち、EO13PO13EO131gをプロパノール10gに加えて攪拌し、溶解した。得られた溶液に、Cr(NO・9HO(0.01mol)を加えて30分間激しく攪拌した。このときのゲル組成は、モル比で134(Cr):2230(プロパノール):1(EO13PO13EO13)であった。その後、得られたゾルを40℃で7日間熟成し、次いで毎分1℃の昇温速度で200℃まで加熱した。そして最後に、有機テンプレート、すなわちEO13PO13EO13をエタノールで抽出することにより、酸化クロムからなるメソ多孔体を得た。 That is, 1 g of EO 13 PO 13 EO 13 was added to 10 g of propanol and stirred to dissolve. Cr (NO 3 ) 2 · 9H 2 O (0.01 mol) was added to the resulting solution and vigorously stirred for 30 minutes. The gel composition at this time was 134 (Cr): 2230 (propanol): 1 (EO 13 PO 13 EO 13 ) in molar ratio. Thereafter, the obtained sol was aged at 40 ° C. for 7 days, and then heated to 200 ° C. at a temperature rising rate of 1 ° C. per minute. Finally, an organic template, that is, EO 13 PO 13 EO 13 was extracted with ethanol to obtain a mesoporous material made of chromium oxide.

X線回折パターンを測定したところ、本比較例で得られたメソ多孔体には2Θ=0.5〜2°の低角度領域にブロードなピークのみを示し、構造に規則性を持たないメソ多孔体であることが確認された。   When the X-ray diffraction pattern was measured, the mesoporous material obtained in this comparative example showed only a broad peak in the low angle region of 2Θ = 0.5 to 2 °, and the mesoporous material having no regular structure. It was confirmed to be a body.

(比較例3)
有機テンプレートとして、臭化セチルトリメチルアンモニウム(以下、CTABと略記する)で表わされる界面活性剤を用いて酸化クロムからなるメソ多孔体を得た。
(Comparative Example 3)
A mesoporous material made of chromium oxide was obtained using a surfactant represented by cetyltrimethylammonium bromide (hereinafter abbreviated as CTAB) as an organic template.

すなわち、CTAB1gをプロパノール10gに加えて攪拌し、溶解した。得られた溶液に、Cr(NO・9HO(0.01mol)を加えて30分間激しく攪拌した。このときのゲル組成は、モル比で134(Cr):2230(プロパノール):10(CTAB)であった。その後、得られたゾルを40℃で7日間熟成し、次いで毎分1℃の昇温速度で200℃まで加熱した。そして最後に、有機テンプレート、すなわちCTABをエタノールで抽出することにより、酸化クロムからなるメソ多孔体を得た。 That is, 1 g of CTAB was added to 10 g of propanol and stirred to dissolve. Cr (NO 3 ) 2 · 9H 2 O (0.01 mol) was added to the resulting solution and vigorously stirred for 30 minutes. The gel composition at this time was 134 (Cr): 2230 (propanol): 10 (CTAB) in molar ratio. Thereafter, the obtained sol was aged at 40 ° C. for 7 days, and then heated to 200 ° C. at a temperature rising rate of 1 ° C. per minute. Finally, an organic template, ie, CTAB, was extracted with ethanol to obtain a mesoporous material made of chromium oxide.

X線回折パターンを測定したところ、本比較例で得られたメソ多孔体には2Θ=1〜2°の低角度領域にブロードなピークのみを示し、構造に規則性を持たないメソ多孔体であることが確認された。   When the X-ray diffraction pattern was measured, the mesoporous material obtained in this comparative example showed only a broad peak in the low angle region of 2Θ = 1 to 2 °, and the mesoporous material without regular structure. It was confirmed that there was.

以上説明したように、本発明のメソ多孔体は、吸着物質や反応基質を細孔内に速やかに拡散することができ、優れた吸着特性及び触媒活性を示すことから、吸着材、分離材、触媒担体等として有用なものである。また、このような本発明のメソ多孔体を用いた本発明の空気浄化材料は、空気中のVOC等の有害物質に対する除去性能に優れているため、空気中の有害物質を除去するための空気浄化材料として非常に有用性が高い。   As described above, the mesoporous material of the present invention can quickly diffuse the adsorbed substance and the reaction substrate into the pores, and exhibits excellent adsorption characteristics and catalytic activity. It is useful as a catalyst carrier. Moreover, since the air purification material of the present invention using such a mesoporous material of the present invention is excellent in the removal performance against harmful substances such as VOC in the air, the air for removing harmful substances in the air Very useful as a purification material.

また、本発明のメソ多孔体の製造方法によれば、従来は得ることができなかった前記本発明のメソ多孔体、すなわち中心細孔直径2〜10nmの細孔が相互に連結して3D−Cubic Im3m構造の3次元チャンネルを形成している金属酸化物からなるメソ多孔体を得ることが可能となるため、本発明のメソ多孔体の製造方法は吸着材、分離材、触媒担体等を製造するために有用な方法である。   In addition, according to the method for producing a mesoporous material of the present invention, the mesoporous material of the present invention that could not be obtained conventionally, that is, a pore having a central pore diameter of 2 to 10 nm is connected to each other to form a 3D- Since it is possible to obtain a mesoporous material made of a metal oxide forming a three-dimensional channel having a cubic Im3m structure, the method for producing a mesoporous material according to the present invention produces an adsorbent, a separating material, a catalyst carrier and the like. It is a useful way to do.

実施例3で得られたメソ多孔体のX線回折パターンを示すグラフである。4 is a graph showing an X-ray diffraction pattern of a mesoporous material obtained in Example 3. 実施例4で得られたメソ多孔体の透過型電子顕微鏡写真である。4 is a transmission electron micrograph of the mesoporous material obtained in Example 4. 実施例4で得られたメソ多孔体のN2吸着等温線を示すグラフである。6 is a graph showing an N2 adsorption isotherm of a mesoporous material obtained in Example 4. 実施例4で得られたメソ多孔体の細孔分布曲線を示すグラフである。6 is a graph showing a pore distribution curve of a mesoporous material obtained in Example 4. 実施例8で得られたメソ多孔体のX線回折パターンを示すグラフである。6 is a graph showing an X-ray diffraction pattern of a mesoporous material obtained in Example 8. 実施例17で得られたメソ多孔体のX線回折パターンを示すグラフである。6 is a graph showing an X-ray diffraction pattern of a mesoporous material obtained in Example 17. 実施例18で得られたメソ多孔体及び比較例1で得られたメソ多孔体によるトルエン除去率の試験結果を示すグラフである。It is a graph which shows the test result of the toluene removal rate by the mesoporous material obtained in Example 18 and the mesoporous material obtained in Comparative Example 1.

Claims (4)

金属酸化物からなるメソ多孔体であって、中心細孔直径2〜10nmの細孔が相互に連結して3D−Cubic Im3m構造の3次元チャンネルを形成しており、
前記金属酸化物が、コバルト、銅、クロム及びセリウムからなる群より選ばれる少なくとも1種の金属の酸化物であることを特徴とするメソ多孔体。
It is a mesoporous material made of a metal oxide, and pores having a central pore diameter of 2 to 10 nm are interconnected to form a 3D channel having a 3D-Cubic Im3m structure,
Mesoporous said metal oxide is cobalt, copper, characterized in that an oxide of at least one metal selected from the group consisting of chromium and cerium.
X線回折分析法において、2Θ=0.5〜3°の領域に(110)、(200)、(211)、(310)、(222)に指数付けされる5つの回折ピークが認められることを特徴とする、請求項1に記載のメソ多孔体。   In the X-ray diffraction analysis method, five diffraction peaks indexed by (110), (200), (211), (310), (222) are observed in the region of 2Θ = 0.5-3 °. The mesoporous material according to claim 1, wherein: 請求項1又は2に記載のメソ多孔体からなることを特徴とする空気浄化材料。   An air purification material comprising the mesoporous material according to claim 1 or 2. 水分含有量が1重量%以下である非水溶媒中に、下記一般式(1):
HO(CHCHO)(CHCH(CH)O)(CHCHO)H (1)
[式(1)中、aは20〜150、bは20〜100、cは20〜150の整数をそれぞれ表す]
及び/又は下記一般式(2):
HO(CHCHO)(CHCHCH(CH)O)H (2)
[式(2)中、xは30〜60、yは50〜150の整数をそれぞれ表す]
で表されるブロックコポリマー型の界面活性剤と、コバルト、銅、クロム及びセリウムからなる群より選ばれる少なくとも1種の金属の硝酸塩、硫酸塩、ハロゲン化物及び酢酸塩からなる群より選ばれる少なくとも1種の金属塩とを添加し、多孔体前駆体を生成させる第一の工程と、
前記多孔体前駆体から前記界面活性剤を除去してメソ多孔体を得る第二の工程と、
を含むことを特徴とする請求項1に記載のメソ多孔体の製造方法。
In a non-aqueous solvent having a water content of 1% by weight or less, the following general formula (1):
HO (CH 2 CH 2 O) a (CH 2 CH (CH 3 ) O) b (CH 2 CH 2 O) c H (1)
[In Formula (1), a represents an integer of 20 to 150, b represents 20 to 100, and c represents an integer of 20 to 150, respectively]
And / or the following general formula (2):
HO (CH 2 CH 2 O) x (CH 2 CHCH (CH 3) O) y H (2)
[In Formula (2), x represents an integer of 30 to 60, and y represents an integer of 50 to 150, respectively]
And at least one selected from the group consisting of nitrates, sulfates, halides and acetates of at least one metal selected from the group consisting of cobalt, copper, chromium and cerium A first step of adding a seed metal salt to produce a porous precursor;
A second step of obtaining the mesoporous material by removing the surfactant from the porous material precursor;
The method for producing a mesoporous material according to claim 1, comprising:
JP2004035140A 2004-02-12 2004-02-12 Mesoporous material, air purification material, and method for producing mesoporous material Expired - Fee Related JP4596233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035140A JP4596233B2 (en) 2004-02-12 2004-02-12 Mesoporous material, air purification material, and method for producing mesoporous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035140A JP4596233B2 (en) 2004-02-12 2004-02-12 Mesoporous material, air purification material, and method for producing mesoporous material

Publications (2)

Publication Number Publication Date
JP2005225705A JP2005225705A (en) 2005-08-25
JP4596233B2 true JP4596233B2 (en) 2010-12-08

Family

ID=35000713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035140A Expired - Fee Related JP4596233B2 (en) 2004-02-12 2004-02-12 Mesoporous material, air purification material, and method for producing mesoporous material

Country Status (1)

Country Link
JP (1) JP4596233B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352364B2 (en) 2012-09-07 2016-05-31 Samsung Electronics Co., Ltd. Method and apparatus for removing organic materials

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263721B2 (en) * 2006-09-15 2013-08-14 国立大学法人京都大学 Porous body, method for producing the same, sintered body, and method for producing the same
US8721971B2 (en) * 2009-02-26 2014-05-13 Corning Incorporated NOx adsorptive films for NOx sensor technologies
JP5457962B2 (en) * 2010-07-20 2014-04-02 株式会社日立製作所 Carbon dioxide capture material
EP2692311B1 (en) * 2012-08-03 2016-06-22 3M Innovative Properties Company Dental blank comprising a pre-sintered porous zirconia material , process of its production and dental article formed from said dental blank
JP6312981B2 (en) * 2012-10-05 2018-04-18 国立大学法人 新潟大学 Method for producing mesoporous iridium oxide, method for producing water oxidation catalyst, and method for producing mesoporous iridium oxide electrode
CN104955771B (en) * 2013-01-31 2018-06-15 国立研究开发法人科学技术振兴机构 Metal oxide mesomorphic body and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233615A (en) * 2000-02-21 2001-08-28 Natl Inst Of Advanced Industrial Science & Technology Meti MESO-POROUS TiO2 THIN MEMBRANE HAVING THREE-DIMENSIONAL STRUCTURE AND METHOD FOR PRODUCING THE SAME
JP2003519074A (en) * 1999-12-30 2003-06-17 ロディア・シミ Production of mesostructured materials from nanometer-sized particles
JP2003277062A (en) * 2002-03-26 2003-10-02 Japan Science & Technology Corp Method for manufacturing micro-mesoporous metal oxide with fine pore controlled by novel template removing method
JP2003531083A (en) * 1997-12-09 2003-10-21 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア Block polymer treatment method for mesostructured inorganic oxide material
JP2003335506A (en) * 2002-05-16 2003-11-25 Japan Science & Technology Corp Method for synthesizing mesoporous oxide having high three-dimensional regularity
JP2004035368A (en) * 2002-07-05 2004-02-05 National Institute Of Advanced Industrial & Technology Mesoporous silicate and its manufacturing method
JP2004250277A (en) * 2003-02-19 2004-09-09 Japan Science & Technology Agency Novel method for preparing mesoporous transition metal oxide doped with different kinds of metals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531083A (en) * 1997-12-09 2003-10-21 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア Block polymer treatment method for mesostructured inorganic oxide material
JP2003519074A (en) * 1999-12-30 2003-06-17 ロディア・シミ Production of mesostructured materials from nanometer-sized particles
JP2001233615A (en) * 2000-02-21 2001-08-28 Natl Inst Of Advanced Industrial Science & Technology Meti MESO-POROUS TiO2 THIN MEMBRANE HAVING THREE-DIMENSIONAL STRUCTURE AND METHOD FOR PRODUCING THE SAME
JP2003277062A (en) * 2002-03-26 2003-10-02 Japan Science & Technology Corp Method for manufacturing micro-mesoporous metal oxide with fine pore controlled by novel template removing method
JP2003335506A (en) * 2002-05-16 2003-11-25 Japan Science & Technology Corp Method for synthesizing mesoporous oxide having high three-dimensional regularity
JP2004035368A (en) * 2002-07-05 2004-02-05 National Institute Of Advanced Industrial & Technology Mesoporous silicate and its manufacturing method
JP2004250277A (en) * 2003-02-19 2004-09-09 Japan Science & Technology Agency Novel method for preparing mesoporous transition metal oxide doped with different kinds of metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352364B2 (en) 2012-09-07 2016-05-31 Samsung Electronics Co., Ltd. Method and apparatus for removing organic materials

Also Published As

Publication number Publication date
JP2005225705A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
Wei et al. Synthesis of dual‐mesoporous silica using non‐ionic diblock copolymer and cationic surfactant as Co‐templates
US10576462B2 (en) Mesoporous materials and processes for preparation thereof
CN103193630B (en) LNNU-1 serial nanometer MOF (Metal Organic Framework) type porous material and preparation method thereof
US9908103B2 (en) Mesoporous metal oxides and processes for preparation thereof
TWI647178B (en) Method for preparing Group 4 metal citrate and use thereof
JP4596233B2 (en) Mesoporous material, air purification material, and method for producing mesoporous material
TW200922692A (en) Catalyst and production process thereof, and chlorine production using the catalyst
Li et al. In situ generation of superbasic sites on mesoporous ceria and their application in transesterification
JPH09295811A (en) Amorphous porous body and its production
TW201927692A (en) Production of pulverulent, porous crystalline metal silicates by means of flame spray pyrolysis
Gao et al. Mercaptosilane-assisted synthesis of sub-nanosized Pt particles within hierarchically porous ZSM-5/SBA-15 materials and their enhanced hydrogenation properties
CN108187726B (en) Preparation and application of Al-SBA-15 mesoporous molecular sieve and fatty alcohol ethoxylation reaction method
Didi et al. Synthesis of binderless FAU-X (13X) monoliths with hierarchical porosity
CN113753953B (en) Giant cup-shaped multi-niobium-oxygen acid compound constructed by mixed ring clusters
JP3829188B2 (en) Mesoporous silicate and method for producing the same
JP2005162504A (en) Binary porous silica particle
KR100525209B1 (en) Metal-incorporated nanoporous materials, Metal-VSB-5 molecular sieve and their preparation methods
KR100986941B1 (en) Method for synthesizing nanocrystalline/nanoporous transition metal oxides
JP4513952B2 (en) Method for producing porous body
JP5093647B2 (en) Method for producing metal oxide porous body having mesopores and micropores, metal oxide porous body having mesopores and micropores, and gas purification material using the same
US20160121303A1 (en) Processes for the preparation of mesoporous metal oxides
Jadhav et al. Concentration and temperature effect on controlling pore size and surface area of mesoporous titania by using template of F-68 and F-127 co-polymer in the sol–gel process
JP2011056499A (en) Method for producing hydrogen production catalyst and hydrogen production catalyst
JP4484193B2 (en) Spherical micropore silica porous particles and method for producing the same
KR101601671B1 (en) Mn doped mesoporous ceria-silica composite and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees