JP5456460B2 - Energy ray curable paint - Google Patents

Energy ray curable paint Download PDF

Info

Publication number
JP5456460B2
JP5456460B2 JP2009294672A JP2009294672A JP5456460B2 JP 5456460 B2 JP5456460 B2 JP 5456460B2 JP 2009294672 A JP2009294672 A JP 2009294672A JP 2009294672 A JP2009294672 A JP 2009294672A JP 5456460 B2 JP5456460 B2 JP 5456460B2
Authority
JP
Japan
Prior art keywords
acrylate
mol
meth
energy ray
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009294672A
Other languages
Japanese (ja)
Other versions
JP2011132410A (en
Inventor
真希 北沢
敏之 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS CO. LTD.
Original Assignee
DKS CO. LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKS CO. LTD. filed Critical DKS CO. LTD.
Priority to JP2009294672A priority Critical patent/JP5456460B2/en
Priority to TW099144070A priority patent/TWI453227B/en
Priority to KR1020100134886A priority patent/KR101770428B1/en
Priority to CN201010621129.6A priority patent/CN102127295B/en
Publication of JP2011132410A publication Critical patent/JP2011132410A/en
Application granted granted Critical
Publication of JP5456460B2 publication Critical patent/JP5456460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、エネルギー線の照射によって硬化可能なエネルギー線硬化型塗料に関するものである。 The present invention relates to curable energy-ray-curable paint by irradiation of energy rays.

床や壁に代表される建材、構造物、その他各種成型物には、汚れを防ぎ、基材を保護して、美観を保つために、塗料をコーティングするのが一般的である。     Building materials, structures, and other various molded products typified by floors and walls are generally coated with a paint in order to prevent dirt, protect the base material, and maintain the appearance.

塗料としては、従来は合成樹脂を溶剤で溶解した溶剤タイプが一般的であったが、作業環境や火気に対する危険性等への配慮から、エネルギー線硬化型樹脂を用いたエネルギー線硬化タイプが種々開発され、化粧板のコーティング、木工塗料、紙コーティング、レジスト用材料、接着剤等の幅広い分野で実用化されている。   Conventionally, the solvent type in which synthetic resin is dissolved in a solvent is generally used as a paint, but there are various energy ray curable types using energy ray curable resins in consideration of the work environment and danger to fire. It has been developed and put into practical use in a wide range of fields such as decorative coatings, wood coatings, paper coatings, resist materials, and adhesives.

かかるコーティング用途に対する重要な要求項目としては耐汚染性、傷つきにくさ、耐久性が挙げられる。傷つきにくくするためには、架橋密度を上げることや、顔料の添加等の手段を用いることが一般的である(特許文献1)。また、付着した汚れをとれ易くするため、フッ素系表面改質剤を併用したもの、組成物骨格中に特定構造を有するもの等、様々なタイプの塗料が開発されている(特許文献2,3)。   Important requirements for such coating applications include stain resistance, resistance to scratches and durability. In order to make it hard to damage, it is common to use means such as increasing the crosslinking density or adding a pigment (Patent Document 1). Various types of paints have been developed to facilitate removal of adhering dirt, such as those using a fluorine-based surface modifier in combination and those having a specific structure in the composition skeleton (Patent Documents 2 and 3). ).

耐久性を左右する要因のひとつに塗料の吸水性があり、吸水性が高いと塗膜のひび割れやはがれの原因となりやすい。   One of the factors that affect the durability is the water absorption of the paint. If the water absorption is high, the coating tends to crack or peel off.

耐汚染性、吸水性については、架橋密度を上げることにより、ある程度下げることはできるものの、架橋密度だけでは限界がある。また、架橋密度の上昇に伴い、内部応力により塗膜のクラックが発生しやすくなるという問題が生じる傾向もある。   Contamination resistance and water absorption can be lowered to some extent by raising the crosslinking density, but there are limits to the crosslinking density alone. In addition, as the crosslinking density increases, there is a tendency that a crack of the coating film is likely to occur due to internal stress.

特開2009−30047号公報JP 2009-30047 A 特開2000−34334号公報JP 2000-34334 A 特開平8−217840号公報JP-A-8-217840

本発明は上記に鑑みてなされたものであり、耐汚染性、耐傷つき性がより向上し、また吸水性が低く、よって塗膜のひび割れやはがれが生じにくく、耐久性に優れた塗膜が得られるエネルギー線硬化型塗料を提供することを目的とする。 The present invention has been made in view of the above, and the stain resistance and scratch resistance are further improved, and the water absorption is low, so that the coating film is not easily cracked or peeled off, and a coating film having excellent durability is obtained. providing a resulting energy beam-curable paint for the purpose of.

本発明のエネルギー線硬化型塗料は、ブチレンオキサイドの開環重合により得られるポリエーテル鎖部分を含むポリエーテルポリオール(A)と有機ポリイソシアネート(B)と分子内に水酸基を含有する(メタ)アクリレート(C)とを反応させて得られるウレタンアクリレートであって、前記(メタ)アクリレート(C)由来の二重結合の含有量が1.8mol/kg以上であるウレタンアクリレートを含有するものとする。 The energy ray-curable coating material of the present invention comprises a polyether polyol (A) containing a polyether chain portion obtained by ring-opening polymerization of butylene oxide, an organic polyisocyanate (B), and a (meth) acrylate containing a hydroxyl group in the molecule. It is a urethane acrylate obtained by reacting with (C), and contains a urethane acrylate having a double bond content of 1.8 mol / kg or more derived from the (meth) acrylate (C).

上記において(A)成分と(B)成分との割合は、(A)中のポリエーテルポリオールの水酸基総モル数(a)と(B)中の有機ポリイソシアネートのイソシアネート基総モル数(b)とのモル比が(a):(b)=1.0:1.1〜1.0:4.0の範囲となる割合であることが好ましい。 Ratio of (A) and component (B) in the above, (A) a polyether polyol Lumpur hydroxyl total moles in (a) and (B) an isocyanate group the total number of moles of organic polyisocyanate in ( It is preferable that the molar ratio with b) is in a range of (a) :( b) = 1.0: 1.1 to 1.0: 4.0.

本発明のエネルギー線硬化型塗料は硬化性が良好であり、これを硬化させて得られる塗膜は良好な耐汚染性、耐薬品性を発現し、傷付きにくく、吸水性が低いため、塗膜のひび割れやはがれが生じにくく、耐久性も良好なものとなる。 The energy beam curable coating composition of the present invention has good curability, and the coating film obtained by curing it exhibits good stain resistance and chemical resistance, is hardly scratched, and has low water absorption. The film is hardly cracked or peeled off, and the durability is also good.

本発明で使用する(A)成分のうち、ブチレンオキサイドの開環重合により得られるポリエーテル鎖部分を含むポリエーテルポリオールの例としては、ポリブチレングリコール、トリメチロールプロパン等のポリオールのブチレンオキサイド付加物が挙げられる。これらポリエーテルポリオール(A)は分子量が200〜3000であることが好ましく、300〜1500であることがより好ましい。分子量が200未満であると硬化塗膜の吸水率が高くなる傾向があり、3000を超えると表面硬度が低くなり、耐汚染性も悪くなる傾向がある。   Among the components (A) used in the present invention, examples of polyether polyols containing polyether chain moieties obtained by ring-opening polymerization of butylene oxide include butylene oxide adducts of polyols such as polybutylene glycol and trimethylolpropane. Is mentioned. These polyether polyols (A) preferably have a molecular weight of 200 to 3000, and more preferably 300 to 1500. If the molecular weight is less than 200, the water absorption rate of the cured coating film tends to be high, and if it exceeds 3000, the surface hardness tends to be low and the stain resistance tends to be poor.

また、他の(A)成分であるポリテトラメチレンエーテルグリコールは、分子量が200〜3000であることが好ましく、300〜1500であることがより好ましい。分子量が200未満であると硬化塗膜の吸水率が高くなる傾向があり、3000を超えると表面硬度が低くなり、耐汚染性も悪くなる傾向がある。   Further, the polytetramethylene ether glycol as the other component (A) preferably has a molecular weight of 200 to 3000, and more preferably 300 to 1500. If the molecular weight is less than 200, the water absorption rate of the cured coating film tends to be high, and if it exceeds 3000, the surface hardness tends to be low and the stain resistance tends to be poor.

また、有機ポリイソシアネート(B)の例としては、水添MDI(4,4’−ジフェニルメタンジイソシアネート)、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート等が挙げられ、これらを単独使用または複数種併用することができる。耐候性の観点から、水添MDI又はイソホロンジイソシアネートの単独使用或いはこれらの併用が好ましい。   Examples of the organic polyisocyanate (B) include hydrogenated MDI (4,4′-diphenylmethane diisocyanate), isophorone diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, tolylene diisocyanate and the like. Multiple types can be used in combination. From the viewpoint of weather resistance, hydrogenated MDI or isophorone diisocyanate is used alone or in combination.

また、水酸基含有(メタ)アクリレート(C)の例としては、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレート、4−ヒドロキシブチルアクリレート、カプロラクトン変性−2−ヒドロキシエチルアクリレート、ポリエチレングリコールモノアクリル酸エステル、ポリプロピレングリコールモノアクリル酸エステル、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等が挙げられ、これらを単独使用または複数種併用することができる。中でも2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート及びペンタエリスリトールトリアクリレートが好適に用いられる。   Examples of the hydroxyl group-containing (meth) acrylate (C) include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, and caprolactone-modified-2. -Hydroxyethyl acrylate, polyethylene glycol monoacrylate, polypropylene glycol monoacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate and the like can be used, and these can be used alone or in combination. Of these, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate and pentaerythritol triacrylate are preferably used.

上記(A)成分と(B)成分の割合は、(A)中のポリエーテルポリオール及び/又はポリテトラメチレンエーテルグリコールの水酸基総モル数(a)と(B)中の有機ポリイソシアネートのイソシアネート基総モル数(b)とのモル比が(a):(b)=1.0:1.1〜1.0:4.0の範囲となる割合であることが好ましく、より好ましくは、1.0:1.2〜1.0:3.0の範囲となる割合とする。(A)成分のモル比が減少し、(A)成分の重量比が小さくなりすぎると、十分な耐汚染性や耐水性が発現できなくなり、一方、(A)成分のモル比が増加して分子量が大きくなりすぎると、やはり十分な耐汚染性や耐水性が発現できなくなる。   The ratio of the component (A) to the component (B) is the total number of hydroxyl groups (a) of the polyether polyol and / or polytetramethylene ether glycol in (A) and the isocyanate group of the organic polyisocyanate in (B). The molar ratio with respect to the total number of moles (b) is preferably a ratio in the range of (a) :( b) = 1.0: 1.1 to 1.0: 4.0, more preferably 1 The ratio is in the range of 0.0: 1.2 to 1.0: 3.0. If the molar ratio of the component (A) decreases and the weight ratio of the component (A) becomes too small, sufficient contamination resistance and water resistance cannot be expressed, while the molar ratio of the component (A) increases. If the molecular weight is too large, sufficient contamination resistance and water resistance cannot be exhibited.

また、(C)(メタ)アクリレートは、この(C)成分由来の二重結合のウレタンアクリレート中の含有量が1.8mol/kg以上になる割合で使用する。二重結合の量がこれより少ないと表面硬度が低くなり、耐汚染性が悪くなる傾向がある。   Moreover, (C) (meth) acrylate is used in such a ratio that the content of the double bond urethane acrylate derived from the component (C) becomes 1.8 mol / kg or more. If the amount of double bonds is less than this, the surface hardness tends to be low and the stain resistance tends to be poor.

本発明のウレタンアクリレートは、公知の方法で合成することが可能である。例えば、所定量の(A)成分及び(B)成分を一括で仕込み、70〜80℃で所定の遊離イソシアネート量になるまで反応させ、さらにハイドロキノンモノメチルエーテル等の重合禁止剤の存在下、(C)成分を一括で仕込み、70〜80℃で遊離イソシアネートが無くなるまで加温・攪拌することで合成可能である。この時、反応を促進させるために、ジブチルチンジラウレート等のスズ系触媒を添加することもできる。   The urethane acrylate of the present invention can be synthesized by a known method. For example, a predetermined amount of the component (A) and the component (B) are charged all at once and reacted at 70 to 80 ° C. until a predetermined amount of free isocyanate is obtained, and in the presence of a polymerization inhibitor such as hydroquinone monomethyl ether (C ) The components can be charged in a lump and heated and stirred at 70 to 80 ° C. until free isocyanate disappears. At this time, in order to promote the reaction, a tin-based catalyst such as dibutyltin dilaurate may be added.

本発明のエネルギー線硬化型塗料は上記ウレタンアクリレートを含有するものであり、酢酸エチル、メチルエチルケトン等の有機溶剤又はモノマー類で希釈することができる。モノマーで希釈する際は、本発明のウレタンアクリレートの含有率を50重量%以上にすることが好ましい。   The energy ray-curable coating material of the present invention contains the urethane acrylate and can be diluted with an organic solvent or monomers such as ethyl acetate and methyl ethyl ketone. When diluting with a monomer, the content of the urethane acrylate of the present invention is preferably 50% by weight or more.

希釈に用いるモノマーは、公知慣用のものが使用可能であるが、そのうちでも代表的なものとして、2−エチルヘキシルアクリレート、スチレン、メチルメタクリレート、アクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボロニル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオール−ジ(メタ)アクリレート、1,6−ヘキサンジオール−ジ(メタ)アクリレート、1,9−ノナンジオール−ジ(メタ)アクリレート、EO(エチレンオキサイド、以下同様)変性ビスフェノールジ(メタ)アクリレート、PO(プロピレンオキサイド、以下同様)変性ビスフェノールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。これらは単独で用いても、複数種を併用してもよい。   As the monomer used for dilution, known and commonly used monomers can be used. Among them, representative examples include 2-ethylhexyl acrylate, styrene, methyl methacrylate, acryloylmorpholine, tetrahydrofurfuryl (meth) acrylate, phenoxyethyl (meth) ) Acrylate, isobornyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol-di ( Meth) acrylate, 1,6-hexanediol-di (meth) acrylate, 1,9-nonanediol-di (meth) acrylate, EO (ethylene oxide, the same shall apply hereinafter) modified bisphenol Nord di (meth) acrylate, PO (propylene oxide, the same applies hereinafter) modified bisphenol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, PO modified trimethylolpropane tri (meta) ) Acrylate, pentaerythritol tri (meth) acrylate, tris ((meth) acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate and the like. These may be used alone or in combination.

本発明の塗料には活性エネルギー線による重合開始剤を必要に応じ添加する。ここでいう活性エネルギー線による重合開始剤は、光重合開始剤と紫外線等の活性エネルギー線による重合開始剤との双方を含むものとする。 A polymerization initiator by active energy rays is added to the paint of the present invention as required. The polymerization initiator by active energy rays here includes both a photopolymerization initiator and a polymerization initiator by active energy rays such as ultraviolet rays.

光重合開始剤としては、たとえば、ベンゾフェノン等の芳香族ケトン類、アントラセン、α−クロロメチルナフタレン等の芳香族化合物、ジフェニルスルフィド、チオカーバメイト等のイオウ化合物を使用することができる。   As the photopolymerization initiator, for example, aromatic ketones such as benzophenone, aromatic compounds such as anthracene and α-chloromethylnaphthalene, and sulfur compounds such as diphenyl sulfide and thiocarbamate can be used.

可視光以外の紫外線などの活性エネルギー線による重合開始剤としては、例えば、アセトフェノン、アセトフェノンベンジルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4,4’−ジアミノベンゾフェノン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、チオキサントン、ジエチルチオキサントン、2−イソプロピルチオキサントン、2−クロロチオキサントン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オン、2−ベンジルー2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1,4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス−(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキシド、オリゴ(2−ヒドロキシ−2−メチル−1−(4−(1−メチルビニル)フェニル)プロパノン)等を挙げることができる。   Examples of the polymerization initiator by active energy rays such as ultraviolet rays other than visible light include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, and xanthone. Fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, benzoin propyl ether, benzoin ethyl ether, benzyl Dimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one Thioxanthone, diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) -butanone-1,4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis- ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, oligo (2-hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone) and the like. it can.

活性エネルギー線による重合開始剤の市販品としては、例えば、チバ・スペシャルティ・ケミカルズ社製 商品名:イルガキュア184,369,651,500,819,907,784,2959,1000,1300,1700,1800,1850、ダロキュア1116,1173、BASF社製 商品名:ルシリンTPO、UCB社製 商品名:ユベクリルP36、フラテツリ・ランベルティ社製 商品名:エザキュアーKIP150,KIP100F,KT37,KT55,KTO46,TZT,KIP75LT、日本化薬社製 商品名:カヤキュアDETX等を挙げることができる。   As a commercial item of the polymerization initiator by active energy rays, for example, trade name: Irgacure 184,369,651,500,819,907,784,2959,1000,1300,1700,1800, manufactured by Ciba Specialty Chemicals, Inc. 1850, Darocur 1116, 1173, manufactured by BASF, Inc. Product name: Lucillin TPO, manufactured by UCB Product name: Ubekril P36, manufactured by Fratteri Lamberti, Inc. Product names: Ezacure KIP150, KIP100F, KT37, KT55, KTO46, TZT, KIP75LT, Japan Product name: Kayacure DETX, etc. manufactured by Kayaku Co., Ltd. can be mentioned.

また必要により、活性エネルギー線開始剤にラジカル重合開始剤を併用することもできる。ラジカル重合開始剤としては、例えば、過酸化ベンゾイル、メチルシクロヘキサノンパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルパーオキシベンゾエート、ジイソプロピルパーオキシカーボネート、t−ブチルパーオキシイソプロピルモノカーボネート等の有機過酸化物、2,2’−アゾビスイソブチロニトリル(AIBN)などのアゾ化合物を使用することができる。   If necessary, a radical polymerization initiator can be used in combination with the active energy ray initiator. Examples of the radical polymerization initiator include benzoyl peroxide, methylcyclohexanone peroxide, cumene hydroperoxide, diisopropylbenzene peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, diisopropyl peroxycarbonate, t- Organic peroxides such as butyl peroxyisopropyl monocarbonate and azo compounds such as 2,2′-azobisisobutyronitrile (AIBN) can be used.

これら重合開始剤の含有量はその種類等によって異なるが、目安としてはウレタンアクリレート100重量部に対して1〜8重量部である。含有量が少なすぎると活性エネルギー線感度が不十分となり、多すぎると塗膜深部まで活性エネルギー線が十分に届かず、塗膜深部の硬化性が低下する傾向がある。   The content of these polymerization initiators varies depending on the type and the like, but as a guide, it is 1 to 8 parts by weight per 100 parts by weight of urethane acrylate. If the content is too small, the active energy ray sensitivity becomes insufficient. If the content is too large, the active energy rays do not reach the deep part of the coating film, and the curability of the deep part of the coating film tends to be lowered.

本発明のエネルギー線硬化型塗料は、上記ウレタンアクリレート、有機溶剤又はモノマー類、各種開始剤以外に、顔料及び塗料組成物に通常含まれる各種添加剤を必要に応じて添加することができる。添加剤の例としては、光安定剤、紫外線吸収剤、触媒、レベリング剤、消泡剤、重合促進剤、酸化防止剤、難燃剤、赤外線吸収剤等が挙げられる。 Energy-ray-curable coating material of the present invention, the urethane acrylate, an organic solvent or monomers, in addition to various initiators, various additives typically included in the pigment and the coating composition may be added as necessary. Examples of the additive include a light stabilizer, an ultraviolet absorber, a catalyst, a leveling agent, an antifoaming agent, a polymerization accelerator, an antioxidant, a flame retardant, and an infrared absorber.

なお、本発明のエネルギー線硬化型塗料を硬化させるエネルギー線源は特に限定されないが、例としては、高圧水銀灯、電子線、γ線、カーボンアーク灯、キセノン灯、メタルハライド灯等が挙げられる。 Incidentally, the energy beam source to cure the energy ray-curable coating material of the present invention is not particularly limited, examples include high-pressure mercury lamp, electron beam, gamma rays, a carbon arc lamp, xenon lamp, metal halide lamp and the like.

以下に、本発明を実施例及び比較例により具体的に説明するが、本発明は、これらの実施例に何ら限定されるものではない。なお、以下において「部」及び「%」は、特に断りのない限り、すべて重量基準であるものとする。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to these examples. In the following, “part” and “%” are all based on weight unless otherwise specified.

1.ブチレンオキサイドの開環重合により得られるポリエーテル鎖部分を含むポリエーテルポリオールの製造例
[ポリブチレングリコール(分子量400)の製造]
ステンレス製オートクレープに1,3−ブチレングリコール90g(1モル)、1,2−ブチレンオキサイド310g(4.3モル)、水酸化カリウム0.45gを添加後、オートクレープ内を窒素置換した。次いで、温度を120℃まで昇温し、この温度で圧力0.1MPaに維持し、12時間反応させた。反応終了後、減圧により未反応の1,2−ブチレンオキサイドを除去し、ポリブチレングリコール(分子量400)を得た。
1. Production Example of Polyether Polyol Containing Polyether Chain Part Obtained by Ring-Opening Polymerization of Butylene Oxide [Production of Polybutylene Glycol (Molecular Weight 400)]
1,3-butylene glycol 90 g (1 mol), 1,2-butylene oxide 310 g (4.3 mol) and potassium hydroxide 0.45 g were added to a stainless steel autoclave, and then the inside of the autoclave was purged with nitrogen. Next, the temperature was raised to 120 ° C., the pressure was maintained at 0.1 MPa at this temperature, and the reaction was carried out for 12 hours. After completion of the reaction, unreacted 1,2-butylene oxide was removed under reduced pressure to obtain polybutylene glycol (molecular weight 400).

[ポリブチレングリコール(分子量1000)の製造]
1,2−ブチレンオキサイド310g(4.3モル)を910g(12.6モル)に変更した以外は上記と同様に反応させ、ポリブチレングリコール(分子量1000)を得た。
[Production of polybutylene glycol (molecular weight 1000)]
The reaction was carried out in the same manner as above except that 310 g (4.3 mol) of 1,2-butylene oxide was changed to 910 g (12.6 mol) to obtain polybutylene glycol (molecular weight 1000).

[ポリブチレングリコール(分子量3000)の製造]
1,2−ブチレンオキサイド310g(4.3モル)を2910g(40.3モル)に変更した以外は上記と同様に反応させ、ポリブチレングリコール(分子量1000)を得た。
[Production of polybutylene glycol (molecular weight 3000)]
The reaction was conducted in the same manner as above except that 310 g (4.3 mol) of 1,2-butylene oxide was changed to 2910 g (40.3 mol) to obtain polybutylene glycol (molecular weight 1000).

[トリメチロールプロパンのブチレンオキサイド7モル付加体の製造]
1,3−ブチレングリコール90g(1モル)をトリメチロールプロパン134.1g(1モル)に、1,2−ブチレンオキサイド310g(4.3モル)を507.7g(7モル)に変更した以外は上記と同様に反応させ、トリメチロールプロパンのブチレンオキサイド7モル付加体を得た。
[Production of Butylene Oxide 7-Mole Adduct of Trimethylolpropane]
Except that 90 g (1 mol) of 1,3-butylene glycol was changed to 134.1 g (1 mol) of trimethylolpropane and 310 g (4.3 mol) of 1,2-butylene oxide was changed to 507.7 g (7 mol). The reaction was conducted in the same manner as above to obtain a 7-mole adduct of trimethylolpropane butylene oxide.

2.ウレタンアクリレートの合成例
[合成例1]
フラスコにトリメチロールプロパンのブチレンオキサイド7モル付加体(TMP−7BO)638g(1モル)、イソホロンジイソシアネート(IPDI)666g(3モル)を仕込み、70〜80℃で約3時間反応させた。遊離イソシアネート量が9.7±0.3%になっていること確認し、ハイドロキノンモノメチルエーテル0.8g、2−ヒドロキシエチルアクリレート(HEA)348g(3.1モル)を仕込み、さらに70〜80℃にて遊離イソシアネート量が0.1%以下になるまで反応させ、ウレタンアクリレートAを得た。
2. Synthesis example of urethane acrylate [Synthesis Example 1]
A flask was charged with 638 g (1 mol) of butylene oxide 7-mole adduct of trimethylolpropane (TMP-7BO) and 666 g (3 mol) of isophorone diisocyanate (IPDI), and reacted at 70 to 80 ° C. for about 3 hours. After confirming that the amount of free isocyanate was 9.7 ± 0.3%, 0.8 g of hydroquinone monomethyl ether and 348 g (3.1 mol) of 2-hydroxyethyl acrylate (HEA) were charged, and further 70 to 80 ° C. The urethane acrylate A was obtained by reacting until the amount of free isocyanate was 0.1% or less.

[合成例2]
TMP−7BO638g(1モル)をポリブチレングリコール(PBG−400、分子量400)400g(1モル)に、2−ヒドロキシエチルアクリレート348g(3モル)をペンタエリスリトールトリアクリレート(PET−3)255.2g(2.2モル)に、イソホロンジイソシアネート(IPDI)666g(3モル)を444g(2モル)に変更した以外は合成例1と同様に反応させ、ウレタンアクリレートBを得た。
[Synthesis Example 2]
638 g (1 mol) of TMP-7BO is 400 g (1 mol) of polybutylene glycol (PBG-400, molecular weight 400), 348 g (3 mol) of 2-hydroxyethyl acrylate is 255.2 g of pentaerythritol triacrylate (PET-3) (PET-3). The reaction was conducted in the same manner as in Synthesis Example 1 except that 666 g (3 mol) of isophorone diisocyanate (IPDI) was changed to 444 g (2 mol).

[合成例3]
ペンタエリスリトールトリアクリレート255.2g(2.2モル)を2−ヒドロキシエチルアクリレート229.0g(2.04モル)に変更した以外は合成例2と同様に反応させ、ウレタンアクリレートCを得た。
[Synthesis Example 3]
Urethane acrylate C was obtained by reacting in the same manner as in Synthesis Example 2 except that 255.2 g (2.2 mol) of pentaerythritol triacrylate was changed to 229.0 g (2.04 mol) of 2-hydroxyethyl acrylate.

[合成例4]
ポリブチレングリコール(分子量400)400g(1モル)をポリブチレングリコール(PBG−1000、分子量1000)1000g(1モル)に変更した以外は合成例2と同様に反応させ、ウレタンアクリレートDを得た。
[Synthesis Example 4]
Urethane acrylate D was obtained by reacting in the same manner as in Synthesis Example 2 except that 400 g (1 mol) of polybutylene glycol (molecular weight 400) was changed to 1000 g (1 mol) of polybutylene glycol (PBG-1000, molecular weight 1000).

[比較合成例1]
ペンタエリスリトールトリアクリレート255.2g(2.2モル)を2−ヒドロキシエチルアクリレート243.6g(2.1モル)に変更した以外は合成例4と同様に反応させ、ウレタンアクリレートEを得た。
[Comparative Synthesis Example 1]
Urethane acrylate E was obtained by reacting in the same manner as in Synthesis Example 4 except that 255.2 g (2.2 mol) of pentaerythritol triacrylate was changed to 243.6 g (2.1 mol) of 2-hydroxyethyl acrylate.

[比較合成例2]
ポリブチレングリコール(分子量1000)1000g(1モル)をポリブチレングリコール(PBG−3000、分子量3000)3000g(1モル)に、2−ヒドロキシエチルアクリレート243.6g(2.1モル)を255.2g(2.2モル)に変更した以外は比較合成例1と同様に反応させ、ウレタンアクリレートFを得た。
[Comparative Synthesis Example 2]
1000 g (1 mol) of polybutylene glycol (molecular weight 1000) is added to 3000 g (1 mol) of polybutylene glycol (PBG-3000, molecular weight 3000), and 253.6 g (24 mol) of 2-hydroxyethyl acrylate (2.1 mol) ( Except for the change to 2.2 mol), the reaction was conducted in the same manner as in Comparative Synthesis Example 1 to obtain urethane acrylate F.

[比較合成例3]
ポリブチレングリコール(分子量400)400g(1モル)をポリプロピレングリコール(分子量1000)1000g(1モル)に変更した以外は合成例3と同様に反応させ、ウレタンアクリレートGを得た。
[Comparative Synthesis Example 3]
Urethane acrylate G was obtained by reacting in the same manner as in Synthesis Example 3 except that 400 g (1 mol) of polybutylene glycol (molecular weight 400) was changed to 1000 g (1 mol) of polypropylene glycol (molecular weight 1000).

[比較合成例4]
ポリブチレングリコール(分子量400)400g(1モル)をポリエチレングリコール(PEG−600、分子量600)600g(1モル)に変更した以外は合成例3と同様に反応させ、ウレタンアクリレートHを得た。
[Comparative Synthesis Example 4]
Urethane acrylate H was obtained in the same manner as in Synthesis Example 3 except that 400 g (1 mol) of polybutylene glycol (molecular weight 400) was changed to 600 g (1 mol) of polyethylene glycol (PEG-600, molecular weight 600).

[比較合成例5]
ポリブチレングリコール(分子量400)400g(1モル)をポリエチレングリコール(PEG−1500、分子量1500)1500g(1モル)に、イソホロンジイソシアネート444g(2モル)をトリレンジイソシアネート348g(2モル)に変更した以外は合成例2と同様に反応させ、ウレタンアクリレートIを得た。
[Comparative Synthesis Example 5]
Other than changing 400 g (1 mol) of polybutylene glycol (molecular weight 400) to 1500 g (1 mol) of polyethylene glycol (PEG-1500, molecular weight 1500) and 444 g (2 mol) of isophorone diisocyanate to 348 g (2 mol) of tolylene diisocyanate. Was reacted in the same manner as in Synthesis Example 2 to obtain urethane acrylate I.

[比較合成例6]
ポリブチレングリコール(分子量400)400g(1モル)をポリテトラメチレングリコール(PTMG−1000、分子量1000)1000g(1モル)に変更した以外は合成例3と同様に反応させ、ウレタンアクリレートJを得た。
[Comparative Synthesis Example 6]
Urethane acrylate J was obtained by reacting in the same manner as in Synthesis Example 3, except that 400 g (1 mol) of polybutylene glycol (molecular weight 400) was changed to 1000 g (1 mol) of polytetramethylene glycol (PTMG-1000, molecular weight 1000). .

3.エネルギー線硬化型塗料の調製及び評価
上記合成例、比較合成例で得られたウレタンアクリレートA〜J各100部に対して、光重合開始剤(チバ・スペシャルティ・ケミカルズ社製 イルガキュア184)を3部それぞれ配合し、溶解した。これをガラス板上に膜厚が約100μmになるように塗布し、高圧水銀ランプ80W/cmを用いて、積算照度200mJ/cmにて照射して硬化させた。得られた各硬化物につき、以下の方法で耐汚染性、耐薬品性、吸水率、鉛筆硬度を調べた。結果を表1に示す。
3. Preparation and evaluation of energy ray curable coating material 3 parts of photopolymerization initiator (Irgacure 184 manufactured by Ciba Specialty Chemicals) for each 100 parts of urethane acrylates A to J obtained in the above synthesis examples and comparative synthesis examples Each was blended and dissolved. This was applied onto a glass plate so as to have a film thickness of about 100 μm, and was cured by irradiation with an integrated illuminance of 200 mJ / cm 2 using a high-pressure mercury lamp 80 W / cm. About each obtained hardened | cured material, the stain resistance, chemical resistance, the water absorption rate, and pencil hardness were investigated with the following method. The results are shown in Table 1.

耐汚染性:JIS K5400に準じて評価した。すなわち硬化塗膜上に表に示した汚染物質をのせ、室温で約18時間放置した。水拭き又はイソプロピルアルコール拭きをそれぞれ行い、拭いた後を目視で観察し、汚染物質が塗膜に残っているもの又は塗膜に変化があるものを×、塗膜に変化はあるが軽微なものを△、汚染物質が残らず塗膜に変化も無いものを○とした。 Contamination resistance: Evaluated according to JIS K5400. That is, the contaminants shown in the table were placed on the cured coating film and left at room temperature for about 18 hours. Wipe with water or wipe with isopropyl alcohol, and observe visually after wiping. X indicates that the contaminant remains in the coating or changes in the coating, and the coating has changes but is minor. △, and those where no contaminants remained and the coating film remained unchanged were marked with ◯.

耐薬品性:JIS K5400に準じて評価した。すなわち硬化塗膜上に表に示した薬品をそれぞれ数滴たらし、室温で約18時間放置した。水洗い後、塗膜を目視で観察し、変化が見られるものを×、変化はあるが軽微なものを△、塗膜に変化が無いものを○とした。 Chemical resistance: Evaluated according to JIS K5400. That is, several drops of the chemicals shown in the table were placed on the cured coating film and allowed to stand at room temperature for about 18 hours. After rinsing with water, the coating film was visually observed. The change was observed as x, the change was slight but slight, and the coating film was unchanged as O.

吸水率:硬化塗膜をガラス板からはがして、蒸留水(23℃)に24時間浸漬した。表面の水を拭取った直後に測定した重量(A)と、105℃で3時間オーブンで乾燥した後に測定した重量(B)とから次式に基づき求めた。 Water absorption: The cured coating film was peeled off from the glass plate and immersed in distilled water (23 ° C.) for 24 hours. It calculated | required based on following Formula from the weight (A) measured immediately after wiping off the surface water, and the weight (B) measured after drying in 105 degreeC oven for 3 hours.

吸水率(%)={(A−B)/B}×100       Water absorption (%) = {(A−B) / B} × 100

鉛筆硬度:JIS K5400に準じ、鉛筆引っかき試験機で荷重1kgかけて引っかき、傷の付かない最も硬い鉛筆の硬さとした。(表中の「<6B」は「6B」より軟らかい硬度を示す。) Pencil hardness: According to JIS K5400, it was scratched with a pencil scratch tester under a load of 1 kg, and the hardness of the hardest pencil without scratches was obtained. ("<6B" in the table indicates a hardness that is softer than "6B".)

Figure 0005456460
Figure 0005456460

本発明のエネルギー線硬化型塗料は、各種建材、構造物、成型物用の塗料に好適に用いることができる。 The energy ray curable coating composition of the present invention can be suitably used for various building materials, structures, and moldings.

Claims (3)

ブチレンオキサイドの開環重合により得られるポリエーテル鎖部分を含むポリエーテルポリオール(A)と
有機ポリイソシアネート(B)と
分子内に水酸基を含有する(メタ)アクリレート(C)とを反応させて得られるウレタンアクリレートであって、
前記(メタ)アクリレート(C)由来の二重結合の含有量が1.8mol/kg以上であるウレタンアクリレート
を含有するエネルギー線硬化型塗料
Obtained by reacting a polyether polyol (A) containing a polyether chain moiety obtained by ring-opening polymerization of butylene oxide, an organic polyisocyanate (B), and a (meth) acrylate (C) containing a hydroxyl group in the molecule. Urethane acrylate,
An energy ray-curable coating material containing urethane acrylate having a content of double bonds derived from the (meth) acrylate (C) of 1.8 mol / kg or more.
前記(A)成分と(B)成分との割合が、
(A)中のポリエーテルポリオールの水酸基総モル数(a)と(B)中の有機ポリイソシアネートのイソシアネート基総モル数(b)とのモル比が(a):(b)=1.0:1.1〜1.0:4.0の範囲となる割合である
ことを特徴とする、請求項1に記載のエネルギー線硬化型塗料
The ratio of the component (A) to the component (B)
The molar ratio of the total number of moles of hydroxyl groups (a) of the polyether polyol in (A) to the total number of moles (b) of isocyanate groups in the organic polyisocyanate in (B) is (a) :( b) = 1.0. The energy ray-curable coating material according to claim 1, wherein the ratio is in a range of 1.1 to 1.0: 4.0.
前記ウレタンアクリレートにおける、ブチレンオキサイドの開環重合により得られるポリエーテル鎖部分の含有量が22重量%以上であることを特徴とする、請求項1又は2に記載のエネルギー線硬化型塗料The energy ray-curable coating material according to claim 1 or 2, wherein a content of a polyether chain portion obtained by ring-opening polymerization of butylene oxide in the urethane acrylate is 22% by weight or more.
JP2009294672A 2009-12-25 2009-12-25 Energy ray curable paint Expired - Fee Related JP5456460B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009294672A JP5456460B2 (en) 2009-12-25 2009-12-25 Energy ray curable paint
TW099144070A TWI453227B (en) 2009-12-25 2010-12-15 An energy ray-hardening resin composition, and a coating material using the same
KR1020100134886A KR101770428B1 (en) 2009-12-25 2010-12-24 Energy ray-curable resin composition and paint using same
CN201010621129.6A CN102127295B (en) 2009-12-25 2010-12-24 Energy ray curable resin composition and use the coating of this resin combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294672A JP5456460B2 (en) 2009-12-25 2009-12-25 Energy ray curable paint

Publications (2)

Publication Number Publication Date
JP2011132410A JP2011132410A (en) 2011-07-07
JP5456460B2 true JP5456460B2 (en) 2014-03-26

Family

ID=44265586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294672A Expired - Fee Related JP5456460B2 (en) 2009-12-25 2009-12-25 Energy ray curable paint

Country Status (4)

Country Link
JP (1) JP5456460B2 (en)
KR (1) KR101770428B1 (en)
CN (1) CN102127295B (en)
TW (1) TWI453227B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6067235B2 (en) * 2012-03-06 2017-01-25 第一工業製薬株式会社 Urethane (meth) acrylate and curable resin composition containing the same
JP6467122B2 (en) * 2012-12-28 2019-02-06 第一工業製薬株式会社 Method for producing coating agent for film formation and method for producing cured product thereof
JP6087187B2 (en) * 2013-03-27 2017-03-01 第一工業製薬株式会社 Energy ray curable resin composition
WO2016047291A1 (en) * 2014-09-25 2016-03-31 第一工業製薬株式会社 Curable resin composition, cured product and laminate
US20220064360A1 (en) 2018-12-25 2022-03-03 Adeka Corporation Urethane polymer and oil composition containing same
CN113956784A (en) * 2021-10-18 2022-01-21 丽水学院 Water-based visible light driven film-forming finishing agent for ecological synthetic leather

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607084A (en) * 1984-06-11 1986-08-19 Celanese Specialty Resins, Inc. Radiation curable acrylated polyurethane oligomer compositions
JPS61227948A (en) * 1985-03-29 1986-10-11 Nitto Electric Ind Co Ltd Coating material for optical glass fiber
JPH01161010A (en) * 1987-12-17 1989-06-23 Dainippon Printing Co Ltd Resin composition curable with electron beam
JPH02135211A (en) * 1988-11-15 1990-05-24 Yokohama Rubber Co Ltd:The Ultraviolet-curable resin composition
JP2781611B2 (en) * 1989-08-15 1998-07-30 横浜ゴム株式会社 Gel substrate
JP3305822B2 (en) * 1993-07-07 2002-07-24 電気化学工業株式会社 Curable resin composition, adhesive and sealant using the same
JP3332286B2 (en) * 1994-04-28 2002-10-07 電気化学工業株式会社 Curable resin composition
JPH11279240A (en) * 1998-03-30 1999-10-12 Hitachi Chem Co Ltd Photo-curing resin composition and coating material
JP2001199748A (en) * 2000-01-12 2001-07-24 Dainippon Ink & Chem Inc Resin composition for covering optical fiber and covered core wire
JP2001276279A (en) * 2000-04-04 2001-10-09 Sumitomo Rubber Ind Ltd Paint for golf ball and golf ball using the same
JP2005162908A (en) * 2003-12-03 2005-06-23 Natoko Kk Active energy ray-curable urethane (meth)acrylate, active energy ray-curable composition containing the same and functional member using them
WO2006120887A1 (en) * 2005-05-12 2006-11-16 Nippon Kayaku Kabushiki Kaisha Photosensitive resin compositions, cured articles of the compositions, and films containing the compositions
JP2007023177A (en) * 2005-07-19 2007-02-01 Dainippon Ink & Chem Inc Active energy ray-curing type aqueous urethane resin dispersion
JP2007023178A (en) * 2005-07-19 2007-02-01 Dainippon Ink & Chem Inc Active energy ray-curing type aqueous urethane resin dispersion
KR100790849B1 (en) * 2006-01-27 2008-01-02 삼성에스디아이 주식회사 Polyurethane binder, electrodes containing the same and the lithium battery containing the electrodes
CN100368455C (en) * 2006-03-22 2008-02-13 中国科学技术大学 Process for preparing ultraviolet curable aqueous polyurethane resin
CN101177524B (en) * 2007-04-04 2011-06-01 上纬(上海)精细化工有限公司 Shock-proof pressure-tight unsaturated polyester resin and uses thereof
CN101608010A (en) * 2008-06-17 2009-12-23 上海富臣化工有限公司 Polyether polyurethane-acrylate and preparation method thereof
KR20110127137A (en) * 2009-02-04 2011-11-24 니폰 가야꾸 가부시끼가이샤 Actinic-energy-ray-curable resin composition for hard coat and use thereof

Also Published As

Publication number Publication date
KR101770428B1 (en) 2017-08-22
TWI453227B (en) 2014-09-21
JP2011132410A (en) 2011-07-07
TW201125883A (en) 2011-08-01
CN102127295A (en) 2011-07-20
CN102127295B (en) 2016-05-04
KR20110074720A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
JP6067235B2 (en) Urethane (meth) acrylate and curable resin composition containing the same
JP5446071B2 (en) Protective adhesive film, screen panel and portable electronic terminal
JP5456460B2 (en) Energy ray curable paint
WO2006006402A1 (en) Active energy ray-curable resin composition, method for producing same, and coating composition using same
JP5665613B2 (en) Method for coating metal substrate
JP6222559B2 (en) Urethane (meth) acrylate mixture and urethane (meth) acrylate composition
JP2009511703A (en) UV curable high solid paint composition comprising low viscosity multifunctional urethane acrylate oligomer
KR20110021916A (en) Curable composition containing a reactive (meth)acrylate polymer and a cured product thereof
JP6087187B2 (en) Energy ray curable resin composition
KR20160130732A (en) Curable resin composition and coating composition comprising the same
US9206117B2 (en) Urethane acrylate, and reactive composition containing same
JP2019085558A (en) Active energy ray curable resin composition and coating agent
CN107286320B (en) Active energy ray-curable composition
KR20190129848A (en) Active energy ray curable resin composition and coating agent
JP5817295B2 (en) Active energy ray-curable resin composition, cured product thereof, and film
JP2014177641A (en) Urethane (meth)acrylate and photocurable resin composition containing the same
KR102645100B1 (en) Active energy ray curable resin composition and coating agent
JP2008247965A (en) Liquid curable resin composition
JP2008247964A (en) Liquid curable resin composition
WO2024147266A1 (en) Curable resin composition, film, and article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130611

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees