JP5455156B2 - Manufacturing method of resin mold - Google Patents

Manufacturing method of resin mold Download PDF

Info

Publication number
JP5455156B2
JP5455156B2 JP2010015344A JP2010015344A JP5455156B2 JP 5455156 B2 JP5455156 B2 JP 5455156B2 JP 2010015344 A JP2010015344 A JP 2010015344A JP 2010015344 A JP2010015344 A JP 2010015344A JP 5455156 B2 JP5455156 B2 JP 5455156B2
Authority
JP
Japan
Prior art keywords
forging
temperature
billet
soaking
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010015344A
Other languages
Japanese (ja)
Other versions
JP2011153346A (en
Inventor
義徳 神野
敦郎 益永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2010015344A priority Critical patent/JP5455156B2/en
Publication of JP2011153346A publication Critical patent/JP2011153346A/en
Application granted granted Critical
Publication of JP5455156B2 publication Critical patent/JP5455156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、樹脂成形金型の製造方法に関し、特に、大型の樹脂成形製品の射出成形に使用されるNi−Al−Cu系時効硬化型鋼からなる樹脂成形金型の製造方法に関する。   The present invention relates to a method for manufacturing a resin molding die, and more particularly to a method for manufacturing a resin molding die made of Ni-Al-Cu age-hardening die steel used for injection molding of a large resin molded product.

樹脂成形金型は、家電製品やOA機器等の樹脂成形製品の射出成形に広く使用されている。特に、製品使用者の目に触れ得る外装パネルや筐体の射出成形において、金型意匠面に平滑ムラやピンホール等があると、これが樹脂成形製品に転写されて製品を見劣りさせてしまう。そこで鏡面加工性に優れる金型用鋼が求められている。   Resin-molding molds are widely used for injection molding of resin-molded products such as home appliances and OA equipment. In particular, in the case of injection molding of an exterior panel or casing that can be seen by the product user, if there are smooth unevenness, pinholes, etc. on the mold design surface, this is transferred to a resin molded product and the product is inferior. Accordingly, there is a demand for mold steels that are excellent in mirror finish.

例えば、特許文献1では、鏡面加工性に優れる樹脂成形金型用鋼として、Ni−Al−Cu系時効硬化型鋼が開示されている。かかる鋼の1つの基本成分組成として、C:0.05〜0.18%、Si:0.15〜1.0%、Mn:1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.015%以下であることが挙げられている。S量を抑制するとともに、所定量のNiとAlの添加により、鏡面仕上げ処理において、主としてAlの脱落に伴う抜け穴により「くもり状態」を示すことを防止し、高い鏡面加工性を得られることを開示している。 For example, Patent Document 1 discloses Ni—Al—Cu age-hardening steel as a resin mold steel having excellent mirror surface workability. As one basic component composition of such steel, C: 0.05 to 0.18%, Si: 0.15 to 1.0%, Mn: 1.0 to 2.0%, Ni: 2.5 to 3 0.5%, Al: 0.5 to 1.5%, Cu: 0.7 to 1.7%, Mo: 0.1 to 0.4%, S: 0.015% or less. ing. In addition to suppressing the amount of S, the addition of predetermined amounts of Ni and Al prevents the “cloudy state” from being exhibited due to a loophole caused by the dropout of Al 2 S 3 in the mirror surface finishing process, resulting in high mirror surface workability. Is disclosed.

ところで、金型鋼自体の鏡面加工性が高くとも、金型鋼を製造する段階、特に鍛造段階で十分に鍛造ができていないと製造ムラを生じ、鏡面加工性を大幅に低下させてしてしまう。特に、大型の樹脂成形金型の製造では、鋼塊が大型化するため、鍛造設備のパワー不足などの設備上の問題なども絡み、この製造ムラに起因する鏡面加工性について大きな問題となる。   By the way, even if the mold steel itself has a high mirror surface workability, if it is not sufficiently forged at the stage of producing the mold steel, particularly at the forging stage, production unevenness will occur and the mirror surface workability will be greatly reduced. In particular, in the manufacture of a large resin molding die, the steel ingot is enlarged, so that problems such as insufficient power of the forging facility are also involved, and the mirror workability due to this manufacturing unevenness becomes a big problem.

例えば、特許文献2では、変形抵抗の高いオーステナイト系ステンレス鋼からなる鋼塊の鍛造段階において、大型の鋼塊では再結晶化の駆動力となる歪みが鋼塊内部まで到達せず、鋼塊内部に鍛造ムラができてしまうことを述べている。また、歪みを繰り返し与えてトータルとして大きな歪みを与えようとするなら、リヒートを繰り返し行わねばならず、結晶粒を粗大化させてしまうことも述べている。   For example, in Patent Document 2, in a forging stage of a steel ingot made of austenitic stainless steel having high deformation resistance, in a large steel ingot, strain that becomes a driving force for recrystallization does not reach the inside of the steel ingot. It states that forging unevenness is generated. It also states that if a strain is repeatedly applied to give a large strain as a total, reheating must be repeated and the crystal grains become coarse.

これに対して、同文献では、鋼塊を1250℃以上融点以下の高い温度に加熱し、再結晶開始温度未満に低下するまでの間に1パス当たりの最大歪(ε)を0.2以上且つ鍛錬比を2S以上となるように鍛伸する第1鍛伸工程と、再結晶開始温度未満に低下した後、再度、前記した温度よりも低い1050℃以上1150℃以下の温度に加熱し、1パス当たりの最大歪を0.2以上且つ鍛錬比を2S以上となるように鍛伸する第2鍛伸工程と、の二段階からなる鍛造工程を与える方法を開示している。鍛造時の加熱温度を高くすると変形抵抗を下げ得るから、パワーのそれほど大きくない鍛造設備であっても、1パス当たりの最大歪を大きく且つ鍛錬比も大きく出来るから、大きな鋳造組織を確実に破壊できる。更に、鍛造工程を第1鍛伸工程と第2鍛伸工程の2段階に分けて鋳造組織を破壊した後の第2鍛伸工程では、加熱温度を相対的に低温にすることで、粒成長を抑制し細粒組織を与えるのである。つまり、鋳造組織及び結晶粒組織における鍛造ムラを低減できて、鏡面加工性をも高め得ると考えられる。   On the other hand, in this document, the steel ingot is heated to a high temperature of 1250 ° C. or higher and lower than the melting point, and the maximum strain (ε) per pass is 0.2 or higher until the steel ingot is lowered below the recrystallization start temperature. And after lowering to less than the recrystallization start temperature, the first forging process for forging so that the forging ratio is 2S or more, and again heating to a temperature of 1050 ° C. or more and 1150 ° C. or less, which is lower than the above-described temperature, A method of providing a forging process consisting of two stages, that is, a second forging process in which the maximum strain per pass is 0.2 or more and the forging ratio is 2S or more is disclosed. Since the deformation resistance can be lowered by increasing the heating temperature during forging, even a forging facility with less power can increase the maximum strain per pass and increase the forging ratio, thereby reliably destroying large cast structures. it can. Furthermore, in the second forging process after breaking the cast structure by dividing the forging process into two stages of the first forging process and the second forging process, grain growth is achieved by relatively lowering the heating temperature. It suppresses and gives a fine grain structure. That is, it is considered that forging unevenness in the cast structure and the crystal grain structure can be reduced, and the mirror workability can be improved.

昭60−67641号公報Sho-60-67641 特開2008−36698号公報JP 2008-36698 A

近年、家電製品やOA機器等が大型化するとともに、高級感を演出できる光沢感のある樹脂を外装パネルや筐体に使用したいとの要望も多い。かかる樹脂成形製品では、表面での光の反射が大きく、従前以上に表面のうねりを低減できるよう、射出成形に使用される樹脂成形金型にもより一層の鏡面加工性の向上が求められる。その一方で、このような樹脂成形金型のための鋼塊は大型化するため、上記したような鏡面加工性を低下させてしまう鍛造ムラを防止することが製造上重要となった。   In recent years, as home appliances and OA devices are increased in size, there are many requests to use a glossy resin capable of producing a high-class feeling for exterior panels and housings. In such a resin molded product, the reflection of light on the surface is large, and the resin mold used for injection molding is required to have further improved mirror finish so that the surface undulation can be reduced more than before. On the other hand, since the steel ingot for such a resin molding die becomes large, it has become important in manufacturing to prevent forging unevenness that deteriorates the mirror surface workability as described above.

本発明は、かかる事情に鑑みてなされたものであって、その目的とするところは、大型の樹脂製品の成形に使用されるNi−Al−Cu系時効硬化型鋼からなる樹脂成形金型の製造方法であって、鏡面性に優れた樹脂成形金型の製造方法を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is to manufacture a resin molding die made of Ni-Al-Cu age-hardening type steel used for molding a large resin product. It is a method, and it is providing the manufacturing method of the resin mold which was excellent in mirror surface property.

本発明によるNi−Al−Cu系時効硬化型鋼からなる樹脂成形金型の製造方法は、鋼塊を温度Tに加熱してからビレットに分塊鍛造する分塊鍛造工程と、前記分塊鍛造工程に引き続いて、前記ビレットを温度Tに加熱して保持するソーキング工程と、1050℃以下の温度Tに加熱してから鍛造する低温仕上鍛造工程と、を含み、前記ソーキング工程と前記低温仕上鍛造工程との間に、500℃以上であって少なくとも温度Tよりも低い温度Tでガウジングを行う熱間ガウジング工程を更に含むことを特徴とする。 Method for producing a resin molding die made of Ni-Al-Cu-based age-hardening type steel according to the present invention includes a blooming forging step of blooming forging the billet was heated steel ingot to a temperature T 1, the blooming forging following step comprises a soaking step of holding and heating the billet to a temperature T 2, and the low temperature finish forging step of forging is heated to a temperature T 3 of 1050 ° C. or less, and the soaking step and the low-temperature A hot gouging step of performing gouging at a temperature T 4 that is 500 ° C. or higher and at least lower than the temperature T 3 is further included between the finish forging step.

かかる方法によれば、ガウジングを熱間で行うので、ソーキング工程から低温鍛造工程までの時間を短縮できて、発生するスケールの総量を抑制できる。生じるスケールの総量が少なく歩留まりがよいから、ソーキング工程でのビレットの断面積を極力小さくできる。故に、偏析を十分に解消し鏡面性を高めるよう効率的にソーキング処理を行い得る。さらに、低温仕上鍛造においては、熱間ガウジングによって、よりスケールの少ない状態で低温鍛造を行うので、鍛錬比を高くして鍛造でスケールを剥離させる必要が無く、低い鍛錬比であれば鍛造時間を短くせしめ得て、結果として、低温鍛造時にも生成するスケールを抑制できる。つまり、スケールの抑制により、低い鍛錬比であっても、特にビレット表層の肌荒れを抑えることができて、鏡面加工性に優れた金型鋼を与える。   According to this method, since gouging is performed hot, the time from the soaking process to the low-temperature forging process can be shortened, and the total amount of scale generated can be suppressed. Since the total amount of scale produced is small and the yield is good, the billet cross-sectional area in the soaking process can be minimized. Therefore, the soaking process can be efficiently performed so as to sufficiently eliminate segregation and enhance the specularity. Furthermore, in low temperature finish forging, hot gouging is used to perform low temperature forging with less scale, so there is no need to increase the forging ratio and peel off the scale by forging. As a result, it is possible to suppress the scale that is generated even during low-temperature forging. That is, by suppressing the scale, even with a low forging ratio, the rough surface of the billet surface layer can be suppressed, and a mold steel excellent in mirror surface workability can be obtained.

上記した発明において、前記ビレットは厚さ400mm以下であって、前記ソーキング工程において、前記ビレットを1230〜1280℃の範囲内の温度T(℃)で時間t(h)保持するとき、
(T+273)×(20+logt)/1000≧32
であることを特徴としてもよい。かかる方法によれば、ソーキング処理によるビレット内の偏析をより低減できて、偏析に起因する鏡面加工性の劣化をより防止できる。上記したように、熱間ガウジングによりソーキング処理で生成するスケールは、低温鍛造工程に影響を与えないから、ソーキング工程をビレットの大きさなどに合わせて制御できる。つまり、大型の樹脂製品の成形に使用される鏡面性に優れる大型の金型を与え得る。
In the above-described invention, the billet has a thickness of 400 mm or less, and in the soaking step, when the billet is held at a temperature T 2 (° C.) within a range of 1230 to 1280 ° C. for a time t (h),
(T 2 +273) × (20 + logt) / 1000 ≧ 32
It is good also as a feature. According to this method, the segregation in the billet due to the soaking process can be further reduced, and the deterioration of the mirror surface workability due to the segregation can be further prevented. As described above, since the scale generated by the soaking process by hot gouging does not affect the low temperature forging process, the soaking process can be controlled according to the size of the billet. That is, it is possible to provide a large mold having excellent specularity used for molding a large resin product.

上記した発明において、前記低温仕上鍛造工程において、鍛錬比1.5Sだけ鍛造することを特徴としてもよい。かかる方法によれば、変形抵抗の大きい低温鍛造では鍛造時間が長くなるところ、低い鍛錬比により鍛造時間を短くせしめて、結果として、低温鍛造時にも生成するスケールを抑制し、鏡面加工性に優れた金型鋼を与える。   In the above-described invention, in the low temperature finish forging step, forging may be performed by a forging ratio of 1.5S. According to such a method, forging time becomes long in low-temperature forging with a large deformation resistance, but the forging time is shortened by a low forging ratio. Give mold steel.

上記した発明において、前記低温仕上鍛造工程によって得られた仕上材に溶体化処理を2回施す溶体化処理工程を更に含むことを特徴としてもよい。かかる方法によれば、低い鍛錬比であっても十分に再結晶させることが出来て、結晶粒が不均一であって荒れることに起因する鏡面加工性の劣化を防止できる。   The above-described invention may further include a solution treatment step in which the solution obtained by the low temperature finish forging step is subjected to solution treatment twice. According to this method, even if it is a low forging ratio, it can fully recrystallize and it can prevent the deterioration of the mirror surface workability resulting from the crystal grains being uneven and rough.

本発明による製造方法で使用した鋼の1つの成分組成を示す図である。It is a figure which shows one component composition of steel used with the manufacturing method by this invention. 本発明による製造方法のフローを示す図である。It is a figure which shows the flow of the manufacturing method by this invention. 本発明による鍛造工程を示す図である。It is a figure which shows the forge process by this invention. 本発明による金型の製造条件及び各測定値を示す図である。It is a figure which shows the manufacturing conditions and each measured value of the metal mold | die by this invention.

本発明の実施例によるNi−Al−Cu系時効硬化型鋼からなる樹脂成形金型の製造方法について図1乃至3を用いて詳細を説明する。   The manufacturing method of the resin molding die which consists of Ni-Al-Cu age-hardening type steel by the Example of this invention is demonstrated in detail using FIG.

図1に実施例としての鍛造試験に用いたNi−Al−Cu系時効硬化型鋼の成分組成を示した。なお、本発明による製造方法の対象とする鋼の成分組成は、一般的な、金型における硬さ及び金型への加工のための被削性のバランスを満たすよう、また、金型の使用される対象製品によって決定される鏡面加工性の要求を満たすよう選択され得る。また、製造工程の鍛造において鍛造ムラを低減すべく変形抵抗を過剰に高めない成分組成が選択され得る。つまり、本発明による製造方法の対象としての鋼は、図1に示したようなNi−Al−Cu系時効硬化型鋼が好ましく、これと前記した特性において類似する鋼を対象とする。   FIG. 1 shows the component composition of Ni—Al—Cu age-hardening steel used in the forging test as an example. It should be noted that the steel component composition of the manufacturing method according to the present invention satisfies the general balance of hardness in the mold and machinability for processing into the mold, and the use of the mold. Can be selected to meet the specularity requirements determined by the target product being processed. In addition, a component composition that does not excessively increase deformation resistance can be selected in order to reduce forging unevenness in forging in the manufacturing process. That is, the steel as the object of the manufacturing method according to the present invention is preferably a Ni—Al—Cu age-hardening steel as shown in FIG. 1 and is similar to the above-described steel.

図2及び図3に示すように、まず、製鋼で得られた鋼塊を分塊鍛造する(S1)。分塊鍛造は、鍛造抵抗の小さい高い温度である1200℃から1280℃の温度範囲の温度Tに加熱してから、後述する仕上鍛造(S4)での最終製品への鍛錬比を残すよう、所定の鍛錬比だけ鍛造を行ってビレットを得る。 As shown in FIGS. 2 and 3, first, the steel ingot obtained by steelmaking is forged into pieces (S1). Forging forging, after heating to a temperature T 1 in the temperature range from 1200 ° C. to 1280 ° C., which is a high temperature with low forging resistance, to leave a forging ratio to the final product in finish forging (S4) described later, A billet is obtained by forging at a predetermined training ratio.

分塊鍛造によって得られたビレットは、再度、1230〜1280℃の範囲内の所定の温度Tまで加熱されて、そのまま所定時間だけ保持し、成分組成の偏析を拡散により均質化させるソーキング熱処理を施す(S2)。 The resulting billet by blooming forging, again, is heated to a predetermined temperature T 2 in the range of from 1,230 to 1,280 ° C., as it is held for a predetermined time, the soaking heat treatment for homogenization by diffusion segregation component composition (S2).

ソーキング工程は、加熱温度をT(℃)及び保持時間をt(h)として、ソーキングパラメータSを以下の式のように定義し得る。

S=(T+273)×(20+logt)/1000 (式1)

つまり、加熱温度Tが高いほど、及び、保持時間tが長いほどソーキングパラメータSは大きくなる。ソーキングパラメータSの値に対して、保持時間tはlogスケールで影響を与える。
In the soaking process, the soaking parameter S can be defined as the following equation, where the heating temperature is T (° C.) and the holding time is t (h).

S = (T + 273) × (20 + logt) / 1000 (Formula 1)

That is, the higher the heating temperature T and the longer the holding time t, the larger the soaking parameter S. The holding time t affects the value of the soaking parameter S on a log scale.

ここで、ソーキングパラメータSと成分組成の偏析の解消状態に関して実験を行っている。すなわち、縞状の偏析模様を表面に有するソーキング工程前の複数のビレットに対して、ソーキングパラメータSを変えてソーキングを行った。そして後述する工程(S3〜S6)を経て得られた実機サンプルのそれぞれについて、0.2mm間隔で硬さ分布を測定した。すると、ソーキングパラメータS≧32.0で硬さ分布のばらつきが非常に小さくなり、縞状の偏析模様が完全に消失することが判った。   Here, an experiment is conducted on the state of elimination of segregation of the soaking parameter S and the component composition. That is, soaking was performed by changing the soaking parameter S for a plurality of billets having a striped segregation pattern on the surface before the soaking process. And about each of the actual machine sample obtained through the process (S3-S6) mentioned later, hardness distribution was measured at 0.2 mm space | interval. Then, it was found that when the soaking parameter S ≧ 32.0, the variation in the hardness distribution becomes very small, and the striped segregation pattern disappears completely.

以上のことから、ソーキングパラメータSを32以上となるようにソーキング(S2)を行うことが好ましい。これによれば、後述する実施例1及び2のような厚さが400mm程度までの大型のビレットを特に偏析の大となりやすい中心部まで拡散均質化できる。なお、加熱温度Tが高いほど結晶粒度が下がり、保持時間tが長いほどビレット表面のスケール(黒皮)が厚くなって歩留まりが低下する。かかる影響を考慮しながら、操業条件を適宜、決定する。なお、後述するように、ソーキング工程(S2)で生成するスケールは、熱間ガウジング工程(S3)を経るため、低温鍛造工程(S4)に影響を与えない。つまり、ソーキング工程(S2)による成分組成の偏析の解消をビレットの大きさなどに合わせて制御でき、大型の樹脂製品の成形に使用される鏡面性に優れる大型の金型を与え得る。   From the above, it is preferable to perform soaking (S2) so that the soaking parameter S is 32 or more. According to this, it is possible to diffuse and homogenize a large billet having a thickness of up to about 400 mm as in Examples 1 and 2 to be described later up to a central portion where segregation tends to be particularly large. Note that the higher the heating temperature T, the lower the crystal grain size, and the longer the holding time t, the thicker the billet surface scale (black skin) and the lower the yield. The operating conditions are appropriately determined in consideration of such influence. As will be described later, the scale generated in the soaking process (S2) does not affect the low-temperature forging process (S4) because it passes through the hot gouging process (S3). That is, the elimination of segregation of the component composition by the soaking process (S2) can be controlled in accordance with the size of the billet and the like, and a large mold having excellent specularity used for molding a large resin product can be provided.

ソーキング工程(S2)により十分に成分組成の偏析を解消せしめたビレットに対して、温度が大きく冷却されないうちにグラインダで表面を研削しスケールを除去する熱間ガウジングを行う(S3)。ガウジングは、500℃以上の温度Tで行う。これによりソーキング工程(S2)から後述する低温鍛造工程(S4)へと、より短い時間で工程を進めてスケールのより少ない状態で低温鍛造を行い得るのである。 Hot gouging is performed on the billet in which the segregation of the component composition has been sufficiently eliminated by the soaking process (S2), in which the surface is ground by a grinder and the scale is removed before the temperature is greatly cooled (S3). Gouging is performed at a temperature T 4 of 500 ° C. or higher. As a result, from the soaking process (S2) to the low-temperature forging process (S4), which will be described later, the process can be advanced in a shorter time and low-temperature forging can be performed with less scale.

ガウジング加工によりスケールを除去した後のビレットは、再度、結晶粒度の急激に低下しない温度、例えば、1050℃以下の温度Tまで加熱し、最終製品に近い形状に低温仕上鍛造する(S4)。かかる低温鍛造では、スケールが除去されているから、更にスケールを剥離させるよう鍛錬比を高くする必要が無い。つまり、比較的低い温度での鍛造は、鍛造抵抗が大きくなって、一般的に鍛造速度が遅く、鍛造時間が長くなりがちである。一方、本工程では、鍛錬比を低くできるので、鍛造時間を短くせしめて、結果として、低温鍛造時にも生成するスケールを抑制できるのである。スケールを抑制することで、低い鍛錬比であっても鍛造ムラ、特にビレット表層の肌荒れを抑えることができて、鏡面加工性に優れた金型鋼を与え得るのである。 Billet after removing the scale by gouging process again, the grain size of the rapidly lowered without temperature, for example, heated to a temperature T 3 of 1050 ° C. or less, low temperature finish forging to shape close to the final product (S4). In such low temperature forging, since the scale is removed, there is no need to increase the forging ratio so that the scale is further peeled off. That is, forging at a relatively low temperature tends to increase the forging resistance, generally the forging speed is slow, and the forging time tends to be long. On the other hand, in this step, the forging ratio can be lowered, so that the forging time can be shortened, and as a result, the scale generated at the time of low-temperature forging can be suppressed. By suppressing the scale, forging unevenness, particularly rough surface of the billet surface layer, can be suppressed even at a low forging ratio, and a mold steel having excellent mirror surface workability can be obtained.

低温仕上鍛造後のビレットは、必要に応じて溶体化処理を行う(S5)。低温鍛造では、鍛造温度が低く、しかも上記したように鍛錬比が低いから、結晶粒の形状や大きさが均一ではない。このような「荒れた状態」を均一に十分に再結晶させるよう、溶体化処理を850℃程度で複数回、例えば、2度行うことが好ましい。これによれば、結晶粒度で6〜7程度の細粒が得られて、後述する調質熱処理(S6)後において40HRC程度の硬さを得られる。   The billet after low-temperature finish forging is subjected to a solution treatment as necessary (S5). In low-temperature forging, since the forging temperature is low and the forging ratio is low as described above, the shape and size of crystal grains are not uniform. In order to recrystallize such a “rough state” uniformly and sufficiently, it is preferable to perform the solution treatment at a temperature of about 850 ° C. a plurality of times, for example, twice. According to this, fine grains having a crystal grain size of about 6 to 7 are obtained, and a hardness of about 40 HRC can be obtained after the tempering heat treatment (S6) described later.

溶体化処理(S5)を施されたビレットは、適宜、時効硬化処理などの調質熱処理(S6)や、切削や研磨などの形状加工を施されて金型に加工される(S7)。なお、これについては、公知である故に、詳述しない。   The billet that has been subjected to the solution treatment (S5) is appropriately subjected to a tempering heat treatment (S6) such as an age hardening treatment, or a shape processing such as cutting or polishing (S7). This is well known and will not be described in detail.

ところで、図4には、上記した製造方法で製造したそれぞれ製品寸法の異なる2つの実施例の製造条件及び各測定値を示した。   FIG. 4 shows the manufacturing conditions and measured values of two examples with different product dimensions manufactured by the above-described manufacturing method.

実施例1では、分塊鍛造工程(S1)において、鋼塊を1200℃まで加熱してから分塊鍛造し、断面寸法270×850mmのビレットを得た。ソーキング工程(S2)では、1280℃で30時間保持した。なお、これを上記した式1からソーキングパラメータを計算すると、33.35であった。熱間ガウジング工程(S3)は、600℃で行った。仕上鍛造工程(S4)では、900℃まで加熱し6時間保持の後、断面寸法185×810mmまで、すなわち、鍛錬比約1.5(1.5S)だけ鍛造した。   In Example 1, the steel ingot was heated to 1200 ° C. and then forged in the partial forging step (S1), and a billet having a cross-sectional dimension of 270 × 850 mm was obtained. In the soaking process (S2), it was kept at 1280 ° C. for 30 hours. When the soaking parameter was calculated from Equation 1 above, it was 33.35. The hot gouging step (S3) was performed at 600 ° C. In the finish forging step (S4), after heating to 900 ° C. and holding for 6 hours, forging was performed to a cross-sectional dimension of 185 × 810 mm, that is, a forging ratio of about 1.5 (1.5S).

実施例2では、分塊鍛造工程(S1)において、鋼塊を1200℃まで加熱してから分塊鍛造し、断面寸法260×1200mmのビレットを得た。ソーキング工程(S2)では、1230℃で25時間保持した。なお、これを上記した式1からソーキングパラメータを計算すると、32.16であった。仕上鍛造工程(S4)では、900℃まで加熱し10時間保持の後、断面寸法180×1100mmに鍛造した。すなわち、仕上鍛造工程(S4)では、鍛錬比約1.5(1.5S)だけ鍛造した。   In Example 2, in the partial forging step (S1), the steel ingot was heated to 1200 ° C. and then forged into pieces to obtain billets having a cross-sectional dimension of 260 × 1200 mm. In the soaking step (S2), the temperature was maintained at 1230 ° C. for 25 hours. When the soaking parameter was calculated from Equation 1 described above, it was 32.16. In the finish forging step (S4), the steel was heated to 900 ° C. and held for 10 hours, and then forged to a cross-sectional dimension of 180 × 1100 mm. That is, in the finish forging step (S4), forging was performed by a forging ratio of about 1.5 (1.5S).

実施例1及び2で得られた仕上鍛造後のビレットを870℃まで加熱し30分保持後、水に焼き入れて1回目の溶体化処理を行い、さらに、870℃まで加熱し30分保持後、空冷して2回目の溶体化処理を行った。更に、これらの溶体化処理後のビレットのそれぞれにおいて、調質熱処理を行って、硬さを40.0HRC及び40.5HRCとした実機サンプルを得た。   The billet after finishing forging obtained in Examples 1 and 2 was heated to 870 ° C. and held for 30 minutes, then quenched in water for the first solution treatment, and further heated to 870 ° C. and held for 30 minutes. Then, it was air-cooled and a second solution treatment was performed. Furthermore, in each billet after the solution treatment, tempering heat treatment was performed to obtain actual machine samples having a hardness of 40.0 HRC and 40.5 HRC.

以上の実機サンプルからの切り出し材を用いて、硬さについてマイクロビッカース試験、衝撃値についてシャルピー試験、結晶粒度について腐食観察試験、鏡面研磨加工後の表面の様子について目視及び光顕観察を行った。   Using the cut material from the above-mentioned actual machine sample, the micro Vickers test for hardness, the Charpy test for impact value, the corrosion observation test for crystal grain size, and the appearance of the surface after mirror polishing were visually and optically observed.

まず、衝撃値は12.5及び13.6(J/cm)で良好であった。また、結晶粒度は7.3及び6.1で試験片全体で均一であった。鏡面研磨加工後の表面は、いずれもピンホールやオレンジピール(短周期のうねり)は見られず、また鱗状の模様のような研磨ムラも現れず、非常に均質であった。これを実証するように、0.2mm間隔で硬さを測定した結果においても、ほぼ同じ硬さで均一であった。 First, impact values were good at 12.5 and 13.6 (J / cm 2 ). The crystal grain size was 7.3 and 6.1 and was uniform throughout the test piece. The surface after mirror polishing was very homogeneous with no pinholes or orange peels (short-period swells), and no polishing irregularities such as scale-like patterns. As demonstrated, even when the hardness was measured at intervals of 0.2 mm, it was uniform with substantially the same hardness.

以上のように、本実施例によるNi−Al−Cu系時効硬化型鋼からなる樹脂成形金型の製造方法は以下の如きである。すなわち、鋼塊を1200℃から1280℃の間の温度Tに加熱してからビレットに分塊鍛造する分塊鍛造工程(S1)、これに引き続いて、ビレットを1230〜1280℃の間の温度Tに加熱して保持するソーキング工程(S2)、1050℃以下の温度Tに加熱してから鍛錬比1.5Sの比較的小さい鍛錬比で鍛造する低温仕上鍛造工程(S4)と、を含み、ソーキング工程(S2)と低温仕上鍛造工程(S4)との間に、500℃以上であって少なくとも温度Tよりも低い温度Tでガウジングを行う熱間ガウジング工程(S3)を更に含む。その後に、溶体化処理を2回施し、更に時効硬化処理(S6)を施し、加工(S7)を行って金型を得る。 As mentioned above, the manufacturing method of the resin molding die which consists of a Ni-Al-Cu system age hardening type steel by a present Example is as follows. That is, a forging step (S1) in which the steel ingot is heated to a temperature T 1 between 1200 ° C. and 1280 ° C. and then forged into billets (S1), and subsequently, the billet is heated to a temperature between 1230 and 1280 ° C. soaking step of holding heated to T 2 (S2), the low-temperature finish forging step of forging a relatively small forging ratio of forging ratio 1.5S is heated to a temperature T 3 of 1050 ° C. or less and (S4), the And a hot gouging step (S3) for performing gouging at a temperature T 4 that is 500 ° C. or higher and at least lower than the temperature T 3 between the soaking step (S2) and the low temperature finish forging step (S4). . Then, solution treatment is performed twice, age hardening treatment (S6) is further performed, and processing (S7) is performed to obtain a mold.

ここでビレットが厚さ400mm以下であれば、ソーキング工程(S2)において、温度T(℃)で時間t(h)だけ保持するとすれば、
(T+273)×(20+logt)/1000≧32
であるように処理する。
Here, if the billet is 400 mm or less in thickness, if it is held at the temperature T 2 (° C.) for the time t (h) in the soaking process (S2),
(T 2 +273) × (20 + logt) / 1000 ≧ 32
To be processed.

以上によれば、ソーキング工程でのビレットの断面積を極力小さくすることができ、偏析を十分に解消することで鏡面性を高めるよう効率的にソーキング処理を行うことができる。しかも、特に、低温仕上鍛造において、ビレット表層の肌荒れを抑えることができる。つまり、鏡面性に優れた金型を与えるのである。   According to the above, the cross-sectional area of the billet in the soaking process can be reduced as much as possible, and the soaking process can be efficiently performed so as to improve the specularity by sufficiently eliminating the segregation. In addition, particularly in low-temperature finish forging, rough skin of the billet surface layer can be suppressed. That is, a mold having excellent specularity is provided.

ここまで本発明による代表的実施例及びこれに基づく変形例について説明したが、本発明は必ずしもこれらに限定されるものではない。特に、上記した実施例の成分組成の鋼からなる金型に限定されることなく、同種の鋼からなる金型の製造にも本発明の方法は適用され得ることは言うまでもない。すなわち、当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるだろう。   Up to this point, the representative embodiments according to the present invention and the modifications based thereon have been described, but the present invention is not necessarily limited thereto. It is needless to say that the method of the present invention can also be applied to the production of a mold made of the same kind of steel without being limited to the mold made of steel having the component composition of the above-described embodiments. That is, those skilled in the art will be able to find various alternative embodiments and modifications without departing from the scope of the appended claims.

Claims (4)

Ni−Al−Cu系時効硬化型鋼からなる樹脂成形金型の製造方法であって、
鋼塊を温度Tに加熱してからビレットに分塊鍛造する分塊鍛造工程と、
前記分塊鍛造工程に引き続いて、前記ビレットを温度Tに加熱して保持するソーキング工程と、
1050℃以下の温度Tに加熱してから鍛造する低温仕上鍛造工程と、を含み、
前記ソーキング工程と前記低温仕上鍛造工程との間に、500℃以上であって少なくとも温度Tよりも低い温度Tでガウジングを行う熱間ガウジング工程を更に含むことを特徴とする樹脂成形金型の製造方法。
A method for producing a resin molding die made of Ni-Al-Cu age-hardening steel,
A forging process in which the steel ingot is heated to a temperature T 1 and then forged into billets;
Following the blooming forging step, a soaking step of holding and heating the billet to a temperature T 2,
Anda low-temperature finish forging step of forging is heated to a temperature T 3 of 1050 ° C. or less,
A resin molding die further comprising a hot gouging step in which gouging is performed at a temperature T 4 which is 500 ° C. or higher and at least lower than the temperature T 3 between the soaking step and the low temperature finish forging step. Manufacturing method.
前記ビレットは厚さ400mm以下であって、
前記ソーキング工程において、前記ビレットを1230〜1280℃の範囲内の温度T(℃)で時間t(h)保持するとき、
(T+273)×(20+logt)/1000≧32
であることを特徴とする請求項1記載の樹脂成形金型の製造方法。
The billet has a thickness of 400 mm or less,
In the soaking step, when the billet is held at a temperature T 2 (° C.) within a range of 1230 to 1280 ° C. for a time t (h),
(T 2 +273) × (20 + logt) / 1000 ≧ 32
The method for producing a resin mold according to claim 1, wherein:
前記低温仕上鍛造工程において、鍛錬比1.5Sだけ鍛造することを特徴とする請求項1又は2に記載の樹脂成形金型の製造方法。   The method for producing a resin mold according to claim 1 or 2, wherein in the low temperature finish forging step, forging is performed by a forging ratio of 1.5S. 前記低温仕上鍛造工程によって得られた仕上材に溶体化処理を2回施す溶体化処理工程を更に含むことを特徴とする請求項3記載の樹脂成形金型の製造方法。
The method for producing a resin mold according to claim 3, further comprising a solution treatment step of subjecting the finishing material obtained by the low temperature finish forging step to a solution treatment twice.
JP2010015344A 2010-01-27 2010-01-27 Manufacturing method of resin mold Expired - Fee Related JP5455156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015344A JP5455156B2 (en) 2010-01-27 2010-01-27 Manufacturing method of resin mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015344A JP5455156B2 (en) 2010-01-27 2010-01-27 Manufacturing method of resin mold

Publications (2)

Publication Number Publication Date
JP2011153346A JP2011153346A (en) 2011-08-11
JP5455156B2 true JP5455156B2 (en) 2014-03-26

Family

ID=44539519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015344A Expired - Fee Related JP5455156B2 (en) 2010-01-27 2010-01-27 Manufacturing method of resin mold

Country Status (1)

Country Link
JP (1) JP5455156B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107350600A (en) * 2017-07-24 2017-11-17 共享铸钢有限公司 Steel-casting carbon arc air gouging pre-heating mean

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144830A (en) * 1986-12-05 1988-06-17 Kobe Steel Ltd Manufacture of near-net-shape material
JPH04263014A (en) * 1991-02-15 1992-09-18 Nkk Corp High hardness forming die steel and its production
JPH04263043A (en) * 1991-02-15 1992-09-18 Nkk Corp Steel for molding die having high hardness and its manufacture
JPH04263042A (en) * 1991-02-15 1992-09-18 Nkk Corp Steel for molding die having high hardness and its manufacture
JP2005082813A (en) * 2003-09-04 2005-03-31 Daido Steel Co Ltd Prehardened steel for plastic molding die
JP2005349534A (en) * 2004-06-11 2005-12-22 Daido Steel Co Ltd Hot grinding method for forging material
JP4984319B2 (en) * 2006-11-22 2012-07-25 日立金属株式会社 Method for producing pre-hardened steel with excellent machinability and toughness

Also Published As

Publication number Publication date
JP2011153346A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
CN103266246A (en) Al-Cu-Li alloy product suitable for aerospace application
CN105026588A (en) Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body
RU2013115430A (en) ADVANCED ALUMINUM ALLOYS 7XXX AND METHODS FOR PRODUCING THEM
CN103981451B (en) A kind of hot rolling add-back fire type is without Mo plastic die steel steel plate and manufacture method thereof
CN102489973A (en) Method for manufacturing aluminum alloy hollow section for sedan bumper
CN105543749A (en) High-entropy alloy gradient stress modification technology
CN102286712B (en) Process for enhancing thermal fatigue performance of aluminum-silicon alloy
CN104046934B (en) Prepare the method for ultra-fine crystal magnesium manganese alloy
JP2009197253A (en) Method for producing hot-pressed member
CN1329549C (en) Heating technology for refining TiAl alloy ingot microscopic texture
JP2012507632A (en) Ultra-high strength stainless steel alloy strip, method of manufacturing the same, and method of using the strip to manufacture a golf club head
KR20190028489A (en) Aluminum alloy blank with local flash annealing
CA1268689A (en) Manufacturing process of al-li-mg-cu alloy products characterised by their high ductility and isotropy
JP2005163123A (en) Method for producing tool steel and plastic-molding die steel
JP4340754B2 (en) Steel having high strength and excellent cold forgeability, and excellent molded parts such as screws and bolts or shafts having excellent strength, and methods for producing the same.
JP2016180134A (en) Magnesium-lithium alloy, manufacturing method of magnesium-lithium alloy, aircraft component and manufacturing method of aircraft component
JP5455156B2 (en) Manufacturing method of resin mold
CN102703652A (en) Heat treatment process of hot-work-die steel for aluminum die-casting mould
JP5641298B2 (en) Manufacturing method of steel for plastic molding dies
KR20100091973A (en) A process for forming steel
JP6071984B2 (en) Method for producing articles from iron-cobalt-molybdenum / tungsten-nitrogen alloys
KR101543867B1 (en) Method for manufacturing martensitic stainless steel sheet using twin roll casting roll
JP5904409B2 (en) Manufacturing method of steel materials for molds with excellent toughness
CN102560298B (en) Heat treatment method particularly applicable to spinning plastic forming of aluminum alloy extruded tube
CN1904122A (en) High performance hot work mould steel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5455156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131229

LAPS Cancellation because of no payment of annual fees