JP5453860B2 - Electrolyte membrane for fuel cell - Google Patents

Electrolyte membrane for fuel cell Download PDF

Info

Publication number
JP5453860B2
JP5453860B2 JP2009061285A JP2009061285A JP5453860B2 JP 5453860 B2 JP5453860 B2 JP 5453860B2 JP 2009061285 A JP2009061285 A JP 2009061285A JP 2009061285 A JP2009061285 A JP 2009061285A JP 5453860 B2 JP5453860 B2 JP 5453860B2
Authority
JP
Japan
Prior art keywords
membrane
porous
electrolyte
electrolyte membrane
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009061285A
Other languages
Japanese (ja)
Other versions
JP2010215704A (en
Inventor
幸久 片山
博紀 久保
修生 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009061285A priority Critical patent/JP5453860B2/en
Publication of JP2010215704A publication Critical patent/JP2010215704A/en
Application granted granted Critical
Publication of JP5453860B2 publication Critical patent/JP5453860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、樹脂製の多孔質膜の製造方法に係り、特に、固体高分子型燃料電池用の電解質膜の補強材として好適な多孔質膜の製造方法に関する。   The present invention relates to a method for producing a resin-made porous membrane, and more particularly to a method for producing a porous membrane suitable as a reinforcing material for an electrolyte membrane for a polymer electrolyte fuel cell.

固体高分子型燃料電池は、将来の新エネルギー技術の柱の一つとして期待されている。電解質膜を用いた固体高分子型燃料電池は、低温における作動が可能であり、かつ、小型軽量化が可能であるため、自動車などの移動体への適用が検討されている。特に、固体高分子型燃料電池を搭載した燃料電池自動車はエコロジーカーとして社会的な関心が高まっている。   Solid polymer fuel cells are expected as one of the pillars of future new energy technologies. A polymer electrolyte fuel cell using an electrolyte membrane can be operated at a low temperature, and can be reduced in size and weight. Therefore, application to a moving body such as an automobile is being studied. In particular, fuel cell vehicles equipped with polymer electrolyte fuel cells are gaining social interest as ecological cars.

このような固体高分子型燃料電池は、膜電極接合体(MEA)を主要な構成要素とし、それを燃料(水素)ガス流路および空気ガス流路を備えたセパレータで挟持して、単セルと呼ばれる1つの燃料電池を形成している。具体的には、膜電極接合体95は、図5に示すように、イオン交換膜である電解質膜91の一方側にアノード側の電極(アノード触媒層)93aを積層し、他方の側にカソード側の電極(カソード触媒層)93bを積層した構造であり、アノード触媒層とカソード触媒層には、それぞれガス拡散層94a,94bが配置されている。   Such a polymer electrolyte fuel cell has a membrane electrode assembly (MEA) as a main component, and is sandwiched between separators each having a fuel (hydrogen) gas flow path and an air gas flow path. Is formed as one fuel cell. Specifically, as shown in FIG. 5, the membrane electrode assembly 95 includes an anode side electrode (anode catalyst layer) 93a laminated on one side of an electrolyte membrane 91 that is an ion exchange membrane, and a cathode on the other side. The side electrode (cathode catalyst layer) 93b is laminated, and gas diffusion layers 94a and 94b are disposed in the anode catalyst layer and the cathode catalyst layer, respectively.

電解質膜は、それ自体の膜抵抗が低い必要があり、そのため膜厚はできるだけ薄い方が望ましい。しかしながら、膜厚を薄くし過ぎると、成膜時に膜が破損したり、電極間の短絡が発生したりするなどの問題がある。また、前記電解質膜は、湿潤状態で使用されるため、湿潤による電解質膜の膨潤、変形などにより、燃料電池の耐久性が低下するなどの問題もある。   The electrolyte membrane needs to have a low membrane resistance. Therefore, it is desirable that the thickness of the electrolyte membrane be as thin as possible. However, if the film thickness is too thin, there are problems such as damage to the film during film formation and short circuit between the electrodes. Further, since the electrolyte membrane is used in a wet state, there is a problem that the durability of the fuel cell is lowered due to swelling or deformation of the electrolyte membrane due to the wetness.

このような問題を解決するために、このような電解質膜の補強材となる多孔質膜として、樹脂基材の表面から裏面まで微細貫通パスが形成された多孔質膜の製造方法が提案されている。このような多孔質膜は、芳香族炭化水素を含むポリマーの相分離構造を利用して製造されるものであり、貫通孔率の高い多孔構造を持つ膜を得ることができる(例えば特許文献1参照)。また、燃料電池用の電解質膜として、多孔質性基材(多孔質膜)の細孔に、プロトン伝導性を有するポリマーが充填された電解質膜が提案されている(例えば特許文献2参照)。   In order to solve such a problem, a method for producing a porous film in which a fine through path is formed from the front surface to the back surface of a resin substrate has been proposed as a porous film that serves as a reinforcing material for such an electrolyte film. Yes. Such a porous membrane is manufactured using a phase separation structure of a polymer containing an aromatic hydrocarbon, and a membrane having a porous structure with a high through porosity can be obtained (for example, Patent Document 1). reference). As an electrolyte membrane for fuel cells, an electrolyte membrane in which pores of a porous base material (porous membrane) are filled with a polymer having proton conductivity has been proposed (see, for example, Patent Document 2).

特開2004−359860号公報JP 2004-359860 A 国際公開第00/54351号International Publication No. 00/54351

しかしながら、特許文献1に記載の方法で、多孔質膜を製造した場合には、その材料の特性上、材料分子(芳香族炭化水素)内のπ−πスタッキングの影響により、孔形状が扁平化してしまい、多孔質膜の孔径、空孔率は、ある程度の範囲に納まってしまい、製造できる多孔質膜の構造には限界がある。   However, when a porous film is manufactured by the method described in Patent Document 1, the pore shape is flattened due to the effect of π-π stacking in material molecules (aromatic hydrocarbons) due to the characteristics of the material. Therefore, the pore diameter and porosity of the porous membrane fall within a certain range, and there is a limit to the structure of the porous membrane that can be manufactured.

また、特許文献2に記載の多孔質膜に電解質樹脂を充填した電解質膜を燃料電池に適用した場合には、膜厚方向に充分に変形(延伸)しきっていないため、乾湿及び冷熱の衝撃により、電解質膜が膜厚方向に膨潤して、膜厚が増加することがある。特に、雰囲気中の湿度変化に伴い、膜厚方向の電解質層の膨張収縮に対して、充分に多孔質膜と電解質との接合性を保持することは難しく、電解質の剥離が生じ易く、電解質膜の耐久性が低下する場合もある。   Further, when an electrolyte membrane in which a porous membrane described in Patent Document 2 is filled with an electrolyte resin is applied to a fuel cell, it is not fully deformed (stretched) in the film thickness direction. The electrolyte membrane may swell in the film thickness direction and the film thickness may increase. In particular, due to changes in humidity in the atmosphere, it is difficult to maintain sufficient bonding between the porous film and the electrolyte against the expansion and contraction of the electrolyte layer in the film thickness direction, and the electrolyte is easily peeled off. In some cases, the durability of the resin may deteriorate.

本発明は、上記する問題に鑑みてなされたものであり、その目的とするところは、プロトン伝導性を損なうことなく、乾湿サイクル及び熱冷サイクルが付加された条件下においても、膜の耐久性を向上させることができる多孔質膜の製造方法、及びこれにより製造される燃料電池用電解質膜を提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to maintain the durability of the membrane even under conditions where a wet and dry cycle and a heat / cool cycle are added without impairing proton conductivity. It is an object of the present invention to provide a method for producing a porous membrane capable of improving the temperature, and an electrolyte membrane for a fuel cell produced thereby.

発明者らは、樹脂製の多孔質膜を膜が延在する方向に、機械的強度を向上させるには、これまでの延伸法により可能であるが、膜厚方向に対する機械的強度を向上させて、多孔質膜の耐久性を向上させるには、単純に、これまでの延伸法では、出来ないと判断した。そこで、発明者らは、鋭意検討を重ねた結果、水の凍結による体積膨張を利用して、膜厚方向に対して交差する方向に延在した空孔内の空孔径を増加させ、これにより、多孔質膜の膜厚方向の延伸を行うことが可能であるとの新たな知見を得た。   The inventors can improve the mechanical strength of the resin-made porous film in the direction in which the film extends by the conventional stretching method, but improve the mechanical strength in the film thickness direction. Thus, in order to improve the durability of the porous membrane, it was simply determined that the conventional stretching method was not possible. Therefore, as a result of intensive studies, the inventors have used the volume expansion due to freezing of water to increase the hole diameter in the holes extending in the direction intersecting the film thickness direction, thereby The present inventors have obtained new knowledge that it is possible to perform stretching in the film thickness direction of the porous film.

本発明は、発明者らのこのような新たな知見に基づくものであり、本発明に係る多孔質膜の製造方法は、膜厚方向に対して交差する方向に延在した複数の空孔が形成された樹脂製の多孔質膜を、流体に含浸させて、前記空孔に前記流体を充填する工程と、該空孔に充填された流体を凍結しながら膨張させる工程と、凍結した流体を解凍し、前記空孔から前記液体を排出する工程と、を含むことを特徴とする。   The present invention is based on the inventors' new knowledge, and the porous membrane manufacturing method according to the present invention includes a plurality of pores extending in a direction intersecting the film thickness direction. Impregnating the formed porous resin membrane with a fluid, filling the pores with the fluid, expanding the fluid filled in the pores while freezing, and freezing the fluid Thawing and discharging the liquid from the holes.

本発明によれば、まず、膜厚方向に対して交差する方向に延在した複数の空孔が形成された樹脂製の多孔質膜を準備し、この多孔質膜に対して流体を含浸させて、空孔内に流体を充填する。そして、この流体を凍結させることにより流体を膨張させ、流体の膨張によりこれら空孔の径を拡大させる。これらの空孔は、膜厚方向に対して交差する方向に延在しているので、空孔の径の拡大方向の一部の方向が、膜厚方向に一致する。   According to the present invention, first, a resin porous membrane having a plurality of pores extending in a direction intersecting the film thickness direction is prepared, and the porous membrane is impregnated with a fluid. Then, the fluid is filled in the holes. Then, the fluid is expanded by freezing the fluid, and the diameter of the holes is expanded by the expansion of the fluid. Since these holes extend in a direction intersecting with the film thickness direction, a part of the direction of increasing the diameter of the holes coincides with the film thickness direction.

この結果として、多孔質膜の膜厚を増大させるように、膜厚方向に多孔質膜を延伸することができ、多孔質膜の膜厚方向の機械的強度を向上させることができる。すなわち、このような多孔質膜は、面内方向(面が延在する方向)に高いヤング率を有し、それに比して、膜厚方向は低いヤング率を有することになる。   As a result, the porous film can be stretched in the film thickness direction so as to increase the film thickness of the porous film, and the mechanical strength in the film thickness direction of the porous film can be improved. That is, such a porous film has a high Young's modulus in the in-plane direction (direction in which the surface extends), and has a low Young's modulus in the film thickness direction.

特に、π−πスタッキングの影響により扁平した孔形状を有した多孔質膜に対して、その空孔を押し広げることにより、これまでにない孔径及び空孔率を有した多孔質膜を得ることができる。具体的には、空孔率が5〜95体積%、孔径が0.001〜1.0mm、膜厚1〜100mmの範囲の多孔質膜を製造することができる。   In particular, to obtain a porous film having an unprecedented pore diameter and porosity by expanding the pores to a porous film having a flat pore shape due to the influence of π-π stacking Can do. Specifically, a porous film having a porosity of 5 to 95% by volume, a pore diameter of 0.001 to 1.0 mm, and a film thickness of 1 to 100 mm can be manufactured.

また、本発明に係る多孔質膜の製造方法に用いる流体は、凍結させることにより膨張することができる流体であれば、その種類は限定されるものではなく、例えば、液体、ゾルなどを挙げることができるが、より好ましくは、水溶性の有機溶媒と水との混合液、又は界面活性剤を含む水溶液(液体)である。   The fluid used in the method for producing a porous membrane according to the present invention is not limited as long as it can be expanded by freezing, and examples thereof include liquids and sols. More preferably, it is a mixed solution of a water-soluble organic solvent and water, or an aqueous solution (liquid) containing a surfactant.

本発明によれば、上述のような水溶液を用いることにより、この水溶液に多孔質膜を含浸させたときに、空孔に水溶液が浸透し充填させやすい。このような観点から、別の態様では、本発明に係る多孔質膜の製造方法に用いる流体は、有機溶媒を含む水溶液であることがより好ましい。   According to the present invention, by using the above-described aqueous solution, when this aqueous solution is impregnated with the porous membrane, the aqueous solution can easily penetrate into and fill the pores. From such a viewpoint, in another aspect, the fluid used in the method for producing a porous membrane according to the present invention is more preferably an aqueous solution containing an organic solvent.

また、本発明に係る電解質膜の製造方法は、充填工程の前に、プラズマ処理等を利用して、多孔質膜の表面を活性化させ、親水性を有する処理を行うことがより好ましい。このような親水性処理を行うことにより、充填工程において、より好適に流体を多孔質膜内部に含浸(浸透)させることができる。   Moreover, in the method for producing an electrolyte membrane according to the present invention, it is more preferable to activate the surface of the porous membrane and perform a hydrophilic treatment using a plasma treatment or the like before the filling step. By performing such hydrophilic treatment, the fluid can be more preferably impregnated (permeated) into the porous membrane in the filling step.

さらに、本発明では、凍結された流体を解凍して、この流体を空孔から排出させているので、多孔質膜の空孔内に電解質を充填し、電解質膜を製造することができる。このようして製造された電解質膜に対して、両面から触媒層及び拡散層を順次積層して、膜電極接合体を製造し、この製造された膜電極接合体を両側からセパレータにより挟持させた燃料電池は、補強材として多孔質膜が膜厚方向に強化されているため、湿潤時においても、膨潤による寸法変化を抑えることができ、耐久性を向上させることができる。   Furthermore, in the present invention, since the frozen fluid is thawed and discharged from the pores, the electrolyte can be filled by filling the pores of the porous membrane with the electrolyte. A catalyst layer and a diffusion layer were sequentially laminated on both sides of the electrolyte membrane thus manufactured to manufacture a membrane electrode assembly, and the manufactured membrane electrode assembly was sandwiched by separators from both sides. In the fuel cell, since the porous membrane is reinforced in the film thickness direction as a reinforcing material, dimensional change due to swelling can be suppressed even when wet, and durability can be improved.

本発明を構成する多孔質膜としては、電解質よりも機械的強度が高い高分子樹脂からなる補強材であればよく、その材質としては、炭化水素系樹脂材料やフッ化物系樹脂材料を挙げることができるが、より好ましくは、芳香族炭化水素系樹脂材料や飽和炭化水素系樹脂材料など(エンプラ材料を含む)である。これらの材料は、前記一連の工程を経ることにより、より効果的に膜厚方向に厚さを増加させることができる。具体的には、ポリエーテルケトンケトン(PEKK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリイミド(PI)、PAI、等の材料が使用可能であり、特に、撥水性の高分子を含むことが好まく、撥水性の高分子は、固体高分子型燃料電池における水の結露と滞留が電極反応物を供給する際の妨げとなり効果的である。   The porous membrane constituting the present invention may be a reinforcing material made of a polymer resin having a mechanical strength higher than that of the electrolyte, and examples of the material include a hydrocarbon resin material and a fluoride resin material. More preferred are aromatic hydrocarbon resin materials and saturated hydrocarbon resin materials (including engineering plastic materials). These materials can increase the thickness in the film thickness direction more effectively through the series of steps. Specifically, materials such as polyether ketone ketone (PEKK), polyether ether ketone (PEEK), polyether imide (PEI), polyimide (PI), PAI, etc. can be used. It is preferable to contain molecules, and the water-repellent polymer is effective because the condensation and retention of water in the polymer electrolyte fuel cell hinders supply of the electrode reactant.

本発明を構成する電解質(電解質樹脂)としては、陽イオン交換官能基を有する高分子樹脂が好ましく用いられる。このような官能基としては、スルホン酸基、リン酸基、及びカルボン酸基が好ましく用いられる。フルオロアルキルエーテル側鎖とパーフルオロアルキル主鎖を有するフルオロアルキル共重合体のパーフルオロ系プロトン交換樹脂が好ましく用いられる。例えば、デュポン社製ナフィオン(商標名)、旭化成製アシプレックス(商標名)、旭硝子製フレミオン(商標名)、等が例示され、部分フッ素樹脂では、トリフルオロスチレンスルホン酸の重合体やポリフッ化ビニリデンにスルホン酸基を導入したものなどがある。また、炭化水素系プロトン交換樹脂である、スチレン−ジビニルベンゼン共重合体、ポリイミド系樹脂などにスルホン酸基を導入したものなどがある。これらは燃料電池が用いられる用途や環境に応じて適宜選択される。   As the electrolyte (electrolyte resin) constituting the present invention, a polymer resin having a cation exchange functional group is preferably used. As such a functional group, a sulfonic acid group, a phosphoric acid group, and a carboxylic acid group are preferably used. A perfluoro proton exchange resin of a fluoroalkyl copolymer having a fluoroalkyl ether side chain and a perfluoroalkyl main chain is preferably used. For example, Nafion (trade name) manufactured by DuPont, Aciplex (trade name) manufactured by Asahi Kasei, Flemion (trade name) manufactured by Asahi Glass, and the like are exemplified. In which a sulfonic acid group is introduced. Further, there are styrene-divinylbenzene copolymer, polyimide resin, etc., which are hydrocarbon proton exchange resins, in which sulfonic acid groups are introduced. These are appropriately selected according to the use and environment in which the fuel cell is used.

本発明によれば、プロトン伝導性を損なうことなく、乾湿サイクル及び熱冷サイクルが付加された条件下においても、膜の耐久性を向上させることができる。   According to the present invention, the durability of the membrane can be improved even under conditions where a dry / wet cycle and a heat / cool cycle are added without impairing proton conductivity.

(a)は、本実施形態に係る処理前の多孔質膜を示した図であり、(b)は、本発明に係る製造方法により製造された電解質膜を示した図。(A) is the figure which showed the porous membrane before the process which concerns on this embodiment, (b) is the figure which showed the electrolyte membrane manufactured by the manufacturing method which concerns on this invention. (a)は、図1(a)に示す多孔質膜を模式化した図であり、(b)は、(a)に示す多孔質膜の空孔に水溶液を充填する充填工程を説明するための図であり、また、図2の(c)は、(b)に示す水溶液と凍結させて膨張させる工程と、(d)は、凍結した水溶液を解凍し、空孔から水溶液を排出する工程を説明するための図であり、(e)は、(d)に示す多孔質膜に電解質を充填し電解質膜を製造する工程を説明する図。(A) is the figure which modeled the porous membrane shown to Fig.1 (a), (b) is for demonstrating the filling process which fills the void | hole of the porous membrane shown to (a) with aqueous solution. 2C is a step of freezing and expanding the aqueous solution shown in FIG. 2B, and FIG. 2D is a step of thawing the frozen aqueous solution and discharging the aqueous solution from the pores. (E) is a figure explaining the process of filling electrolyte with the porous membrane shown to (d), and manufacturing an electrolyte membrane. 実施例1の多孔質膜の断面写真を示した図であり、(a)は、処理前の多孔質膜の断面写真を示した図であり、(b)は、処理後の多孔質膜の断面写真を示した図。It is the figure which showed the cross-sectional photograph of the porous film of Example 1, (a) is the figure which showed the cross-sectional photograph of the porous film before a process, (b) is the figure of the porous film after a process. The figure which showed the cross-sectional photograph. 実施例1及び比較例1の電解質膜の断面写真を示した図であり、(a)は、実施例1の処理前の電解質膜の断面写真を示した図であり、(b)は、実施例1の処理後の電解質膜の断面写真を示した図であり、(c)は、比較例1の処理後の電解質膜の断面写真を示した図。It is the figure which showed the cross-sectional photograph of the electrolyte membrane of Example 1 and Comparative Example 1, (a) is the figure which showed the cross-sectional photograph of the electrolyte membrane before the process of Example 1, (b) is implementation. 2 is a diagram showing a cross-sectional photograph of the electrolyte membrane after treatment of Example 1, and (c) is a diagram showing a cross-sectional photograph of the electrolyte membrane after treatment of Comparative Example 1. FIG. 従来の膜電極接合体及び電解質膜の一例を説明する模式図。The schematic diagram explaining an example of the conventional membrane electrode assembly and electrolyte membrane.

以下に、本発明に係る多孔質膜の製造方法及び、この方法により製造された電解質膜の実施形態を、図面を参照して説明する。   Hereinafter, a method for producing a porous membrane according to the present invention and an embodiment of an electrolyte membrane produced by this method will be described with reference to the drawings.

図1(a)は、本実施形態に係る処理前の多孔質膜を示した図であり、(b)は、本発明に係る製造方法により製造された電解質膜を示した図である。図2は、本発明に係る多孔質膜の製造方法及び電解質膜の製造方法を示した模式図である。   Fig.1 (a) is the figure which showed the porous membrane before the process which concerns on this embodiment, (b) is the figure which showed the electrolyte membrane manufactured by the manufacturing method which concerns on this invention. FIG. 2 is a schematic view showing a method for producing a porous membrane and a method for producing an electrolyte membrane according to the present invention.

具体的には、図2の(a)は、図1(a)に示す多孔質膜を模式化した図であり、(b)は、(a)に示す多孔質膜の空孔に水溶液を充填する充填工程を説明するための図である。また、図2の(c)は、(b)に示す水溶液と凍結させて膨張させる工程と、(d)は、凍結した水溶液を解凍し、空孔から水溶液を排出する工程を説明するための図であり、(e)は、(d)に示す多孔質膜に電解質を充填し電解質膜を製造する工程を説明する図である。本実施形態は、以下の一連の処理工程(充填工程から排出工程)を経て、多孔質膜を製造するものである。   Specifically, (a) in FIG. 2 is a schematic view of the porous membrane shown in FIG. 1 (a), and (b) shows an aqueous solution in the pores of the porous membrane shown in (a). It is a figure for demonstrating the filling process filled. 2 (c) is a process for freezing and expanding the aqueous solution shown in (b), and (d) is a process for thawing the frozen aqueous solution and discharging the aqueous solution from the pores. (E) is a figure explaining the process of filling the porous membrane shown to (d) with electrolyte, and manufacturing an electrolyte membrane. In the present embodiment, a porous membrane is manufactured through the following series of processing steps (filling step to discharging step).

まず、図1(a)及び図2(a)に示すように、(処理前の)多孔質膜21Aを準備する。この多孔質膜21Aは、膜厚方向Dに対して交差する方向に延在した複数の(処理前の)空孔21aが形成されている。   First, as shown in FIG. 1A and FIG. 2A, a porous membrane 21A (before processing) is prepared. The porous film 21A has a plurality of (before processing) holes 21a extending in a direction intersecting the film thickness direction D.

このような多孔質膜21Aは、基材に対して、相分離、発泡、又は延伸などの周知の方法により複数の空孔21aを形成することができる。以下に相分離を利用した多孔質膜Aの製造方法を簡単に示す。   Such a porous membrane 21A can form a plurality of pores 21a with respect to the substrate by a known method such as phase separation, foaming, or stretching. A method for producing the porous membrane A using phase separation will be briefly described below.

本実施形態では、まず出発材料として、ポリイミド前駆体またはポリイミドのポリマー溶液を準備する。次に、この溶液をガラス基板、ステンレス基板などの平滑な基板の上に流延し、流延物を形成する。そして、流延物上に可溶性溶媒もしくは非溶媒と、これらの混合溶媒からなる保護溶媒層を積層し積層液を作成する。保護溶媒層としては、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアルデヒド(DMF)、N,N−ジメチルアセトアミド、メタノ−ル、エタノ−ル、プロパノ−ルなどの溶媒などが好適である。   In this embodiment, first, a polyimide precursor or a polymer solution of polyimide is prepared as a starting material. Next, this solution is cast on a smooth substrate such as a glass substrate or a stainless steel substrate to form a cast. A soluble solvent or non-solvent and a protective solvent layer composed of a mixed solvent of these are laminated on the casting to prepare a laminated liquid. Examples of the protective solvent layer include solvents such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylformaldehyde (DMF), N, N-dimethylacetamide, methanol, ethanol and propanol. Is preferred.

そして、積層液となるポリマー溶液と保護溶媒層とが完全には混じり合わずに濃度勾配を有した状態(ラメラ構造)を保ちつつ、積層液を、0.5〜600秒の範囲で凝固液に浸漬する。これにより、積層液からポリアミック酸またはポリイミドを析出させる。凝固液としては、ポリイミド前駆体またはポリイミドの非溶媒であれば特に制限はなく、たとえば水、メタノ−ル、イソプロパノールなど、これら非溶媒とN−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアルデヒド(DMF)、N,N−ジメチルアセトアミドなどの可溶性溶媒との混合溶媒が好適である。   And while maintaining the state (lamella structure) where the polymer solution and the protective solvent layer as the laminating liquid are not completely mixed and have a concentration gradient (lamella structure), the laminating liquid is coagulated in the range of 0.5 to 600 seconds. Immerse in. Thereby, a polyamic acid or a polyimide is deposited from a laminated liquid. The coagulation liquid is not particularly limited as long as it is a polyimide precursor or a non-solvent of polyimide. For example, these non-solvents such as water, methanol, isopropanol, and N-methyl-2-pyrrolidone (NMP), N, N- A mixed solvent with a soluble solvent such as dimethylformaldehyde (DMF) or N, N-dimethylacetamide is preferred.

その後、基板と、析出したポリアミック酸またはポリイミドの膜とを、水中に浸漬し、この膜を基板から剥離し、乾燥させた後、熱処理して多孔質膜21Aを得ることができる。このようにして得られた多孔質膜21Aには、膜厚方向に対して交差する方向に延在した複数の空孔が形成されることになる。このような多孔質膜は、孔形状は扁平している(後述する図3(a)を参照)。   Thereafter, the substrate and the deposited polyamic acid or polyimide film are immersed in water, the film is peeled off from the substrate, dried, and then heat treated to obtain the porous film 21A. A plurality of pores extending in the direction intersecting the film thickness direction are formed in the porous film 21A thus obtained. Such a porous membrane has a flat pore shape (see FIG. 3A described later).

このように、多孔質膜を、ポリイミド樹脂などの芳香族炭化水素や、飽和炭化水素を用いて、相分離法により製造することにより、複数の扁平状の空孔が、膜厚方向に対して交差する方向に延在させることができるので、この結果として、後述する工程を経ることにより、多孔質膜を膜厚方向により効果的に延伸させることが可能となる。   Thus, by producing a porous film by a phase separation method using an aromatic hydrocarbon such as a polyimide resin or a saturated hydrocarbon, a plurality of flat pores are formed in the film thickness direction. Since it can be made to extend in the crossing direction, as a result, the porous film can be more effectively stretched in the film thickness direction through the steps described later.

次に、図2(b)に示すように、このようにして製造された多孔質膜21Aを、界面活性剤を含む水溶液Lに含浸させ、空孔内に水溶液を充填する。この水溶液Lは、界面活性剤の変わりに有機溶媒を含んでいてもよい。このように、界面活性剤又は有機溶媒を含むことにより、多孔質膜21Aの空孔21a内、より確実に水溶液(水)を浸透させることができる。また、水(水溶液)は、凍結時に体積膨張率が他の水溶液に比べて高いため、このような水溶液Lを用いることにより、より高い孔径の拡大(膜厚の増大)を図ることができる。   Next, as shown in FIG. 2B, the porous membrane 21A thus manufactured is impregnated with an aqueous solution L containing a surfactant, and the pores are filled with the aqueous solution. This aqueous solution L may contain an organic solvent instead of the surfactant. As described above, by containing the surfactant or the organic solvent, the aqueous solution (water) can be more reliably permeated into the pores 21a of the porous membrane 21A. Moreover, since the volume expansion coefficient of water (aqueous solution) is higher than that of other aqueous solutions at the time of freezing, by using such an aqueous solution L, it is possible to further increase the pore diameter (increase the film thickness).

また、多孔質膜21A内部に充填する水溶液の充填率は、空孔の体積に対して、95体積%以上であることが好ましい。これにより、水溶時の凍結時に、空孔径をより効果的に拡大させることができる。   The filling rate of the aqueous solution filled in the porous membrane 21A is preferably 95% by volume or more with respect to the volume of the pores. Thereby, the pore diameter can be more effectively expanded at the time of freezing when water is used.

このような観点から、界面活性剤又は有機溶媒は、95質量%含んでいることが望ましく、界面活性剤又は有機溶媒は、水のみを含浸させた場合に比べて、より高い割合で水溶液を空孔内に充填できるものであれば、陽イオン界面活性剤、陰イオン界面活性剤、非イオン界面活性剤など特に限定されるものではなく、例えば、ラウリルベンゼンスルホン酸ナトリウムを挙げることができる。また、有機溶媒としては、例えば、アセトン、DMF、NMP、エタノールなどを挙げることができる。   From such a viewpoint, it is desirable that the surfactant or the organic solvent is contained in an amount of 95% by mass, and the surfactant or the organic solvent empties the aqueous solution at a higher rate than when impregnated with water alone. As long as it can be filled in the pores, there is no particular limitation such as a cationic surfactant, an anionic surfactant, and a nonionic surfactant, and examples thereof include sodium laurylbenzenesulfonate. Moreover, as an organic solvent, acetone, DMF, NMP, ethanol etc. can be mentioned, for example.

次に、図2(c)に示すように、この水溶液Lを凍結させる。この凍結により、水溶液Lは体積膨張し、この体積膨張によりこれら空孔の径を拡大させる。これらの空孔21aは、膜厚方向Dに対して交差する方向に延在しているので、扁平した空孔21aの径が拡大する方向(主に拡大し易い方向)は、膜厚方向Dに略一致する。このような一連の処理工程を経て、孔径が拡大(増加)した空孔21bが形成されることにより、膜厚が増加した多孔質膜21Bを得ることができる。   Next, as shown in FIG. 2C, the aqueous solution L is frozen. By this freezing, the aqueous solution L expands in volume, and the diameter of these pores is expanded by the volume expansion. Since these holes 21a extend in a direction intersecting with the film thickness direction D, the direction in which the diameter of the flat holes 21a expands (mainly the direction in which expansion is easy) is the film thickness direction D. It almost matches. Through such a series of processing steps, the pores 21b whose pore diameter is enlarged (increased) are formed, whereby the porous membrane 21B having an increased film thickness can be obtained.

次に、図2(d)に示すように、凍結された水溶液Lを解凍して、この水溶液Lを空孔21bから排出する。具体的には、凍結状態の水溶液の凝固点温度以上の液体に、多孔質膜21Bを浸漬させ、この液体を循環させることにより、水溶液を洗浄し、洗浄後、この液体を排出する。   Next, as shown in FIG. 2 (d), the frozen aqueous solution L is thawed, and the aqueous solution L is discharged from the air holes 21b. Specifically, the porous membrane 21B is immersed in a liquid having a temperature equal to or higher than the freezing point temperature of the frozen aqueous solution, and the liquid is circulated to wash the aqueous solution. After the washing, the liquid is discharged.

最後に、図2(c)に示すように、多孔質膜21Bの空孔21b内に電解質(樹脂)を充填して、電解質膜を製造する。具体的には、電解質の前駆体(モノマー)又は多量体(オリゴマー)31を空孔21bに含浸させた状態で、この内部で、電解質の前駆体(モノマー)又は多量体(オリゴマー)31を重合させる。これにより、図1(b)に示すように、直線状又はゲル状の電解質31を、空孔21bに充填させた、膜厚がt2まで増大した電解質膜10を製造することができる。   Finally, as shown in FIG. 2 (c), the electrolyte (resin) is filled in the pores 21b of the porous membrane 21B to manufacture the electrolyte membrane. More specifically, the electrolyte precursor (monomer) or multimer (oligomer) 31 is impregnated in the pores 21b, and the electrolyte precursor (monomer) or multimer (oligomer) 31 is polymerized therein. Let Thereby, as shown in FIG.1 (b), the electrolyte membrane 10 with which the linear or gel-like electrolyte 31 was filled to the void | hole 21b and the film thickness increased to t2 can be manufactured.

なお、電解質の前駆体(モノマー)又は多量体(オリゴマー)31の空孔21bに対する充填率は、95体積%以上であることが好ましく、このような重合を、熱又は紫外線等の外部刺激、又は触媒等による内部刺激により行ってもよい。   The filling ratio of the electrolyte precursor (monomer) or multimer (oligomer) 31 to the pores 21b is preferably 95% by volume or more, and such polymerization is performed by external stimulation such as heat or ultraviolet rays, or You may carry out by the internal stimulation by a catalyst etc.

このようにして、扁平した空孔の形状を、空孔の内部から水溶液を凍結させることにより、押し広げることも可能であり、充填工程から排出工程を繰返すことにより、限界の径まで空孔を押し広げることができる。この結果、これまでの方法では、製造することができなかった孔径及び空孔率を実現できることができ、同時に、膜厚方向の機械的強度を向上させることができる。   In this way, the shape of the flat pores can be expanded by freezing the aqueous solution from the inside of the pores. By repeating the discharging process from the filling process, the pores can be formed to the limit diameter. Can be spread. As a result, it is possible to realize a hole diameter and porosity that could not be manufactured by the conventional methods, and at the same time, it is possible to improve the mechanical strength in the film thickness direction.

さらに、膜厚方向に強靭化した多孔質膜を用いるため、乾湿/冷熱による孔内の電解質膜の体積変動があっても、電解質−多孔質膜間の空隙や電解質膜の脱落は生じ難く、信頼性の高い電解質膜を得ることができる。   Furthermore, since a porous membrane toughened in the film thickness direction is used, even if there is a volume variation of the electrolyte membrane in the pores due to dry / wet / cool heat, it is difficult for the void between the electrolyte and the porous membrane or the electrolyte membrane to drop off. A highly reliable electrolyte membrane can be obtained.

以下に、本発明を実施例により説明する。
(参考例1)
以下の方法で、出発材料となるポリイミド多孔質膜を作製した。
Hereinafter, the present invention will be described by way of examples.
(Reference Example 1)
A polyimide porous membrane as a starting material was produced by the following method.

<ポリアミック酸溶液の調整>
テトラカルボン酸成分として、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)を、ジアミン成分として4,4’−ジアミノジフェニルエーテル(ODA)を、重合溶媒としてN−メチルピロリドン(NMP)を用い、モノマー成分の合計質量が7質量%になるように、原料を調整、配合を行い、セパラブルフラスコに投入した。温度40℃、窒素流通下で16時間攪拌しながら重合を行った。得られたポリアミック酸溶液は粘度が750ポイズ、ポリアミック酸の極限粘度数は、3.15であった。
(溶液粘度は、回転粘度計を用いて行った。ポリアミック酸の極限粘度数は、NMP、30℃の条件で測定した。)
<Preparation of polyamic acid solution>
3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) as the tetracarboxylic acid component, 4,4′-diaminodiphenyl ether (ODA) as the diamine component, and N— Using methylpyrrolidone (NMP), the raw materials were adjusted and blended so that the total mass of the monomer components was 7% by mass, and charged into a separable flask. Polymerization was carried out with stirring at a temperature of 40 ° C. for 16 hours under nitrogen flow. The resulting polyamic acid solution had a viscosity of 750 poise, and the intrinsic viscosity of the polyamic acid was 3.15.
(Solution viscosity was measured using a rotational viscometer. The intrinsic viscosity of polyamic acid was measured under the conditions of NMP and 30 ° C.)

<ポリイミド多孔質膜の作製>
表面に鏡面研磨を施したステンレス製の20cm角基板の平行な2辺上に、厚さ230μmのスペーサーを取り付けた。上述したポリアミック酸溶液をスペーサーの間に、帯状に流延し、ガラス棒を用いて基板上に均一に引き伸ばして塗布した。
<Preparation of polyimide porous membrane>
A spacer having a thickness of 230 μm was attached on two parallel sides of a stainless steel 20 cm square substrate whose surface was mirror-polished. The polyamic acid solution described above was cast in the form of a band between spacers, and uniformly stretched on the substrate using a glass rod.

基板上に塗布したポリアミック酸溶液の上に、ポリアミック酸溶液液面に対して100μm、の間隔を持ったドクターナイフを用いて、保護溶媒層としてMNPを均一に塗布し、1分間静置した後に、メタノール浴中に基板全体を投入した。その間、ポリマー溶液と保護溶媒層とが完全に混じり合わずに厚み方向で濃度勾配を保ちかつポリマーが溶解している状態を保っていた。投入後、5分間静置し、基板上にポリアミック酸を析出させた。基板と取り出し、水中に5分間漬けた後、基板上に析出したポリアミック酸膜を剥離し、ポリアミック酸膜を得た。このポリアミック酸膜を室温で乾燥させた後、10cm角のピンテンターにはりつけ320℃で熱処理を行い、ポリイミド多孔質膜を得た。   After applying MNP uniformly as a protective solvent layer on the polyamic acid solution applied on the substrate, using a doctor knife having a spacing of 100 μm with respect to the polyamic acid solution surface, and let stand for 1 minute The entire substrate was put into a methanol bath. In the meantime, the polymer solution and the protective solvent layer were not completely mixed, but the concentration gradient was maintained in the thickness direction, and the polymer was dissolved. After the addition, the mixture was allowed to stand for 5 minutes to precipitate polyamic acid on the substrate. The substrate was taken out and immersed in water for 5 minutes, and then the polyamic acid film deposited on the substrate was peeled off to obtain a polyamic acid film. After this polyamic acid film was dried at room temperature, it was attached to a 10 cm square pin tenter and heat treated at 320 ° C. to obtain a polyimide porous film.

(1)多孔質膜の評価方法
1)厚み:4cm角のフィルム試験片を準備し、打点式厚み計により、縦、横方向に均等間隔で9点厚みを測定した。測定値の平均値を厚みとした。
(1) Evaluation method of porous film 1) Thickness: A 4 cm square film test piece was prepared, and the thickness at 9 points was measured at equal intervals in the vertical and horizontal directions with a dot thickness meter. The average value of the measured values was taken as the thickness.

2)空孔率(重量法):10cm角以上の大きさに切り出したフィルム試験片の重量を計り、次式により空孔率を算出した。ポリイミドの密度は、1.34g/cmとした。 2) Porosity (weight method): The weight of a film test piece cut out to a size of 10 cm square or more was measured, and the porosity was calculated by the following formula. The density of the polyimide was 1.34 g / cm 3 .

空孔率(%)={1−(W/ρ)}/(L1×L2×t)}×100
W:試験片重量 (g)
ρ:試験片材料の密度 (g/cm
L1:試験片たて長さ (cm)
L2:試験片よこ長さ (cm)
t:試験片厚さ (cm)
Porosity (%) = {1- (W / ρ)} / (L1 × L2 × t)} × 100
W: Test piece weight (g)
ρ: Density of test piece material (g / cm 3 )
L1: Length of test piece (cm)
L2: Specimen length (cm)
t: Test piece thickness (cm)

3)平均孔径:バルブポイント法(ASTM・F316,JIS/K3832)に基づいて測定を行った。PMI社のパームポロメータを用いて、平均流量から平均細孔径を逆算して求めた。 3) Average pore diameter: Measurement was performed based on the valve point method (ASTM F316, JIS / K3832). Using a palm porometer manufactured by PMI, the average pore diameter was calculated from the average flow rate.

4)表面観察:走査型電子顕微鏡で、膜表面の観察をおこなった。 4) Surface observation: The film surface was observed with a scanning electron microscope.

(2)評価結果
得られたポリイミド多孔質膜は、膜厚が27μm、空孔率44%、平均孔径0.05μmであり、膜表面(両面)に0.1〜数μmの大きさの孔が多数存在することを確認できた。
(2) Evaluation results The obtained polyimide porous membrane has a thickness of 27 μm, a porosity of 44%, an average pore diameter of 0.05 μm, and a pore size of 0.1 to several μm on the membrane surface (both sides). It was confirmed that there are many.

(実施例1)
出発材料となるポリイミド多孔質膜として、参考例1で製造したポリイミド多孔質膜を準備した。次に、多孔質膜に充填させる流体として、界面活性剤:ラウリルベンゼンスルホン酸ナトリウム0.5質量%を純水10ml中に溶解させた水溶液を準備した。この水溶液を入れたシャーレに、多孔質膜に投入し、シャーレ内を脱気して、水溶液を多孔質膜に充填した。この状態のシャーレを取り出して恒温恒湿槽内で、−20℃で冷却し、水溶液を凍結させ、その後、水溶液を解凍し、水溶液を多孔質膜から排出した。このような、充填から排出までの一連の工程を5回繰返した。
Example 1
The polyimide porous membrane manufactured in Reference Example 1 was prepared as a polyimide porous membrane that was a starting material. Next, an aqueous solution in which 0.5% by mass of a surfactant: sodium laurylbenzenesulfonate was dissolved in 10 ml of pure water was prepared as a fluid to be filled in the porous membrane. The petri dish containing this aqueous solution was charged into the porous membrane, the inside of the petri dish was degassed, and the aqueous solution was filled into the porous membrane. The petri dish in this state was taken out, cooled at −20 ° C. in a constant temperature and humidity chamber, the aqueous solution was frozen, the aqueous solution was then thawed, and the aqueous solution was discharged from the porous membrane. Such a series of steps from filling to discharging was repeated five times.

このように得られた電解質膜を、CP研磨後FE−SEMにて断面観察を実施したところ、膜厚は約50μmまで増加した。また水銀ポロシメータによる空孔率は54体積%まで増加、平均孔径は0.10μmまで増加した。なお、このときに断面観察した結果を図3(b)に示す。なお、図3(a)は、出発材料となる処理前の多孔質膜の断面観察を示した写真である。   When the electrolyte membrane thus obtained was subjected to cross-sectional observation with FE-SEM after CP polishing, the film thickness increased to about 50 μm. The porosity by the mercury porosimeter increased to 54% by volume, and the average pore diameter increased to 0.10 μm. The result of cross-sectional observation at this time is shown in FIG. FIG. 3 (a) is a photograph showing a cross-sectional observation of the porous film before treatment, which is a starting material.

次に、この多孔質膜に、電解質モノマー(Aldrch社製2−アクリルアミド−2−メチルプロパンスルホン酸)49.45質量%、架橋剤(同、N,N−メチレンビスアクリフアミド)0.5質量%、重合開始剤(和光純薬工業社製2,2−アゾビスメチルプロピオンアミジン−ジヒドロクロライド)0.05質量%を各比率で、純水+界面活性剤(ナカライテスク社製ウリルベンゼンスルホン酸ナトリウム0.5質量%溶解)30mlに溶かした溶液に含浸し、脱気処理と超音波処理を実施して系内の空気を除去した後、取り出して60℃で6Hr加熱してゲル化(重合)し、その後、多孔質膜を純水で洗浄した。この含浸から重合までを2回繰返し、空孔体積を換算すると96.4体積%の充填率に、電解質膜が充填された複合電解質膜を製造した。   Next, an electrolyte monomer (2-acrylamido-2-methylpropanesulfonic acid manufactured by Aldrch) 49.45% by mass and a cross-linking agent (same as N, N-methylenebisacrylamide) 0.5 were added to the porous membrane. % By weight, polymerization initiator (Wako Pure Chemical Industries, Ltd., 2,2-azobismethylpropionamidine-dihydrochloride) 0.05% by weight in each ratio, pure water + surfactant (Nacalai Tesque Urylbenzenesulfone) (Sodium 0.5% by mass dissolved) Impregnated in 30 ml of solution, degassed and sonicated to remove air in the system, then taken out and heated at 60 ° C. for 6 hours to gel ( Polymerization), and then the porous membrane was washed with pure water. This impregnation to polymerization was repeated twice to produce a composite electrolyte membrane filled with the electrolyte membrane at a filling rate of 96.4% by volume when converted to the pore volume.

(評価)
実施例1の電解質膜に対して、(1)プロトン伝導率、(2)面内方向膨潤率、膜厚、(3)水素透過量を測定した。
(Evaluation)
For the electrolyte membrane of Example 1, (1) proton conductivity, (2) in-plane swelling rate, film thickness, and (3) hydrogen permeation amount were measured.

(1)プロトン伝導率は、60℃・95%RHの条件下で、日置電機ケミカルインピーダンスメータ3532−50を用いて測定した。(2)面内方向膨潤率は、電解質膜を常温で一分間浸水して膨潤試験を行い、ダイヤルシックネスシックネスゲージにより、これらの面積を測定した。膨潤率は、電解質膜の延在方向における膨潤率を示すものであり、[膨潤試験後の面積−膨潤試験前の面積]/膨潤試験前の面積によって算出した。また、膨潤試験後の膜厚も測定した。(3)水素透過量は、60℃、20%RHの条件下で、GTRテック製ガス透過率測定装置を用いて測定した。   (1) The proton conductivity was measured using a Hioki Electric Chemical Impedance Meter 3532-50 under the conditions of 60 ° C. and 95% RH. (2) The in-plane swell ratio was measured by immersing the electrolyte membrane at room temperature for 1 minute to perform a swelling test, and measuring these areas with a dial thickness thickness gauge. The swelling rate indicates the swelling rate in the extending direction of the electrolyte membrane, and was calculated by [area after swelling test−area before swelling test] / area before swelling test. The film thickness after the swelling test was also measured. (3) The amount of hydrogen permeation was measured using a gas permeability measuring device manufactured by GTR Tech under the conditions of 60 ° C. and 20% RH.

さらに、実施例1の電解質膜に対して、乾湿サイクル(60℃温水30分、60℃真空乾燥一時間)、冷熱サイクル(60℃、温水30分、−20℃冷凍1時間)を各60回繰返した後、プロトン伝導率、面内方向膨潤率、膜厚、水素透過量を測定した。この結果を表1に示す。また、乾湿サイクル後の電解質膜の断面写真を図4(b)に示す。なお、図4(a)は、冷熱サイクル前の電解質膜の断面写真を示した図である。   Furthermore, 60 cycles each of the wet and dry cycle (60 ° C. hot water for 30 minutes, 60 ° C. vacuum drying for 1 hour) and the cold cycle (60 ° C., warm water for 30 minutes, −20 ° C. freezing for 1 hour) were performed on the electrolyte membrane of Example 1. After repeating, proton conductivity, in-plane swelling rate, film thickness, and hydrogen permeation amount were measured. The results are shown in Table 1. Moreover, the cross-sectional photograph of the electrolyte membrane after the wet and dry cycle is shown in FIG. FIG. 4A is a view showing a cross-sectional photograph of the electrolyte membrane before the cooling and heating cycle.

Figure 0005453860
Figure 0005453860

尚、表1のサイクル有の欄の(乾式)は、乾式サイクルの結果、(冷熱)は冷熱サイクルの結果を示したもののであり、乾式、冷熱の記載が無いものは、どちらのサイクルにおいても同じ値となったことを示している。   In addition, (dry type) in the column with a cycle in Table 1 shows the result of the dry cycle, and (cold heat) shows the result of the cold cycle. It shows that it became the same value.

(実施例2)
出発材料として、実施例1と同じポリイミド多孔質膜を準備した。次に、多孔質膜に充填させる流体として、有機溶媒:ナカライテスク製アセトン(純度99%)30ml、純水70mlを混合し攪拌した水溶液を準備した。密閉瓶中において、多孔質膜を水溶液に浸し、超音波処理により脱泡し十分に含浸させた。これを取出し、すぐに直接液体窒素中で急速冷却・固化させ、3分間後に上記の溶液中に戻した。このサイクルを15回繰返した。
(Example 2)
The same polyimide porous membrane as in Example 1 was prepared as a starting material. Next, an organic solvent: 30 ml of acetone (purity 99%) manufactured by Nacalai Tesque and 70 ml of pure water were mixed and stirred as a fluid to be filled in the porous membrane. In a sealed bottle, the porous membrane was immersed in an aqueous solution, defoamed by ultrasonic treatment, and sufficiently impregnated. This was taken out, immediately cooled and solidified directly in liquid nitrogen, and returned to the above solution after 3 minutes. This cycle was repeated 15 times.

このようにして得られた電解質膜を、実施例1と同じようにして、CP研磨後FE−SEMにて断面観察を実施したところ、膜厚は約43μmまで増加、また水銀ポロシメータによる空孔率は38体積%まで増加、平均孔径は0.10μmまで増加した。   The electrolyte membrane thus obtained was subjected to cross-sectional observation with FE-SEM after CP polishing in the same manner as in Example 1. As a result, the film thickness increased to about 43 μm, and the porosity by a mercury porosimeter Increased to 38% by volume, and the average pore size increased to 0.10 μm.

さらに、実施例1と同様にして、電解質モノマー、架橋剤、重合開始剤を純水+界面活性剤に溶かした溶液に漬け、同様の含浸から重合操作を2回繰返し、空孔体積換算で93.8%電解質充填の複合電解質膜を製作した。この電解質膜に対して、実施例1と同じようにして、プロトン伝導率、面内方向膨潤率、膜厚、水素透過量を測定した。この結果を表1に示す。   Further, in the same manner as in Example 1, the electrolyte monomer, the crosslinking agent, and the polymerization initiator were immersed in a solution obtained by dissolving in pure water and a surfactant, and the polymerization operation was repeated twice from the same impregnation. A composite electrolyte membrane filled with 8% electrolyte was fabricated. With respect to this electrolyte membrane, the proton conductivity, the in-plane swelling rate, the film thickness, and the hydrogen permeation amount were measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例)
実施例1と同じようにして、電解質膜を製作した。実施例1と相違する点は、出発材料の多孔質膜を処理せず(孔径を拡大させる冷凍処理を行わず)に、電解質膜を製作した点である。そして、実施例1と同じように、乾湿サイクル・冷熱サイクルを行った後、実施例1と同じように、電解質膜のプロトン伝導率、面内方向膨潤率、膜厚、水素透過量を測定した。この結果を表1に示す。なお、また、乾湿サイクル後の電解質膜の断面写真を図4(c)に示す。
(Comparative example)
An electrolyte membrane was produced in the same manner as in Example 1. The difference from Example 1 is that the electrolyte membrane was manufactured without treating the porous membrane of the starting material (without performing the refrigeration treatment for expanding the pore diameter). Then, after performing the wet and dry cycle / cooling cycle as in Example 1, the proton conductivity, in-plane swell ratio, film thickness, and hydrogen permeation amount of the electrolyte membrane were measured as in Example 1. . The results are shown in Table 1. In addition, the cross-sectional photograph of the electrolyte membrane after the wet and dry cycle is shown in FIG.

[結果]
実施例1及び2の多孔質膜は、水溶液を充填して、凍結したことにより、膜厚が増加し、孔径も増加したと考えられる。すなわち、図3(a),(b)に示す断面状態から、このような一連の処理によって、膜厚方向に水の凍結(体積膨張)時の応力が起因して、多孔質膜の変位が生じたと考えられる。
[result]
It is considered that the porous membranes of Examples 1 and 2 were filled with an aqueous solution and frozen, so that the film thickness increased and the pore diameter also increased. That is, from the cross-sectional state shown in FIGS. 3A and 3B, the displacement of the porous membrane is caused by the stress during freezing (volume expansion) of water in the film thickness direction by such a series of treatments. It is thought that it occurred.

さらに、図3(a)に示すように、出発材料の多孔質膜は、実施形態に示すような、芳香族炭化水素を含むポリイミド樹脂を用いて、相分離法により製造されているので、複数の扁平状の空孔が、膜厚方向に対して交差する方向に配列する多孔質構造を形成し、この結果として、多孔質膜を膜厚方向により効果的に延伸させることができたと考えられる。   Further, as shown in FIG. 3 (a), the porous membrane of the starting material is manufactured by a phase separation method using a polyimide resin containing an aromatic hydrocarbon as shown in the embodiment. It is considered that the flat pores of the above formed a porous structure arranged in a direction intersecting the film thickness direction, and as a result, the porous film could be effectively stretched in the film thickness direction. .

また、実施例1及び2は、乾湿サイクル、熱冷サイクルいずれにおいても、プロトン伝導性は阻害されていないが、比較例は、これらのサイクルにより、プロトン伝導性は損なわれたと考えられる。   Further, in Examples 1 and 2, proton conductivity is not inhibited in either the wet / dry cycle or the heat / cool cycle, but in the comparative example, it is considered that the proton conductivity is impaired by these cycles.

また、実施例1及び2は、乾湿サイクル、熱冷サイクルいずれにおいても、膜厚の変化はほとんどなく、比較例に比べて、膜厚の変化率は小さかった。さらに、図4(b),(c)からも明らかなように、比較例は、電解質−多孔質間に空隙がより多く生じており(図4(c)のほうが、空隙は多い)、電解質膜が膨潤したものと考えられる。また、これは、実施例1及び2は、膜厚の増加(膜厚方向の延伸)により、多孔質膜の膜厚方向の機械的強度が向上したことによると考えられる。   Further, in Examples 1 and 2, there was almost no change in film thickness in both the wet and dry cycles and the thermal cooling cycle, and the rate of change in film thickness was small compared to the comparative example. Further, as is clear from FIGS. 4B and 4C, in the comparative example, more voids are generated between the electrolyte and the porous body (FIG. 4C has more voids). It is thought that the membrane was swollen. In addition, it is considered that in Examples 1 and 2, the mechanical strength in the film thickness direction of the porous film was improved by increasing the film thickness (stretching in the film thickness direction).

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。   As mentioned above, although embodiment of this invention has been explained in full detail using drawing, a concrete structure is not limited to this embodiment, Even if there is a design change in the range which does not deviate from the gist of the present invention. These are included in the present invention.

たとえば、本実施形態では、図2(b)の充填工程から、図2(d)の排出工程までを一連の工程を1回、図2(e)に示す重合を1回実施したが、この一連の工程を繰返し行ってもよく、重合も繰返し行ってもよい。   For example, in this embodiment, a series of steps from the filling step in FIG. 2 (b) to the discharge step in FIG. 2 (d) was performed once, and the polymerization shown in FIG. 2 (e) was performed once. A series of steps may be repeated and polymerization may be repeated.

10:電解質膜、21A:(処理前の)多孔質膜、21a:(処理前の)空孔、21B:処理後の多孔質膜、21b:(処理後の)空孔、L:水溶液、D:膜厚方向、31:電解質、t1:(処理前の)多孔質膜の膜厚、t2:(処理後の)多孔質膜の膜厚   10: electrolyte membrane, 21A: porous membrane (before treatment), 21a: pores (before treatment), 21B: porous membrane after treatment, 21b: (after treatment) pores, L: aqueous solution, D : Thickness direction, 31: electrolyte, t1: film thickness of porous film (before treatment), t2: film thickness of porous film (after treatment)

Claims (3)

膜厚方向に対して交差する方向に延在した複数の空孔が形成された樹脂製の多孔質膜を、流体に含浸させて、前記空孔に前記流体を充填する工程と、
該空孔に充填された流体を凍結しながら膨張させる工程と、
凍結した流体を解凍し、前記空孔から前記液体を排出する工程と、を含む多孔質膜の製造方法により製造された多孔質膜に、電解質が充填されたことを特徴とする燃料電池用電解質膜
A step of impregnating a fluid with a porous film made of resin in which a plurality of pores extending in a direction intersecting the film thickness direction is formed, and filling the pores with the fluid;
Expanding the fluid filled in the pores while freezing;
Extract the frozen fluid, wherein the vacancies and the step of discharging the liquid, the porous membrane produced by the production method of including multi-porous membrane, a fuel cell electrolyte, characterized in that the filled Electrolyte membrane .
前記流体は、界面活性剤を含む水溶液であることを特徴とする請求項1に記載の燃料電池用電解質膜2. The fuel cell electrolyte membrane according to claim 1, wherein the fluid is an aqueous solution containing a surfactant. 前記流体は、有機溶媒を含む水溶液であることを特徴とする請求項1に記載の燃料電池用電解質膜2. The fuel cell electrolyte membrane according to claim 1, wherein the fluid is an aqueous solution containing an organic solvent.
JP2009061285A 2009-03-13 2009-03-13 Electrolyte membrane for fuel cell Active JP5453860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061285A JP5453860B2 (en) 2009-03-13 2009-03-13 Electrolyte membrane for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061285A JP5453860B2 (en) 2009-03-13 2009-03-13 Electrolyte membrane for fuel cell

Publications (2)

Publication Number Publication Date
JP2010215704A JP2010215704A (en) 2010-09-30
JP5453860B2 true JP5453860B2 (en) 2014-03-26

Family

ID=42974879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061285A Active JP5453860B2 (en) 2009-03-13 2009-03-13 Electrolyte membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP5453860B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620665B2 (en) * 2009-06-01 2014-11-05 株式会社クレハ Method for producing stretched resin porous membrane
JP5581939B2 (en) 2010-03-15 2014-09-03 株式会社リコー Fixing device, image forming apparatus
JP5942909B2 (en) * 2013-03-25 2016-06-29 トヨタ自動車株式会社 Manufacturing method and manufacturing apparatus for reinforced electrolyte membrane
JP6771071B2 (en) * 2018-06-15 2020-10-21 日本碍子株式会社 Electrolytes for electrochemical cells and electrochemical cells

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281272A (en) * 1986-05-28 1987-12-07 Fuji Electric Co Ltd Method for removing medium in electrode catalyst layer for fuel cell
JPS6346240A (en) * 1986-08-13 1988-02-27 Kanebo Ltd Composite porous material and production thereof
JPH09199138A (en) * 1996-01-19 1997-07-31 Toyota Motor Corp Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
JP4053830B2 (en) * 2002-07-08 2008-02-27 三和化工株式会社 Flexible hot-press molded product and molding method thereof
JP4479444B2 (en) * 2004-09-28 2010-06-09 トヨタ自動車株式会社 Catalyst recovery method and catalyst recovery device
JP2008300321A (en) * 2007-06-04 2008-12-11 Toyota Motor Corp Manufacturing method of catalytic electrode layer

Also Published As

Publication number Publication date
JP2010215704A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
Che et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery
JP5797778B2 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
Gloukhovski et al. Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner’s guide
Sakakibara et al. Fabrication of surface skinless membranes of epoxy resin-based mesoporous monoliths toward advanced separators for lithium ion batteries
JP2013503436A (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5791732B2 (en) POLYMER ELECTROLYTE AND METHOD FOR PRODUCING THE SAME
JP5981751B2 (en) Diaphragm for alkaline water electrolysis and method for producing the same
JP5453860B2 (en) Electrolyte membrane for fuel cell
Park et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs
JP6030952B2 (en) Diaphragm for alkaline water electrolysis and method for producing the same
KR101315744B1 (en) Multi layer reinfored electrolyte membrane for solid polymer fuel cell, manufacturing method thereof, membrane-electrode assembly having the same and fuel cell having them
JP4827781B2 (en) Polymer electrolyte membrane
JP7342103B2 (en) Monolithic composite membrane with continuous ionomer phase
EP2626127B1 (en) Polyazole membrane for water purification
Goo et al. Polyamide-coated Nafion composite membranes with reduced hydrogen crossover produced via interfacial polymerization
CN106816617B (en) Preparation method of polymer composite electrolyte membrane
JP2004178995A (en) Electrolyte film for solid polymer fuel cell and its manufacturing method
Nguyen et al. Pore-filling membrane for direct methanol fuel cells based on sulfonated poly (styrene-ran-ethylene) and porous polyimide matrix
JP4269211B2 (en) Composite ion exchange membrane and method for producing the same
JP2006073235A (en) Multilayered electrolyte membrane and production method thereof
JP3978663B2 (en) Electrolyte membrane-electrode assembly
KR20140118914A (en) Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
JP3978669B2 (en) Ion exchange membrane and method for producing the same
KR102008400B1 (en) Polymer eletrolyte membrane
JP4379025B2 (en) Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5453860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250