JP5453611B2 - Underground fluid observation device and measurement method - Google Patents

Underground fluid observation device and measurement method Download PDF

Info

Publication number
JP5453611B2
JP5453611B2 JP2007237182A JP2007237182A JP5453611B2 JP 5453611 B2 JP5453611 B2 JP 5453611B2 JP 2007237182 A JP2007237182 A JP 2007237182A JP 2007237182 A JP2007237182 A JP 2007237182A JP 5453611 B2 JP5453611 B2 JP 5453611B2
Authority
JP
Japan
Prior art keywords
potential
fluid
magnetic field
detection
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007237182A
Other languages
Japanese (ja)
Other versions
JP2009068971A (en
Inventor
秀樹 水永
俊昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2007237182A priority Critical patent/JP5453611B2/en
Publication of JP2009068971A publication Critical patent/JP2009068971A/en
Application granted granted Critical
Publication of JP5453611B2 publication Critical patent/JP5453611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、地下水や石油・天然ガスなどのように地下に存在する流体が地下を流動することによって生じる流動電流に基づいて流体の流動状態を観測する地下流体観測装置、及び、前記流体の流動状態を測定する測定方法に関する。 The present invention relates to an underground fluid observation apparatus for observing a fluid flow state based on a flow current generated by a fluid existing underground such as groundwater, oil, natural gas, etc. flowing in the underground , and the flow of the fluid The present invention relates to a measurement method for measuring a state .

従来、地下構造の調査や各種の資源鉱床の調査を行う場合には、地下比抵抗を探査する比抵抗探査法を用いることが多い。比抵抗探査法では、調査エリアに所定の電磁場を生じさせるための電磁場源が必要であって、調査エリアの大きさや調査深度に応じて適宜の電磁場源を設置して、所定の地点での地下比抵抗を計測している。   Conventionally, when investigating underground structures and various resource deposits, a resistivity exploration method for exploring underground resistivity is often used. In the resistivity exploration method, an electromagnetic field source is required to generate a predetermined electromagnetic field in the survey area, and an appropriate electromagnetic field source is installed according to the size of the survey area and the survey depth. The specific resistance is measured.

このような比抵抗探査法において、電磁場源を設けるのではなく、たとえば雷放電などの電磁場変動によって生じる地磁気の変動を計測することにより地下比抵抗を求めるいわゆるMT法と呼ばれる電磁探査法も知られている(例えば、特許文献1参照。)。   In such a specific resistance exploration method, there is also known an electromagnetic exploration method called the so-called MT method in which an underground field resistivity is obtained by measuring a geomagnetic variation caused by an electromagnetic field variation such as lightning discharge instead of providing an electromagnetic field source. (For example, refer to Patent Document 1).

MT法では地磁気を利用するため、計測される電場の大きさが数十mV/km、磁場の大きさが数十nT程度といった微小電場及び微小磁場の計測を行わねばならず、高精度での計測が要求されるため、計測作業にある程度の熟練を要することとなっていた。   Since the MT method uses geomagnetism, it is necessary to measure a small electric field and a small magnetic field with a measured electric field of several tens mV / km and a magnetic field of several tens of nT. Since measurement is required, a certain level of skill is required for measurement work.

このような現状において、本発明者らは、以前より流体流動電位法を用いた地下の電気探査法の研究を行っていた。流体流動電位法では、流体が地下で流動することにより発生する流動電流を検出し、検出された流動電流から流体の流動状態を特定しているものである。   Under these circumstances, the present inventors have been researching underground electric exploration using the fluid streaming potential method. In the fluid streaming potential method, a flowing current generated when a fluid flows underground is detected, and the fluid flow state is specified from the detected flowing current.

したがって、地下水の利用を目的とした調査や、加圧水などを用いた石油の強制回収を目的とした調査のように、地下を流動する流体を対象とした調査において効果的な電気探査方法として知られていた。
特開平05−323038号公報
Therefore, it is known as an effective electric exploration method in investigations targeting fluids that flow underground, such as investigations aimed at the use of groundwater and investigations aimed at the forced recovery of oil using pressurized water. It was.
JP 05-323038 A

しかしながら、流体流動電位法では、流動電流を電位により計測しているために、電位計測の基準となる基準電位を設ける必要があり、この基準電位の設定作業が極めて煩雑であるという問題があった。   However, in the fluid streaming potential method, since the flowing current is measured by the potential, it is necessary to provide a reference potential as a reference for potential measurement, and there is a problem that the setting work of the reference potential is extremely complicated. .

すなわち、このような場合における基準電位は、理論的には無限遠での電位であるものの、実際には無限遠の電極を設定することは不可能であって、調査エリアからできるだけ離れた地点に基準電位用の電極を設けており、調査エリアの面積が広くなればなるほど基準電位用の電極をできるだけ離隔させて設けなければならず、通常は、調査エリアから数km程度以上離れた地点に基準電位用の電極を設けていた。   In other words, the reference potential in such a case is theoretically a potential at infinity, but in practice it is impossible to set an electrode at infinity, and it is at a point as far as possible from the investigation area. The reference potential electrode is provided, and the larger the area of the survey area, the farther apart the reference potential electrode should be provided. Usually, the reference is located at a distance of several kilometers or more from the survey area. An electrode for potential was provided.

しかも、基準電位用の電極は、調査エリアに設けた電位差の計測装置と電気的に接続する必要があり、数kmにわたって配線を設置せねばならず、この配線が、野生動物などによって切断されることがたびたび生じるため、計測前には配線に断線が生じていないかを確認しなければならなかった。   Moreover, the reference potential electrode must be electrically connected to a potential difference measuring device provided in the investigation area, and the wiring must be installed over several kilometers, and this wiring is cut by a wild animal or the like. Since this often occurs, it was necessary to check whether the wiring was disconnected before measurement.

本発明者らは流体流動電位法のさらなる研究開発を行う中で、この問題点を解決可能とした本発明を成すに至ったものである。   The inventors of the present invention have made the present invention that can solve this problem while conducting further research and development of the fluid streaming potential method.

本発明の地下流体観測装置では、被計測エリア内の所定位置にそれぞれ設置して地下を流動する流体によって生じた流動電流を検出する複数の検出部と、これら複数の検出部で検出された流動電流のデータを解析して流体の流動状態を特定する解析部とを備えた地下流体観測装置であって、検出部は、検出部を通る第1仮想直線上の2点間の電位差の時間変動を検出する第1電位変動検出手段と、検出部を通り、第1仮想直線と交差する第2仮想直線上の2点間の電位差の時間変動を検出する第2電位変動検出手段と、第1仮想直線と第2仮想直線との交点部分における磁場の時間変動を検出する磁場変動検出手段とをそれぞれし、前記解析部は、前記第1電位変動検出手段及び前記第2電位変動検出手段が検出した電位差の時間変動、並びに、前記磁場変動検出手段が検出した磁場の時間変動、を利用して特定した各検出部における電位の時間変動量に基づいて前記流体の流動状態を特定することとした。 The underground fluid observation apparatus of the present invention, which is detected at a plurality of detection portions and, the plurality of detector for detecting the flow currents caused by the fluid flowing respectively installed underground in a predetermined position in the measurement area flow An underground fluid observation apparatus including an analysis unit that analyzes current data and identifies a fluid flow state, wherein the detection unit is a time variation of a potential difference between two points on a first virtual straight line passing through the detection unit. First potential fluctuation detecting means for detecting the first potential fluctuation detecting means, second potential fluctuation detecting means for detecting temporal fluctuation of the potential difference between two points on the second virtual straight line passing through the detecting section and intersecting the first virtual straight line, virtual straight line and the magnetic field variation detecting means for detecting a time variation of the magnetic field at the intersection portion between the second imaginary straight line possess respectively, the analysis unit, the first potential variation detecting means and the second potential variation detecting means Time variation of detected potential difference, normal To the magnetic field fluctuation detection means and to identify the flow state of the fluid based on time variation of the potential of the detecting portions identified by using the time variation of the magnetic field detected.

さらに、本発明の地下流体観測装置では、磁場変動検出手段を、互いに直交させて配置した3つの磁気センサ素子で構成したことにも特徴を有し、第1仮想直線と第2仮想直線とを直交させていることにも特徴を有するものである。
また、本発明の測定方法では、被計測エリア内の所定位置にそれぞれ設定される複数の検出ポイントの地下を流動する流体によって生じた流動電流を検出し、これら複数の検出ポイントで検出された前記流動電流のデータを解析して前記流体の流動状態を測定する測定方法であって、前記検出ポイントを通る第1仮想直線上の2点間の電位差の時間変動をそれぞれ検出する第1工程と、前記検出ポイントを通り、前記第1仮想直線と交差する第2仮想直線上の2点間の電位差の時間変動をそれぞれ検出する第2工程と、前記第1仮想直線と前記第2仮想直線との交点部分における磁場の時間変動をそれぞれ検出する第3工程と、を含み、前記第1工程及び前記第2工程において検出した電位差の時間変動、並びに、前記第3工程において検出した磁場の時間変動、を利用して特定した各検出ポイントにおける電位の時間変動量に基づいて前記流体の流動状態を測定することに特徴を有するものである。
Further, the underground fluid observation apparatus of the present invention is characterized in that the magnetic field fluctuation detecting means is composed of three magnetic sensor elements arranged orthogonal to each other, and the first virtual line and the second virtual line are obtained. It is also characterized by being orthogonal.
Further, in the measurement method of the present invention, the flow current generated by the fluid flowing in the basement of the plurality of detection points respectively set at predetermined positions in the measurement area is detected, and the detection is performed at the plurality of detection points. A measurement method of analyzing flow current data to measure a flow state of the fluid, wherein a first step of detecting a time variation of a potential difference between two points on a first virtual straight line passing through the detection point; A second step of detecting a time variation of a potential difference between two points on a second virtual line passing through the detection point and intersecting the first virtual line; and the first virtual line and the second virtual line A third step of detecting time variations of the magnetic fields at the intersections, respectively, and the time variation of the potential difference detected in the first step and the second step, and the detection in the third step. Time variation of magnetic field, and it has the characteristics to measure the flow state of the fluid based on time variation of the potential of each detection point identified by using.

本発明の地下流体観測装置では、従来の流体流動電位法における第1電位変動検出手段と第2電位変動検出手段とによる電位の時間変動の検出だけでなく、磁場変動検出手段で磁場の時間変動を検出することにより、電位の時間変動量を反映した磁場の時間変動量を利用して電位の時間変動量を、基準電位を用いることなく特定できるので、基準電位を不要として検出部の配設作業を極めて容易とすることができる。 In the underground fluid observation apparatus of the present invention, not only the time variation of the potential by the first potential variation detection means and the second potential variation detection means in the conventional fluid streaming potential method but also the time variation of the magnetic field by the magnetic field variation detection means. by detecting the time variation of utilizing a time variation of the time variation amount reflecting the magnetic field of the potentials, so can be identified without using a reference potential, the arrangement of the detector reference voltage as required Work can be made extremely easy.

しかも、各検出部を設置した設置点での電位をそれぞれ特定できるので、設置点ごとに独立した多点同時計測を可能とすることができ、地下における流体の流動状態をリアルタイムでモニタリングすることができる。   In addition, since the potential at the installation point where each detection unit is installed can be specified individually, it is possible to perform multipoint simultaneous measurement independently for each installation point, and it is possible to monitor the fluid flow state in the basement in real time. it can.

本発明の地下流体観測装置は、被計測エリア内の所定位置にそれぞれ設置して地下を流動する流体によって生じた流動電流を検出する検出部と、この検出部で検出された流動電流のデータを解析して流体の流動状態を特定する解析部とを備えた地下流体観測装置であって、検出部において電位の変動とともに、電位の変動にともなって生じる磁場の変動を検出しているものである。   An underground fluid observation apparatus according to the present invention is installed at a predetermined position in a measurement area, detects a flowing current generated by a fluid flowing in the underground, and data of a flowing current detected by the detecting unit. An underground fluid observation device including an analysis unit that analyzes and identifies a fluid flow state, and detects a change in a magnetic field caused by a change in potential along with a change in potential in the detection unit. .

このように、検出部では磁場の変動を検出することにより、マクスウェル方程式として知られる電場と磁場の関係式に基づいて、磁場の変動のデータから電位の変動におけるより詳細な変動のデータを生成できるので、こうして得られた電位のデータから流動電流の向き及び大きさをより詳細に特定することができる。   As described above, the detection unit can detect the fluctuation of the magnetic field, and can generate more detailed fluctuation data in the fluctuation of the potential from the fluctuation data of the magnetic field based on the relational expression between the electric field and the magnetic field known as the Maxwell equation. Therefore, the direction and magnitude of the flowing current can be specified in more detail from the potential data thus obtained.

本発明者らは、このように電位の変動だけでなく、磁場の変動を検出して利用する電気探査法を「流体流動電磁法」と呼んでいる。   The inventors of the present invention call the electric exploration method that detects and uses not only the fluctuation of the potential but also the fluctuation of the magnetic field as the “fluid flow electromagnetic method”.

流体流動電磁法では、従来の流体流動電位法のように電位測定の基準となる基準電位の設定を不要とすることができるので、基準電位の設定及び管理の手間を省くことができ、大きく省力化することができる。   In the fluid flow electromagnetic method, unlike the conventional fluid flow potential method, it is not necessary to set a reference potential as a reference for potential measurement, so it is possible to save time and labor for setting and managing the reference potential. Can be

また、流体流動電磁法では、第1電位変動検出手段と第2電位変動検出手段でそれぞれ検出した電位差の変動に対して、磁場変動検出手段で検出した磁場の変動から特定される電位差の変動に基づいて、各検出手段での検出結果に含まれるノイズなどの外乱の影響を排除しやすくすることができるので、より高精度化することができる。   Further, in the fluid flow electromagnetic method, the potential difference fluctuation specified by the magnetic field fluctuation detected by the magnetic field fluctuation detection means is different from the potential difference fluctuation detected by the first potential fluctuation detection means and the second potential fluctuation detection means. Based on this, it is possible to easily eliminate the influence of disturbances such as noise included in the detection results of the respective detection means, so that higher accuracy can be achieved.

特に、流体流動電磁法では、磁場変動検出手段を、互いに直交させて配置した3つの磁気センサ素子で構成することにより、各測定点部分での流動電流の向き及び大きさを精度よく特定できるので、リアルタイムで流体の流動状態をモニタリングすることができる。   In particular, in the fluid flow electromagnetic method, the direction and magnitude of the flowing current at each measurement point can be accurately identified by configuring the magnetic field fluctuation detection means with three magnetic sensor elements arranged orthogonal to each other. In addition, the fluid flow state can be monitored in real time.

なお、磁場変動検出手段では、3つの磁気センサ素子を必ずしも互いに直交させて配置する必要はなく、3つの磁気センサ素子を3次元空間内で一次独立な方向に向けてそれぞれ配置してもよいが、互いに直交させて配置することにより検出結果の解析処理の負担を軽減できる。   In the magnetic field fluctuation detection means, the three magnetic sensor elements do not necessarily have to be arranged orthogonal to each other, and the three magnetic sensor elements may be arranged in a primary independent direction in the three-dimensional space, respectively. By placing them orthogonal to each other, it is possible to reduce the burden of analysis processing of detection results.

また、第1電位変動検出手段と第2電位変動検出手段は、必ずしも第1仮想直線と第2仮想直線とを直交させる必要はなく、第1仮想直線と第2仮想直線とをそれぞれ一次独立な方向に設けてもよいが、第1仮想直線と第2仮想直線とを直交させることにより、検出結果の解析処理の負担を軽減できる。さらに、電位差の変動の検出は、同一直線上にない3つ以上の電極を用いて測定してもよく、電極の数を増やすことにより電位差の変動の検出精度を向上させることができる。   Further, the first potential fluctuation detecting means and the second potential fluctuation detecting means do not necessarily need to make the first virtual line and the second virtual line orthogonal to each other, and the first virtual line and the second virtual line are each independently independent. Although it may be provided in the direction, by making the first imaginary straight line and the second imaginary straight line orthogonal to each other, it is possible to reduce the load of analysis processing of the detection result. Furthermore, the detection of the fluctuation of the potential difference may be measured using three or more electrodes that are not on the same straight line, and the detection accuracy of the fluctuation of the potential difference can be improved by increasing the number of electrodes.

図1は、本実施形態の地下流体観測装置の概略説明図である。地下流体観測装置は、被計測エリアS内の所定位置にそれぞれ設置した複数の検出部10と、この検出部10で検出された流動電流のデータを解析して流体の流動状態を特定する解析部20とで構成されている。   FIG. 1 is a schematic explanatory diagram of the underground fluid observation apparatus of the present embodiment. The underground fluid observation apparatus includes a plurality of detection units 10 installed at predetermined positions in the measurement area S, and an analysis unit that analyzes flow current data detected by the detection unit 10 and identifies a fluid flow state. It consists of 20 and.

本実施形態では、解析部20は、各検出部10で検出されたデータを一時的に記録する記憶手段、及び各検出部10に電力を供給する電極供給手段を備えたサーバ21と、このサーバ21の記憶手段に記憶されたデータを解析するパーソナルコンピュータ22で構成されている。なお、サーバ21とパーソナルコンピュータ22とを一体的に構成してもよい。図1中、23はサーバ21と各検出部10を接続した配線である。   In the present embodiment, the analysis unit 20 includes a server 21 including a storage unit that temporarily records data detected by each detection unit 10, and an electrode supply unit that supplies power to each detection unit 10, and the server The personal computer 22 analyzes the data stored in the storage means 21. Note that the server 21 and the personal computer 22 may be configured integrally. In FIG. 1, reference numeral 23 denotes a wiring connecting the server 21 and each detection unit 10.

パーソナルコンピュータ22には解析プログラムをインストールしており、この解析プログラムで所定のデータを解析することにより各検出部10が設置された観測点での流動電流を特定し、パーソナルコンピュータ22のディスプレイに観測対象の流体の流動状態を表示可能としている。   The personal computer 22 has an analysis program installed. By analyzing predetermined data with this analysis program, the flow current at the observation point where each detection unit 10 is installed is specified and observed on the display of the personal computer 22 The flow state of the target fluid can be displayed.

検出部10は、図2に示すように、所要の保護ケース11内に収容した制御回路12と、この制御回路12に所定の導通用配線a,b,c,dを介して接続した第1電極13a、第2電極13b、第3電極13c、第4電極13dと、保護ケース11内に収容した3軸グラジオメータ14とで構成している。   As shown in FIG. 2, the detection unit 10 includes a control circuit 12 accommodated in a required protective case 11, and a first circuit connected to the control circuit 12 via predetermined conduction wires a, b, c, d. The electrode 13a, the second electrode 13b, the third electrode 13c, the fourth electrode 13d, and the three-axis gradiometer 14 accommodated in the protective case 11 are configured.

検出部10は、3軸グラジオメータ14による地下の磁場の変動を検出しやすくするために、保護ケース11を地中に埋設することとしており、保護ケース11は、内部への水分の浸入を防止する水密構造としている。また、保護ケース11は、3軸グラジオメータ14で検出する磁場に影響を与えないようにプラスチック製としている。   The detection unit 10 embeds a protective case 11 in the ground to make it easier to detect changes in the underground magnetic field by the triaxial gradiometer 14, and the protective case 11 prevents moisture from entering inside. It has a watertight structure. The protective case 11 is made of plastic so as not to affect the magnetic field detected by the triaxial gradiometer 14.

図2中、15は全ての測定点での測定時刻を高精度に同期するGPSのアンテナであり、地中に埋設した検出部10の保護ケース11から、このアンテナ15を地上に露出させて受信感度を向上させるとともに、検出部10の埋設位置をわかりやすくすることができる。   In FIG. 2, 15 is a GPS antenna that synchronizes the measurement times at all measurement points with high accuracy. The antenna 15 is received from the protective case 11 of the detection unit 10 buried in the ground and exposed to the ground. The sensitivity can be improved and the embedded position of the detection unit 10 can be easily understood.

第1〜4電極13a,13b,13c,13dは、所定位置への設置後に設置位置が移動しない程度の大きさとなっていればよく、本実施形態では、直径30mm、厚み100mmの多孔質製非分極電極としている。   The first to fourth electrodes 13a, 13b, 13c, and 13d are only required to have such a size that the installation position does not move after being installed at a predetermined position. It is a polarized electrode.

本実施形態では、第1電極13aと第2電極13bを一組として制御回路12とともに第1電位変動検出手段を構成するものと、第3電極13cと第4電極13dを一組として制御回路12とともに第2電位変動検出手段を構成するものとしている。   In the present embodiment, the control circuit 12 includes the first electrode 13a and the second electrode 13b as a set to constitute the first potential fluctuation detecting means together with the control circuit 12, and the control circuit 12 includes the third electrode 13c and the fourth electrode 13d as a set. In addition, the second potential fluctuation detecting means is configured.

第1電極13aと第2電極13bは、検出部10を通る第1仮想直線上であって、検出部10からほぼ等距離にそれぞれ配置して、第1電極13aと第2電極13bの2点間の電位差の変動を制御回路12で検出可能としている。本実施形態では、第1電極13aと第2電極13bは、検出部10からそれぞれ5mの距離に配置して、第1電極13aと第2電極13bの間の間隔寸法を10mとしている。   The first electrode 13a and the second electrode 13b are on a first imaginary straight line passing through the detection unit 10 and are arranged at approximately equal distances from the detection unit 10, respectively, so that two points of the first electrode 13a and the second electrode 13b are provided. The control circuit 12 can detect fluctuations in the potential difference between them. In the present embodiment, the first electrode 13a and the second electrode 13b are disposed at a distance of 5 m from the detection unit 10 and the distance between the first electrode 13a and the second electrode 13b is 10 m.

第3電極13cと第4電極13dは、検出部10を通る第2仮想直線上であって、検出部10からほぼ等距離にそれぞれ配置して、第3電極13cと第4電極13dの2点間の電位差の変動を制御回路12で検出可能としている。本実施形態では、第3電極13cと第4電極13dは、検出部10からそれぞれ5mの距離に配置して、第3電極13cと第4電極13dの間の間隔寸法を10mとしている。   The third electrode 13c and the fourth electrode 13d are on the second imaginary straight line passing through the detection unit 10 and are arranged at approximately equal distances from the detection unit 10, respectively, and two points of the third electrode 13c and the fourth electrode 13d. The control circuit 12 can detect fluctuations in the potential difference between them. In the present embodiment, the third electrode 13c and the fourth electrode 13d are arranged at a distance of 5 m from the detection unit 10, respectively, and the distance between the third electrode 13c and the fourth electrode 13d is 10 m.

第1仮想直線と第2仮想直線とは直交させており、第1仮想直線と第2仮想直線の交点部分に検出部10を位置させている。第1仮想直線と第2仮想直線を直交させておくことにより、第1電位変動検出手段と第2電位変動検出手段でそれぞれ検出された電位の変動のデータの解析における演算を簡素化できるので、解析処理の高速化を図ることができる。   The first virtual line and the second virtual line are orthogonal to each other, and the detection unit 10 is positioned at the intersection of the first virtual line and the second virtual line. By making the first virtual line and the second virtual line orthogonal to each other, it is possible to simplify the calculation in the analysis of the potential fluctuation data respectively detected by the first potential fluctuation detecting means and the second potential fluctuation detecting means. The analysis process can be speeded up.

また、第1仮想直線と第2仮想直線の交点部分に検出部10を位置させて、この検出部10に設けた3軸グラジオメータ14で磁場の変動を検出することにより、検出された磁場の変動のデータの解析により得られる電位の変動のデータと、第1電位変動検出手段及び第2電位変動検出手段でそれぞれ検出された電位の変動のデータの解析における演算を簡素化できるので、解析処理の高速化を図ることができる。   In addition, the detection unit 10 is positioned at the intersection of the first virtual line and the second virtual line, and the variation of the magnetic field is detected by the three-axis gradiometer 14 provided in the detection unit 10, thereby detecting the detected magnetic field. Since the calculation in the analysis of the potential fluctuation data obtained by the analysis of the fluctuation data and the potential fluctuation data respectively detected by the first potential fluctuation detecting means and the second potential fluctuation detecting means can be simplified, the analysis processing Can be speeded up.

特に、3軸グラジオメータ14では、3軸のうちの1軸を第1仮想直線と平行とし、3軸のうちの他の1軸を第2仮想直線と平行とすることにより、解析処理のさらなる高速化を図ることができる。   In particular, in the three-axis gradiometer 14, one of the three axes is parallel to the first imaginary line, and the other one of the three axes is parallel to the second imaginary line. The speed can be increased.

3軸グラジオメータ14は、本実施形態では、第1磁気センサ素子14eのセンサ部と、第2磁気センサ素子14fのセンサ部と、第3磁気センサ素子14gのセンサ部を互いに直交させて配置して構成している。   In the present embodiment, the three-axis gradiometer 14 is arranged such that the sensor portion of the first magnetic sensor element 14e, the sensor portion of the second magnetic sensor element 14f, and the sensor portion of the third magnetic sensor element 14g are orthogonal to each other. Is configured.

第1〜3磁気センサ素子14e,14f,14gは、いわゆるMI(Magneto-Impedance effect)センサであって、本実施形態ではそれぞれ磁場勾配を計測している。   The first to third magnetic sensor elements 14e, 14f, and 14g are so-called MI (Magneto-Impedance effect) sensors, and each measures a magnetic field gradient in the present embodiment.

図2中、14e-Bは第1磁気センサ素子14eの回路部、14f-Bは第2磁気センサ素子14fの回路部、14g-Bは第3磁気センサ素子14gの回路部であり、それぞれ接続配線束e,f,gを介して制御回路12と接続している。接続配線束e,f,gは、それぞれ複数本の導通用配線で構成して、各回路部14e-B,14f-B,14g-Bへの供給、及び制御回路12への信号出力を可能としている。   In FIG. 2, 14e-B is a circuit part of the first magnetic sensor element 14e, 14f-B is a circuit part of the second magnetic sensor element 14f, and 14g-B is a circuit part of the third magnetic sensor element 14g. The control circuit 12 is connected through the wiring bundles e, f, and g. Each of the connection wiring bundles e, f, and g is composed of a plurality of conductive wirings, and can be supplied to each circuit section 14e-B, 14f-B, 14g-B, and output a signal to the control circuit 12. It is said.

制御回路12には、サーバ21に接続した配線23を接続して、サーバ21への所定のデータ信号を出力可能としている。また、配線23を介して制御回路12に電力を供給している。さらに、本実施形態では、制御回路12は、配線23によって隣り合った検出部10を直列接続してサーバ21に接続可能としており、配線23の必要量を低減させている。   A wiring 23 connected to the server 21 is connected to the control circuit 12 so that a predetermined data signal to the server 21 can be output. In addition, power is supplied to the control circuit 12 via the wiring 23. Furthermore, in the present embodiment, the control circuit 12 can connect the detection units 10 adjacent to each other by the wiring 23 in series and can be connected to the server 21, thereby reducing the necessary amount of the wiring 23.

このように構成した検出部10は、図1に示すように、必ずしも被計測エリアSに縦横に並べて配設する必要はなく、各検出部10の配設位置が正しく特定できればよい。特に、本実施形態では、各検出部10の配設位置の緯度情報及び経度情報によって検出部10の位置を特定している。   As shown in FIG. 1, the detection unit 10 configured as described above does not necessarily have to be arranged vertically and horizontally in the measurement area S as long as the arrangement position of each detection unit 10 can be correctly specified. In particular, in the present embodiment, the position of the detection unit 10 is specified by the latitude information and the longitude information of the arrangement position of each detection unit 10.

図3は、上述した検出部10で実際に電位の変動と磁場の変動を計測した際の計測データであって、この場合では、電位(図3中の一点鎖線)の低下にともなって3軸グラジオメータ14の第1磁気センサ素子14e(図3中の実線)、第2磁気センサ素子14f(図3中の点線)、第3磁気センサ素子14g(図3中の破線)においてそれぞれ磁場の変動が検出されていることが分かる。この第1〜3磁気センサ素子14e,14f,14gの検出結果から、マクスウェル方程式に基づいて流動電流の向き及び大きさの変動状態を特定できる。   FIG. 3 shows measurement data obtained by actually measuring the fluctuation of the potential and the fluctuation of the magnetic field by the detection unit 10 described above. In this case, the three axes correspond to a decrease in the potential (the one-dot chain line in FIG. 3). Magnetic field fluctuations in the first magnetic sensor element 14e (solid line in FIG. 3), the second magnetic sensor element 14f (dotted line in FIG. 3), and the third magnetic sensor element 14g (dashed line in FIG. 3) of the gradiometer 14, respectively. It can be seen that is detected. From the detection results of the first to third magnetic sensor elements 14e, 14f, and 14g, the direction and magnitude of the flowing current can be identified based on the Maxwell equation.

なお、上述した検出部10と解析部20から構成した地下流体観測装置では、流動電流の向き及び大きさを検出することはできるが、それが実際の流体の流量を直接的に示しているものではない。   In addition, in the underground fluid observation apparatus composed of the detection unit 10 and the analysis unit 20 described above, the direction and magnitude of the flowing current can be detected, but this directly indicates the actual fluid flow rate. is not.

そこで、被計測エリアSにはボーリングを行って、観測対象の流体の実質的な流量の計測を行う計測手段を設けて、この計測手段で得られた流体の流動状態の実測値と、流動電流の観測値とからリアルタイムで流体の流動状態をモニタリングしている。この場合、実質的な流量の計測を行う計測手段は、被計測エリアS内で複数箇所に設けることによって、高精度化することができる。   Therefore, the measuring area S is provided with measuring means for performing boring and measuring the substantial flow rate of the fluid to be observed, and the measured value of the fluid flow state obtained by the measuring means and the flow current. The flow state of the fluid is monitored in real time from the observed values. In this case, the measurement means for measuring the substantial flow rate can be provided with high accuracy by being provided at a plurality of locations in the measurement area S.

なお、流体流動電磁法が用いられる場合は、通常、地下水の汲み上げ、加圧水などを用いた石油の強制回収、地熱発電用の熱水の汲み上げまたは地下還元などのように、被計測エリアSにおいて少なくとも1箇所にはボーリングが必要であるため、このボーリング孔に所要の計測手段を設けることができる。   When the fluid flow electromagnetic method is used, usually at least in the measurement area S, such as pumping up groundwater, forcibly collecting oil using pressurized water, pumping up hot water for geothermal power generation, or subsurface reduction. Since boring is necessary at one place, a necessary measuring means can be provided in this boring hole.

上述した実施形態では、配線23を介して解析部20のサーバ21と検出部10とを有線接続しているが、各検出部10にそれぞれバッテリなどの電源を設けるとともに、無線通信手段を設けて、図4に示すように、解析部20のサーバ21と検出部10とを無線通信により接続してもよい。このように、解析部20のサーバ21と検出部10とを無線接続とすることにより、検出部10の配設作業をより簡便とすることができる。図4中、24はサーバ21に接続した送受信用のアンテナ装置である。   In the above-described embodiment, the server 21 of the analysis unit 20 and the detection unit 10 are connected by wire via the wiring 23. However, each detection unit 10 is provided with a power source such as a battery and wireless communication means. As shown in FIG. 4, the server 21 of the analysis unit 20 and the detection unit 10 may be connected by wireless communication. As described above, by making the server 21 of the analysis unit 20 and the detection unit 10 wirelessly connected, the installation work of the detection unit 10 can be further simplified. In FIG. 4, reference numeral 24 denotes a transmission / reception antenna device connected to the server 21.

本発明の実施形態に係る地下流体観測装置の概略説明図である。It is a schematic explanatory drawing of the underground fluid observation apparatus which concerns on embodiment of this invention. 検出部の概略説明図である。It is a schematic explanatory drawing of a detection part. 検出部による検出結果のグラフである。It is a graph of the detection result by a detection part. 他の実施形態の地下流体観測装置の概略説明図である。It is a schematic explanatory drawing of the underground fluid observation apparatus of other embodiment.

符号の説明Explanation of symbols

S 被計測エリア
10 検出部
11 保護ケース
12 制御回路
13a 第1電極
13b 第2電極
13c 第3電極
13d 第4電極
14 3軸グラジオメータ
14e 第1磁気センサ素子
14f 第2磁気センサ素子
14g 第3磁気センサ素子
15 アンテナ
20 解析部
21 サーバ
22 パーソナルコンピュータ
23 配線
a 導通用配線
b 導通用配線
c 導通用配線
d 導通用配線
e 接続配線束
f 接続配線束
g 接続配線束
S Measurement area
10 Detector
11 Protective case
12 Control circuit
13a First electrode
13b Second electrode
13c Third electrode
13d 4th electrode
14 3-axis gradiometer
14e First magnetic sensor element
14f Second magnetic sensor element
14g 3rd magnetic sensor element
15 Antenna
20 Analysis section
21 servers
22 Personal computer
23 Wiring a Conducting wiring b Conducting wiring c Conducting wiring d Conducting wiring e Connection wiring bundle f Connection wiring bundle g Connection wiring bundle

Claims (3)

被計測エリア内の所定位置にそれぞれ設置して地下を流動する流体によって生じた流動電流を検出する複数の検出部と、これら複数の検出部で検出された前記流動電流のデータを解析して前記流体の流動状態を特定する解析部とを備えた地下流体観測装置であって、
前記検出部は、
前記検出部を通る第1仮想直線上の2点間の電位差の時間変動を検出する第1電位変動検出手段と、
前記検出部を通り、前記第1仮想直線と交差する第2仮想直線上の2点間の電位差の時間変動を検出する第2電位変動検出手段と、
前記第1仮想直線と前記第2仮想直線との交点部分における磁場の時間変動を検出する磁場変動検出手段とをそれぞれし、
前記解析部は、前記第1電位変動検出手段及び前記第2電位変動検出手段が検出した電位差の時間変動、並びに、前記磁場変動検出手段が検出した磁場の時間変動、を利用して特定した各検出部における電位の時間変動量に基づいて前記流体の流動状態を特定することを特徴とする地下流体観測装置。
A plurality of detection units for detecting a flowing current generated by a fluid flowing in the underground by being respectively installed at predetermined positions in the measurement area, and analyzing the data of the flowing current detected by the plurality of detection units An underground fluid observation device including an analysis unit for identifying a fluid flow state,
The detector is
First potential fluctuation detecting means for detecting time fluctuation of a potential difference between two points on a first virtual straight line passing through the detection unit;
Second potential fluctuation detecting means for detecting a temporal fluctuation of a potential difference between two points on a second virtual line that passes through the detection unit and intersects the first virtual line;
A magnetic field variation detecting means for detecting a time variation of the magnetic field at the intersection portion between the second imaginary straight line and the first imaginary straight line possess respectively,
Each of the analysis units specified using the time variation of the potential difference detected by the first potential variation detection unit and the second potential variation detection unit and the time variation of the magnetic field detected by the magnetic field variation detection unit. An underground fluid observation apparatus that identifies the flow state of the fluid based on a temporal variation amount of potential in a detection unit .
前記磁場変動検出手段は、互いに直交させて配置した3つの磁気センサ素子で構成され、
前記第1仮想直線と前記第2仮想直線とは、直交していることを特徴とする請求項1に記載の地下流体観測装置。
The magnetic field fluctuation detecting means is composed of three magnetic sensor elements arranged orthogonal to each other ,
The underground fluid observation apparatus according to claim 1, wherein the first virtual line and the second virtual line are orthogonal to each other .
被計測エリア内の所定位置にそれぞれ設定される複数の検出ポイントの地下を流動する流体によって生じた流動電流を検出し、これら複数の検出ポイントで検出された前記流動電流のデータを解析して前記流体の流動状態を測定する測定方法であって、  The flow current generated by the fluid flowing under the plurality of detection points respectively set at predetermined positions in the measurement area is detected, and the flow current data detected at the plurality of detection points is analyzed and the flow current is analyzed. A measurement method for measuring a fluid flow state,
前記検出ポイントを通る第1仮想直線上の2点間の電位差の時間変動をそれぞれ検出する第1工程と、  A first step of detecting time variations in potential difference between two points on a first virtual straight line passing through the detection point;
前記検出ポイントを通り、前記第1仮想直線と交差する第2仮想直線上の2点間の電位差の時間変動をそれぞれ検出する第2工程と、  A second step of detecting a time variation of a potential difference between two points on a second virtual line that passes through the detection point and intersects the first virtual line;
前記第1仮想直線と前記第2仮想直線との交点部分における磁場の時間変動をそれぞれ検出する第3工程と、  A third step of detecting time variations of the magnetic field at the intersections of the first virtual line and the second virtual line,
を含み、Including
前記第1工程及び前記第2工程において検出した電位差の時間変動、並びに、前記第3工程において検出した磁場の時間変動、を利用して特定した各検出ポイントにおける電位の時間変動量に基づいて前記流体の流動状態を測定することを特徴とする測定方法。  Based on the time variation amount of the potential at each detection point specified using the time variation of the potential difference detected in the first step and the second step and the time variation of the magnetic field detected in the third step. A measurement method characterized by measuring a flow state of a fluid.
JP2007237182A 2007-09-12 2007-09-12 Underground fluid observation device and measurement method Active JP5453611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237182A JP5453611B2 (en) 2007-09-12 2007-09-12 Underground fluid observation device and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237182A JP5453611B2 (en) 2007-09-12 2007-09-12 Underground fluid observation device and measurement method

Publications (2)

Publication Number Publication Date
JP2009068971A JP2009068971A (en) 2009-04-02
JP5453611B2 true JP5453611B2 (en) 2014-03-26

Family

ID=40605388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237182A Active JP5453611B2 (en) 2007-09-12 2007-09-12 Underground fluid observation device and measurement method

Country Status (1)

Country Link
JP (1) JP5453611B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ308852B6 (en) * 2009-10-07 2021-07-14 Výzkumný ústav meliorací a ochrany půdy, v.v.i Equipment for measuring drainage runoff and water springs
JP6021238B1 (en) * 2015-10-11 2016-11-09 マグネデザイン株式会社 Gradio sensor element and gradio sensor
CN108873074B (en) * 2018-04-18 2020-03-24 浙江大学 Electrode random distribution type high-density resistivity measuring method and exploration system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323038A (en) * 1992-05-18 1993-12-07 Chinetsu Gijutsu Kaihatsu Kk Underground electromagnetic probing method
JP2002156460A (en) * 2000-11-20 2002-05-31 Sangaku Renkei Kiko Kyushu:Kk Electric searching method, electric searching device using the same, and land mine detecting device
JP2003302475A (en) * 2002-04-06 2003-10-24 Yoshio Yasuda Earth-current measuring method

Also Published As

Publication number Publication date
JP2009068971A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US9611736B2 (en) Borehole electric field survey with improved discrimination of subsurface features
CA2693917C (en) Method and apparatus for optimizing magnetic signals and detecting casing and resistivity
US20100102809A1 (en) Differential gradiometric magnetometer, system and method of use
CN102062878B (en) Method for measuring formation conductivities from within cased wellbores
Schmidt-Hattenberger et al. Application of a Vertical Electrical Resistivity Array (VERA) for monitoring CO2 migration at the Ketzin site: First performance evaluation
CN104884736A (en) Drilling parallel wells for SAGD and relief
JP2015102547A (en) Induction-type broadband three-component borehole magnetic field measurement sensor and borehole electromagnetic tomography method using the same
US20150177406A1 (en) System and method of focusing an array laterolog
MX2014015051A (en) Full tensor micro-impedance imaging.
SA113340206B1 (en) Magnetic sensing apparatus, systems, and methods
CN107085240B (en) Slope magnetofluid detection system and method
CN208845167U (en) A kind of inclinometer reconnoitred for creep deformation stage sliding surface
CN106068465A (en) Double mode balance in OBM resistivity imaging
CN106706715A (en) Polluted soil detection method based on three-dimensional high-density electrical resistivity method
CN106415253A (en) Detection apparatus and method
CN106121637A (en) A kind of system and method for detecting accident well
JP5453611B2 (en) Underground fluid observation device and measurement method
EP2586965A2 (en) A downhole logging tool
CN108732628B (en) High-density electrical method pipeline detection observation method and system along pipeline trend
CN103089239A (en) Methods and systems for determining standoff between downhole tool and geological formation
CA2930254C (en) Apparatus and methods of reducing error in measurements
CN107782284A (en) A kind of Dam Deformation Monitoring system
CN204925152U (en) Underground rivers measuring apparatu
RU160147U1 (en) DEVICE FOR FINDING DAMAGES OF INSULATION OF UNDERGROUND PIPELINES AND EXTENDED ANODE EARTHING
CN207019718U (en) A kind of multi-functional subsurface water measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5453611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250