JP5452403B2 - Commutator motor, electric blower and vacuum cleaner - Google Patents

Commutator motor, electric blower and vacuum cleaner Download PDF

Info

Publication number
JP5452403B2
JP5452403B2 JP2010165454A JP2010165454A JP5452403B2 JP 5452403 B2 JP5452403 B2 JP 5452403B2 JP 2010165454 A JP2010165454 A JP 2010165454A JP 2010165454 A JP2010165454 A JP 2010165454A JP 5452403 B2 JP5452403 B2 JP 5452403B2
Authority
JP
Japan
Prior art keywords
brush
armature
specific resistance
coil
commutator motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010165454A
Other languages
Japanese (ja)
Other versions
JP2012029453A (en
Inventor
邦彦 法月
司 谷口
真一 湧井
嘉之 西岡
房徳 大平
春雄 小原木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010165454A priority Critical patent/JP5452403B2/en
Priority to CN201110208600.3A priority patent/CN102347674B/en
Publication of JP2012029453A publication Critical patent/JP2012029453A/en
Application granted granted Critical
Publication of JP5452403B2 publication Critical patent/JP5452403B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はブラシを有する整流子電動機、その整流子電動機を内包する電動送風機およびその電動送風機を内包する電気掃除機に関する。   The present invention relates to a commutator motor having a brush, an electric blower including the commutator electric motor, and a vacuum cleaner including the electric blower.

整流子モータの多くは、電動工具および掃除機やヘアドライヤなどの家電機器に使用されている。これらに使われるのは殆ど交流100V電源の整流子モータで、電機の能率よりは軽便さが重視され、小形,軽量,高トルクを特徴とする。また、家電では製品の寿命内にブラシの交換を要する使用例は少ない。   Most commutator motors are used in electric tools and home appliances such as vacuum cleaners and hair dryers. Most of these are commutator motors with an AC power supply of 100V, and lightness is more important than the efficiency of electric machines, and they are characterized by small size, light weight and high torque. In addition, there are few usage examples of home appliances that require replacement of the brush within the life of the product.

電気掃除機用の駆動源として用いられる整流子電動機は、環状固定子と、この固定子の磁極部間に配設された電機子と、この電機子の電機子巻線に電力の授受を行う整流子とブラシから主に構成されている。この種の電気掃除機用整流子電動機では、高出力化,高効率化,小型・軽量化,ブラシの長寿命化,低振動化などが要求されている。特に近年、地球環境保護の観点から消費者の省エネに対する意識は高く、高効率化の要求が一段と高まっている。   A commutator motor used as a driving source for an electric vacuum cleaner transmits and receives electric power to an annular stator, an armature disposed between magnetic poles of the stator, and an armature winding of the armature Mainly composed of commutator and brush. This type of commutator motor for a vacuum cleaner is required to have higher output, higher efficiency, smaller size and lighter weight, longer brush life, and lower vibration. In particular, in recent years, consumers are highly aware of energy saving from the viewpoint of protecting the global environment, and the demand for higher efficiency is increasing.

高出力化に対しては入力アップが図られ、「JIS C 9108 電気掃除機」により、公称入力1kWが標準となっている。ブラシの長寿命化に対しては高抵抗ブラシが使用され、ブラシの比抵抗が30000μΩ・cm以上の物が使用されてきた。更なる高出力化,高効率化として、図1に示す電動機の損失構成の中で損失割合が大きいブラシ電気損を低減することが有効であると考えられる。ブラシ電気損を低減するために単純に比抵抗の小さいブラシを使用するとブラシ寿命を確保できす、ブラシの長さを長尺化して寿命を確保せざるを得ない。しかし、長いブラシは図1に示すブラシ摩擦損(ブラシと整流子の摺動損失)の増加につながり、ブラシ電気損は低減したもののブラシ摩擦損が上昇し、各損失の合算値に大きな改善は見込めなかった。つまり、高効率化を図るには比抵抗の小さなブラシを使用し、ブラシ長さを長くすることなく寿命を確保する必要がある。   The input is increased for higher output, and a nominal input of 1 kW is standard by the “JIS C 9108 vacuum cleaner”. A high-resistance brush is used for extending the life of the brush, and a brush having a specific resistance of 30000 μΩ · cm or more has been used. As a further increase in output and efficiency, it is considered effective to reduce brush electric loss with a large loss ratio in the loss configuration of the motor shown in FIG. If a brush with a small specific resistance is simply used to reduce brush electrical loss, the brush life can be ensured, and the length of the brush must be increased to ensure the life. However, a long brush leads to an increase in the brush friction loss (sliding loss between the brush and commutator) shown in FIG. 1. Although the brush electric loss is reduced, the brush friction loss increases, and the total improvement of each loss is not greatly improved. I could not expect. In other words, in order to achieve high efficiency, it is necessary to use a brush having a small specific resistance and to ensure the lifetime without increasing the brush length.

ブラシの長寿命化のために、整流特性を改善することで整流火花を無くし、電気的異常摩耗を軽減することが検討されている。   In order to extend the life of the brush, it has been studied to eliminate rectifying sparks and reduce electrical abnormal wear by improving the rectifying characteristics.

特許文献1には、いわゆる異数巻と呼ばれる巻線加工にて、1つのスロットに整流タイミングの異なるコイル群2ヶ配置し、コイルの本数を制御することで先に整流が終了するコイルと後に整流が終了するコイルとの整流電圧を均一化し良好な整流特性とし、カーボン比抵抗20000μΩ・cm以下の低抵抗ブラシを用いて、電動機効率,ブラシ寿命を改善する技術が開示されている。   In Patent Literature 1, two coil groups having different rectification timings are arranged in one slot by winding processing called so-called different number windings, and a coil that ends rectification earlier by controlling the number of coils and later. A technique for improving electric motor efficiency and brush life by using a low resistance brush having a carbon specific resistance of 20000 μΩ · cm or less by making the rectified voltage uniform with the coil that has finished rectification to have good rectification characteristics.

特許文献2には、界磁鉄心の外径DFと電機子鉄心の外径DAの比率DA/DFを0.44から0.46として、ブラシ寿命を改善する技術が開示されている。   Patent Document 2 discloses a technique for improving the brush life by setting the ratio DA / DF between the outer diameter DF of the field core and the outer diameter DA of the armature core to 0.44 to 0.46.

特許文献3には、θ2(磁極先端部の磁極屈折部から先端部までの距離がなす周方向角度)/電機子スロットピッチ(電機子スロット間の角度)及びθ3(空隙ギャップの円弧の接線に対して磁極先端部を傾斜させた角度)の値を0.4から0.7以下の範囲に設定し、ブラシ寿命,モータトルクを向上させる技術が開示されている。   In Patent Document 3, θ2 (angle in the circumferential direction formed by the distance from the magnetic pole refracting portion to the tip of the magnetic pole tip) / armature slot pitch (angle between armature slots) and θ3 (arc gap tangent to the gap gap) On the other hand, a technique for improving the brush life and the motor torque by setting the value of the angle of the inclination of the magnetic pole tip to a range of 0.4 to 0.7 or less is disclosed.

しかし上記公知文献には、整流子を介して電気の授受を行う電機子巻線が巻装されている電機子の具体的形状が記載されておらず、結果として満足な整流特性が得られないことが明らかとなった。   However, the above-mentioned known document does not describe the specific shape of the armature around which the armature winding for transmitting and receiving electricity through the commutator is wound, and as a result, satisfactory rectification characteristics cannot be obtained. It became clear.

特開昭58−33960号公報JP 58-33960 A 特開2004−242471号公報JP 2004-242471 A 特開2009−273237号公報JP 2009-273237 A

従来技術では、ブラシ寿命を改善するにあたり、巻線工夫により整流を確保する技術や、固定子鉄心と電機子鉄心の比率の最適化や、固定子鉄心の形の最適化により、整流特性を改善する技術は開示されている。しかし、ブラシと接触し、かつ電気の授受を行う整流子と一体化されている電機子の形状に関し検討されておらず、比抵抗の小さいブラシを使いこなすには、ブラシ寿命の面で問題を残していた。   In the conventional technology, to improve the brush life, the commutation characteristics are improved by the technology to ensure commutation by twisting the windings, the ratio of the stator core to the armature core, and the shape of the stator core. Techniques to do so are disclosed. However, the shape of the armature that is in contact with the brush and integrated with the commutator that sends and receives electricity has not been studied. To make full use of a brush with low specific resistance, there is a problem in terms of brush life. It was.

本発明の目的は、低抵抗ブラシを使用することで整流子電動機の高効率化を図る際、電機子の形状を最適化することで、ブラシ寿命特性を確保した整流子電動機,電動送風機および電気掃除機を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a commutator motor, an electric blower, and an electric fan that ensure brush life characteristics by optimizing the shape of the armature when the efficiency of the commutator motor is increased by using a low resistance brush. To provide a vacuum cleaner.

電機子の外径をD、電機子のうちスロットの形成位置よりも内周側の径をDs、ブラシの比抵抗に応じた変数をxと定義すると、x≦Ds/D≦0.67を満たすことを特徴とする。そして、ブラシの比抵抗が10000μΩ・cmのときはx=0.67であり、ブラシの比抵抗が30000μΩ・cmのときはx=0.64であり、ブラシの比抵抗が30000μΩ・cmから10000μΩ・cmの間ではブラシの比抵抗の減少に応じてxが0.64から0.67まで漸増する。   If the outer diameter of the armature is D, the diameter of the armature on the inner peripheral side of the slot formation position is Ds, and the variable corresponding to the specific resistance of the brush is defined as x, x ≦ Ds / D ≦ 0.67. It is characterized by satisfying. When the specific resistance of the brush is 10,000 μΩ · cm, x = 0.67, and when the specific resistance of the brush is 30000 μΩ · cm, x = 0.64, and the specific resistance of the brush is 30000 μΩ · cm to 10000 μΩ. -Between cm, x gradually increases from 0.64 to 0.67 as the specific resistance of the brush decreases.

本発明によれば、x≦Ds/D≦0.67を満たし、そして、ブラシの比抵抗が10000μΩ・cmのときはx=0.67であり、ブラシの比抵抗が30000μΩ・cmのときはx=0.64であり、ブラシの比抵抗が30000μΩ・cmから10000μΩ・cmの間ではブラシの比抵抗の減少に応じてxが0.64から0.67まで漸増することにより、電機子巻線のインダクタンスを低減でき整流特性を改善し、電気的異常摩耗を軽減しブラシ寿命を向上できる。さらに、トルク脈動を低減でき整流特性を改善し、電気的異常摩耗を軽減しブラシ寿命を軽減できる。   According to the present invention, when x ≦ Ds / D ≦ 0.67 is satisfied and the specific resistance of the brush is 10,000 μΩ · cm, x = 0.67, and when the specific resistance of the brush is 30000 μΩ · cm When x = 0.64, and the specific resistance of the brush is between 30,000 μΩ · cm and 10,000 μΩ · cm, x gradually increases from 0.64 to 0.67 in accordance with the decrease in the specific resistance of the brush. Wire inductance can be reduced, rectification characteristics can be improved, electrical abnormal wear can be reduced, and brush life can be improved. Furthermore, torque pulsation can be reduced, rectification characteristics can be improved, electrical abnormal wear can be reduced, and brush life can be reduced.

従来の電動機の損失項目とその割合を示す図。The figure which shows the loss item and ratio of the conventional electric motor. 本発明に係わる整流子電動機を用いた電動送風機の構造を示す図。The figure which shows the structure of the electric blower using the commutator electric motor concerning this invention. 本発明に係わる電機子形状の定義図。The armature shape definition diagram concerning this invention. 本発明に係わる電機子コアバック径Dsと電機子の外径Dの比を変化させた時の、ブラシ比抵抗とブラシ寿命の関係図。The relationship figure of brush specific resistance and a brush life when changing ratio of the armature core back diameter Ds concerning this invention, and the outer diameter D of an armature. 整流子電動機の電機子巻線における各コイルの結線状態の一例を示す説明図。Explanatory drawing which shows an example of the connection state of each coil in the armature winding of a commutator motor. 整流子巻線の一例を示す電機子平面図。The armature top view which shows an example of a commutator winding. 電機子コアバック径Dsと電機子の外径Dの比と、整流コイルの実効インダクタンスの関係図。The relationship figure of ratio of the armature core back diameter Ds and the outer diameter D of an armature, and the effective inductance of a rectifier coil. 電機子コアバック径Dsと電機子の外径Dの比を変化した時のブラシ比抵抗と巻線温度の関係図。The relationship figure of brush specific resistance and coil | winding temperature when the ratio of the armature core back diameter Ds and the outer diameter D of an armature is changed. 電機子コアバック径Dsと電機子の外径Dの比を変化した時のトルク波形代表図。The torque waveform typical figure when the ratio of the armature core back diameter Ds and the outer diameter D of an armature is changed. 電機子コアバック径Dsと電機子の外径Dの比と脈動トルク割合の関係図。The relationship figure of ratio of armature core back diameter Ds and the outer diameter D of an armature, and a pulsation torque ratio. 本発明に係わる、電機子コアバック径Dsと電機子の外径Dの比と、電動機効率と、ブラシの関係図。The relationship figure of the ratio of the armature core back diameter Ds and the outer diameter D of an armature, motor efficiency, and a brush concerning this invention. 電機子コアバック径Dsと電機子の外径Dの比と、ブラシ比抵抗の関係図。The relationship figure of ratio of the armature core back diameter Ds and the outer diameter D of an armature, and brush specific resistance.

従来技術では、ブラシ寿命を改善するにあたり、巻線工夫により整流を確保する技術や、固定子鉄心と電機子鉄心の比率の最適化や、固定子鉄心の形の最適化により、整流特性を改善する技術は開示されている。しかし、ブラシと接触し、かつ電気の授受を行う整流子と一体化されている電機子の形状に関し検討されておらず、比抵抗の小さいブラシを使いこなすには、ブラシ寿命の面で問題を残していた。   In the conventional technology, to improve the brush life, the commutation characteristics are improved by the technology to ensure commutation by twisting the windings, the ratio of the stator core to the armature core, and the shape of the stator core. Techniques to do so are disclosed. However, the shape of the armature that is in contact with the brush and integrated with the commutator that sends and receives electricity has not been studied. To make full use of a brush with low specific resistance, there is a problem in terms of brush life. It was.

本発明は上記課題を解決するために、ブラシの寿命を極端に短くする整流火花、つまり電気的異常摩耗の軽減を検討した。電気的異常摩耗の抑制には整流特性を改善すればよい。整流特性の改善とし整流コイルのインダクタンスの軽減を検討し、電機子の形状(電機子コアバック径Dsと電機子の外径Dとの比)とインダクタンスに相関があり、ブラシ寿命に影響を及ぼすことを見出した。   In order to solve the above-described problems, the present invention has studied the reduction of commutation sparks, that is, electrical abnormal wear, which extremely shortens the life of the brush. To suppress abnormal electrical wear, the rectification characteristics may be improved. The reduction of the inductance of the rectifier coil is studied as an improvement of the rectification characteristics, and there is a correlation between the armature shape (ratio between the armature core back diameter Ds and the outer diameter D of the armature) and the inductance, which affects the brush life. I found out.

以下、本発明の実施例について、図面を参照し、説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図2は電気掃除機などに用いられる電動送風機の縦断面図を示す。電動送風機1は電動機2と送風機3から構成される。電動機2は、ハウジング4の内側に固定された固定子鉄心5に界磁巻線6を巻装した固定子7,ハウジング4に設けられた軸受け8aと、エンドブラケット9に設けられた軸受け8bによって保持されるシャフト10,シャフト10には電機子鉄心11と整流子12が固定され、電機子鉄心11の電機子スロット13中に巻装された電機子巻線14が整流子12に接続された回転子15からなり、整流子12と機械的接触によって電気的接続を行うカーボンブラシ16と、カーボンブラシ16を保持するとともにハウジング4に固定するためのブラシホルダ17とからなる。送風機はナット18によりシャフト10の一端に固定される遠心ファン19,遠心ファン19から出た空気流の速度を落とし圧力を回復するディフューザ20,空気流を電動機2内へ導くディフューザ20と一体に成形されたリターンガイド21,遠心ファンとディフューザ20を覆うファンケーシング22によって構成される。   FIG. 2 shows a longitudinal sectional view of an electric blower used for a vacuum cleaner or the like. The electric blower 1 includes an electric motor 2 and a blower 3. The electric motor 2 includes a stator 7 in which a field winding 6 is wound around a stator core 5 fixed inside the housing 4, a bearing 8 a provided in the housing 4, and a bearing 8 b provided in the end bracket 9. The armature core 11 and the commutator 12 are fixed to the shaft 10 and the shaft 10 to be held, and the armature winding 14 wound in the armature slot 13 of the armature core 11 is connected to the commutator 12. It comprises a rotor 15 and comprises a carbon brush 16 that is electrically connected to the commutator 12 by mechanical contact, and a brush holder 17 that holds the carbon brush 16 and fixes it to the housing 4. The blower is formed integrally with a centrifugal fan 19 fixed to one end of the shaft 10 by a nut 18, a diffuser 20 that reduces the speed of the air flow emitted from the centrifugal fan 19 and recovers the pressure, and a diffuser 20 that guides the air flow into the electric motor 2. And a fan casing 22 that covers the centrifugal fan and the diffuser 20.

整流子12は、その円周面に整流子片12aを有し、各整流子片12aは回転子15内の電機子巻線14と接続されている。カーボンブラシ16は、つる巻ばね23により整流子12に押しつけられ、整流子12に擦接している。24はカーボンブラシ16を外部電極に接続するためのリード線であり、ブラシホルダ17に設けられた端子(図示せず)と接続されている。   The commutator 12 has commutator pieces 12 a on its circumferential surface, and each commutator piece 12 a is connected to the armature winding 14 in the rotor 15. The carbon brush 16 is pressed against the commutator 12 by the helical spring 23 and rubs against the commutator 12. Reference numeral 24 denotes a lead wire for connecting the carbon brush 16 to the external electrode, and is connected to a terminal (not shown) provided on the brush holder 17.

電動送風機1が回転を開始すると回転子15が回転し、回転子15と同軸に固定された遠心ファン19も回転する。遠心ファン19が回転するとファンケーシング22の空気取り入れ口25から空気が流入し、遠心ファン19,ディフューザ20,リターンガイド21を通り電動機2内部へと流れ込み、電動機2を冷却しつつ電動機2から排出される。   When the electric blower 1 starts rotating, the rotor 15 rotates, and the centrifugal fan 19 fixed coaxially with the rotor 15 also rotates. When the centrifugal fan 19 rotates, air flows from the air intake port 25 of the fan casing 22, flows into the electric motor 2 through the centrifugal fan 19, the diffuser 20, and the return guide 21, and is discharged from the electric motor 2 while cooling the electric motor 2. The

図3は本発明の電機子鉄心11を示す図であり、電機子コアバック径Dsと電機子の外径Dの定義を示している。以下、電機子コアバック径Dsと電機子の外径Dの比をDs/Dと定義する。電機子鉄心11の断面は、円形状である。電機子鉄心11の外周には、複数の(例えば12個の)電機子スロット13が形成される。複数の電機子スロット13が形成された位置の内周側を電機子コアバックという。Dは、例えば、(40mm程度)である。Dの値が固定であれば、Dsの値が大きくなるほど、Ds/Dも大きくなる。そして、Dsの値が大きくなるほど各電機子スロット13の大きさが小さくなる。各電機子スロット13の大きさが小さくなると、各電機子スロット13に巻ける電機子巻線14の巻回数(ターン数)が減りまたは電機子巻線14の線径が小さくなる。例えば、電機子巻線14の線径が固定であれば、各電機子スロット13の大きさが小さくなると、電機子巻線14の巻回数が減る、電機子巻線14の巻回数が固定(例えば、14回)であれば、各電機子スロット13の大きさが小さくなると、電機子巻線14の線径を小さくする必要がある。   FIG. 3 is a view showing the armature core 11 of the present invention, and shows the definitions of the armature core back diameter Ds and the outer diameter D of the armature. Hereinafter, the ratio of the armature core back diameter Ds to the outer diameter D of the armature is defined as Ds / D. The cross section of the armature core 11 is circular. A plurality of (for example, twelve) armature slots 13 are formed on the outer periphery of the armature core 11. The inner peripheral side of the position where the plurality of armature slots 13 are formed is called an armature core back. For example, D is (about 40 mm). If the value of D is fixed, Ds / D increases as the value of Ds increases. As the value of Ds increases, the size of each armature slot 13 decreases. As the size of each armature slot 13 decreases, the number of turns (number of turns) of the armature winding 14 wound around each armature slot 13 decreases or the wire diameter of the armature winding 14 decreases. For example, if the wire diameter of the armature winding 14 is fixed, the number of turns of the armature winding 14 decreases as the size of each armature slot 13 decreases. The number of turns of the armature winding 14 is fixed ( For example, if the size of each armature slot 13 is reduced, the wire diameter of the armature winding 14 needs to be reduced.

図4にブラシ比抵抗とブラシ寿命の関係を示した。横軸はカーボンブラシ16の比抵抗(以下、「ブラシ比抵抗」という)を、縦軸はカーボンブラシ16の寿命(以下、「ブラシ寿命」という)を示し、値は従来例を1.0として相対比較として示した。従来例については後ほど詳述する。ブラシ比抵抗とは、単位長さあたりの電気的抵抗をいう。カーボンブラシ16は、炭素粉体に銅や鉄を混合して圧縮したものであり、銅や鉄の混合量を変えたり、他の材料を混合したりすることによってブラシ比抵抗を変えることができる。各プロットは図3にて定義したDs/Dを示している。Ds/Dを、0.60,0.64,0.67,0.70の場合のブラシ比抵抗に対するブラシ寿命を示す。いずれも右上がりの直線であり、つまりブラシ比抵抗が大きいほどブラシ寿命が長くなるという理論通りの結果である。しかし、同じブラシ比抵抗のカーボンブラシ16の場合、Ds/Dを大きくすると、ブラシ寿命は向上することを見出した。その理由を図5と図6にて説明する。   FIG. 4 shows the relationship between the brush specific resistance and the brush life. The horizontal axis represents the specific resistance of the carbon brush 16 (hereinafter referred to as “brush specific resistance”), the vertical axis represents the life of the carbon brush 16 (hereinafter referred to as “brush life”), and the value is 1.0 as the conventional example. Shown as a relative comparison. A conventional example will be described in detail later. Brush specific resistance refers to the electrical resistance per unit length. The carbon brush 16 is obtained by mixing and compressing carbon powder with copper or iron, and the brush specific resistance can be changed by changing the amount of copper or iron mixed or by mixing other materials. . Each plot shows Ds / D defined in FIG. The brush life with respect to the brush specific resistance when Ds / D is 0.60, 0.64, 0.67, and 0.70 is shown. Both are straight-up lines, that is, the theoretical result that the brush life becomes longer as the brush specific resistance increases. However, in the case of the carbon brush 16 having the same brush specific resistance, it has been found that the brush life is improved by increasing Ds / D. The reason will be described with reference to FIGS.

電機子スロット13には電機子巻線14が図5に示すように、いわゆる異数巻を適用して整流特性を確保するよう巻回してある。本実施例では整流子12の整流子片12aの数は24個で、電機子鉄心11に形成された電機子スロット13の数は12個であるため、電機子巻線14のコイル群数は、図5に示すように1つの電機子スロット13に2つの第1コイルC1と第2コイルC2がそれぞれ巻線されることになる。図5において異数巻と称される巻線方法を説明する。回転子15の回転方向は矢印方向であり、電機子スロット13Aには先に整流が終了する回転方位前位の第1コイルC1Aと後に整流が終了する回転方位後位の第2コイルC2Aの2つの電機子巻線14が巻線される。次に隣の電機子スロット13Bには、それぞれ第1コイルC1B,第2コイルC2Bが巻線され、順次各電機子スロット13C,13D,……13Lまで同様に巻線される。これは整流特性を改善し、カーボンブラシ16の寿命の向上と、電動機効率を向上させるためである。同一電機子スロット内での第1コイルC1と第2コイルC2において、第1コイルC1が整流を終了する瞬間には、これに隣接する第2コイルC2は既に整流作用を始めており、かつカーボンブラシ16によって短絡されている。このため第1コイルC1と第2コイルC2の相互誘導作用が生じ、第1コイルC1の整流終了時に実効インダクタンスが小さくなり、リアクタンス電圧も小さくなる。   As shown in FIG. 5, an armature winding 14 is wound around the armature slot 13 so as to secure a rectifying characteristic by applying a so-called different number of turns. In this embodiment, the number of commutator pieces 12a of the commutator 12 is 24, and the number of armature slots 13 formed in the armature core 11 is 12. Therefore, the number of coil groups of the armature winding 14 is As shown in FIG. 5, two first coils C1 and second coils C2 are wound around one armature slot 13, respectively. A winding method referred to as “different number winding” in FIG. 5 will be described. The rotation direction of the rotor 15 is an arrow direction, and the armature slot 13A includes two of the first coil C1A at the front of the rotation direction where the rectification ends first and the second coil C2A at the rear of the rotation direction where the rectification ends later. Two armature windings 14 are wound. Next, a first coil C1B and a second coil C2B are wound around the adjacent armature slot 13B, respectively, and sequentially wound in the same manner up to each armature slot 13C, 13D,. This is to improve the rectification characteristics, improve the life of the carbon brush 16, and improve the motor efficiency. In the first coil C1 and the second coil C2 in the same armature slot, at the moment when the first coil C1 finishes rectification, the adjacent second coil C2 has already started rectification, and the carbon brush 16 is short-circuited. For this reason, the mutual induction action of the 1st coil C1 and the 2nd coil C2 arises, the effective inductance becomes small at the end of rectification of the 1st coil C1, and the reactance voltage also becomes small.

図6は電機子巻線の一例を示す模式図である。回転に対して先に整流が終了する回転方位前位の第1コイルをC1、同様に後から整流が終了する回転方向に対する後位の第2コイルをC2とし、12個の電機子スロット13A〜13L内に24個の第1コイルC1A,第2コイルC2A〜第1コイルC1L,第2コイルC2Lを巻線する。第1コイルC1Aとは電機子スロット13Aから巻始めた第1コイルを意味する。本実施例では、第1コイルは内周側に位置し、第2コイルは外周側に位置する。ここで、各電機子スロット13には回転によって先に整流が終了する回転方位前位の第1コイルC1と、後に整流が終了する回転方位後位の第2コイルC2がある。   FIG. 6 is a schematic diagram illustrating an example of an armature winding. The first coil at the front of the rotational direction where the commutation is completed first with respect to the rotation is C1, and the second coil at the rear with respect to the rotational direction where the commutation is finished later is C2, and the 12 armature slots 13A to 13A Twenty-four first coils C1A, second coils C2A to first coil C1L, and second coil C2L are wound in 13L. The first coil C1A means a first coil that starts to be wound from the armature slot 13A. In the present embodiment, the first coil is located on the inner peripheral side, and the second coil is located on the outer peripheral side. Here, each armature slot 13 has a first coil C1 at the front of the rotation direction in which the rectification is finished first by rotation and a second coil C2 at the rear of the rotation direction in which the rectification is finished later.

図7にDs/Dと、前位の第1コイルC1と後位の第2コイルC2の整流時の実効インダクタンスの関係を示す。図よりDs/Dが大きくなると、前コイルと後コイルの実効インダクタンスは小さくなる。つまり整流電圧は小さくなり、アークを発生する限界電圧(通称:火花電圧)より小さく設定できる。よって電気的異常摩耗を軽減できることがわかった。   FIG. 7 shows the relationship between Ds / D and the effective inductance during rectification of the front first coil C1 and the rear second coil C2. As shown in the figure, when Ds / D increases, the effective inductance of the front coil and the rear coil decreases. That is, the rectified voltage becomes small and can be set smaller than a limit voltage (common name: spark voltage) that generates an arc. Therefore, it was found that abnormal electrical wear can be reduced.

以上より、整流特性を改善するには、電機子コアバック径Dsと電機子外径Dの比Ds/Dを大きく設定すれば良いことがわかった。しかしながら、電機子コアバック径Dsを大きくすることは、電機子スロット13のスロット面積を減少することとなる。狭い電機子スロット13に巻線加工するには、コイルの線径を細くする必要がある。コイルの線径が細くなるとコイルの電気抵抗は上昇し、既出図1に示した損失中の電機子銅損が増加する。さらに、銅損増加によりコイルの異常発熱がおこる。一般的に電気掃除機に用いられるコイルは、コストと安全性を考慮し、「JIS C 4003 電気絶縁の耐熱クラス及び耐熱性評価」における耐熱温度120℃のE種を用いることが多い。   From the above, it was found that the ratio Ds / D between the armature core back diameter Ds and the armature outer diameter D may be set large in order to improve the rectification characteristics. However, increasing the armature core back diameter Ds decreases the slot area of the armature slot 13. In order to wind the narrow armature slot 13, it is necessary to reduce the coil wire diameter. When the wire diameter of the coil is reduced, the electrical resistance of the coil is increased, and the armature copper loss in the loss shown in FIG. 1 is increased. Furthermore, abnormal heat generation of the coil occurs due to an increase in copper loss. In general, the coil used in the vacuum cleaner is often E type having a heat resistance temperature of 120 ° C. in “JIS C 4003 heat insulation class and heat resistance evaluation” in consideration of cost and safety.

図8にDs/Dを変化させたときの、ブラシ比抵抗と電機子巻線温度の関係を示す。図8よりブラシ比抵抗が変わっても、巻線温度はあまり変わらない。しかし、図8よりDs/Dが増加するにつれ巻線温度は上昇する。そして、Ds/Dが0.67より大きいと、線径を細くしたコイルの発熱により、E種のコイルの耐熱温度120℃を超え、安全が確保できないことが明確となった。   FIG. 8 shows the relationship between the brush specific resistance and the armature winding temperature when Ds / D is changed. From FIG. 8, even if the brush specific resistance is changed, the winding temperature does not change much. However, the winding temperature rises as Ds / D increases from FIG. And when Ds / D was larger than 0.67, it was clarified that the heat generation temperature of the E-type coil exceeded 120 ° C. due to the heat generated by the coil having a thin wire diameter, and safety could not be ensured.

図9は径Ds/Dを変化したときの、代表的なトルク波形である。図9(a)より、Ds/D=0.72のとき平均トルクは0.2313N・m、脈動トルクは0.0803N・mである。ここで、脈動トルクの大きさを、(脈動トルクの値)/(平均トルクの値)×100[%]と定義する。この場合、脈動トルクの割合は34.7%となる。図9(b)より、Ds/D=0.64のとき平均トルクは0.2299N・m、脈動トルクは0.0805N・m、脈動トルクの割合は35.0%となる。図9(c)より、Ds/D=0.50のとき平均トルクは0.2248、脈動トルクは0.0924N・m、脈動トルクの割合は41.1%となる。   FIG. 9 shows a typical torque waveform when the diameter Ds / D is changed. From FIG. 9A, when Ds / D = 0.72, the average torque is 0.2313 N · m, and the pulsation torque is 0.0803 N · m. Here, the magnitude of the pulsation torque is defined as (value of pulsation torque) / (value of average torque) × 100 [%]. In this case, the ratio of the pulsating torque is 34.7%. From FIG. 9B, when Ds / D = 0.64, the average torque is 0.2299 N · m, the pulsation torque is 0.0805 N · m, and the ratio of the pulsation torque is 35.0%. From FIG. 9C, when Ds / D = 0.50, the average torque is 0.2248, the pulsation torque is 0.0924 N · m, and the ratio of the pulsation torque is 41.1%.

図10に、図9と同様にして求めたDs/Dと脈動トルクの割合を示す。図10よりDs/D=0.64において変曲点を有することがわかった。つまり、Ds/D≧0.64の領域では、Ds/Dの減少に伴う脈動トルク割合の変化率(減少率)は小さいが、Ds/D<0.64の領域では、コアバック部の磁束が飽和し、漏れ磁束が増加し出力トルクが小さくなるため、Ds/Dの減少に伴う脈動トルク割合の変化率(減少率)が大きい。さらに、電機子の突極性が大きくなり脈動トルクが大きくなる。   FIG. 10 shows the ratio of Ds / D and pulsation torque obtained in the same manner as in FIG. From FIG. 10, it was found that Ds / D = 0.64 has an inflection point. That is, in the region where Ds / D ≧ 0.64, the rate of change (decrease rate) of the pulsation torque ratio accompanying the decrease in Ds / D is small, but in the region where Ds / D <0.64, the magnetic flux in the core back portion. Is saturated, the leakage magnetic flux is increased, and the output torque is decreased. Therefore, the change rate (reduction rate) of the pulsation torque ratio accompanying the decrease in Ds / D is large. Furthermore, the saliency of the armature increases and the pulsation torque increases.

なお、脈動トルクが大きくなると、電機子鉄心11とシャフト10で一体化されている整流子12が躍ってカーボンブラシ16との接触が悪くなり、ひいてはカーボンブラシ16と整流子12の間に火花が発生し、電気的摩耗を助長しブラシ寿命が短くなる。   When the pulsation torque is increased, the commutator 12 integrated with the armature core 11 and the shaft 10 jumps and the contact with the carbon brush 16 is deteriorated. As a result, a spark is generated between the carbon brush 16 and the commutator 12. Occurs, promotes electrical wear and shortens brush life.

図11に電機子コアバック径Dsと電機子の外径Dとの比Ds/Dとブラシ寿命および電動機効率のそれぞれの関係を示す。横軸は電機子コアバック径Dsと電機子の外径Dとの比である。第1縦軸は電動機効率であり、値は現行を100として相対表示とした。なお電動送風機1の効率1[p.u.]は電気掃除機の吸込仕事率で見れば10Wの改善に相当し、より強力な吸込性能を確保できる効果がある。第2縦軸はブラシ寿命であり、値は現行を1.0として相対表示とした。   FIG. 11 shows the relationship between the ratio Ds / D between the armature core back diameter Ds and the outer diameter D of the armature, the brush life, and the motor efficiency. The horizontal axis represents the ratio between the armature core back diameter Ds and the outer diameter D of the armature. The first vertical axis is the motor efficiency, and the value is the relative display with the current value being 100. The efficiency 1 [p.u.] of the electric blower 1 corresponds to an improvement of 10 W in terms of the suction power of the vacuum cleaner, and has an effect of securing a stronger suction performance. The second vertical axis is the brush life, and the value is set as a relative display with the current value being 1.0.

現行品のブラシ比抵抗は32400μΩ・cm、Ds/D=0.63である。Ds/Dが0.64より小さい範囲では、脈動トルクが大きくなって不適である。Ds/Dが0.67より大きな範囲では、電機子巻線14の電流密度が大となり、温度上昇が絶縁材料の耐熱温度を満たせず不適である。よって、少なくとも0.64≦Ds/D≦0.67を満たす必要がある。以下、Ds/Dが0.64から0.67の範囲でブラシ比抵抗が変化したときの特性を述べる。ブラシ比抵抗が5000μΩ・cmの時、電動機効率は現行以上であるが、ブラシ寿命は1.0より小さく現行以下である。ブラシ比抵抗が10000μΩ・cmの時、電動機効率は現行以上であるが、Ds/D=0.67の時のみブラシ寿命が1.0であり現行と同程度であり、Ds/D<0.67ではブラシ寿命は1.0より小さく現行以下である。ブラシ比抵抗が30000μΩ・cmの時、電動機効率とブラシ寿命は全範囲で現行より高い。ブラシ比抵抗が10000μΩ・cmと30000μΩ・cmの間である20000μΩ・cmの時、電動機効率は現行以上であるが、ブラシ寿命はDs/Dに応じて現行より低い場合と高い場合とがある。つまり、Ds/D=0.653を境に、Ds/D<0.653ではブラシ寿命は1.0より小さく現行以下であるが、Ds/D≧0.653ではブラシ寿命は1.0より大きく現行以上である。ブラシ比抵抗が40000μΩ・cmの時、電動機効率は100より小さく現行より低いが、ブラシ寿命は現行より高い。つまり、ブラシ比抵抗の変化に応じ、電機子コアバック径Dsと電機子の外径Dの比Ds/Dを適正化することで、高効率かつブラシ寿命が満足する電動機として成立範囲が存在する。その範囲は、ブラシ比抵抗が10000μΩ・cmの時はDs/Dを0.67とし、ブラシ比抵抗が20000μΩ・cmの時はDs/Dを0.653以上0.67以下とし、ブラシ比抵抗が30000μΩ・cmの時はDs/Dを0.64以上0.67以下(図中、囲んだ略三角形の範囲)とする。つまり、xをブラシ比抵抗に応じた変数とすると、ブラシ比抵抗に応じて、x≦Ds/D≦0.67を満たす必要がある。そして、ブラシ比抵抗が10000μΩ・cmのときはx=0.67であり、ブラシ比抵抗が30000μΩ・cmのときはx=0.64であり、ブラシ比抵抗が30000μΩ・cmから10000μΩ・cmの間ではブラシの比抵抗の減少に応じてxが0.64から0.67まで漸増する。   The current product has a specific resistance of 32400 μΩ · cm and Ds / D = 0.63. In the range where Ds / D is smaller than 0.64, the pulsation torque becomes large and is not suitable. In the range where Ds / D is larger than 0.67, the current density of the armature winding 14 becomes large, and the temperature rise is not suitable because it does not satisfy the heat resistance temperature of the insulating material. Therefore, it is necessary to satisfy at least 0.64 ≦ Ds / D ≦ 0.67. Hereinafter, characteristics when the brush specific resistance is changed in the range of Ds / D from 0.64 to 0.67 will be described. When the brush specific resistance is 5000 μΩ · cm, the motor efficiency is higher than the current one, but the brush life is less than 1.0 and lower than the current one. When the brush specific resistance is 10,000 μΩ · cm, the motor efficiency is higher than the current one, but only when Ds / D = 0.67, the brush life is 1.0, which is the same level as the current one, and Ds / D <0. At 67, the brush life is less than 1.0 and less than current. When the brush specific resistance is 30000 μΩ · cm, the motor efficiency and brush life are higher than the current range over the entire range. When the brush specific resistance is 20000 μΩ · cm, which is between 10000 μΩ · cm and 30000 μΩ · cm, the motor efficiency is higher than the current one, but the brush life may be lower or higher than the current depending on Ds / D. That is, with Ds / D = 0.653 as a boundary, when Ds / D <0.653, the brush life is smaller than 1.0 and below the current level, but when Ds / D ≧ 0.653, the brush life is from 1.0. Greater than current. When the brush specific resistance is 40000 μΩ · cm, the motor efficiency is smaller than 100 and lower than the current one, but the brush life is higher than the current one. That is, there is a range that can be established as a motor that is highly efficient and satisfies the brush life by optimizing the ratio Ds / D between the armature core back diameter Ds and the outer diameter D of the armature according to the change in the brush specific resistance. . When the brush specific resistance is 10,000 μΩ · cm, Ds / D is 0.67, and when the brush specific resistance is 20000 μΩ · cm, Ds / D is 0.653 or more and 0.67 or less. Is 30000 μΩ · cm, Ds / D is set to 0.64 or more and 0.67 or less (a range of a substantially triangular shape in the figure). That is, if x is a variable corresponding to the brush specific resistance, x ≦ Ds / D ≦ 0.67 needs to be satisfied according to the brush specific resistance. When the brush specific resistance is 10,000 μΩ · cm, x = 0.67, and when the brush specific resistance is 30000 μΩ · cm, x = 0.64, and the brush specific resistance is 30000 μΩ · cm to 10,000 μΩ · cm. In the meantime, x gradually increases from 0.64 to 0.67 as the specific resistance of the brush decreases.

また、図11によれば、ブラシ比抵抗40000μΩ・cmと30000μΩ・cmの間のブラシ寿命の差分をA、ブラシ比抵抗30000μΩ・cmと20000μΩ・cmの間のブラシ寿命の差分をB、ブラシ比抵抗20000μΩ・cmと10000μΩ・cmの間のブラシ寿命の差分をCとすると、A≧B≧Cの関係が成り立つ。また、現行と同程度のブラシ寿命1.0を満たすときの、ブラシ比抵抗40000μΩ・cmと30000μΩ・cmの間のDs/Dの差分を(1)、ブラシ比抵抗30000μΩ・cmと20000μΩ・cmの間のDs/Dの差分を(2)、ブラシ比抵抗20000μΩ・cmと10000μΩ・cmの間のDs/Dの差分を(3)、ブラシ比抵抗10000μΩ・cmと5000μΩ・cmの間のDs/Dの差分を(4)とすると、(1)<(2)<(3)<(4)の関係が成り立つ。また、ブラシ比抵抗40000μΩ・cmと30000μΩ・cmの間の電動機効率の差分をハ、ブラシ比抵抗30000μΩ・cmと20000μΩ・cmの間の電動機効率の差分をロ、ブラシ比抵抗20000μΩ・cmと10000μΩ・cmの間の電動機効率の差分イとすると、イ≒ロ≒ハ≒の関係が成り立つ。   Further, according to FIG. 11, the difference in brush life between the brush specific resistances 40000 μΩ · cm and 30000 μΩ · cm is A, the difference in brush life between the brush specific resistances 30000 μΩ · cm and 20000 μΩ · cm is B, and the brush ratio. When the difference in brush life between the resistance 20000 μΩ · cm and 10000 μΩ · cm is C, the relationship of A ≧ B ≧ C is established. In addition, the difference in Ds / D between the brush specific resistances of 40000 μΩ · cm and 30000 μΩ · cm when satisfying the same brush life 1.0 as the current is (1), the brush specific resistances of 30000 μΩ · cm and 20000 μΩ · cm (2), Ds / D difference between the brush specific resistance 20000 μΩ · cm and 10,000 μΩ · cm (3), Ds between the brush specific resistance 10000 μΩ · cm and 5000 μΩ · cm When the difference of / D is (4), the relationship of (1) <(2) <(3) <(4) is established. Also, the difference in motor efficiency between the brush specific resistance of 40000 μΩ · cm and 30000 μΩ · cm is C, the difference in motor efficiency between the brush specific resistance of 30000 μΩ · cm and 20000 μΩ · cm is B, and the brush specific resistance is 20000 μΩ · cm and 10000 μΩ.・ If the difference in the motor efficiency between cm is a, the relationship of A≈B≈C≈ holds.

図12に、現行のブラシ寿命である1.0を満たすときの電機子コアバック径Dsと電機子の外径Dの比とブラシ比抵抗の関係を示す。図4に示すように、ブラシ比抵抗が5000μΩ・cmの時、現行のブラシ寿命である1.0を満たすDs/Dは約0.68であり、ブラシ比抵抗が10000μΩ・cmの時、現行のブラシ寿命である1.0を満たすDs/Dは約0.67であり、ブラシ比抵抗が30000μΩ・cmの時、現行のブラシ寿命である1.0を満たすDs/Dは約0.64であり、ブラシ比抵抗が40000μΩ・cmの時、現行のブラシ寿命である1.0を満たすDs/Dは約Ds/D=0.60である。これを、縦軸をブラシ比抵抗、横軸をDs/Dとしてプロットすると、図12のようになる。図12では、各プロットを曲線に近時した。図12によれば、ブラシ比抵抗が10000μΩ・cm以上の範囲では、ほぼ直線で近似できるが、ブラシ比抵抗が10000μΩ・cm前後から小さくなる範囲では、勾配が変わり曲線で近似される。よって、ブラシ比抵抗が30000μΩ・cmから10000μΩ・cmの間ではブラシの比抵抗の減少に応じてxが0.64から0.67までほぼ直線的に(リニアに)漸増する。   FIG. 12 shows the relationship between the ratio of the armature core back diameter Ds and the outer diameter D of the armature and the brush specific resistance when the current brush life of 1.0 is satisfied. As shown in FIG. 4, when the brush specific resistance is 5000 μΩ · cm, Ds / D that satisfies the current brush life of 1.0 is about 0.68, and when the brush specific resistance is 10,000 μΩ · cm, The Ds / D satisfying 1.0 of the brush life of 1.0 is about 0.67, and when the brush specific resistance is 30000 μΩ · cm, the Ds / D satisfying the current brush life of 1.0 is about 0.64. When the specific resistance of the brush is 40000 μΩ · cm, Ds / D satisfying the current brush life of 1.0 is about Ds / D = 0.60. This is plotted as shown in FIG. 12, with the vertical axis representing the brush specific resistance and the horizontal axis representing Ds / D. In FIG. 12, each plot is close to a curve. According to FIG. 12, in the range where the brush specific resistance is 10000 μΩ · cm or more, it can be approximated by a straight line, but in the range where the brush specific resistance is reduced from around 10000 μΩ · cm, the gradient is changed and approximated by a curve. Therefore, when the brush specific resistance is between 30,000 μΩ · cm and 10000 μΩ · cm, x gradually increases linearly from 0.64 to 0.67 as the specific resistance of the brush decreases.

この手法であれば、電機子の外径Dを大きくしなくても、電機子コアバック径Dsを大きくすることで改善できる。すなわち掃除機用電動機に求められる、小形・軽量化の条件を満足できる。   This technique can be improved by increasing the armature core back diameter Ds without increasing the outer diameter D of the armature. In other words, it can satisfy the conditions for size reduction and weight reduction required for an electric motor for a vacuum cleaner.

上記発明に際し、電動機の回転数は36000から50000回転/分の範囲が好ましい。これは、整流特性と相関のあるコイルのインダクタンスは単位時間あたりの磁束の変化を示す物理量である。よって高速電動機ほど整流時間は短くなり、インダクタンスが大きくなる。本実施例では12スロットの異数巻を採用しているため、整流時間は36000回転時に6.94×10-5[秒]、50000回転時に5×10-5[秒]という極小時間の変化量となり、インダクタンスが大きく、整流不具合が発生しやすい。 In the above invention, the rotation speed of the electric motor is preferably in the range of 36000 to 50000 rotations / minute. This is a physical quantity indicating a change in magnetic flux per unit time of the coil inductance correlated with the rectification characteristics. Therefore, the higher the speed motor, the shorter the commutation time and the larger the inductance. In this embodiment, since 12 slots have a different number of windings, the commutation time is 6.94 × 10 −5 [seconds] at 36000 revolutions and 5 × 10 −5 [seconds] at 50000 revolutions. The amount is large, the inductance is large, and rectification failure is likely to occur.

また、上記発明に際し、第1コイルC1の巻回数は10回で第2コイルC2の巻回数は4回で合わせて14回であり、電機子のコイル線径は0.6mmから0.8mmφが好ましい。これは、コイル線径が細いとコイル抵抗が増加し、通電時にコイルの異常発熱となり、絶縁被膜の耐熱温度を超えてしまう。一方、銅損を低減するにはスロット面積を考慮しながらコイル線径を太くすればよい。しかし、本発明の範囲である電機子コアバック径Dsと電機子の外径Dの比がDs/Dが0.64から0.67の範囲においては、巻回数を14回とすると、線径0.80mmφ以上のコイルはスロット内に修まらない。   In the above invention, the number of turns of the first coil C1 is 10 times and the number of turns of the second coil C2 is 4 times, ie, 14 times, and the coil wire diameter of the armature is from 0.6 mm to 0.8 mmφ. preferable. This is because if the coil wire diameter is small, the coil resistance increases, abnormal heating of the coil occurs when energized, and the heat resistance temperature of the insulating coating is exceeded. On the other hand, to reduce the copper loss, the coil wire diameter may be increased while considering the slot area. However, when the ratio of the armature core back diameter Ds and the outer diameter D of the armature, which is the range of the present invention, is in the range of Ds / D from 0.64 to 0.67, the wire diameter is Coils with a diameter of 0.80 mm or more cannot be repaired in the slot.

以上実施例により、電機子コアバック径Dsと電機子の外径Dを管理することで、比抵抗の小さなブラシを使用してもブラシ寿命の確保が可能となる。よって、整流子電動機のブラシ電気損の低減とブラシ寿命の確保の両立が可能となり、高効率,長寿命,小形・軽量の整流子電動機が提供できる。   As described above, by managing the armature core back diameter Ds and the outer diameter D of the armature, it is possible to ensure the brush life even when a brush having a small specific resistance is used. Therefore, it is possible to achieve both reduction of brush electric loss of the commutator motor and securing of brush life, and it is possible to provide a commutator motor with high efficiency, long life, small size and light weight.

尚、本発明は異数巻以外の巻線方法にも適用できる。   It should be noted that the present invention can also be applied to winding methods other than the different number of windings.

1 電動送風機
2 電動機
3 送風機
4 ハウジング
5 固定子鉄心
6 界磁巻線
7 固定子
8,8a,8b 軸受け
9 エンドブラケット
10 シャフト
11 電機子鉄心
12 整流子
12a 整流子片
13,13A〜13L 電機子スロット
14 電機子巻線
15 回転子
16 カーボンブラシ
17 ブラシホルダ
18 ナット
19 遠心ファン
20 ディフューザ
21 リターンガイド
22 ファンケーシング
23 つる巻ばね
24 リード線
25 空気取り入れ口
C1A〜C1L 第1コイル
C2A〜C2L 第2コイル
DESCRIPTION OF SYMBOLS 1 Electric blower 2 Electric motor 3 Blower 4 Housing 5 Stator core 6 Field winding 7 Stator 8, 8a, 8b Bearing 9 End bracket 10 Shaft 11 Armature core 12 Commutator 12a Commutator piece 13, 13A-13L Armature Slot 14 Armature winding 15 Rotor 16 Carbon brush 17 Brush holder 18 Nut 19 Centrifugal fan 20 Diffuser 21 Return guide 22 Fan casing 23 Winding spring 24 Lead wire 25 Air intake C1A to C1L First coil C2A to C2L Second coil

Claims (6)

電機子巻線が挿入されるスロットを外周に複数備えた電機子と、前記電機子と電力の授受を行うブラシとを備えた整流子電動機において、
前記電機子の外径をD、前記電機子のうち前記スロットの形成位置よりも内周側の径をDs、前記ブラシの比抵抗に応じた変数をxと定義すると、
x≦Ds/D≦0.67
を満たし、
前記ブラシの比抵抗が10000μΩ・cmのときはx=0.67であり、
前記ブラシの比抵抗が30000μΩ・cmのときはx=0.64であり、
前記ブラシの比抵抗が30000μΩ・cmから10000μΩ・cmの間では前記ブラシの比抵抗の減少に応じてxが0.64から0.67まで漸増することを特徴とする整流子電動機。
In a commutator motor comprising an armature provided with a plurality of slots on the outer periphery into which armature windings are inserted, and a brush for exchanging power with the armature,
When the outer diameter of the armature is defined as D, the diameter of the armature on the inner peripheral side of the slot forming position is defined as Ds, and a variable corresponding to the specific resistance of the brush is defined as x.
x ≦ Ds / D ≦ 0.67
The filling,
When the specific resistance of the brush is 10,000 μΩ · cm, x = 0.67,
When the specific resistance of the brush is 30000 μΩ · cm, x = 0.64,
The commutator motor is characterized in that, when the specific resistance of the brush is between 30,000 μΩ · cm and 10,000 μΩ · cm, x gradually increases from 0.64 to 0.67 as the specific resistance of the brush decreases.
請求項1記載の整流子電動機において、
前記電機子巻線は、同一スロット内にそれぞれ複数回巻回された第1コイルおよび第2コイルからなり、
前記第1コイルは先に整流が終了する回転方向前位の電機子巻線であり、
前記第2のコイルは後に整流が終了する電機子巻線であることを特徴とする整流子電動機。
The commutator motor according to claim 1,
The armature winding is composed of a first coil and a second coil that are wound a plurality of times in the same slot,
The first coil is a front armature winding in the rotational direction where rectification ends first,
The commutator motor according to claim 1, wherein the second coil is an armature winding that is later commutated.
請求項1または請求項2に記載の整流子電動機において、
当該整流子電動機の回転数が36000から50000回転/分であることを特徴とする整流子電動機。
In the commutator motor according to claim 1 or 2,
The commutator motor is characterized in that the rotation speed of the commutator motor is 36000 to 50000 rpm.
請求項1から請求項3の何れかに記載の整流子電動機において、
前記電機子巻線の線径が0.6mmから0.8mmφであることを特徴とする整流子電動機。
In the commutator motor according to any one of claims 1 to 3,
A commutator motor, wherein the armature winding has a wire diameter of 0.6 mm to 0.8 mmφ.
請求項1から請求項4の何れかに記載の整流子電動機を内包することを特徴とする電動送風機。   An electric blower comprising the commutator motor according to any one of claims 1 to 4. 請求項5に記載の電動送風機を内包することを特徴とする電気掃除機。   An electric vacuum cleaner comprising the electric blower according to claim 5.
JP2010165454A 2010-07-23 2010-07-23 Commutator motor, electric blower and vacuum cleaner Expired - Fee Related JP5452403B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010165454A JP5452403B2 (en) 2010-07-23 2010-07-23 Commutator motor, electric blower and vacuum cleaner
CN201110208600.3A CN102347674B (en) 2010-07-23 2011-07-21 Commutator motor, electric pressure fan and electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010165454A JP5452403B2 (en) 2010-07-23 2010-07-23 Commutator motor, electric blower and vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2012029453A JP2012029453A (en) 2012-02-09
JP5452403B2 true JP5452403B2 (en) 2014-03-26

Family

ID=45546031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010165454A Expired - Fee Related JP5452403B2 (en) 2010-07-23 2010-07-23 Commutator motor, electric blower and vacuum cleaner

Country Status (2)

Country Link
JP (1) JP5452403B2 (en)
CN (1) CN102347674B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255807A1 (en) * 2019-06-21 2020-12-24

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598586B2 (en) * 1995-06-06 2004-12-08 株式会社デンソー AC generator for vehicles
CN100369362C (en) * 2002-11-23 2008-02-13 深圳易拓科技有限公司 Method for mfg of stator of disc driver motor
JP2008043133A (en) * 2006-08-09 2008-02-21 Hitachi Via Mechanics Ltd Rocking actuator device and laser machining device
JP5340531B2 (en) * 2006-10-19 2013-11-13 株式会社デンソー Rotating electric machine

Also Published As

Publication number Publication date
JP2012029453A (en) 2012-02-09
CN102347674B (en) 2014-01-08
CN102347674A (en) 2012-02-08

Similar Documents

Publication Publication Date Title
EP2736155B1 (en) Electric motor
US20100283336A1 (en) Ventilating system for electrical rotating electrical machines equipped with a forced-fluid flow cooling device and rotating electrical machine comprising same
KR100364017B1 (en) Automotive alternator
US6424071B1 (en) Automotive alternator
US20100295393A1 (en) Polyphase stator for an internally ventilated rotating electrical machine, and rotating electrical machine comprising such a stator
CN212163020U (en) High-speed motor and electric hair drier
CN111478501A (en) High-speed motor and electric hair drier
CN101313449B (en) Switching reluctance motor
JP3763243B2 (en) Commutator motor
JP5452403B2 (en) Commutator motor, electric blower and vacuum cleaner
JP4901844B2 (en) Commutator motor, blower and vacuum cleaner
CN104838570A (en) Mounting of stator body in bearing of rotating electric machine and rotating electric machine comprising such mounting
CN102983645A (en) A brush motor, a fan, a motor rotor and a forming method for the motor rotor
JP4269707B2 (en) Commutator motor
JP4110825B2 (en) Electric blower and electric vacuum cleaner using the same
CN208489785U (en) A kind of air barrel motor
CN209375385U (en) A kind of brush DC compressor electric motor
CN208424162U (en) A kind of novel air barrel motor
JP2021179179A (en) Centrifugal fan and rotary electric machine
JPWO2008093393A1 (en) Electric motor, electric blower and vacuum cleaner
CN215383415U (en) Food processor with compact structure and motor for food processor
CN109906540B (en) Rotor of rotating electric machine
JP5178307B2 (en) Commutator motor and electric blower using the same
JP5622493B2 (en) AC commutator motor and electric blower using the same
CN202183715U (en) Direct current motor for cooling fan of automobile engine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5452403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees