JP5452297B2 - Lubricating oil composition - Google Patents

Lubricating oil composition Download PDF

Info

Publication number
JP5452297B2
JP5452297B2 JP2010058675A JP2010058675A JP5452297B2 JP 5452297 B2 JP5452297 B2 JP 5452297B2 JP 2010058675 A JP2010058675 A JP 2010058675A JP 2010058675 A JP2010058675 A JP 2010058675A JP 5452297 B2 JP5452297 B2 JP 5452297B2
Authority
JP
Japan
Prior art keywords
weight
lubricating oil
ethylene
viscosity
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010058675A
Other languages
Japanese (ja)
Other versions
JP2011190377A (en
Inventor
良輔 金重
昌太 阿部
道生 鳥海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2010058675A priority Critical patent/JP5452297B2/en
Publication of JP2011190377A publication Critical patent/JP2011190377A/en
Application granted granted Critical
Publication of JP5452297B2 publication Critical patent/JP5452297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)

Description

本発明は、エチレン・αオレフィン共重合体を含む潤滑油組成物に関する。   The present invention relates to a lubricating oil composition containing an ethylene / α-olefin copolymer.

石油製品は一般に温度が変わると粘度が大きく変化する、いわゆる粘度の温度依存性を有している。例えば、粘度の温度依存性が小さいことが好ましい。そこで潤滑油には、粘度の温度依存性を小さくする目的で、潤滑油基剤に可溶な、ある種のポリマーが粘度改良剤として用いられている。近年では、このような粘度改良剤としてαオレフィン重合体が広く用いられているが、潤滑油の性能バランスを更に改善するため種々の改良がなされている。(特許文献1)   Petroleum products generally have a so-called viscosity temperature dependency in which the viscosity changes greatly when the temperature changes. For example, it is preferable that the temperature dependence of the viscosity is small. Therefore, in the lubricating oil, for the purpose of reducing the temperature dependency of the viscosity, a certain polymer that is soluble in the lubricating oil base is used as the viscosity improving agent. In recent years, α-olefin polymers have been widely used as such viscosity improvers, but various improvements have been made to further improve the performance balance of lubricating oils. (Patent Document 1)

上記のような粘度指数向上剤は一般に高温時に適正な粘度を保持するために用いられるが、最近では、環境負荷低減の一環として省エネ・省資源が強く思考される中で、特に低温時の粘度上昇を低く抑え(低温特性に優れる)、耐久性に優れる粘度改良剤が求められている。一般の潤滑油用途においては、優れた低温特性を得るためには、ポリマー濃度をできるだけ低く抑えることが有効であること、また、経済性の面でも有利であることなどから、できるだけ高分子量のポリマーを用いる方法が知られているが、分子量を高くすると剪断安定性が悪化するという問題がある。工業用潤滑油用途、特に風力発電用ギヤ油では、より高度な低温特性と剪断安定性が要求され、両性能のバランスを考慮した品質が求められる。
Viscosity index improvers such as those mentioned above are generally used to maintain an appropriate viscosity at high temperatures. Recently, as energy saving and resource saving are strongly considered as part of reducing the environmental impact, viscosity at low temperatures is particularly important. There is a need for a viscosity improver that suppresses the rise low (excellent in low temperature characteristics) and has excellent durability. In general lubricating oil applications, in order to obtain excellent low-temperature characteristics, it is effective to keep the polymer concentration as low as possible, and it is also advantageous in terms of economy. However, there is a problem that shear stability deteriorates when the molecular weight is increased. In industrial lubricating oil applications, particularly gear oil for wind power generation, higher-level low-temperature characteristics and shear stability are required, and quality that takes into account the balance between the two performances is required.

国際公開 WO00/34420International publication WO00 / 34420

一方、潤滑油基剤としては、API品質分類により、鉱物油はグループ(I)〜(III)の3段階に分類され、更に、ポリ・αオレフィン(PAO)がグループ(IV)、その他がグループ(V)に分類されている。 自動車用の各種潤滑油用途では、要求性能の高度化及び環境負荷低減に対応するため、従来から広く使用されているグループ(I)鉱油から、グループ (II)及び(III)鉱油、或いはポリ・αオレフィンの如く合成油の使用率が高まっている。一方、工業用潤滑油用途においても、長寿命や高耐久性が求められ、前記のグループ(III)鉱油或いはポリ・αオレフィンが使用されている。特に近年の風力発電用ギヤ油においては、耐久性の主要パラメータとして剪断安定性が強く求められている。ここに求められる剪断安定性は従来の高分子量タイプの粘度調整剤での対応は困難であり、ポリブテン等の比較的低分子量のαオレフィン重合体が使用されている。しかしながら、用途によってはポリブテンの粘度特性、とりわけ低温での十分な流動性に改善の余地があった。また風力発電用ギヤ油においては、従来の要求特性に加えて、高いマイクロピッチン防止性能が求められている。マイクロピッチングは高荷重下における転がり弾性流体潤滑(EHL)領域で過度のストレスのサイクルによってギヤ損傷の寸前で引き起こされる疲労プロセスである。本発明者らは、このような状況において鋭意研究の結果、エチレン含量、粘度、分子量分布が特定の範囲にあるエチレン・α−オレフィン共重合体と特定の粘度、粘度指数、流動点を有する1種以上の合成油及び/又は鉱物油を基剤とを組み合わせることにより、上記のような問題を解決することを見出して、本発明を完成するに至った。   On the other hand, as a lubricant base, mineral oil is classified into three stages of groups (I) to (III) according to API quality classification. Furthermore, poly-α-olefin (PAO) is group (IV) and others are group. Classified in (V). In various lubricating oil applications for automobiles, in order to respond to higher demanded performance and reduced environmental impact, Group (I) mineral oil, Group (II) and (III) mineral oil, The usage rate of synthetic oils such as α-olefins is increasing. On the other hand, in industrial lubricating oil applications, long life and high durability are required, and the group (III) mineral oil or poly-α-olefin is used. In particular, in recent years, gear oil for wind power generation is strongly required to have shear stability as a main parameter for durability. The shear stability required here is difficult to cope with with a conventional high molecular weight type viscosity modifier, and a relatively low molecular weight α-olefin polymer such as polybutene is used. However, depending on the application, there is room for improvement in the viscosity characteristics of polybutene, in particular, sufficient fluidity at low temperatures. In addition, in the gear oil for wind power generation, in addition to the conventional required characteristics, a high micropitting prevention performance is required. Micropitting is a fatigue process caused just before gear damage by cycles of excessive stress in the rolling elastohydrodynamic lubrication (EHL) region under high loads. As a result of intensive studies in such a situation, the present inventors have a specific viscosity, viscosity index, and pour point with an ethylene / α-olefin copolymer having a specific range of ethylene content, viscosity, and molecular weight distribution. The inventors have found that the above problems can be solved by combining more than one kind of synthetic oil and / or mineral oil with a base, and have completed the present invention.

本発明が解決しようとする課題は、低温粘度特性および剪断安定性のバランスに優れ、高いマイクロピッチング防止性能を有する工業用潤滑油を提供することにある。   The problem to be solved by the present invention is to provide an industrial lubricating oil that has an excellent balance between low-temperature viscosity characteristics and shear stability and has high micropitting prevention performance.

下記(A1)〜(A3)の特性を有するエチレン・αオレフィン共重合体(A)を30〜90重量%、(B1)〜(B3)の特性を有する合成油(B)または(C1)〜(C3)の特性を有する鉱物油(C)から選ばれる1種類以上の成分からなる潤滑油基剤を10〜70重量%(ただし、(A)+(B)+(C)=100重量%とする)含有することを特徴とする潤滑油組成物;
(A1)エチレン含量が30〜70モル%の範囲にあること
(共重合体(A)中のエチレン含量とαオレフィン含量の総和を100モル%とする)
(A2)100℃動粘度は30〜350mm2/sの範囲にあること
(A3)Mw/Mnが2.5以下であること

(B1)100℃における動粘度が2〜20mm2/sであること
(B2)粘度指数が130以上であること
(B3)流動点が−30℃以下であること

(C1)100℃における動粘度が2〜10mm2/sであること
(C2)粘度指数が120以上であること
(C3)流動点が−10℃以下であること
30 to 90% by weight of the ethylene / α-olefin copolymer (A) having the following characteristics (A1) to (A3), and the synthetic oil (B) or (C1) having the characteristics (B1) to (B3) 10 to 70% by weight (provided that (A) + (B) + (C) = 100% by weight) of a lubricant base comprising at least one component selected from mineral oils (C) having the characteristics of (C3) Lubricating oil composition characterized by containing;
(A1) The ethylene content is in the range of 30 to 70 mol% (the total of the ethylene content and α-olefin content in the copolymer (A) is 100 mol%)
(A2) Kinematic viscosity at 100 ° C. is in the range of 30 to 350 mm 2 / s (A3) Mw / Mn is 2.5 or less

(B1) The kinematic viscosity at 100 ° C. is 2 to 20 mm 2 / s (B2) The viscosity index is 130 or more (B3) The pour point is −30 ° C. or less.

(C1) The kinematic viscosity at 100 ° C. is 2 to 10 mm 2 / s (C2) The viscosity index is 120 or more (C3) The pour point is −10 ° C. or less.

本発明の潤滑油組成物は低温粘度特性と剪断安定性に優れることから、省エネ・省資源等に優れる潤滑油組成物であり、好適には工業用潤滑油、特に風力発電用潤滑油として有効である。   Since the lubricating oil composition of the present invention is excellent in low-temperature viscosity characteristics and shear stability, it is a lubricating oil composition that excels in energy saving and resource saving, and is preferably effective as an industrial lubricating oil, particularly a lubricating oil for wind power generation. It is.

エチレン・αオレフィン共重合体(A)
本発明におけるエチレン・αオレフィン共重合体(A)は、以下のような特性を有するエチレン・α−オレフィン共重合体からなり、潤滑油組成物の粘度を好適に調整することができる。
Ethylene / α-olefin copolymer (A)
The ethylene / α-olefin copolymer (A) in the present invention comprises an ethylene / α-olefin copolymer having the following characteristics, and can suitably adjust the viscosity of the lubricating oil composition.

エチレン・α−オレフィン共重合体(A)のエチレン含量は、通常30〜70モル%の範囲にある。低温特性と耐熱性のバランスの点から、好ましくは40〜70モル%、更に好ましくは45〜65モル%である。   The ethylene content of the ethylene / α-olefin copolymer (A) is usually in the range of 30 to 70 mol%. From the viewpoint of the balance between low temperature characteristics and heat resistance, it is preferably 40 to 70 mol%, more preferably 45 to 65 mol%.

エチレン・α−オレフィン共重合体(A)のエチレン含量は、「高分子分析ハンドブック」(朝倉書店 発行 P163〜170)に記載の方法に従って13C−NMRで測定される。 The ethylene content of the ethylene / α-olefin copolymer (A) is measured by 13 C-NMR according to the method described in “Polymer Analysis Handbook” (published by Asakura Shoten, P163-170).

また、エチレン・α−オレフィン共重合体(A)を構成するα−オレフィンとしては、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1、ヘプテン−1、オクテン−1、デセン−1、ウンゼセン−1、ドデセン−1、トリデセン−1、テトラデセン−1、ペンタデセン−1、ヘキサデセン−1、ヘプタデセン−1、オクタデセン−1、ノナデセン−1、エイコセン−1等の炭素数3〜20のα−オレフィンなどを例示することができる。エチレン・α−オレフィン共重合体(A)中には、これらα−オレフィンが1種又は2種以上含まれてもよい。これらα−オレフィンの内では、潤滑油組成物に対して良好な低温粘度特性、剪断安定性、耐熱性を与える点で、炭素数3〜10が好ましく、特にプロピレンが好ましい。
このようなエチレン・α−オレフィン共重合体(A)は下記(A1)、(A2)、および(A3)の特性を有している。
Further, as the α-olefin constituting the ethylene / α-olefin copolymer (A), propylene, butene-1, pentene-1, hexene-1, heptene-1, octene-1, decene-1, unzesen- 1, C3-C20 α-olefins such as 1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nonadecene-1, eicosene-1 It can be illustrated. In the ethylene / α-olefin copolymer (A), one or more of these α-olefins may be contained. Among these α-olefins, 3 to 10 carbon atoms are preferable, and propylene is particularly preferable in terms of imparting good low-temperature viscosity characteristics, shear stability, and heat resistance to the lubricating oil composition.
Such an ethylene / α-olefin copolymer (A) has the following properties (A1), (A2), and (A3).

(A1)エチレン含量
エチレン・α−オレフィン共重合体(B)のエチレン含量は、30〜70モル%、好ましくは40〜70モル%の範囲、より好ましくはより好ましくは45〜65モル%であることが好ましい。
(A1) Ethylene content The ethylene content of the ethylene / α-olefin copolymer (B) is 30 to 70 mol%, preferably 40 to 70 mol%, more preferably 45 to 65 mol%. It is preferable.

(A2)動粘度(100℃)
エチレン・α−オレフィン共重合体(A)の100℃における動粘度(以下、『動粘度(100℃)』とも記載する)は、30〜350mm2/s、好ましくは40〜200mm2/s、特に好ましくは50〜150mm2/sの範囲にある。
動粘度(100℃)が上記範囲内にあるエチレン・α−オレフィン共重合体(A)を含有する潤滑油組成物の剪断安定性と低温特性およびマイクロピッチング防止性のバランスに優れる。
(A2) Kinematic viscosity (100 ° C)
The kinematic viscosity at 100 ° C. of the ethylene / α-olefin copolymer (A) (hereinafter also referred to as “kinematic viscosity (100 ° C.)”) is 30 to 350 mm 2 / s, preferably 40 to 200 mm 2 / s. Especially preferably, it exists in the range of 50-150 mm < 2 > / s.
The lubricating oil composition containing the ethylene / α-olefin copolymer (A) having a kinematic viscosity (100 ° C.) within the above range is excellent in the balance between shear stability, low temperature characteristics and micropitting prevention.

(A3)分子量分布(Mw/Mn)
エチレン・α−オレフィン共重合体(B)は、分子量分布を示す指標であるMw/Mn(Mw:重量平均分子量、Mn:数平均分子量)が2.5以下、好ましくは2.4以下、より好ましくは2.2の範囲にあることが望ましい。分子量分布は2.5を超えると潤滑油粘度の剪断安定性が低下する。
(A3) Molecular weight distribution (Mw / Mn)
In the ethylene / α-olefin copolymer (B), Mw / Mn (Mw: weight average molecular weight, Mn: number average molecular weight), which is an indicator of molecular weight distribution, is 2.5 or less, preferably 2.4 or less. Preferably it is in the range of 2.2. When the molecular weight distribution exceeds 2.5, the shear stability of the lubricating oil viscosity decreases.

本発明に係わるエチレン・α−オレフィン共重合体は、バナジウム、ジルコニウム、チタニウムなどの遷移金属化合物と、有機アルミニウム化合物(有機アルミニウムオキシ化合物)および/またはイオン化イオン性化合物とからなる触媒が使用できる。 このようなオレフィン重合用触媒としては、例えばW000/34420に記載されている。
For the ethylene / α-olefin copolymer according to the present invention, a catalyst comprising a transition metal compound such as vanadium, zirconium, or titanium, and an organic aluminum compound (organic aluminum oxy compound) and / or an ionized ionic compound can be used. Such an olefin polymerization catalyst is described, for example, in WO00 / 34420.

潤滑油基剤
本発明で使用される潤滑油基剤は、一般に脱ワックス等の精製工程を経て用いられ、精製の仕方により幾つかの等級があり、本等級はAPI(米国石油協会)分類で規定される。表1に各グループに分類される潤滑油基剤の特性を表1に示す。
Lubricating oil base The lubricating oil base used in the present invention is generally used after a refining process such as dewaxing, and there are several grades depending on the refining method, and this grade is an API (American Petroleum Institute) classification. It is prescribed. Table 1 shows the characteristics of the lubricant bases classified into each group.

Figure 0005452297
Figure 0005452297

表1におけるグループ(IV)に属するポリα−オレフィンは、炭素数8以上のα−オレフィンを少なくとも原料モノマーとして重合して得られる炭化水素ポリマーであって、例えばデセン−1を重合して得られるポリデセンなどが例示される。この様なα−オレフィンオリゴマーは、チーグラー触媒、ルイス酸を触媒としたカチオン重合、熱重合、ラジカル重合によって製造することができる。
第1表におけるグループ(V)に属する潤滑油基剤としては、アルキルベンゼン類、アルキルナフタレン類、エステル油等を例示できる。
アルキルベンゼン類、アルキルナフタレン類は通常大部分がアルキル鎖長が炭素原子数6〜14のジアルキルベンゼンまたはジアルキルナフタレンであり、このようなアルキルベンゼン類またはアルキルナフタレン類は、ベンゼンまたはナフタレンとオレフィンとのフリーデルクラフトアルキル化反応によって製造される。アルキルベンゼン類またはアルキルナフタレン類の製造において使用されるアルキル化オレフィンは、線状もしくは枝分かれ状のオレフィンまたはこれらの組み合わせでもよい。これらの製造方法は、たとえば、米国特許第3909432号に記載されている。
エステル油としては、一塩基酸とアルコールから製造されるモノエステル;二塩基酸とアルコールとから、またはジオールと一塩基酸または酸混合物とから製造されるジエステル;ジオール、トリオール(たとえばトリメチロールプロパン)、テトラオール(たとえばペンタエリスリトール)、ヘキサオール(たとえばジペンタエリスリトール)などと一塩基酸または酸混合物とを反応させて製造したポリオールエステルなどが挙げられる。これらのエステルの例としては、トリデシルペラルゴネート、ジ−2−エチルヘキシルアジペート、ジ−2−エチルヘキシルアゼレート、トリメチロールプロパントリヘプタノエート、ペンタエリスリトールテトラヘプタノエートなどが挙げられる。
The poly α-olefin belonging to group (IV) in Table 1 is a hydrocarbon polymer obtained by polymerizing α-olefin having 8 or more carbon atoms as at least a raw material monomer, and is obtained, for example, by polymerizing decene-1. Examples include polydecene. Such an α-olefin oligomer can be produced by cationic polymerization, thermal polymerization, or radical polymerization using a Ziegler catalyst or a Lewis acid as a catalyst.
Examples of the lubricating oil base belonging to group (V) in Table 1 include alkylbenzenes, alkylnaphthalenes, ester oils and the like.
Alkylbenzenes and alkylnaphthalenes are usually mostly dialkylbenzene or dialkylnaphthalene having an alkyl chain length of 6 to 14 carbon atoms. Such alkylbenzenes or alkylnaphthalenes are Friedel of benzene or naphthalene and olefin. Produced by kraft alkylation reaction. The alkylated olefin used in the production of alkylbenzenes or alkylnaphthalenes may be a linear or branched olefin or a combination thereof. These production methods are described, for example, in US Pat. No. 3,909,432.
As ester oils, monoesters produced from monobasic acids and alcohols; diesters produced from dibasic acids and alcohols, or diols and monobasic acids or acid mixtures; diols, triols (eg trimethylolpropane) And polyol ester produced by reacting tetraol (for example, pentaerythritol), hexaol (for example, dipentaerythritol) and the like with a monobasic acid or an acid mixture. Examples of these esters include tridecyl pelargonate, di-2-ethylhexyl adipate, di-2-ethylhexyl azelate, trimethylolpropane triheptanoate, pentaerythritol tetraheptanoate, and the like.

本発明に係る合成油(B)は、下記の(B1)〜(B3)の特性を有するAPI品質分類のグループ(IV)または(V)に属する潤滑油基剤であり、中でもグループ(IV)に属するポリα−オレフィンが好ましいが、20重量%以下の割合で同様の動粘度を有し、グループ(V)に属するポリオールエステル、ジエステル等の合成油を含有してもよい。   The synthetic oil (B) according to the present invention is a lubricant base belonging to the group (IV) or (V) of the API quality classification having the following characteristics (B1) to (B3), among which the group (IV) Poly α-olefins belonging to No. 5 are preferred, but may have a similar kinematic viscosity at a ratio of 20% by weight or less, and may contain synthetic oils such as polyol esters and diesters belonging to Group (V).

(B1)100℃における動粘度が2〜20mm2/s、好ましくは4〜10mm2/sであること
(B2)粘度指数が120以上、好ましくは130以上であること
(B3)流動点が−30℃以下、好ましくは−40℃以下であること
(B1) The kinematic viscosity at 100 ° C. is 2 to 20 mm 2 / s, preferably 4 to 10 mm 2 / s (B2) The viscosity index is 120 or more, preferably 130 or more (B3) The pour point is − 30 ° C or lower, preferably -40 ° C or lower

又、鉱物油(C)は下記の(C1)〜(C3)の特性を有する潤滑油基剤であり、API品質分類のグループ(III)に分類される潤滑油基剤である。
当該グループ(III)に分類される潤滑油基剤は、水素化分解法等により精製度が高く、かつ粘度指数が高い潤滑油基剤である。
(C1)100℃における動粘度が2〜10mm2/s、好ましくは4〜8mm2/sであること
(C2)粘度指数が120以上、好ましくは125以上であること
(C3)流動点が−10℃以下、好ましくは−15℃以下であること

なお、本発明における潤滑油基剤は、合成油(B)または鉱物油(C)から選ばれる1種類以上の成分からなり、合成油(B)のみ1種類ないし2種類以上であってもよいし、鉱物油(C)のみ1種類ないし2種類以上であってもよく、合成油(B)1種類ないし2種類以上と鉱物油(C)1種類ないし2種類以上を混合したものであってもよい。
また、上述における各特性は下記の方法で測定したものである。
(B1、C1):ASTM D445(JIS K2283)に準じて測定
(B2、C2):ASTM D2270(JIS K2283)に準じて測定
(B3、C3):ASTM D97(JIS K2269)に準じて測定
The mineral oil (C) is a lubricant base having the following characteristics (C1) to (C3), and is a lubricant base classified in the API quality classification group (III).
Lubricating oil bases classified into the group (III) are lubricating oil bases having a high degree of purification by a hydrocracking method or the like and a high viscosity index.
(C1) The kinematic viscosity at 100 ° C. is 2 to 10 mm 2 / s, preferably 4 to 8 mm 2 / s (C2) The viscosity index is 120 or more, preferably 125 or more (C3) The pour point is − 10 ° C or less, preferably -15 ° C or less

The lubricating oil base in the present invention comprises one or more components selected from synthetic oil (B) or mineral oil (C), and only one or two or more synthetic oils (B) may be used. However, only one or two or more mineral oils (C) may be used, and one or two or more synthetic oils (B) may be mixed with one or more mineral oils (C). Also good.
Moreover, each characteristic in the above is measured by the following method.
(B1, C1): Measured according to ASTM D445 (JIS K2283) (B2, C2): Measured according to ASTM D2270 (JIS K2283) (B3, C3): Measured according to ASTM D97 (JIS K2269)

潤滑油組成物
本発明の潤滑油組成物は、前記合成油(B)または前記鉱物油(C)から選ばれる1種類以上の成分からなる潤滑油基剤10〜70重量%と、前記エチレン・α−オレフィン共重合体(A)30〜90重量%(ただし、(A)+(B)+(C)=100重量%とする)を含む組成物である。また、好ましくは、前記エチレン・α−オレフィン共重合体(A)が、40〜80重量%、より好ましくは40〜70重量%含まれる組成物である。
このような潤滑油組成物は、優れた剪断安定性を有すると共に、潤滑油基剤としてポリαオレフィン等の合成油及び/又は高度に精製された高粘度指数鉱油を含有することにより、良好な低温特性と剪断安定性を発現することを特徴としている。
なお、本発明の潤滑油組成物は、必要に応じ、流動点降下剤、極圧剤、摩擦調整剤、油性剤、酸化防止剤、消泡剤、錆止め剤、腐食防止剤等の添加剤を(A)+(B)+(C)=100重量部に対して、一般的には20重量部以下の割合で配合することができる。これらの添加剤の中でも、極圧剤、流動点降下剤を添加することが好ましく、(特に鉱物油(C)が20重量%以上含まれている場合において)、極圧剤と流動点降下剤の2成分で(A)+(B)+(C)=100重量部に対して、10重量部以下添加することがより好ましい。
ここで、必要に応じて併用される添加剤について説明する。
Lubricating oil composition The lubricating oil composition of the present invention comprises 10 to 70% by weight of a lubricating oil base consisting of one or more components selected from the synthetic oil (B) or the mineral oil (C), and the ethylene. The α-olefin copolymer (A) is a composition containing 30 to 90% by weight (provided that (A) + (B) + (C) = 100% by weight). Preferably, the ethylene / α-olefin copolymer (A) is a composition containing 40 to 80% by weight, more preferably 40 to 70% by weight.
Such a lubricating oil composition has excellent shear stability and is excellent in that it contains a synthetic oil such as polyalphaolefin and / or a highly refined high viscosity index mineral oil as a lubricating oil base. It is characterized by low temperature characteristics and shear stability.
The lubricating oil composition of the present invention may contain additives such as pour point depressants, extreme pressure agents, friction modifiers, oiliness agents, antioxidants, antifoaming agents, rust inhibitors, and corrosion inhibitors as necessary. (A) + (B) + (C) = Generally 20 parts by weight or less can be blended with respect to 100 parts by weight. Among these additives, it is preferable to add an extreme pressure agent and a pour point depressant (particularly when the mineral oil (C) is contained in an amount of 20% by weight or more). It is more preferable to add 10 parts by weight or less with respect to (A) + (B) + (C) = 100 parts by weight.
Here, the additive used together as needed is demonstrated.

流動点降下剤
流動点降下剤としては、メタクリル酸アルキルの重合体または共重合体、アクリル酸アルキルの重合体または共重合体、フマル酸アルキルの重合体または共重合体、マレイン酸アルキルの重合体または共重合体、アルキル芳香族系の化合物などを挙げることができる。このうちでも特にメタクリル酸アルキルの重合体または共重合体を含む流動点降下剤であるポリメタクリレート系流動点降下剤が好ましく、メタクリル酸アルキルのアルキル基の炭素数は12〜20が好ましく、その添加量は、(A)+(B)+(C)=100重量部に対して好ましくは0.05〜2重量部である。これらは、流動点降下剤として市販されているものを入手することができる。例えば市販の銘柄名としては三洋化成社製 アクルーブ146、アクルーブ136、東邦化学社製 ルブラン141 ルブラン171などが挙げられる。
Pour point depressant Pour point depressant includes alkyl methacrylate polymer or copolymer, alkyl acrylate polymer or copolymer, alkyl fumarate polymer or copolymer, alkyl maleate polymer Or a copolymer, an alkyl aromatic compound, etc. can be mentioned. Among these, a polymethacrylate pour point depressant which is a pour point depressant containing a polymer or copolymer of an alkyl methacrylate is particularly preferable, and the alkyl group of the alkyl methacrylate preferably has 12 to 20 carbon atoms. The amount is preferably 0.05 to 2 parts by weight with respect to (A) + (B) + (C) = 100 parts by weight. These can obtain what is marketed as a pour point depressant. For example, commercially available brand names include 146, Include 136 manufactured by Sanyo Kasei Co., Ltd., LeBlanc 141 LeBlanc 171 manufactured by Toho Chemical Co., Ltd., and the like.

極圧剤
極圧剤としては、硫化油脂、硫化オレフィン、スルフィド類、リン酸エステル、亜リン酸エステル、リン酸エステルアミン塩、亜リン酸エステルアミン塩などが挙げられる。
Examples of extreme pressure agents include sulfurized oils and fats, sulfurized olefins, sulfides, phosphate esters, phosphite esters, phosphate ester amine salts, and phosphite amine salts.

摩擦調整剤
摩擦調整剤としては、モリブデンジチオホスフェート、モリブデンジチオカーバメート等の有機モリブデン化合物に代表される有機金属系摩擦調整剤が挙げられる。
また、油性剤としては、炭素数8〜22のアルキル基を有する脂肪酸、脂肪酸エステル、高級アルコール等が挙げられる。
Examples of the friction modifier include organometallic friction modifiers represented by organic molybdenum compounds such as molybdenum dithiophosphate and molybdenum dithiocarbamate.
Moreover, as an oil-based agent, the fatty acid, fatty acid ester, higher alcohol, etc. which have a C8-C22 alkyl group are mentioned.

酸化防止剤
酸化防止剤として具体的には、2,6−ジ−t−ブチル−4メチルフェノール等のフェノール系酸化防止剤;ジオクチルジフェニルアミン等のアミン系酸化防止剤などが挙げられる。また、消泡剤としては、ジメチルシロキサン、シリカゲル分散体等のシリコン系消泡剤;アルコール、エステル系消泡剤など挙げることができる。
Specifically as antioxidants antioxidant, 2,6-di -t- butyl-4 phenolic antioxidants such as methylphenol; an amine type antioxidants such as dioctyl diphenylamine. Examples of the antifoaming agent include silicon-based antifoaming agents such as dimethylsiloxane and silica gel dispersion; alcohols and ester-based antifoaming agents.

錆止め剤
錆止め剤としては、カルボン酸、カルボン酸塩、エステル、リン酸などが挙げられる。また、腐食防止剤としては、ベンゾトリアゾールとその誘導体、チアゾール系化合物などを挙げることができる。
また、腐食防止剤としては、ベンゾトリアゾール系、チアジアゾール系、イミダゾール系の化合物等が挙げられる。
Examples of the rust inhibitor include carboxylic acid, carboxylate, ester, and phosphoric acid. Examples of the corrosion inhibitor include benzotriazole and derivatives thereof, and thiazole compounds.
Examples of the corrosion inhibitor include benzotriazole, thiadiazole, and imidazole compounds.

本発明の潤滑油組成物は特に剪断安定性と低温粘度特性に優れるので、工業用潤滑油として有効である。工業用潤滑油としてはISO220〜ISO680の粘度範囲のものが挙げられるが、風力発電用ギヤ油として特に有効である。     Since the lubricating oil composition of the present invention is particularly excellent in shear stability and low-temperature viscosity characteristics, it is effective as an industrial lubricating oil. Industrial lubricants include those having a viscosity range of ISO 220 to ISO 680, and are particularly effective as gear oils for wind power generation.

以下、実施例に基づいて本発明を具体的に説明するが、実施例における各種物性は以下のようにして測定した。     EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, the various physical properties in an Example were measured as follows.

エチレン含量
日本電子LA500型核磁気共鳴装置を用い、オルトジクロルベンゼンとベンゼンーd6との混合溶媒(オルトジクロルベンゼン/ベンゼン−d6=3/1〜4/1(体積比))中、120℃、パルス幅45°パルス、パルス繰り返し時間5.5秒で測定した。
-Ethylene content Using a JEOL LA500 nuclear magnetic resonance apparatus, 120 in a mixed solvent of orthodichlorobenzene and benzene-d6 (orthodichlorobenzene / benzene-d6 = 3/1 to 4/1 (volume ratio)) The measurement was performed at 0 ° C., a pulse width of 45 ° pulse, and a pulse repetition time of 5.5 seconds.

動粘度(40℃、100℃)
ASTM D 445に基づいて測定を行った。尚、本実施例では配合油の粘度が各ISO分類に基づて以下のように調整した。
・ ISO220:動粘度(40℃)が220±22mm2/sになるように配合調製した。
・ ISO320:動粘度(40℃)が320±32mm2/sになるように配合調製した。
・ ISO460:動粘度(40℃)が460±46mm2/sになるように配合調製した。
Kinematic viscosity (40 ℃, 100 ℃)
Measurements were made based on ASTM D 445. In this example, the viscosity of the blended oil was adjusted as follows based on each ISO classification.
ISO 220: Formulated and prepared so that the kinematic viscosity (40 ° C.) was 220 ± 22 mm 2 / s.
ISO 320: The composition was prepared so that the kinematic viscosity (40 ° C.) was 320 ± 32 mm 2 / s.
ISO 460: Formulated so that the kinematic viscosity (40 ° C.) was 460 ± 46 mm 2 / s.

分子量分布(Mw/Mn)
GPC(ゲルパーミエーションクロマトグラフィー)を用い、オルトジクロロベンゼン溶媒で、140℃で測定した。
Molecular weight distribution (Mw / Mn)
GPC (gel permeation chromatography) was used and measured at 140 ° C. with an orthodichlorobenzene solvent.

低温粘度(−30℃、−40℃)
BF(ブルックフィールド)粘度計を用いてASTM D341に基づいて測定を行った。
Low temperature viscosity (-30 ℃, -40 ℃)
Measurements were made based on ASTM D341 using a BF (Brookfield) viscometer.

剪断安定性(粘度低下率%)
KRL剪断試験機を用いてCEC−L−45(CEC:欧州の自動車用燃料・潤滑油試験法の
管理機構)に基づいて試験を行い、40℃の粘度の低下率を評価した。
剪断安定性は潤滑油中の共重合体成分が金属摺動部で剪断を受け、分子鎖が切断することによる動粘度損失の尺度である。
Shear stability (Viscosity reduction rate%)
A test was carried out using a KRL shear tester based on CEC-L-45 (CEC: a management mechanism for European automotive fuel and lubricant test methods) to evaluate the rate of decrease in viscosity at 40 ° C.
Shear stability is a measure of kinematic viscosity loss due to the copolymer component in the lubricating oil being sheared at the metal sliding portion and the molecular chain being broken.

マイクロピッチング不合格負荷段階
Flender社の規格に基くFVA-54マイクロピッチング試験機により、ステージ5から10へ段階的に荷重を上げ、各荷重ステージ毎にギヤ歯面のマイクロピッチングの発生面積をパーセントで表し、歯車全体の重量減も測定する。(回転速度:1500rpm、温度:90℃)
(重合例1)
-Micropitting failure load stage FVA-54 micropitting tester based on the standard of Fender is used to increase the load stepwise from stage 5 to 10, and the percentage of micropitting generation on the gear tooth surface for each load stage. The weight loss of the entire gear is also measured. (Rotation speed: 1500rpm, temperature: 90 ° C)
(Polymerization example 1)

充分窒素置換した容量2リットルの攪拌翼付連続重合反応器に、脱水精製したヘキサン1リットルを張り、96mmol/Lに調整した、エチルアルミニウムセスキクロリド(Al(C2H5)1.5・Cl1.5)のヘキサン溶液を500ml/hの量で連続的に1時間供給した後、更に触媒として16mmol/lに調整したVO(OC2H5)Cl2のヘキサン溶液を500ml/hの量で、ヘキサンを500ml/hの量で連続的に供給した。一方重合器上部から、重合液器内の重合液が常に1リットルになるように重合液を連続的に抜き出した。次にバブリング管を用いてエチレンガスを27L/hの量で、プロピレンガスを26L/hの量で水素ガスを100L/hの量で供給した。共重合反応は、重合器外部に取り付けられたジャケットに冷媒を循環させることにより35℃で行った。
上記条件で反応を行うと、エチレン・プロピレン共重合体を含む重合溶液が得られた。得られた重合溶液は、塩酸で脱灰した後に、大量のメタノールに投入して、エチレン・プロピレン共重合体を析出させた後、130℃で24時間減圧乾燥を行った。得られたポリマーの性状を表1に示す。
(重合例2)
Ethyl aluminum sesquichloride (Al (C2H5) 1.5 · Cl1.5) hexane adjusted to 96 mmol / L by adding 1 liter of dehydrated and purified hexane to a continuous polymerization reactor with a stirring blade with a capacity of 2 liters sufficiently purged with nitrogen After the solution was continuously supplied in an amount of 500 ml / h for 1 hour, a hexane solution of VO (OC2H5) Cl2 adjusted to 16 mmol / l as a catalyst was added in an amount of 500 ml / h and hexane in an amount of 500 ml / h. Continuously fed. On the other hand, from the upper part of the polymerization vessel, the polymerization solution was continuously extracted so that the polymerization solution in the polymerization vessel was always 1 liter. Next, ethylene gas was supplied in an amount of 27 L / h, propylene gas was supplied in an amount of 26 L / h, and hydrogen gas was supplied in an amount of 100 L / h using a bubbling tube. The copolymerization reaction was carried out at 35 ° C. by circulating a refrigerant through a jacket attached to the outside of the polymerization vessel.
When the reaction was performed under the above conditions, a polymerization solution containing an ethylene / propylene copolymer was obtained. The obtained polymerization solution was deashed with hydrochloric acid, poured into a large amount of methanol to precipitate an ethylene / propylene copolymer, and then dried under reduced pressure at 130 ° C. for 24 hours. Table 1 shows the properties of the obtained polymer.
(Polymerization example 2)

エチレンガス量35L/h、ポロピレンガス量35L/h、水素ガス仕込み量を80L/hに変えた以外は重合例1と同様に行った。得られたポリマーの性状を表1に示す。
(重合例3)
Polymerization was carried out in the same manner as in Polymerization Example 1 except that the amount of ethylene gas was 35 L / h, the amount of propylene gas was 35 L / h, and the amount of hydrogen gas charged was changed to 80 L / h. Table 1 shows the properties of the obtained polymer.
(Polymerization Example 3)

エチレンガス量45L/h、ポロピレンガス量45L/h、水素ガス仕込み量を80L/hに変えた以外は重合例1と同様に行った。得られたポリマーの性状を表1に示す。
The same procedure as in Polymerization Example 1 was conducted except that the ethylene gas amount was 45 L / h, the poropylene gas amount was 45 L / h, and the hydrogen gas charge was changed to 80 L / h. Table 1 shows the properties of the obtained polymer.

Figure 0005452297
Figure 0005452297

エチレン・プロピレン共重合体(A)として、重合例1で得られたエチレン・プロピレン共重合体を79.0重量%、潤滑油基剤として、APIグループ(IV)に分類される100℃動粘度が5.825mm2/sのポリ・αオレフィン(NESTE OIL社製NEXBASE 2006)を10.7重量%、APIグループ(V)に分類される脂肪酸エステルDIDA(大八化学社製)を10.3重量%、極圧剤HITEC307(AFTON社製)を(エチレン・プロピレン共重合体(A)と潤滑油基剤の総量を100重量部として)2.8重量部用いてISO220相当粘度に配合調整した。配合油の潤滑油物性を表3に示す。   As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 1 was 79.0% by weight, and the lubricant base was 100 ° C. kinematic viscosity classified as API group (IV). 10.7% by weight of poly-α-olefin (NESTBASE 2006 made by NESTE OIL) with a weight of 5.825mm2 / s, 10.3% by weight fatty acid ester DIDA (made by Daihachi Chemical Co., Ltd.) classified as API group (V) %, 280 parts by weight of extreme pressure agent HITEC307 (manufactured by AFTON) (with the total amount of ethylene / propylene copolymer (A) and lubricating oil base as 100 parts by weight) was adjusted to ISO 220 equivalent viscosity. Table 3 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体79.0重量%の代わりに)重合例2で得られたエチレン・プロピレン共重合体を55.1重量%、潤滑油基剤として、ポリ・αオレフィン(NEXBASE 2006)を(10.7重量%の代わりに)34.6重量%用いた以外は実施例1と同様に配合調整した。配合油の潤滑油物性を表3に示す。   As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 2 (instead of 79.0% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) is 55. The composition was adjusted in the same manner as in Example 1 except that 14.6% by weight of a poly-α-olefin (NEXBASE 2006) was used as a lubricating oil base (instead of 10.7% by weight). Table 3 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体79.0重量%の代わりに)重合例3で得られたエチレン・プロピレン共重合体を47.2重量%、潤滑油基剤として、ポリ・αオレフィン(NEXBASE 2006)を(10.7重量%の代わりに)42.5重量%用いた以外は実施例1と同様に配合調整した。配合油の潤滑油物性を表3に示す。   As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 3 (instead of 79.0% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) was 47. The composition was adjusted in the same manner as in Example 1 except that 22.5% by weight of poly.alpha olefin (NEXBASE 2006) was used as a lubricant base (42.5% by weight) (instead of 10.7% by weight). Table 3 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体79.0重量%の代わりに)重合例2で得られたエチレン・プロピレン共重合体を64.7重量%、潤滑油基剤として、ポリ・αオレフィン(NEXBASE 2006)を(10.7重量%の代わりに)25.0重量%用いた以外は実施例1と同様に配合しISO320相当粘度に調整した。配合油の潤滑油物性を表3に示す。   As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 2 (instead of 79.0% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) was obtained in 64. 7% by weight, as a lubricant base, blended in the same manner as in Example 1 except that 25.0% by weight (instead of 10.7% by weight) of poly-α-olefin (NEXBASE 2006) was used to achieve an ISO 320 equivalent viscosity. It was adjusted. Table 3 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体79.0重量%の代わりに)重合例3で得られたエチレン・プロピレン共重合体を55.5重量%、潤滑油基剤として、ポリ・αオレフィン(NEXBASE 2006)を(10.7重量%の代わりに)34.2重量%用いた以外は実施例3と同様に配合調整した。配合油の潤滑油物性を表3に示す。   As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 3 (instead of 79.0% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) is 55. The composition was adjusted in the same manner as in Example 3 except that 5% by weight of a poly-α-olefin (NEXBASE 2006) was used as a lubricating oil base, 34.2% by weight (instead of 10.7% by weight). Table 3 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体79.0重量%の代わりに)重合例2で得られたエチレン・プロピレン共重合体を75.7重量%、潤滑油基剤として、ポリ・αオレフィン(NEXBASE 2006)を(10.7重量%の代わりに)14.0重量%用いた以外は実施例1と同様に配合しISO460相当粘度に調整した。配合油の潤滑油物性を表3に示す。   As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 2 (in place of 79.0% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) is 75. 7% by weight, and as a lubricant base, blended in the same manner as in Example 1 except that 14.0% by weight (instead of 10.7% by weight) of poly-α-olefin (NEXBASE 2006) was used to achieve an ISO 460 equivalent viscosity. It was adjusted. Table 3 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体79.0重量%の代わりに)重合例3で得られたエチレン・プロピレン共重合体を64.9重量%、潤滑油基剤として、ポリ・αオレフィン(NEXBASE 2006)を(10.7重量%の代わりに)24.8重量%用いた以外は実施例1と同様に配合しISO460相当粘度に調整した。配合油の潤滑油物性を表3に示す。
As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 3 (instead of 79.0% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) was used. 9% by weight, blended in the same manner as in Example 1 except that 24.8% by weight (instead of 10.7% by weight) of poly-α-olefin (NEXBASE 2006) was used as the lubricating oil base to achieve an ISO 460 equivalent viscosity. It was adjusted. Table 3 shows the lubricating oil physical properties of the blended oil.

Figure 0005452297

(比較例1)
Figure 0005452297

(Comparative Example 1)

市販液状ポリブテン15Rを76.0重量%、潤滑油基剤として、APIグループ(IV)に分類されるポリ・αオレフィン(NEXBASE 2006)を13.7重量%、APIグループ(V)に分類される脂肪酸エステルDIDA(ジイソデシルアジペート)を10.3重量%、(これらの総量を100重量部として)極圧剤HITEC307を2.8重量部用いてISO220相当粘度に配合調整した。配合油の潤滑油物性を表4に示す。
(比較例2)
76.0% by weight of commercially available liquid polybutene 15R, as a lubricant base, 15.7% by weight of poly-α-olefin (NEXBASE 2006) classified as API group (IV), classified as API group (V) The viscosity was adjusted to an ISO 220 equivalent viscosity by using 10.3% by weight of fatty acid ester DIDA (diisodecyl adipate) and 2.8 parts by weight of extreme pressure agent HITEC 307 (the total amount thereof being 100 parts by weight). Table 4 shows the lubricating oil physical properties of the blended oil.
(Comparative Example 2)

市販液状ポリブテン35Rを(ポリブテン15R76.0重量%の代わりに)61.9重量%、ポリ・αオレフィン(NEXBASE 2006)を(13.7重量%の代わりに)27.8重量%用いた以外は比較例1と同様に配合調整した。配合油の潤滑油物性を表4に示す。
(比較例3)
Except for using 61.9% by weight of commercially available liquid polybutene 35R (instead of 76.0% by weight of polybutene 15R) and 27.8% by weight of poly-α-olefin (NEXBASE 2006) (instead of 13.7% by weight). The formulation was adjusted in the same manner as in Comparative Example 1. Table 4 shows the lubricating oil physical properties of the blended oil.
(Comparative Example 3)

市販液状ポリブテン15Rを(76.0重量%の代わりに)83.6重量%、ポリ・αオレフィン(NEXBASE 2006)を(13.7重量%の代わりに)6.1重量%用いた以外は比較例1と同様に配合し、ISO320相当粘度に調整した。配合油の潤滑油物性を表4に示す。
(比較例4)
Comparison except that commercial liquid polybutene 15R was used (instead of 76.0% by weight) 83.6% by weight and poly-alpha olefin (NEXBASE 2006) (instead of 13.7% by weight) 6.1% by weight. It mix | blended like Example 1 and adjusted to the viscosity equivalent to ISO320. Table 4 shows the lubricating oil physical properties of the blended oil.
(Comparative Example 4)

市販液状ポリブテン35Rを(ポリブテン15R76.0重量%の代わりに)68.3重量%、ポリ・αオレフィン(NEXBASE 2006)を(13.7重量%の代わりに)21.4重量%用いた以外は比較例3と同様に配合し調整した。配合油の潤滑油物性を表4に示す。
(比較例5)
Other than using commercially available liquid polybutene 35R (instead of polybutene 15R76.0 wt%) 68.3 wt% and poly-alpha olefin (NEXBASE 2006) (instead of 13.7 wt%) 21.4 wt% It mixed and adjusted like the comparative example 3. Table 4 shows the lubricating oil physical properties of the blended oil.
(Comparative Example 5)

市販のオレフインコポリマー系粘度調整剤M−1010を(ポリブテン15R76.0重量%の代わりに)28.3重量%、ポリ・αオレフィン(NEXBASE 2006)を(13.7重量%の代わりに)61.4重量%用いた以外は比較例3と同様に配合調整した。配合油の潤滑油物性を表4に示す。
Commercial olefin copolymer viscosity modifier M-1010 (instead of polybutene 15R76.0% by weight) 28.3% by weight, poly alpha olefin (NEXBASE 2006) (instead of 13.7% by weight) 61. The formulation was adjusted in the same manner as in Comparative Example 3 except that 4% by weight was used. Table 4 shows the lubricating oil physical properties of the blended oil.

Figure 0005452297
Figure 0005452297

エチレン・プロピレン共重合体(A)として、重合例1で得られたエチレン・プロピレン共重合体を69.6重量%、潤滑油基剤として、APIグループ(III)に分類される鉱物油YUBASE−6を30.4重量%、(エチレン・プロピレン共重合体(A)と潤滑油基剤の総量を100重量部として)極圧剤HITEC307を2.8重量部、(エチレン・プロピレン共重合体(A)と潤滑油基剤の総量を100重量部として)流動点降下剤アクルーブ146を0.5重量部用いてISO220相当粘度に配合調整した。配合油の潤滑油物性を表5に示す。   As the ethylene / propylene copolymer (A), 69.6% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1, and as a lubricating oil base, a mineral oil YUBASE- classified as an API group (III). 6 is 30.4% by weight, (the total amount of the ethylene / propylene copolymer (A) and the lubricating oil base is 100 parts by weight) 2.8 parts by weight of the extreme pressure agent HITEC307 (the ethylene / propylene copolymer ( The total amount of A) and the lubricant base was 100 parts by weight) and the blending was adjusted to ISO 220 equivalent viscosity using 0.5 parts by weight of the pour point depressant include 146 Table 5 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体を69.6重量%の代わりに)重合例2で得られたエチレン・プロピレン共重合体を48.6重量%、潤滑油基剤として、鉱物油YUBASE−6を(30.4重量%の代わりに)51.4重量%用いた以外は実施例8と同様に配合調整した。配合油の潤滑油物性を表5に示す。   As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 2 (instead of 69.6% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) was 48 The composition was adjusted in the same manner as in Example 8 except that 51.4% by weight (instead of 30.4% by weight) of mineral oil YUBASE-6 was used as a lubricant base. Table 5 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体を69.6重量%の代わりに)重合例3で得られたエチレン・プロピレン共重合体を41.5重量%、潤滑油基剤として、鉱物油YUBASE−6を(30.4重量%の代わりに)58.5重量%用いた以外は実施例8と同様に配合調整した。配合油の潤滑油物性を表5に示す。   As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 3 (instead of 69.6% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) was used. The composition was adjusted in the same manner as in Example 8 except that 58.5% by weight (instead of 30.4% by weight) of mineral oil YUBASE-6 was used as a lubricant base. Table 5 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体を69.6重量%の代わりに)重合例2で得られたエチレン・プロピレン共重合体を59.5重量%、潤滑油基剤として、鉱物油YUBASE−6を(30.4重量%の代わりに)40.5重量%用いた以外は実施例8と同様に配合しISO320相当粘度に調整した。配合油の潤滑油物性を表5に示す。   As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 2 (instead of 69.6% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) was 59. .5 wt% As a lubricant base, mineral oil YUBASE-6 was blended in the same manner as in Example 8 except that 40.5 wt% (instead of 30.4 wt%) was used, and adjusted to an ISO 320 equivalent viscosity. . Table 5 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体を69.6重量%の代わりに)重合例3で得られたエチレン・プロピレン共重合体を50.6重量%、潤滑油基剤として、鉱物油YUBASE−6を(30.4重量%の代わりに)49.4重量%用いた以外は実施例8と同様に配合調整した。配合油の潤滑油物性を表5に示す。   As the ethylene / propylene copolymer (A), 50% of the ethylene / propylene copolymer obtained in Polymerization Example 3 (instead of 69.6% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) was used. The composition was adjusted in the same manner as in Example 8 except that 49.4% by weight (instead of 30.4% by weight) of mineral oil YUBASE-6 was used as a lubricant base. Table 5 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体を69.6重量%の代わりに)重合例2で得られたエチレン・プロピレン共重合体を68.8重量%、潤滑油基剤として、鉱物油YUBASE−6を(30.4重量%の代わりに)31.2重量%用いた以外は実施例8と同様に配合しISO460相当粘度に調整した。配合油の潤滑油物性を表5に示す。   As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 2 (instead of 69.6% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) was 68. .8 wt% As a lubricating oil base, the mineral oil YUBASE-6 was blended in the same manner as in Example 8 except that 31.2 wt% (instead of 30.4 wt%) was used, and adjusted to an ISO 460 equivalent viscosity. . Table 5 shows the lubricating oil physical properties of the blended oil.

エチレン・プロピレン共重合体(A)として、(重合例1で得られたエチレン・プロピレン共重合体を69.6重量%の代わりに)重合例3で得られたエチレン・プロピレン共重合体を58.7重量%、潤滑油基剤として、鉱物油YUBASE−6を(30.4重量%の代わりに)41.3重量%用いた以外は実施例8と同様に配合調整した。配合油の潤滑油物性を表5に示す。
As the ethylene / propylene copolymer (A), the ethylene / propylene copolymer obtained in Polymerization Example 3 (instead of 69.6% by weight of the ethylene / propylene copolymer obtained in Polymerization Example 1) was 58 The composition was adjusted in the same manner as in Example 8, except that 41.3% by weight (instead of 30.4% by weight) of mineral oil YUBASE-6 was used as a lubricant base. Table 5 shows the lubricating oil physical properties of the blended oil.

Figure 0005452297

(比較例6)
Figure 0005452297

(Comparative Example 6)

市販液状ポリブテン15Rを68.1重量%、潤滑油基剤として、APIグループ(III)に分類される鉱物油YUBASE−6を31.9重量%、(これらの総量を100重量部として)極圧剤HITEC307を2.8重量部、(これらの総量を100重量部として)流動点降下剤アクルーブ146を0.5重量部用いてISO220相当粘度に配合調整した。配合油の潤滑油物性を表6に示す。
(比較例7)
Commercial liquid polybutene 15R 68.1% by weight, lubricant base, mineral oil YUBASE-6 classified as API group (III) 31.9% by weight, (total amount of these as 100 parts by weight) extreme pressure The viscosity was adjusted to an ISO 220 equivalent viscosity using 2.8 parts by weight of the agent HITEC307 and 0.5 parts by weight of the pour point depressant include 146 (assuming the total amount of these was 100 parts by weight). Table 6 shows the properties of the lubricating oil.
(Comparative Example 7)

市販液状ポリブテン35Rを(ポリブテン15Rを68.1重量%の代わりに)55.2重量%、鉱物油YUBASE−6を(31.9重量%の代わりに)44.8重量%用いた以外は比較例6と同様に配合調整した。配合油の潤滑油物性を表6に示す。
(比較例8)
Comparison except that 55.2% by weight of commercially available liquid polybutene 35R (instead of 68.1% by weight of polybutene 15R) and 44.8% by weight of mineral oil YUBASE-6 (instead of 31.9% by weight) were used. The formulation was adjusted in the same manner as in Example 6. Table 6 shows the properties of the lubricating oil.
(Comparative Example 8)

市販液状ポリブテン15Rを(68.1重量%の代わりに)75.0重量%、鉱物油YUBASE−6を(31.9重量%の代わりに)25.0重量%用いた以外は比較例6と同様に配合し、ISO320相当粘度に調整した。配合油の潤滑油物性を表6に示す。
(比較例9)
Comparative Example 6 with the exception that 75.0% by weight of commercially available liquid polybutene 15R (instead of 68.1% by weight) and 25.0% by weight of mineral oil YUBASE-6 (instead of 31.9% by weight) were used. In the same manner, the viscosity was adjusted to an ISO 320 equivalent viscosity. Table 6 shows the properties of the lubricating oil.
(Comparative Example 9)

市販液状ポリブテン35Rを(ポリブテン15Rを68.1重量%の代わりに)60.3重量%、鉱物油YUBASE−6を(31.9重量%の代わりに)39.7重量%用いた以外は比較例3と同様に配合し調整した。配合油の潤滑油物性を表6に示す。
(比較例10)
Comparison except that commercially available liquid polybutene 35R was used (60.3% by weight of polybutene 15R instead of 68.1% by weight) and 39.7% by weight of mineral oil YUBASE-6 (instead of 31.9% by weight). Blended and adjusted as in Example 3. Table 6 shows the properties of the lubricating oil.
(Comparative Example 10)

市販液状ポリブテン15Rを(68.1重量%の代わりに)89.8重量%、鉱物油YUBASE−6を(31.9重量%の代わりに)10.2重量%用いた以外は比較例6と同様に配合し調整した。配合油の潤滑油物性を表6に示す。   Comparative Example 6 with the exception that 89.8% by weight of commercial liquid polybutene 15R (instead of 68.1% by weight) and 10.2% by weight of mineral oil YUBASE-6 (instead of 31.9% by weight) were used. It mixed and adjusted similarly. Table 6 shows the properties of the lubricating oil.

(比較例11) (Comparative Example 11)

市販液状ポリブテン35Rを(ポリブテン15Rを68.1重量%の代わりに)72.7重量%、鉱物油YUBASE−6を(31.9重量%の代わりに)27.3重量%用いた以外は比較例6と同様に配合し調整した。配合油の潤滑油物性を表6に示す。   Comparison except that 72.7% by weight of commercially available liquid polybutene 35R (instead of 68.1% by weight of polybutene 15R) and 27.3% by weight of mineral oil YUBASE-6 (instead of 31.9% by weight) were used. It was blended and adjusted in the same manner as in Example 6. Table 6 shows the properties of the lubricating oil.

Figure 0005452297
Figure 0005452297

表3〜表6に示されるように、特定のエチレン・αオレフィン共重合体と、特定の潤滑油基剤を含有する本願発明の潤滑油組成物は、類似の炭化水素系重合体として潤滑油用途で用いられるポリブテンと比較して、低温特性の点で圧倒的に優れている。さらに、各種潤滑油用途で広く用いられるオレフィンコポリマー系などの高分子量タイプの粘度調整剤と比較しても、特に剪断安定性の点で大きく優れている。
このため、本願発明の潤滑油組成物は、工業用潤滑油用途のなかでも、低温粘度特性と剪断安定性のバランスが特に要求される風力発電用ギヤ油用途にとりわけ好適である。当該用途において、本願発明の潤滑油組成物は、省エネルギー性と耐久性を両立し得るものである。
As shown in Tables 3 to 6, the lubricating oil composition of the present invention containing a specific ethylene / α-olefin copolymer and a specific lubricating oil base is a lubricating oil as a similar hydrocarbon polymer. Compared to polybutene used in applications, it is overwhelmingly superior in terms of low-temperature characteristics. Furthermore, compared with a high molecular weight type viscosity modifier such as an olefin copolymer system widely used in various lubricating oil applications, it is particularly excellent in terms of shear stability.
For this reason, the lubricating oil composition of the present invention is particularly suitable for use in gear oil for wind power generation in which a balance between low-temperature viscosity characteristics and shear stability is particularly required, among industrial lubricating oil applications. In this application, the lubricating oil composition of the present invention can achieve both energy saving and durability.

本発明の潤滑油組成物は低温粘度特性と剪断安定性に優れることから、省エネ・省資源等に優れる潤滑油組成物であり、好適には工業用潤滑油、とりわけ風力発電用潤滑油として有効である。



Since the lubricating oil composition of the present invention is excellent in low-temperature viscosity characteristics and shear stability, it is a lubricating oil composition that is excellent in energy saving and resource saving, and is preferably effective as an industrial lubricating oil, especially a lubricating oil for wind power generation. It is.



Claims (6)

下記(A1)〜(A3)の特性を有するエチレン・αオレフィン共重合体(A)を30〜90重量%、(B1)〜(B3)の特性を有する合成油(B)または(C1)〜(C3)の特性を有する鉱物油(C)から選ばれる1種類以上の成分からなる潤滑油基剤を10〜70重量%を(ただし、(A)+(B)+(C)=100重量%とする)含有することを特徴とする潤滑油組成物;
(A1)エチレン含量が30〜70モル%の範囲にあること
(共重合体(A)中のエチレン含量とαオレフィン含量の総和を100モル%とする)
(A2)100℃動粘度は30〜350mm2/sの範囲にあること
(A3)Mw/Mnが2.5以下であること

(B1)100℃における動粘度が2〜20mm2/sであること
(B2)粘度指数が130以上であること
(B3)流動点が−30℃以下であること

(C1)100℃における動粘度が2〜10mm2/sであること
(C2)粘度指数が120以上であること
(C3)流動点が−10℃以下であること
30 to 90% by weight of the ethylene / α-olefin copolymer (A) having the following characteristics (A1) to (A3), and the synthetic oil (B) or (C1) having the characteristics (B1) to (B3) 10 to 70% by weight of a lubricant base composed of one or more components selected from mineral oil (C) having the characteristics of (C3) (provided that (A) + (B) + (C) = 100% A lubricating oil composition characterized by comprising:
(A1) The ethylene content is in the range of 30 to 70 mol% (the total of the ethylene content and α-olefin content in the copolymer (A) is 100 mol%)
(A2) Kinematic viscosity at 100 ° C is in the range of 30 to 350 mm2 / s. (A3) Mw / Mn is 2.5 or less.

(B1) The kinematic viscosity at 100 ° C. is 2 to 20 mm 2 / s (B2) The viscosity index is 130 or more (B3) The pour point is −30 ° C. or less.

(C1) The kinematic viscosity at 100 ° C. is 2 to 10 mm 2 / s (C2) The viscosity index is 120 or more (C3) The pour point is −10 ° C. or less.
前記共重合体(A)が、エチレンと、炭素数3〜10のα−オレフィンからなる共重合体であることを特徴とする請求項1に記載の潤滑油組成物。     The lubricating oil composition according to claim 1, wherein the copolymer (A) is a copolymer composed of ethylene and an α-olefin having 3 to 10 carbon atoms. 前記合成油(B)がポリ・αオレフィン(PAO)またはエステル油から選ばれる潤滑油基剤であることを特徴とする請求項1〜2いずれか1項に記載の潤滑油組成物。     The lubricating oil composition according to claim 1, wherein the synthetic oil (B) is a lubricating oil base selected from poly-α-olefin (PAO) or ester oil. 前記潤滑油組成物に、更に流動点降下剤を含有することを特徴とする請求項1〜3いずれか1項に記載の潤滑油組成物。     The lubricating oil composition according to any one of claims 1 to 3, further comprising a pour point depressant in the lubricating oil composition. 前記潤滑油組成物の40℃における粘度が190〜750mm2/sの範囲内にあることを特徴とする請求項1〜4いずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 4, wherein the lubricating oil composition has a viscosity at 40 ° C in a range of 190 to 750 mm 2 / s. 前記潤滑油組成物が、風力発電用ギヤ油組成物である請求項1〜5いずれか1項に記載の工業用潤滑油組成物


The industrial lubricating oil composition according to any one of claims 1 to 5, wherein the lubricating oil composition is a gear oil composition for wind power generation.


JP2010058675A 2010-03-16 2010-03-16 Lubricating oil composition Active JP5452297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010058675A JP5452297B2 (en) 2010-03-16 2010-03-16 Lubricating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010058675A JP5452297B2 (en) 2010-03-16 2010-03-16 Lubricating oil composition

Publications (2)

Publication Number Publication Date
JP2011190377A JP2011190377A (en) 2011-09-29
JP5452297B2 true JP5452297B2 (en) 2014-03-26

Family

ID=44795629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010058675A Active JP5452297B2 (en) 2010-03-16 2010-03-16 Lubricating oil composition

Country Status (1)

Country Link
JP (1) JP5452297B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621352A (en) * 2019-02-28 2020-09-04 大林产业株式会社 Lubricant composition for hydraulic oils

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339936B2 (en) * 2012-04-12 2018-06-06 三井化学株式会社 Lubricating oil composition
JP6326337B2 (en) * 2014-09-26 2018-05-16 三井化学株式会社 Lubricating oil composition for industrial gear
JP6326354B2 (en) * 2014-11-25 2018-05-16 三井化学株式会社 Lubricating oil composition
JP6326355B2 (en) * 2014-11-25 2018-05-16 三井化学株式会社 Lubricating oil composition
JP6444219B2 (en) * 2015-02-27 2018-12-26 Jxtgエネルギー株式会社 Lubricating oil composition for gear oil
CN109536248B (en) * 2018-10-30 2021-11-12 新疆金雪驰科技股份有限公司 Fully-synthetic micro-pitting-resistant wind power gear oil composition and preparation method thereof
US11952551B2 (en) 2018-12-18 2024-04-09 Basf Se Gear oil composition
KR102097232B1 (en) * 2019-02-28 2020-04-06 대림산업 주식회사 Lubricant composition for gear oil
KR20210141611A (en) * 2019-03-26 2021-11-23 미쓰이 가가쿠 가부시키가이샤 Lubricating oil composition and method for preparing same
WO2020194544A1 (en) 2019-03-26 2020-10-01 三井化学株式会社 Lubricating oil composition for industrial gears and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621352A (en) * 2019-02-28 2020-09-04 大林产业株式会社 Lubricant composition for hydraulic oils
CN111621352B (en) * 2019-02-28 2022-06-28 Dl化学株式会社 Lubricant composition for hydraulic oils

Also Published As

Publication number Publication date
JP2011190377A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5452297B2 (en) Lubricating oil composition
JP5490125B2 (en) Improved HVI-PAO bimodal lubricant composition
CA2608181C (en) Hvi-pao in industrial lubricant and grease compositions
US8410035B2 (en) Viscosity modifier of lubricating oil for power transmission system and lubricating oil composition for power transmission system
JP5789111B2 (en) Lubricating oil composition
JP2009500489A5 (en)
EP3569678B1 (en) Lubricant oil composition for automobile gears
JP5248022B2 (en) Lubricating oil composition for automatic transmission
JP6339936B2 (en) Lubricating oil composition
EP2186871A1 (en) Lubricating composition
JP6104083B2 (en) Gear oil composition
JP4620966B2 (en) Drive system lubricating oil composition
US11655428B2 (en) Lubricating oil compositions and lubricating oil viscosity modifiers
CN111621355A (en) Lubricant composition for gear oil
WO2020194544A1 (en) Lubricating oil composition for industrial gears and method for producing same
JP2011236407A (en) Lubricating composition
JP7291525B2 (en) Viscosity modifier for lubricating oil and lubricating oil composition
JP6913148B2 (en) Lubricating oil composition for hydraulic hydraulic oil
WO2014157200A1 (en) Hydraulic fluid composition
WO2020194548A1 (en) Lubricating oil composition for automobile gears and method for producing same
WO2020194547A1 (en) Lubricant oil composition for vehicle transmission fluid and method for producing same
JP2022043579A (en) Lubricating oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5452297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250