JP5452083B2 - Device and method for detecting defect of object to be measured - Google Patents

Device and method for detecting defect of object to be measured Download PDF

Info

Publication number
JP5452083B2
JP5452083B2 JP2009137170A JP2009137170A JP5452083B2 JP 5452083 B2 JP5452083 B2 JP 5452083B2 JP 2009137170 A JP2009137170 A JP 2009137170A JP 2009137170 A JP2009137170 A JP 2009137170A JP 5452083 B2 JP5452083 B2 JP 5452083B2
Authority
JP
Japan
Prior art keywords
measured
irradiation
ray
defect
partial discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009137170A
Other languages
Japanese (ja)
Other versions
JP2010281785A (en
Inventor
厚 山竹
裕基 塩田
浩隆 武藤
義弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009137170A priority Critical patent/JP5452083B2/en
Publication of JP2010281785A publication Critical patent/JP2010281785A/en
Application granted granted Critical
Publication of JP5452083B2 publication Critical patent/JP5452083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Relating To Insulation (AREA)

Description

この発明は、被測定物の欠陥検出装置に関し、半導体装置、特にパワーモジュール等の高電圧機器の絶縁欠陥位置の検出に関するものである。   The present invention relates to a defect detection apparatus for an object to be measured, and relates to detection of an insulation defect position of a semiconductor device, particularly a high voltage device such as a power module.

近年、電気エネルギーの効率的利用のための装置としてパワーモジュールの需要が高まっている。電極部には高電圧が印加されるため、パワーモジュールには高い絶縁信頼性が要求されるが、製造過程や駆動時の発熱の影響等により絶縁欠陥が発生する場合がある。欠陥発生抑制のためには、まず発生箇所および原因を特定する必要があり、そのための絶縁欠陥検出方法が求められる。しかしながら、装置の分解による検査では、非常に時間がかかり、欠陥の特定が困難であるため、非破壊での検査方式が求められる。また、X線透過による検査では、透過画像で欠陥を発見したとしても、そこが放電箇所となるかの断定はできない。そのため、部分放電測定による確認も求められる。   In recent years, the demand for power modules has increased as a device for efficient use of electrical energy. Since a high voltage is applied to the electrode portion, the power module is required to have high insulation reliability. However, an insulation defect may occur due to the influence of heat generated during the manufacturing process or driving. In order to suppress the occurrence of defects, it is necessary to first identify the location and cause, and an insulation defect detection method for that purpose is required. However, inspecting by disassembling the apparatus is very time consuming and it is difficult to identify defects, so a non-destructive inspection method is required. Further, in the inspection by X-ray transmission, even if a defect is found in the transmission image, it cannot be determined whether it is a discharge location. Therefore, confirmation by partial discharge measurement is also required.

従来の絶縁欠陥検出方法には、X線の照射により欠陥部に初期電子を誘起すると部分放電開始電圧が下がることを利用した方法がある。これはX線の照射方向を制御して試料の一部分に照射し、それによる部分放電特性の比較により、X線照射方向と試料構造の比較によって欠陥位置を特定する方法になる(例えば、特許文献1参照)。   As a conventional insulation defect detection method, there is a method utilizing the fact that a partial discharge start voltage is lowered when initial electrons are induced in a defect portion by X-ray irradiation. This is a method of controlling the X-ray irradiation direction to irradiate a part of the sample, and comparing the partial discharge characteristics thereby to identify the defect position by comparing the X-ray irradiation direction and the sample structure (for example, Patent Documents). 1).

特開平9−105766号公報JP-A-9-105766

しかしながら、X線照射径や照射位置のずれに依存する測定誤差の影響のため、小型・高密度化するモジュールの測定の場合、欠陥発生箇所の正確な特定が困難になる。また、欠陥発生要因の特定のためには、欠陥の形状や状態(剥離やボイド)を判別し、欠陥が装置内部のどの位置にどのような状態で存在しているかを判別する必要性がある。   However, due to the influence of measurement errors depending on the X-ray irradiation diameter and irradiation position deviation, it is difficult to accurately identify the defect occurrence location in the case of measuring a small and high-density module. In addition, in order to identify the cause of the defect, it is necessary to determine the shape and state of the defect (peeling or void), and to determine in what position the defect exists and in what state. .

この発明は、このような問題を解決しようとするもので、その目的は、絶縁欠陥の正確な発生位置や形状、状態の測定により欠陥発生要因を特定する被測定物の欠陥検出装置及び方法を提供することにある。   The present invention is intended to solve such a problem, and an object of the present invention is to provide a defect detection apparatus and method for an object to be measured that specifies a defect generation factor by measuring an accurate generation position, shape, and state of an insulation defect. It is to provide.

この発明に係る被測定物の欠陥検出装置は、被測定物に対するX線照射による透過画像観測と部分放電測定によって欠陥位置及び状態を検出する被測定物の欠陥検出装置であって、X線を発生するX線発生器及び当該X線発生器から前記被測定物に照射するX線の照射範囲を制限するX線遮蔽板を有するX線照射手段と、前記被測定物に照射されたX線による被測定物の透過画像を観測する透過撮影手段と、前記透過撮影手段による透過画像観測の際に前記被測定物を載置する可動ステージを操作して前記被測定物へのX線照射位置を制御する照射位置移動手段と、前記X線遮蔽板の制御による前記被測定物へのX線の照射範囲制御と、前記被測定物の全体へのX線照射による全体照射時の透過画像観測と一部分へのX線照射による一部分照射時の透過画像観測との画像取得の切り替えと、全体照射時と一部分照射時に取得された透過画像の比較とにより、X線照射位置を確認する照射位置確認手段と、被測定物に対して試験電圧を印加し、当該被測定物に発生する部分放電を測定する部分放電測定手段とを備えたことを特徴とする。   A defect detection apparatus for an object to be measured according to the present invention is an apparatus for detecting a defect of an object to be measured, which detects a defect position and state by observation of a transmission image by X-ray irradiation and partial discharge measurement on the object to be measured. X-ray irradiation means having an X-ray generator to generate, an X-ray shielding plate for limiting an X-ray irradiation range for irradiating the object to be measured from the X-ray generator, and X-rays irradiated to the object to be measured X-ray irradiation position on the object to be measured by operating a transmission stage for observing a transmission image of the object to be measured by means of, and operating a movable stage on which the object to be measured is placed when observing the transmission image by the transmission imaging means Irradiating position moving means for controlling the X-ray shielding plate, X-ray irradiation range control to the object to be measured by controlling the X-ray shielding plate, and transmission image observation at the time of whole irradiation by X-ray irradiation to the whole object to be measured And partial illumination by X-ray irradiation Test for the object to be measured and irradiation position confirmation means for confirming the X-ray irradiation position by switching the image acquisition with transmission image observation at the time and comparing the transmission images acquired during whole irradiation and partial irradiation Partial discharge measuring means for applying a voltage and measuring partial discharge generated in the object to be measured is provided.

また、この発明に係る被測定物の欠陥検出方法は、X線照射位置を確認する照射位置確認手段により、X線の照射位置を確認し、照射位置のずれを修正すべく透過画像を観測しながら基準となる位置に移動させることと、電圧印加手段により被測定物に試験電圧を印加して、照射位置移動手段により前記被測定物を載置する可動ステージを操作して前記被測定物へのX線照射位置を移動させながら、部分放電測定手段により被測定物に発生する部分放電を測定し、当該部分放電発生時に、透過撮影手段による被測定物の透過画像観測により欠陥を可視化することとを備えたことを特徴とする。   Further, the defect detection method of the object to be measured according to the present invention confirms the X-ray irradiation position by the irradiation position confirmation means for confirming the X-ray irradiation position, and observes the transmission image to correct the deviation of the irradiation position. While moving to a reference position, applying a test voltage to the object to be measured by the voltage applying means, and operating the movable stage for placing the object to be measured by the irradiation position moving means to the object to be measured. The partial discharge generated on the object to be measured is measured by the partial discharge measuring means while moving the X-ray irradiation position, and the defect is visualized by observing the transmission image of the object to be measured by the transmission photographing means when the partial discharge occurs. It is characterized by comprising.

この発明によれば、被測定物に対するX線の照射範囲を制御し、全体透過画像とビーム状にしたX線の一部分透過画像との比較により照射位置を確認できるため、高密度に部品が配置された構造の中でも照射位置を容易に制御することができる。また、座標や内部構造の寸法等を考慮せずに照射位置制御が可能となるため、測定精度向上および測定時間の短縮が可能となる。また、部分放電測定により欠陥検出を行うと同時に、欠陥可視化により欠陥の詳細な発生位置を特定することができるため、パワーモジュール内部のように部品が密集している中で、どの部位から欠陥が発生しているかを正確に判別することが可能となる。さらに、波形観測による欠陥状態判別結果と合わせることで、絶縁欠陥発生要因を特定しやすくなる。   According to the present invention, the X-ray irradiation range on the object to be measured can be controlled, and the irradiation position can be confirmed by comparing the entire transmission image with a partial X-ray transmission image in the form of a beam. The irradiation position can be easily controlled even in the constructed structure. Further, the irradiation position can be controlled without considering the coordinates, dimensions of the internal structure, and the like, so that the measurement accuracy can be improved and the measurement time can be shortened. In addition, it is possible to detect defects by partial discharge measurement, and at the same time to identify the detailed occurrence position of defects by visualizing the defects, so that from where the defect is located while the parts are dense like inside the power module. It is possible to accurately determine whether it has occurred. Furthermore, by combining with the defect state determination result by waveform observation, it becomes easy to specify the cause of the insulation defect.

この発明の実施の形態1に係る被測定物の欠陥検出装置の構成を示す図である。It is a figure which shows the structure of the defect detection apparatus of the to-be-measured object which concerns on Embodiment 1 of this invention. 照射位置を確認する際の手順を示すフローチャートである。It is a flowchart which shows the procedure at the time of confirming an irradiation position. 全体照射時と一部分照射時との透過画像の対応により照射位置を確認する例を示す図である。It is a figure which shows the example which confirms an irradiation position by the response | compatibility of the transmission image at the time of whole irradiation and the time of partial irradiation. X線照射時および未照射時の部分放電開始電圧と試験電圧の関係を示す図である。It is a figure which shows the relationship between the partial discharge start voltage at the time of X-ray irradiation and the time of non-irradiation, and a test voltage. X線の照射範囲が距離によって変わる事を示す図である。It is a figure which shows that the irradiation range of X-ray changes with distance. この発明の実施の形態2に係るもので、印加電圧と部分放電波形を測定例を示す図である。It is a figure which concerns on Embodiment 2 of this invention, and shows an example of a measurement of an applied voltage and a partial discharge waveform. この発明の実施の形態3に係るもので、この発明の実施手順を示すフローチャートである。It is a flowchart which concerns on Embodiment 3 of this invention, and shows the implementation procedure of this invention.

実施の形態1.
図1は、この発明の実施の形態1に係る被測定物の欠陥検出装置の構成を示す図である。図1に示す被測定物の欠陥検出装置は、被測定物1に対するX線照射による透過画像観測と部分放電測定によって欠陥位置及び状態を検出する被測定物の欠陥検出装置であって、X線を発生するX線発生器3及びX線発生器3から被測定物1に照射するX線の照射範囲を制限するX線遮蔽板4を有するX線照射手段と、被測定物1に照射されたX線による被測定物1の透過画像を観測する透過撮像カメラ6及び透過画像モニター7でなる透過撮影手段と、透過撮影手段による透過画像観測の際に被測定物1を載置する可動ステージ2を操作して被測定物1へのX線照射位置を制御する照射位置移動手段としてのステージ制御部12と、X線遮蔽板4の制御による被測定物1へのX線の照射範囲制御と、被測定物1の全体へのX線照射による全体照射時の透過画像観測と一部分へのX線照射による一部分照射時の透過画像観測との画像取得の切り替えと、全体照射時と一部分照射時に取得された透過画像の比較とにより、X線照射位置を確認する照射位置確認手段としての照射位置確認制御部16と、被測定物1に対して試験電圧を印加し、当該被測定物1に発生する部分放電を測定する部分放電測定手段としての部分放電測定部18とを主構成として備える。
Embodiment 1 FIG.
1 is a diagram showing a configuration of a defect detection apparatus for an object to be measured according to Embodiment 1 of the present invention. The defect detection apparatus for an object to be measured shown in FIG. 1 is an apparatus for detecting a defect of an object to be measured that detects a defect position and state by observation of a transmission image by X-ray irradiation and partial discharge measurement on the object to be measured 1. X-ray generator 3 for generating X-rays, an X-ray irradiation means having an X-ray shielding plate 4 for limiting the irradiation range of X-rays irradiated from the X-ray generator 3 to the DUT 1, and the DUT 1 A transmission imaging means consisting of a transmission imaging camera 6 and a transmission image monitor 7 for observing a transmission image of the object to be measured 1 by X-rays, and a movable stage on which the object to be measured 1 is placed when observing the transmission image by the transmission imaging means 2 for controlling the X-ray irradiation position on the measurement object 1 by controlling the X-ray shielding plate 4 and a stage control unit 12 as an irradiation position moving means for controlling the X-ray irradiation position on the measurement object 1 by operating 2. And X-ray irradiation on the entire DUT 1 X-ray irradiation position by switching image acquisition between transmission image observation at the time of irradiation and transmission image observation at the time of partial irradiation by X-ray irradiation to a part, and comparison of transmission images acquired at the time of full irradiation and partial irradiation The irradiation position confirmation control unit 16 as an irradiation position confirmation means for confirming the above and a part as a partial discharge measurement means for applying a test voltage to the device under test 1 and measuring the partial discharge generated in the device under test 1 A discharge measuring unit 18 is provided as a main configuration.

ここで、部分放電測定部18は、高電圧電源8、部分放電測定器9、結合コンデンサ10、検出インピーダンス11及び放電波形モニター15を有し、X線照射制御部19は、透過画像モニター7、ステージ制御部12、X線制御部13及びX線遮蔽板制御部14を有し、高電圧電源8、ステージ制御部12、X線制御部13、X線遮蔽板制御部14及び照射位置確認制御部16は、測定制御部17に接続されて、測定制御部17により制御されるように構成されている。   Here, the partial discharge measurement unit 18 includes a high voltage power supply 8, a partial discharge measurement device 9, a coupling capacitor 10, a detection impedance 11, and a discharge waveform monitor 15, and the X-ray irradiation control unit 19 includes a transmission image monitor 7, It has a stage control unit 12, an X-ray control unit 13, and an X-ray shielding plate control unit 14, and includes a high voltage power supply 8, a stage control unit 12, an X-ray control unit 13, an X-ray shielding plate control unit 14, and an irradiation position confirmation control. The unit 16 is connected to the measurement control unit 17 and is configured to be controlled by the measurement control unit 17.

図1において、被測定物1は、照射位置移動手段としての可動ステージ2上に載置されており、この被測定物1に、X線発生器3から発生するX線が穴のあるX線遮蔽板4によってビーム状に形成されてX線ビーム5として照射される。このとき、被測定物1に照射されているX線の透過画像は、透過撮像カメラ6および透過画像モニター7によって観測される。また、被測定物1には、高電圧電源8によって試験電圧が印加され、発生する部分放電を結合コンデンサ10及び検出インピーダンス11を介して部分放電測定器9によって測定するように構成されている。   In FIG. 1, an object to be measured 1 is placed on a movable stage 2 as an irradiation position moving means, and X-rays generated from an X-ray generator 3 are holes on the object 1 to be measured. A beam is formed by the shielding plate 4 and irradiated as an X-ray beam 5. At this time, a transmission image of X-rays irradiated on the DUT 1 is observed by the transmission imaging camera 6 and the transmission image monitor 7. Further, a test voltage is applied to the device under test 1 by a high voltage power supply 8, and the generated partial discharge is measured by a partial discharge measuring device 9 through a coupling capacitor 10 and a detection impedance 11.

また、X線遮蔽板4は、任意にX線照射口上に設置/非設置の外部制御が可能で、被測定物1全体にX線を照射する場合と一部分に照射する場合とに切り替えることができる。X線をビーム状にすることで現在の照射位置が分からなくなった場合、照射位置確認制御部16により、そのままの位置で全体照射に切り替えて透過画像測定し、一部分照射に戻して再び透過画像測定する。このとき、一部分照射時の表示範囲を全体照射時の全体像と重ね、その画像を表示するように制御することで、X線の照射位置確認ができる。   Further, the X-ray shielding plate 4 can be arbitrarily installed / not installed on the X-ray irradiation port, and can be switched between irradiating the entire object to be measured 1 and irradiating a part thereof. it can. When the current irradiation position cannot be determined by making the X-ray beam, the irradiation position confirmation control unit 16 switches to the whole irradiation at the same position and measures the transmission image, returns to the partial irradiation, and measures the transmission image again. To do. At this time, the X-ray irradiation position can be confirmed by superimposing the display range at the time of partial irradiation with the entire image at the time of the entire irradiation and controlling to display the image.

図2は、照射位置確認制御部16による照射範囲制御、画像取得、比較及び表示の流れを示すフローチャートである。すなわち、X線をビーム状にすることで現在の照射位置が不明になった場合(S1)は、そのままの位置でX線遮蔽板制御部14により照射範囲を全体照射に切り替えて(S2)、透過画像モニター7により透過画像を取得し(S3)、X線遮蔽板制御部14により照射範囲を一部分照射に戻して(S4)、再び透過画像モニター7により透過画像を取得する(S5)。このとき、一部分照射時の表示範囲を全体照射時の全体像と重ね、全体像に対する照射位置を表示するように制御することで、X線の照射位置確認ができる。このように、照射位置確認制御部16により自動制御することで容易に照射位置を確認できるようになる。   FIG. 2 is a flowchart showing the flow of irradiation range control, image acquisition, comparison, and display by the irradiation position confirmation control unit 16. That is, when the current irradiation position becomes unknown by making the X-ray beam (S1), the irradiation range is switched to the entire irradiation by the X-ray shielding plate control unit 14 at the same position (S2), A transmission image is acquired by the transmission image monitor 7 (S3), the irradiation range is partially returned to the irradiation range by the X-ray shielding plate control unit 14 (S4), and the transmission image is acquired by the transmission image monitor 7 again (S5). At this time, the X-ray irradiation position can be confirmed by controlling the display range at the time of partial irradiation to be superimposed on the entire image at the time of the entire irradiation and displaying the irradiation position with respect to the entire image. As described above, the irradiation position can be easily confirmed by the automatic control by the irradiation position confirmation control unit 16.

照射位置を移動させる場合には、測定制御部17からの指令に基づいてステージ制御部12により可動ステージ2を操作し、被測定物1に対するX線照射位置を制御しつつ、透過画像観測も常に行う。このとき、初めに全体照射で被測定物の全体透過画像を取得しておき、この全体像と対応させることで照射位置移動中に照射位置を確認する。例えば全体画像例として図3(a)のように撮影されるとすると、X線をビーム状にしたときには同図(b)、(c)のようになり、(b)、(c)から得られる画像の特徴を(a)の画像内と比較・対応させることで現在の照射位置を判断する。もし、移動距離が分からなくなり、画像から特徴が判別出来ない、もしくは特徴があっても該当箇所が分からなくなった場合、前記の照射位置確認制御部16により位置を再確認する。   When moving the irradiation position, the stage control unit 12 operates the movable stage 2 based on a command from the measurement control unit 17 to control the X-ray irradiation position with respect to the DUT 1 and always perform transmission image observation. Do. At this time, an entire transmission image of the object to be measured is first acquired by the entire irradiation, and the irradiation position is confirmed during the movement of the irradiation position by corresponding to the entire image. For example, if the entire image is taken as shown in FIG. 3 (a), when the X-ray is formed into a beam, it becomes as shown in FIGS. 3 (b) and (c), and is obtained from (b) and (c). The current irradiation position is determined by comparing / corresponding the characteristics of the obtained image with those in the image of (a). If the moving distance is unknown and the feature cannot be determined from the image, or the feature is not known even if there is a feature, the irradiation position confirmation control unit 16 reconfirms the position.

ここで、全体の測定の流れを以下に示す。まず、X線遮蔽板制御部14によりX線遮蔽板4を制御し、被測定物1全体にX線が照射されるように設定する。続いて、試験電圧を決定するため、部分放電測定部18により部分放電開始電圧を測定する。欠陥部にX線を照射すると、初期電子が誘起されるため、部分放電開始電圧が低下する。欠陥部にX線を照射していない状態の部分放電開始電圧をVi、照射した状態の部分放電開始電圧をVi’としたとき、図4のように、Vi’<Viとなれば欠陥が存在していることが確認できる。試験電圧Vpは、Vi’<Vp<Vi、となるようにし、X線が照射されたときのみ放電する電圧となるようにする。   Here, the overall measurement flow is shown below. First, the X-ray shielding plate 4 is controlled by the X-ray shielding plate control unit 14 so as to irradiate the entire object to be measured 1 with X-rays. Subsequently, the partial discharge start voltage is measured by the partial discharge measuring unit 18 in order to determine the test voltage. When the defective part is irradiated with X-rays, initial electrons are induced, so that the partial discharge start voltage decreases. When the partial discharge start voltage in the state where X-rays are not irradiated to the defective portion is Vi and the partial discharge start voltage in the irradiated state is Vi ′, a defect exists if Vi ′ <Vi as shown in FIG. You can confirm that The test voltage Vp is set such that Vi ′ <Vp <Vi, and is a voltage that is discharged only when X-rays are irradiated.

次に、X線遮蔽板4を制御し、X線ビームを照射するように設定する。このとき、前記の照射位置確認制御部16により照射位置を確認し、測定制御部17の指令に基づく動作するステージ制御部12により可動ステージ2を操作して任意の照射位置へと移動させる。   Next, the X-ray shielding plate 4 is controlled and set to irradiate an X-ray beam. At this time, the irradiation position is confirmed by the irradiation position confirmation control unit 16, and the movable stage 2 is operated and moved to an arbitrary irradiation position by the stage control unit 12 that operates based on a command from the measurement control unit 17.

そして、高電圧電源8により被測定物1に試験電圧Vpを印加し、部分放電測定器9により部分放電が発生しているかを確認する。放電していなければ、可動ステージ2を操作して照射位置を移動させる。移動の仕方は、透過画像を見ながら任意の領域のみを移動させても良いし、被測定物の全領域に照射するように端の方から順に移動させても良い。部分放電が発生したら、可動ステージ2の移動を止め、透過画像により欠陥を観測し、欠陥形状や詳細位置を特定する。   Then, the test voltage Vp is applied to the DUT 1 by the high voltage power supply 8 and it is confirmed by the partial discharge measuring device 9 whether partial discharge has occurred. If it is not discharged, the movable stage 2 is operated to move the irradiation position. As for the movement method, only an arbitrary region may be moved while viewing the transmission image, or may be moved in order from the end so as to irradiate the entire region of the object to be measured. When partial discharge occurs, the movement of the movable stage 2 is stopped, the defect is observed by the transmission image, and the defect shape and the detailed position are specified.

また、X線ビームの形成方法として、前記のように穴付きのX線遮蔽板4を利用する以外に、スリット幅を制御できる遮蔽板を利用すれば、照射範囲を任意に変えられ、全体照射への切り替えも行うことができる。   In addition to using the X-ray shielding plate 4 with holes as described above as a method for forming the X-ray beam, the irradiation range can be arbitrarily changed by using a shielding plate capable of controlling the slit width, and the entire irradiation is performed. Switching to can also be performed.

X線は、図5のように放射状に照射されるので、X線発生器3およびX線遮蔽板4からの距離によって照射範囲Dは変化する。したがって、穴付きのX線遮蔽板4を利用したビーム形成の場合、X線発生器3およびX線遮蔽板4、または可動ステージ2の上下位置を移動させることで、被測定物1に照射されるX線の照射範囲を制御できる。スリット幅制御可能な遮蔽板を利用した場合は、スリット幅を広げることでも照射範囲を大きくすることができる。X線照射範囲を大きくすることで欠陥のおよその位置を測定した後に、照射範囲を小さくして測定することで、測定時間を短縮できる。   Since the X-rays are irradiated radially as shown in FIG. 5, the irradiation range D varies depending on the distance from the X-ray generator 3 and the X-ray shielding plate 4. Therefore, in the case of beam formation using the X-ray shielding plate 4 with a hole, the object to be measured 1 is irradiated by moving the X-ray generator 3 and the X-ray shielding plate 4 or the vertical position of the movable stage 2. The X-ray irradiation range can be controlled. When a shielding plate capable of controlling the slit width is used, the irradiation range can be increased by widening the slit width. After measuring the approximate position of the defect by increasing the X-ray irradiation range, the measurement time can be shortened by measuring with the irradiation range being reduced.

X線照射位置移動手段として、可動ステージ2による制御の代わりに、X線発生器3とカメラ6の方を連動して移動させる構成にしても同様の効果が得られるが、その場合、X線照射軸がカメラに対してずれない様にする必要がある。また、X線発生器3とカメラ6は、図1に示すような位置とは逆の位置関係で配置しても、被測定物1を横から挟むように配置しても同様の効果が得られる。   The same effect can be obtained by adopting a configuration in which the X-ray generator 3 and the camera 6 are moved in conjunction with each other instead of the control by the movable stage 2 as the X-ray irradiation position moving means. It is necessary to prevent the irradiation axis from shifting with respect to the camera. The X-ray generator 3 and the camera 6 can have the same effect even if they are arranged in a positional relationship opposite to the position shown in FIG. 1 or the object to be measured 1 is sandwiched from the side. It is done.

したがって、上記実施の形態1によれば、X線ビーム5を被測定物1に照射する際、照射範囲の切り替えと透過画像観測の制御により全体像と照射範囲の画像を対応させることで照射位置を容易に確認することができ、照射位置移動時も透過画像を同時観測して全体照射時の画像と対応させることで、座標や寸法等の考慮による照射位置制御をせずに任意の領域に対して正確な位置に照射できるため、精度向上および測定時間の短縮が可能となる。また、欠陥可視化によって、部品が高密度に配置されたパワーモジュール中でも絶縁欠陥位置の正確な測定が可能となり、半導体装置の絶縁欠陥検出装置として適用可能となる。   Therefore, according to the first embodiment, when the X-ray beam 5 is irradiated onto the DUT 1, the irradiation position is obtained by matching the entire image with the image in the irradiation range by switching the irradiation range and controlling the transmission image observation. By simultaneously observing the transmission image even when the irradiation position is moved and making it correspond to the image during the entire irradiation, it is possible to control the irradiation position without considering the coordinates and dimensions. On the other hand, since it is possible to irradiate an accurate position, the accuracy can be improved and the measurement time can be shortened. In addition, the defect visualization makes it possible to accurately measure the position of an insulation defect even in a power module in which components are arranged at high density, and can be applied as an insulation defect detection device for a semiconductor device.

実施の形態2.
前記実施の形態1において、部分放電検出により欠陥位置が測定された際に、放電波形モニター15より部分放電波形を観測することができる。部分放電波形の測定例を図6に示す。部分放電は、欠陥の状態によって発生位相や頻度が変わるので、その観測結果から、欠陥の状態を判別することができる。例えば、ボイドの場合は印加電圧の正負の極性による放電発生位相の差はあまりないが、放電部に金属電極が露出している剥離状態では負極性電圧印加時に電子が放出されやすい影響で放電発生頻度に印加電圧極性による偏りが生じる。
Embodiment 2. FIG.
In the first embodiment, the partial discharge waveform can be observed from the discharge waveform monitor 15 when the defect position is measured by the partial discharge detection. A measurement example of the partial discharge waveform is shown in FIG. In the partial discharge, the phase and frequency of occurrence vary depending on the state of the defect, so the state of the defect can be determined from the observation result. For example, in the case of voids, there is not much difference in the discharge generation phase due to the polarity of the applied voltage, but in the peeled state where the metal electrode is exposed in the discharge part, discharge occurs due to the effect of electrons being easily emitted when negative voltage is applied The frequency is biased by the applied voltage polarity.

したがって、実施の形態2によれば、部分放電測定部18に備えた放電波形モニター15により、部分放電波形を観測して、欠陥状態(ボイド、剥離等)を判別することにより、欠陥発生要因を特定できる。   Therefore, according to the second embodiment, the discharge waveform monitor 15 provided in the partial discharge measurement unit 18 observes the partial discharge waveform and discriminates the defect state (void, peeling, etc.), thereby determining the cause of the defect. Can be identified.

実施の形態3.
前記実施の形態1によって絶縁欠陥の正確な発生位置を特定し、実施の形態2により欠陥の状態を判別することで、欠陥発生要因を特定することができる。この測定手順のフローチャートを図7に示す。この測定の流れは測定制御部17により制御できる。すなわち、図7に示すように、被測定物1全体にX線が照射されるように設定し(S11)、被測定物1全体の透過画像を取得する(S12)。そして、X線照射時及び未照射時の部分放電開始電圧を測定し(S13)、試験電圧を決定する(S14)。次に、X線がビーム状に照射されるように設定して(S15)、X線ビームを照射し(S16)、照射位置確認制御部16により照射位置を確認し、照射位置のずれを修正すべく透過画像を観測しながら照射位置を基準となる位置に移動させる(S17)。
Embodiment 3 FIG.
By identifying the exact occurrence position of the insulation defect according to the first embodiment and determining the state of the defect according to the second embodiment, the cause of the defect can be identified. A flowchart of this measurement procedure is shown in FIG. The measurement flow can be controlled by the measurement control unit 17. That is, as shown in FIG. 7, it sets so that X-rays may be irradiated to the to-be-measured object 1 whole (S11), and the transmission image of the to-be-measured object 1 whole is acquired (S12). And the partial discharge start voltage at the time of X-ray irradiation and non-irradiation is measured (S13), and a test voltage is determined (S14). Next, X-rays are set to be irradiated in a beam shape (S15), X-ray beams are irradiated (S16), the irradiation position confirmation control unit 16 confirms the irradiation position, and the irradiation position deviation is corrected. The irradiation position is moved to a reference position while observing the transmission image as much as possible (S17).

その後、試験電圧を印加し(S18)、部分放電が発生したか否かを判定する(S19)。部分放電が発生しない場合は、可動ステージ2を操作してX線照射位置を移動し(S20)、透過画像を観測し、全体透過画像との対応により照射位置を確認する(S21)。ステップS19において、部分放電が発生した場合は、透過画像から欠陥の位置と形状を観測すると共に(S22)、部分放電波形を観測し(S23)、欠陥発生要因を特定する(S24)。   Thereafter, a test voltage is applied (S18), and it is determined whether or not a partial discharge has occurred (S19). When the partial discharge does not occur, the X-ray irradiation position is moved by operating the movable stage 2 (S20), the transmission image is observed, and the irradiation position is confirmed by correspondence with the entire transmission image (S21). In step S19, when a partial discharge occurs, the position and shape of the defect are observed from the transmission image (S22), the partial discharge waveform is observed (S23), and the cause of the defect is specified (S24).

すなわち、実施の形態3による欠陥検出方法は、X線照射位置を確認する照射位置確認制御部16により、X線の照射位置を確認し、照射位置のずれを修正すべく透過画像を観測しながら基準となる位置に移動させることと、被測定物1に試験電圧を印加して、被測定物1を載置する可動ステージ2を操作して被測定物1へのX線照射位置を移動させながら、部分放電測定部18により被測定物1に発生する部分放電を測定し、当該部分放電発生時に、被測定物1の透過画像観測により欠陥を可視化することとを備える。   That is, in the defect detection method according to the third embodiment, the irradiation position confirmation control unit 16 that confirms the X-ray irradiation position confirms the X-ray irradiation position and observes the transmission image to correct the deviation of the irradiation position. Move to the reference position, apply a test voltage to the DUT 1 and operate the movable stage 2 on which the DUT 1 is placed to move the X-ray irradiation position on the DUT 1 However, the partial discharge measuring unit 18 measures the partial discharge generated in the DUT 1 and visualizes the defect by observing the transmission image of the DUT 1 when the partial discharge occurs.

これにより、被測定物1に対して試験電圧を印加し、ビーム状のX線を照射して部分放電を測定して欠陥位置を検出する際に、照射範囲の透過画像を観測できるようにし、全体透過画像と対応させてX線照射位置を確認することで、照射位置を正確に制御することができ、欠陥検出時に欠陥を可視化することで、欠陥の正確な位置を特定することができる。さらに、部分放電波形の測定による欠陥状態の判別結果と合わせて、欠陥発生要因を特定する。   Thereby, when a test voltage is applied to the DUT 1 and a beam-like X-ray is irradiated to measure a partial discharge to detect a defect position, a transmission image of the irradiation range can be observed, By confirming the X-ray irradiation position in correspondence with the entire transmission image, the irradiation position can be accurately controlled, and by visualizing the defect at the time of defect detection, the exact position of the defect can be specified. Further, the cause of the defect is specified together with the determination result of the defect state by measuring the partial discharge waveform.

したがって、実施の形態3によれば、この欠陥検出方法により、機器内部の欠陥発生要因を特定し、それに対する対応策を講じることで、パワーモジュール等の機器の絶縁信頼性を向上させることができる。ここでいうパワーモジュールとは、SiおよびSiCチップ等全てのチップを搭載したシリコーンゲル封止の高電圧機種、エポキシ樹脂のトランスファー成型によるモールド型モジュール等全てのモジュールに対応可能であることは言うまでも無い。   Therefore, according to the third embodiment, it is possible to improve the insulation reliability of a device such as a power module by specifying a defect occurrence factor inside the device and taking a countermeasure against it by using this defect detection method. . The power module here is applicable to all modules such as silicone gel-sealed high-voltage models equipped with all chips such as Si and SiC chips, and mold-type modules by transfer molding of epoxy resin. There is no.

1 被測定物、2 可動ステージ、3 X線発生器、4 X線遮蔽板、5 X線ビーム、6 X線透過撮影カメラ、7 X線透過画像モニター、8 高電圧電源、9 部分放電測定器 、10 結合コンデンサ、11 検出インピーダンス、12 可動ステージ制御部、13 X線制御部、14 X線遮蔽板制御部、 15 放電波形モニター、16 照射位置確認制御部、17 測定制御部、18 部分放電測定部、19 X線照射制御部。   1 object to be measured, 2 movable stage, 3 X-ray generator, 4 X-ray shielding plate, 5 X-ray beam, 6 X-ray transmission camera, 7 X-ray transmission image monitor, 8 high voltage power supply, 9 partial discharge measuring instrument DESCRIPTION OF SYMBOLS 10 Coupling capacitor, 11 Detection impedance, 12 Movable stage control part, 13 X-ray control part, 14 X-ray shielding board control part, 15 Discharge waveform monitor, 16 Irradiation position confirmation control part, 17 Measurement control part, 18 Partial discharge measurement Part, 19 X-ray irradiation control part.

Claims (2)

被測定物に対するX線照射による透過画像観測と部分放電測定によって欠陥位置及び状態を検出する被測定物の欠陥検出装置であって、
X線を発生するX線発生器及び当該X線発生器から前記被測定物に照射するX線の照射範囲を制限するX線遮蔽板を有するX線照射手段と、
前記被測定物に照射されたX線による被測定物の透過画像を観測する透過撮影手段と、
前記透過撮影手段による透過画像観測の際に前記被測定物を載置する可動ステージを操作して前記被測定物へのX線照射位置を制御する照射位置移動手段と、
前記X線遮蔽板の制御による前記被測定物へのX線の照射範囲制御と、前記被測定物の全体へのX線照射による全体照射時の透過画像観測と一部分へのX線照射による一部分照射時の透過画像観測との画像取得の切り替えと、全体照射時と一部分照射時に取得された透過画像の比較とにより、X線照射位置を確認する照射位置確認手段と、
被測定物に対して試験電圧を印加し、当該被測定物に発生する部分放電を測定する部分放電測定手段と
を備えたことを特徴とする被測定物の欠陥検出装置。
A device for detecting a defect of an object to be measured that detects a defect position and state by observation of a transmission image by X-ray irradiation and partial discharge measurement on the object to be measured,
An X-ray irradiation means having an X-ray generator for generating X-rays and an X-ray shielding plate for limiting an irradiation range of X-rays irradiated from the X-ray generator to the object to be measured;
Transmission imaging means for observing a transmission image of the measurement object by X-rays irradiated to the measurement object;
An irradiation position moving means for controlling an X-ray irradiation position on the object to be measured by operating a movable stage on which the object to be measured is placed during transmission image observation by the transmission imaging means;
Control of the X-ray irradiation range to the object to be measured by controlling the X-ray shielding plate, observation of a transmission image at the time of whole irradiation by X-ray irradiation to the entire object to be measured, and a part by X-ray irradiation to a part Irradiation position confirmation means for confirming the X-ray irradiation position by switching image acquisition with transmission image observation at the time of irradiation, and comparing transmission images acquired at the time of whole irradiation and partial irradiation,
A defect detection apparatus for a measured object, comprising: a partial discharge measuring means for applying a test voltage to the measured object and measuring a partial discharge generated in the measured object.
請求項1に記載の被測定物の欠陥検出装置において、
前記部分放電測定手段は、部分放電波形を観測するモニターを備えた
ことを特徴とする被測定物の欠陥検出装置。
In the to-be-measured object defect detection apparatus according to claim 1,
The apparatus for detecting a defect of an object to be measured, wherein the partial discharge measuring means includes a monitor for observing a partial discharge waveform.
JP2009137170A 2009-06-08 2009-06-08 Device and method for detecting defect of object to be measured Expired - Fee Related JP5452083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137170A JP5452083B2 (en) 2009-06-08 2009-06-08 Device and method for detecting defect of object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137170A JP5452083B2 (en) 2009-06-08 2009-06-08 Device and method for detecting defect of object to be measured

Publications (2)

Publication Number Publication Date
JP2010281785A JP2010281785A (en) 2010-12-16
JP5452083B2 true JP5452083B2 (en) 2014-03-26

Family

ID=43538639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137170A Expired - Fee Related JP5452083B2 (en) 2009-06-08 2009-06-08 Device and method for detecting defect of object to be measured

Country Status (1)

Country Link
JP (1) JP5452083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969561A (en) * 2014-05-28 2014-08-06 上海艾飞能源科技有限公司 Visual ultrasonic detection method for partial discharge failure detection

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5596525B2 (en) * 2010-12-13 2014-09-24 東芝産業機器システム株式会社 Solid insulation internal defect detection system
CN102445640B (en) * 2011-09-30 2014-07-02 云南电力试验研究院(集团)有限公司 GIS device intelligent recognition method based on vector machine and artificial fish swarm optimization
KR101942376B1 (en) 2017-04-20 2019-04-17 현대일렉트릭앤에너지시스템(주) Apparatus for detecting defects of insulator
WO2018194422A1 (en) * 2017-04-20 2018-10-25 현대일렉트릭앤에너지시스템(주) Device for detecting defect in insulating material, jig thereof for fixing insulating material to be measured, and method for detecting defect in insulating material
CN113203921A (en) * 2020-11-26 2021-08-03 国网天津市电力公司 One-key type full-automatic tester for insulation standardization between branches

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171374A (en) * 1984-09-14 1986-04-12 Tokai Daigaku Detection of partially discharging area
JPH07280877A (en) * 1994-02-17 1995-10-27 Furukawa Electric Co Ltd:The Method for detecting defect at joint of rubber-plastic insulated power cable
JPH09105766A (en) * 1995-10-11 1997-04-22 Toshiba Corp Method for measuring partial discharge
JPH09127182A (en) * 1995-10-26 1997-05-16 Mitsubishi Electric Corp Insulation test method for high voltage electric apparatus and insulation tester
JPH11118870A (en) * 1997-10-20 1999-04-30 Mitsubishi Electric Corp Insulation test method and device for high voltage electric equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969561A (en) * 2014-05-28 2014-08-06 上海艾飞能源科技有限公司 Visual ultrasonic detection method for partial discharge failure detection
CN103969561B (en) * 2014-05-28 2017-01-25 上海艾飞能源科技有限公司 Visual ultrasonic detection method for partial discharge failure detection

Also Published As

Publication number Publication date
JP2010281785A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5452083B2 (en) Device and method for detecting defect of object to be measured
JP6367871B2 (en) System for analysis of device under test and method for testing device under test
US8421008B2 (en) Pattern check device and pattern check method
JP2006105960A (en) Sample inspection method and device
JP3732738B2 (en) Semiconductor device inspection equipment
KR101654825B1 (en) Method for Inspecting Compact Parts Formed on Substrate in Defect Inspection
JP2007294391A (en) Designated position identification method and designated position measuring device
JP5352135B2 (en) Inspection apparatus and inspection method
JP4199629B2 (en) Internal structure observation method and apparatus
JP4953590B2 (en) Test apparatus and device manufacturing method
JP2008286554A (en) Apparatus and method for fluorescent x-ray analysis and program
JP5478426B2 (en) Measurement or inspection apparatus and measurement or inspection method using the same
JP2007189113A (en) Probe needle contact detecting method and device thereof
JP2007212288A (en) Pattern inspection method and device, and program
JP5832200B2 (en) Apparatus and method for acquiring defect analysis image of wiring board using X-ray
CN114175206A (en) Multi-landing energy scanning electron microscope system and method
JP4795308B2 (en) Sample holder for internal structure observation and electron microscope
JP2006275527A (en) Optical system integrated type inspection device
JP4286821B2 (en) Semiconductor device inspection equipment
JP2019035587A (en) Substrate inspection device
JP2010261894A (en) Tft array inspection apparatus and tft substrate aligning method
KR102436455B1 (en) Apparatus and Method for Inspection of Pattern, and System Using the Same
JPS6327854B2 (en)
JP4837718B2 (en) Semiconductor device inspection equipment
TW550373B (en) Method and apparatus for inspecting conductive pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5452083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees