JP5450431B2 - ワイヤレス通信環境における信号処理 - Google Patents

ワイヤレス通信環境における信号処理 Download PDF

Info

Publication number
JP5450431B2
JP5450431B2 JP2010531499A JP2010531499A JP5450431B2 JP 5450431 B2 JP5450431 B2 JP 5450431B2 JP 2010531499 A JP2010531499 A JP 2010531499A JP 2010531499 A JP2010531499 A JP 2010531499A JP 5450431 B2 JP5450431 B2 JP 5450431B2
Authority
JP
Japan
Prior art keywords
channel
processor
parameter
signal
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010531499A
Other languages
English (en)
Other versions
JP2011502413A (ja
Inventor
カーロ・ルスチ
スティーヴ・アルプレス
Original Assignee
エヌビディア・テクノロジー・ユーケー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌビディア・テクノロジー・ユーケー・リミテッド filed Critical エヌビディア・テクノロジー・ユーケー・リミテッド
Publication of JP2011502413A publication Critical patent/JP2011502413A/ja
Application granted granted Critical
Publication of JP5450431B2 publication Critical patent/JP5450431B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、ワイヤレス通信システムにおける無線信号処理に関する。
昨今のワイヤレス通信において、データを搬送する無線信号の送信は、多数の異なる通信システムを基盤として実現されており、多くの場合、そのような通信システムは、規格化がなされている。それらのワイヤレス通信システムのうちの1つ以上をサポートするように動作可能なデバイスに対する要望が高まっている。移動無線受信デバイスは、アナログ無線周波数(RF)/中間周波数(IF)段を有しており、RF/IF段は、1つ以上のアンテナを介してワイヤレス信号を送受信するように構成されている。典型的に、RF/IF段の出力は、ベースバンドに変換される。アナログ−デジタル変換器(ADC)は、入力されたアナログ信号をデジタルサンプルに変換する。デジタルサンプルは、信号検出のために処理され、信頼度数形式のデータに復号される。あるいは、ADCは、IFで直接に動作し、その場合、ベースバンドへの変換は、デジタル領域で実行される。デジタルサンプルに対する多数の異なるタイプのフロントエンド処理が知られており、信号検出を行うために、レーキ受信機処理及びチャネル平衡化処理が組み込まれる。
符号分割多重接続(CDMA)ワイヤレスシステムでは、異なる物理チャネルは、別個の拡散シーケンスを用いて、符号領域で多重化される。直交拡散符号語の場合、オリジナルデータシンボルは、その後、受信機における逆拡散によって効果的に分離できる。
広帯域CDMA(WCDMA)セルラシステムでは、ダウンリンク符号の多重化は、直交可変拡散率(OVSF)符号を用いて実行される。しかしながら、OVSF符号語は、時間的整合が取れている状況下でのみ互いに直交する。マルチパス伝搬の存在下では、符号の直交性が失われ、逆拡散動作は、多元接続干渉(MAI)の影響を受ける。
慣習的に、CDMA移動無線受信機は、レーキプロセッサを利用する。レーキプロセッサは、拡散シーケンスの相関特性に依存する。レーキプロセッサについては、例えば、非特許文献1に記載がある。このタイプの受信機は、符号多重化送信間のMAIが他の雑音及び干渉源に匹敵する場合に、符号相関の存在による性能劣化の影響を受けやすい。これらの状況下では、逆拡散前に符号間の直交性の復元を試みることによって、性能的利点を発揮できる。それにもかかわらず、レーキ処理に基づく従来の3GPP受信機の低最適性に起因して、とりわけ、ダウンリンクデータレートがWCDMA Release 99の384kbpsから高速ダウンリンクパケットアクセス(HDSPA)の数Mbpsに増大したことで、著しい性能不利益が生じている。符号直交性がマルチパスによって損なわれた場合の効果的なアプローチは、レーキ処理の代わりにチャネル平衡化を用いることである。
チャネル平衡化技術は、周波数選択的送信チャネルのシンボル間干渉に対処するために、ここ数年にわたって広く利用されてきた。チャネル平衡化技術については、非特許文献1及び非特許文献2に記載がある。近年、時分割多重接続(TDMA)及び符号分割多重接続(CDMA)移動ワイヤレスシステム用の受信機へのチャネル平衡化の応用が見出されている。CDMAセルラシステムへのチャネル平衡化の適用の一例が、非特許文献3に示されている。具体的には、非同期式CDMAセルラシステムでは、3GPP WCDMA規格の送信リンクの場合のように、チップレベルでの平衡化は、実装の複雑化を犠牲にして、従来のレーキ受信機を越えて性能を著しく向上させる。特に、この利点は、3GPP高速ダウンリンクパケットアクセス(HSDPA)のような高レートデータ転送にとって重要である。
レーキ処理又はチャネル平衡化処理からの出力は、データから論理的値を抽出するため、具体的には、復号化機能のために、以降の信号処理技術に与えられる。(逆スクランブル及び逆拡散を含む)レーキ/イコライザ処理に続く主なベースバンド処理機能は、逆インタリービング、レートデマッチング(繰り返し又はパンクチャリングを実行する二重Txレートマッチング機能)、チャネル復号、及びCRCチェックである。このリストは、網羅的ではなく、例えば、WCDMA受信機もまた、物理的チャネル逆マッピング、運搬チャネル逆多重化など、同様の機能を実現するということに留意されたい。
これまで、無線受信機は、意図する受信機のための通信システムに基づいて、レーキプロセッサ又はチャネルイコライザのいずれか一方を提供してきた。ハードウェアにレーキ受信機又はチャネルイコライザを実装するための技術が知られている。
ソフトウェアでのレーキ受信機及びイコライザ機能の実装が望まれる。原理上は、ソフトウェアによる実装は、レーキ受信機又はチャネルイコライザのいずれか一方を実装するための共通プロセッサを用いることによって可能となる。より一般的には、プロセッサは、原理上、多数の異なる動作を実行し、その結果、プロセッサ管理リソースが、重大な問題となる。
さらに、多くのコンピュータプロセッサは、制限された命令セットしか有さないせいで制限を受けるとともに、さまざまなタイプのデータ処理演算を特定のアルゴリズムを用いて効果的に扱う機能と、さまざまなアルゴリズムを実行する機能ととが製造時に固定されている。マルチビットオペランド値で動作するソフトウェアカスタマイズ化命令を扱うための向上したプラットフォームを提供するプロセッサが、特許文献1に開示されており、LIVANTO(登録商標)として入手可能である。そのようなプロセッサは、命令によって演算マルチビットオペランド値レベルで動的に構成可能なオペレータを含む構成可能実行ユニットを提供する。
国際公開2006/117562号パンフレット 英国特許出願公開第0316036号明細書
J. G. Proakis, "Digital Communications", New York: McGraw-Hill, 1995 S. Benedetto, E. Biglieri, and V. Castellani, "Digital Transmission Theory", Englewood Cliffs, NJ: Prentice-Hall, 1987 A. Klein, "Data Detection Algorithms Specially Designed for the Downlink of CDMA Mobile Radio Systems", IEEE Vehicular Technology Conference, vol. 1, Phoenix AZ, May 1997, pp. 203-207 G. L. Stuber, "Principles of Mobile Communications", Norwell, MA: Kluwe, 1996 A. Sampath and J. M. Holtzman, "Estimation of Maximum Doppler Frequency for Handoff Decisions", in Proceedings of IEEE Vehicular Technology Conference, Secaucus, NJ, May 1993, pp. 859-862 C. Tepedelenlioglu, A. Adbi, G. B. Giannakis, and M. Kaveh, "Estimation of Doppler Spread and Signal Strength in Mobile Communications with Applications to Handoff and Adaptive Transmission", Wireless Communications and Mobile Compuitng, vol. 1, no. 2, pp. 221-242, March 2001 C. Luschi, M. Sandell, P. Strauch, and R.-H. Yan, "Adaptive Channel Memory Truncation for Digital Mobile Communications", in Proceedings of IEEE International Workshop on Intelligent Signal Processing and Communications Systems, Melbourne, Australia, November 1998, pp. 665-669 H. Arslan and T. Yucek, "Delay Spread Estimation for Wireless Communications System", in Proceedings of IEEE International Symposium on Computers and Communication, Kemer-Antalya, Turkey, June-July 2003, pp. 282-287 Y. Bistritz, "Zero Location with Respect to the Unit Circle of Discrete-Time Linear System Polynomials", Proceedings of the IEEE, vol. 72, no. 9, pp. 1131-1142, September 1984 M. Turkboylari and G. L. Stuber, "An Efficient Algorithm for Estimating the Signal-to-Interference Ratio in TDMA Cellular Systems", IEEE Transactuins on Communications, vol. 46, no. 6, pp. 728-731, June 1998 R. W. Lucky, "Automatic Equalization for Digital Communication", Bell System Technical Journal, vol. 44, pp. 547-588, April 1965 J. G. Proakis and J. H. Miller, "An Adaptive receiver for Digital Signaling Through Channels with Intersymbol Interference", IEEE Transactions on Information Theory, vol. 15, no. 4, pp. 484-497, July 1969 S. U. H. Qureshi, "Adaptive Equalization", Proceedings of the IEEE, vol. 73, no. 9, pp. 1349-1387, September 1985 J. Salz, "Optimum Mean Square Decision Feedback Equalization", Bell System Technical Journal, vol. 52, pp. 1341-1373, October 1073 C. A. Belfiore and J. H. Park, Jr., "Decision Feedback Equalization", Proceedings of the IEEE, vol. 67, no. 8, pp. 1143-1156, August 1979 G. D. Forney, Jr., "Maximum Likelihood Sequence Estimation of Digital Sequence in the Presence of Intersymbol Interference", IEEE Transactions on Information Theory, vol. 18, no. 3, pp. 363-378, May 1972 L. R. Bahl, J. Cocke, F. Jelinek, and Raviv, "Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate", IEEE Transactions on Information Theory, vol. 20, pp. 284-287, March 1974 D. P. Taylor, G. M. Vitetta, B. D. Hart, and A. Maemmellae, "Wireless Channel Equalization", European Transactions on Telecommunications, vol. 9, no. 2, pp. 117-143, March 1998 C. R. Johnson, Jr., "Fractionally Spaced Equalizers", IEEE Signal Processing Magazine, vol. 13, no. 3, pp. 65-81, May 1996 C. Luschi, et al., "Advanced Signal Processing Algorithms for Energy-Efficient Wireless Communications", Proceedings of the IEEE, vol. 88, no. 10, pp. 1633-1650, October 2000 K. Hooli, M. Latva-aho, and M. Juntti, "Performance Evaluation of Adaptive Chip-Level Channel Equalizers in WCDMA Downlink", in Proceedings of IEEE International Conference on Communications, vol. 6, Helsinki, Finland, June 2001, pp. 1974-1979
本発明の一態様によれば、ワイヤレス通信システムにおけるチャネルを介して送信される信号の処理方法が提供される。上記方法は、上記システムの時間変化する通信環境の少なくとも1つのパラメータを周期的に評価する段階と、信号処理動作を実現するための少なくとも1つのプロセッサ関連信号処理基準を監視する段階と、上記少なくとも1つのパラメータ及び上記少なくとも1つのプロセッサ関連基準に基づいて、プロセッサによって実現可能な複数の信号処理機能の中から1つの信号処理機能を選択する段階とを有する。各信号処理機能は、複数のコードブロックからなる。各コードブロックは、プロセッサプラットフォームでの実行のための一連の命令からなる。プロセッサプラットフォームは、複数の所定の構造を有した構成可能オペレータ一式を有する。一連の命令のそれぞれは、少なくとも1つの構造命令を有する。構造命令は、前記コードブロックを実行するための複数の所定の構造のうちの1つを選択する。
プロセッサプラットフォームは、ワイヤレス環境における異なる処理機能の選択と、所望の時間内に確立される複数の機能間の実際の切り替えとを行う機能を有する。
別の態様は、ワイヤレス通信システムにおけるチャネルを介して送信された信号を処理するための受信機を提供する。上記受信機は、上記システムの時間変化する通信環境の少なくとも1つのパラメータを周期的に推定する推定手段と、信号処理動作を実現するための少なくとも1つのプロセッサ関連信号処理基準を監視する監視手段と、複数の所定の構造を有した構成可能オペレータ一式を有したプロセッサプラットフォームと、プロセッサプラットフォームによって実現可能な複数の信号処理機能を格納する記憶手段と、上記少なくとも1つのパラメータ及び上記少なくとも1つのプロセッサ関連基準に基づいて、複数の信号処理基準の中から1つの信号処理機能を選択する選択手段とを具備する。各信号処理機能は、複数のコードブロックからなる。各コードブロックは、プロセッサプラットフォームでの実行のための一連の命令をそれぞれ有する。一連の命令のそれぞれは、少なくとも1つの構造命令を有する。構造命令は、前記コードブロックを実行するための複数の所定の構造のうちの1つを選択する。
信号処理機能には、フィルタリング機能、チャネル推定機能、レーキ処理機能、平衡化機能、チャネル復号機能、干渉除去機能、及びマルチプルアンテナ処理機能が含まれる。
また、ワイヤレス受信機は、受信したデジタルサンプルに信号処理を行う他にも、別の機能を実行する。そのような機能は、オペレーショナル機能と称され、周辺機器インタフェース機能、プロトコルスタック処理機能、プロセッサ動作スケジューリング機能、及びドライバ管理機能が含まれる。
プロセッサ関連基準は、現在処理負荷、現在電力消費、及び現在タイミング期限からなるグループから選択される。現在処理負荷は、(処理負荷と同様に)プロセッサの現在の演算負荷を表す。明細書中では、用語「現在(current)」は、処理機能の選択に関連した時間間隔を参照する。
コードブロック毎の一連の命令は、簡単かつ効果的な手法でプロセッサによって実現されるいかなる信号処理機能も可能とするソフトウェア実装を提供する。このアプローチは、特に、レーキ受信機又はチャネルイコライザをハードウェアで実装した受信と比較した場合に、演算量の全体的な削減を提供する。また、このアプローチは、マルチビットオペランド値で演算されるソフトウェアカスタム化命令のパフォーマンスをサポートしないプロセッサプラットフォームを使用する場合に比べて、著しい利点を提供する。
ハードウェア実装を基盤とした従来のモデムは、最大データレート要件によって定められた設計と、別個のシリコン領域としての複数のアルゴリズムの具体化との間での選択を余儀なくされる。このソリューションは、高い実装コスト、サイズの大型化、及び/又は、電力消費の増大、並びに、パフォーマンスを犠牲にする不可避の妥協をもたらす。他方、本明細書に記載のソリューションによれば、共通のプラットフォームを再利用することによって、複雑さ、サイズ、及びコストを削減し、パフォーマンスの最大化及び電力消費の最小化を可能にする信号処理機能の最良のセットを適切に選択できるようになる。
これに関連して、ワードチャネルは、無線信号の送信チャネルを表すために使用される。一般に、推定されたチャネルパラメータは、伝搬チャネル/セルラ環境に関係する。特定のチャネルの品質は、環境、セルラ、及びワイヤレス通信システムのその他の状態によって影響を受ける。
特許文献1のプロセッサ構造では、命令フェッチ及びデコード回路がデータ処理命令を復号し、プロセッサのさまざまな構成要素をコントロールする。それによって、命令からの構成可能な情報は、プログラマブルルックアップテーブルに与えられ、複数のオペランドのうちの1つ又はそれぞれは、レジスタファイルから入力インターコネクトに提供される。このようにして、命令からの構成可能情報は、プログラマブルルックアップテーブルを介して、複数の構成可能オペレータのうちの1つ以上の機能及び/又は挙動の様子を選択的かつ動的に修正される。
構成可能オペレータを含む構成可能実行ユニットは、さまざまなタイプの制御に依存する。第1に、例えば、有線接続によるスタティック制御が存在し、モジュールのさまざまなオペレータクラスを提供する。第2に、擬似スタティック制御情報(PSCI)が存在し、例えば、所定の構造のインターコネクト構成要素と、プラグラマブルルックアップテーブルとがある。擬似スタティック制御情報は、特定の構成可能構成要素に分配され、命令毎にオペレータの動的な構成(構造の調整)を自身で可能なソフトウェアカスタム化命令の実行より先に、構成可能実行ユニットの機能及び挙動の様子を決定付ける。さらに、ダイナミック制御情報が存在し、これは、サイクル毎に命令によって提供される。
ワイヤレス通信デバイスの概略的な構成図である。 本発明の基礎となる原理を示した概略図である。 処理及び選択機能の概略的な構成図である。 プロセッサアーキテクチャの概略的な構成図である。 構成可能な実行ユニットの概略図である。 処理機能を選択する一連のステップの概略的なフロー図である。 イコライザパラメータ選択の概略的な構成図である。 イコライザアルゴリズム選択の概略的な構成図である。 命令フォーマットを示す。
これより、本発明のより深い理解のため、かつそれらがどのように実施されるかを示すために、添付の図面を例に取って説明を行う。
図1は、ワイヤレス通信システムで信号を送信及び受信するためのデバイスの概略的な構成図である。そのようなデバイスは、多数の異なる方法で実現できる。しかしながら、図1では、直列の無線RF/IF段が、1つ以上のアンテナ20を介して、ワイヤレス信号(TX,RX)を送信及び受信するように構成されている。典型的に、RF/IF段の出力で受信された信号は、ベースバンドに変換される。ここで、アナログトゥデジタル変換器(ADC)が、アナログ信号をデジタルサンプルに変換する。図1のブロック32は、受信した無線信号を処理し、デジタルサンプルr(k)を提供するための構成要素を有する。これは、当業者には既知のさまざまな方法で実現できるので、明細書中ではこれ以上説明しない。
プロセッサ100は、プロセッサプラットフォーム101と、データメモリ104と、命令メモリ102とを具備する。サンプルr(k)は、データ転送エンジン30に与えられる。データ転送エンジン30は、プロセッサプラットフォーム101、命令メモリ102、及び命令メモリ104と通信を行う。プロセッサ100は、サンプルr(k)を処理する能力を有する。プロセッサプラットフォーム101は、多数の異なる機能を実行する。そのような機能は、コードブロックの形をとって、命令メモリ102に格納される。各ブロックは、一連の命令を有する。これは、以降でさらに説明される多数の利点を有するソフトウェアモデムと称されるものを提供する。
これより、図1Aを参照する。図1Aは、本発明の基礎となる原理を示した概略図である。複数のブロック300ないし310は、メモリ102に格納され、かつプロセッサプラットフォーム101によって実行される複数の機能を表す。これらの機能は、異なるカテゴリに分類されるが、各機能は、複数のコードブロックからなり、各ブロックは、一連の命令を有する。
図の左側に示されたものは、プロセッサプラットフォームに、該プラットフォームがどの機能を実行するかを決定するための情報を提供する機能である。これには、ネットワーク状態を測定するための機能300と、プロセッサリソースを測定するための機能302と、チャネルパラメータを推定するための機能304とが含まれる。ネットワーク状態を測定するための機能300には、受信機の働きによってネットワークから受信したメッセージを復号するための復号化機能が含まれる。これらのメッセージは、例えば、メッセージ送信のためのデータレート割当やブロックサイズについての情報を提供できる。一般に、これらは、受信機が機能しているというネットワーク状態の指標を提供する。
プロセッサリソースを測定するための機能302は、プロセッサの現在の活動を測定する。プロセッサの現在の活動には、プロセッサの現在負荷、現在使用率、現在出力限界、及び現在処理サイクルが含まれる。プロセッサリソースの監視は、プロセッサプラットフォームのためのオペレーティングシステム301によって実行される。
チャネルパラメータを推定するための機能304は、少なくとも1つのチャネルパラメータの推定に関係している。チャネルパラメータは、受信機が動作するワイヤレス環境でのチャネルの特性を表す。具体的な例は、以降でより詳細に記載される。
信号処理機能306は、ワイヤレスネットワークを介して受信したデータのデジタルサンプルに作用する機能を表すために使用され、データの特性を決定付ける。具体的な例は、以降に記載されるが、これらには、レーキ受信機処理機能、イコライザ機能、及び復号機能が含まれる。
オペレーション機能308は、プロセッサによって実行される機能を含み、信号処理に関係する一方で、受信機チップ自身のオペレーションに関係する。これらの機能には、周辺機器管理機能、ドライバ管理機能、プロトコルスタック管理機能、及びスケジューリング機能が含まれる。
(一般に、物理層で実行される)選択機能310は、所与の任意の時間でプロセッサプラットフォーム101によって実行されるタスクを決定する。これにより、プロセッサプラットフォーム101が、オペレーション機能と信号処理機能との両方を含む受信機のすべての要求されたオペレーションを効果的にマルチタスクで実行可能とする。以下により詳細に記載される構造において、結果は、3つの機能300,302,304から選択機能310へ送られる。次いで、選択機能310は、チャネル状態、ネットワーク状態、及びプロセッサリソースの使用可能率に応じて、オペレーション機能308と信号処理機能306とのうちから、適切な機能を選択する。
オペレーション機能及び信号処理機能には、それら自身の実行に必要なプロセッサリソースについての情報が含まれてよい。また、これは、選択を行う際に考慮されてもよい。
図2は、プロセッサプラットフォーム101によって実行される処理及び選択機能の一実施例を示した概略的な構成図である。ブロック10で表された第1機能は、チャネルパラメータの推定を実行する。この機能は、ワイヤレス通信システムで送信及び受信される無線信号に対する通信チャネルに関連した多数の異なるパラメータの推定を行う。機能10は、時間kにおける出力γ(k),…,γNC(k)を提供する。これは、受信した信号サンプルr(k)から得られたチャネルパラメータ一式を表す。ここで、Nは、推定したチャネルパラメータの数を表す。推定したチャネルパラメータγ(k)は、多数の異なる目的に使用できる。図2に示されたように、それらは、レーキ/イコライザ選択機能12に与えられ、受信したサンプルをレーキ受信機とイコライザ受信機とのうちのどちらを用いて処理するかを決定する。レーキ受信機又はイコライザ受信機は、プロセッサ100によって実現され、命令メモリ102からの適切なコードブロックを実行する。
パラメータγ(k)は、イコライザアルゴリズム選択機能18にさらに与えられ、イコライザ受信機16の選択イベントに使用される。使用される場合、イコライザアルゴリズム選択機能18は、推定されたチャネルパラメータに基づいて、イコライザ受信機を実現するための特定のアルゴリズムを選択する。アルゴリズムは、入力17として図示されたように、チャネルイコライザに与えられる。当然ながら、実際には、これは、適切なアルゴリズムによって実現され、命令メモリ102からコードブロックとして選択される。
また、チャネルパラメータγ(k)は、イコライザパラメータ選択機能14に与えられる。イコライザパラメータ選択機能14は、(ブロック16で表されたような)イコライザ受信機の選択イベントに使用されるとともに、イコライザ受信機を実現するために使用されるパラメータをコントロールする。これらのパラメータは、θ(k),…,θNE(k)で表される。ここで、Nは、関連するイコライザパラメータの数を表す。当然ながら、パラメータは、先に記載したように、レジスタファイル又はメモリを介して、機能間に転送される。
これより、図3を参照して、要求されたさまざまな処理機能を効果的に扱うように、かつそれらの機能を切り替えるように適切に構成されたプロセッサの構造を説明する。
プロセッサ100は、命令メモリ102と、データメモリ104と、命令フェッチ及び復号回路110と、レジスタファイル112と、ロード/ストアユニット118と、所定数の固定実行ユニット120と、所定数の構成可能実行ユニット126とを具備する。
命令メモリ102は、命令バス108及びアドレスバス112によって、命令フェッチ及び復号回路110に接続される。さらに、命令フェッチ及び復号回路110は、アドレスバス111によって、レジスタフィル112に接続されるとともに、制御バスシステム113によって、ロード/ストアユニット118、固定実行ユニット120、及び構成可能実行ユニット126に接続される。制御バスシ113は、例えば、命令から復号されたオペレーション構成情報を、ロード/ストアユニット118、固定実行ユニット120、及び構成可能実行ユニット126の関連する入力へと搬送するために使用される。オペランドバスシステム115は、復号された命令に基づいて、ロード/ストアユニット118、固定実行ユニット120、及び構成可能実行ユニット126に、レジスタファイルからのオペランドを与える。
ロード/ストアユニット118は、データメモリへの及びからの接続121,122を有し、結果バス128に結果を出力するとともに、固定実行ユニット120の出力を受信するようにも機能する。結果バス128は、レジスタファイル112の入力にフィードバックされる。
この実施形態では、プロセッサ100は、固定及び構成可能実行ユニットでのSIMD(Single Instruction Multiple Data)処理をサポートする。別の実施形態では、固定及び構成可能実行ユニットのうちの一方だけがSIMD処理をサポートするか、又はどちらもサポートしない可能性が高い。
一般に、命令フェッチ及び復号回路110の制御回路は、命令メモリ102からの一連の命令をリクエストし、受信し、かつ復号する能力と、それらの命令に関連したプロセッサのさまざまな構成要素をコントロールする能力とを有する。典型的な命令には、ロード/ストアオペレーション、制御機能オペレーション、データ処理オペレーション、及び/又は、さまざまな機能ユニットによって実行される特別なオペレーションが含まれる。
ロード/ストア命令は、データメモリ104中のデータにアクセスし、データメモリ104とレジスタファイル112との間でデータを移動させるために使用される。データは、オペレーションが実行される直前及び直後にレジスタファイル112に存在する。分岐などの制御機能オペレーションは、完全に命令復号及びフェッチユニット110内で動作してよく、例えば、一連のフェッチされた命令に作用するか、又は、プロセッサの設定の計算に固定及び構成可能実行ユニットのうちの1つ以上を関係させてもよい。データ処理オペレーションは、アルゴリズムのパフォーマンスに使用され、同様に、以降でより詳細に説明されるように、固定及び構成可能実行ユニットを関係させる。
図4は、例示的な実行ユニット126の内部構成要素の概略図である。図4を参照すると、構成可能実行ユニット126は、プログラム可能ルックアップテーブル210と、構成可能オペレータ段230と、入力クロスバーインターコネクト240と、出力クロスバーインターコネクト250とを有する。
プログラム可能ルックアップテーブル210及びインターコネクト240,250は、特定目的命令によって事前設定可能な擬似スタティック制御情報にその判断を頼るように構成可能である一方、データ処理命令に基づいて、サイクル毎に動的に構成することはできない。この事前設定可能制御情報は、明細書中では、擬似スタティック制御情報(PSCI)と称され、図2には、参照符号249で表される。擬似スタティック制御情報249は、当業者には自明な手法で、プログラム可能ルックアップテーブル210及びクロスバーインターコネクト240,250の機能及び挙動の様子を表す。
構成可能オペレータ段230は、オペレータモジュール一式202〜208を有する。各オペレータモジュールは、異なるクラスのオペレーションを実行するように設計される。オペレータモジュールは、入力クロスバーインターコネクションから、オペランド入力バス242によって与えられる。この例示的な実施形態では、乗算オペレータ202、ALUオペレータ204、ストレージオペレータ206、及びシフト/並べ替えオペレータ208が提供される。オペレータの数及び機能がプロセッサの意図する用途及び/又は意図する目的に基づくことは、当業者には明白である。すべての又は選択されたオペレータモジュール202〜208は、明細書中に記載の手段によって動的に構成可能となる。
オペレータモジュール202〜208は、それらが作られる領域に、実行するように設計されたオペレーションに効果的に配置される一方で、同時に、マルチビット値でのオペレーションのパフォーマンスに効果的な挙動レベルでの構成可能性を許容するさまざまな制御入力を有する。これは、それぞれが実行するように設計されたオペレーションのクラス内でオペレータモジュールの挙動及び/又はタイプの変化をサポートするためである。例えば、追加的なユニットは、減算及び加算(算術の一般的クラス内のさまざまなタイプのオペレーション又は機能)をサポートしてよく、さまざまなSIMDベクトルデータタイプ及びスカラタイプ(可変性挙動)をサポートしてもよく、かつさまざまなルーティングモード及び/又はオーバーフロー挙動(選択可能な挙動)をサポートしてもよい。
好適な実施形態では、オペレータ202〜208への制御入力及びオペレータ段230上のさまざまな要素のインターコネクションは、可能な限り、さまざまな所望のアルゴリズム、特にベクトルアルゴリズムのパフォーマンスに有効となるように構成される。ベクトルアルゴリズムには、例えば、コンボリューション、高速フーリエ変換、トレリス/ビタビ計算、相関、有限長インパルス応答フィルタリングなどがある。これらは、先に記載した処理機能、例えば、チャネル推定及び逆スクランブル化/逆拡散化のための相関関係を主に必要とするレーキ処理と、チャネル推定及びイコライザ係数の算定のための相関関係及びイコライザフィルタリング(リニアイコライザの場合、FIRフィルタリング)のためのコンボリューションを含むさまざまなオペレーションを必要とする平衡化と、ターボ復号化又はコンボリューショナル(ビタビ)復号化のためのトレリス計算を必要とするチャネル復号とをサポートする。実際には、この範囲は、適切な技能を有した技術者によって容易に設定される。また、適切な技能を有した技術者は、そのようなアルゴリズム及びプロセッサの制御機能に従って、関連する計算をサポートするように設定された命令に必要なデータ処理機能の範囲を把握している。
オペレータ段230のオペレータは、(動的)命令基盤で命令上で動的に構成可能であり、それによって、構造情報(構造命令、例えば、データ処理命令)に含まれた命令は、オペレータ機能(オペレーションタイプ)及び/又はオペランドが演算される際に与えられる制御設定値として構造情報を与えることによる挙動を選択的に変更できる。あるいは、命令セットは、構造命令中の構造情報がオペレータ機能及び/又は後続命令(例えば、後続のデータ処理オペレーション)からのオペランドを処理する際に適用される挙動を構成するように設計される。
プログラム可能ルックアップテーブル210から得たオペレータのための制御入力279は、オペレータ段に与えられ、例えば、オペレータ204〜208の機能及び/又は挙動をコントロールするために制御入力を提供する。例えば、これらの制御入力には、キャリーイン信号、マルチプレクサ選択、折衝可能入力、及びオーバーフロー挙動制御設定が含まれる。オペレータ段230中のオペレータモジュール202〜208からの制御出力281は、プログラム可能ルックアップテーブル210に出力でき、したがって、今度は、制御入力設定279の識別に関与する。例えば、制御出力281には、オーバーフロー指示子、FIFOフル信号、及び算術比較のブーリアン結果が含まれる。
実際には、データ処理命令で言うところのオペレーション構造情報277は、復号化され、プログラム可能ルックアップテーブル210に与えられる。この構造情報277は、制御情報281と共に、プログラム可能ルックアップテーブル210によって、オペレータ段のための対応する制御入力279に変換され、オペレータ段230に与えられる。ルックアップテーブル210によって実行される変換機能は、擬似スタティック制御情報249によって決定され、先の制御命令によって設定がなされてよい。
好適な実施形態では、プログラム可能ルックアップテーブル210は、データ処理命令中のオペレータ構造情報に基づいて選択可能な擬似スタティック制御情報に自ら従うと見なされる。次いで、プログラム可能ルックアップテーブル210は、(構造命令から得た)動的構造情報277に応答してオペレータに入力を提供すること、又は、オペレータ281又はPSCI 249又はこれらの入力のあらゆる合成からの制御出力をプログラム可能ルックアップテーブルに提供することができる。故に、オペレータ段230に擬似スタティック制御情報を直接入力する必要がなくなる。しかしながら、これは、いくつかの環境下で望ましい。
入力インターコネクト240は、複数のオペレータモジュール202〜208のそれぞれにオペランド入力を提供する。入力インターコネクト240は、復号されたデータ処理命令に従って、オペランド224を受信できるとともに、フィードバックバス225を介してオペレータ202〜208の出力から結果値を受信できる。
出力インターコネクト250は、オペレータモジュール202〜208から出力を受信し、構成可能実行ユニット126の最終出力結果290を提供する。フィードバックバス225、クロスバースイッチ240、及び、選択的にストレージオペレータ206によって、簡単なマルチプルオペレーションの直列及び並列接続が、結果290が実行ユニットの外部に与えられる前に、1つのデータ処理命令に応答して、入力オレランド224で複雑なオペレーションを実行できる。「ディープ」実行オペレーションタイプのこれらの利点は、簡単に言えば、結果290が送信され、レジスタファイル112中の結果レジスタに書き込まれる前に、オペランド又はオペランド一式で複数(一般に、3以上)の数学オペレーションが順次実行されるようなオペレーションと見なされる。このようなタイプのディープオペレーションでは、ストレージオペレータ206は、結果290が出力される前に、それらが以後のオペレーションサイクルに利用できるように、結果を直ちに格納する。
これより、図5を参照して、特定のチャネルパラメータの推定に基づく、処理機能の選択方法を説明する。選択は、レーキ受信機機能又はイコライザ受信機機能のどちらがプロセッサ22によって実行されるかに応じて、さまざまな命令シーケンスからなるコードブロックをダウンロードすることによってなされる。発明者は、(図5に示され、かつ以下に記載されるように)、、選択基準を適用するためには、あるシーケンスでさまざまなチャネルパラメータを試験することが好都合であることを発見した。しかしながら、他の適切なシーケンスが利用されてもよい。
ステップS1は、送信チャネルのユーザの移動性に関連して、チャネルの非定常性の程度の推定値を生成する。これは、例えば、ドップラー拡散又は最大ドップラー周波数の推定によって、又は、移動端末の相対速度の推定によって与えられる。これらの推定手段は、当業者には既知であるので、明細書中ではこれ以上説明しない。いくつかの例が、非特許文献4、非特許文献5、非特許文献6、及びそれらの参照文献に記載されている。受信機は、比較的時間変化が小さいチャネルには、イコライザ処理を使用し、時間変化が大きいチャネルには、レーキ処理に切り替えるように設計される。ここで、切り替えしきい値は、イコライザ計算量と受信機パフォーマンスとの間のトレードオフの関係に従う。ドップラー比較ステップS2は、ドップラー推定信号γと適切なしきい値Thとの比較を行う。γがしきい値Thに達した場合、このステップは、レーキ受信機処理を選択する。ドップラー推定信号γがしきい値Thに達しない場合、比較は、負の応答を生成し、選択プロセスが、枠外エネルギー比較ステップに続く。
枠外エネルギー推定S3は、イコライザチャネル推定に使用される時間枠の外側のチャネルエネルギーの推定値を提供する。一例が、非特許文献7に示されている。イコライザ処理は、チャネルエネルギーの大部分がチャネル推定枠によってキャプチャされる場合、すなわち、非常に高い遅延拡散が発生しない場合にのみ選択される。そのために、枠外エネルギーγは、しきい値Thと比較される。γがしきい値Thよりも大きかった場合、このステップは、レーキ受信機処理を選択する。枠外エネルギーγがThよりも大きくなかった場合、選択プロセスは、シングルレイチャネル検出ステップに続く。
遅延拡散推定S5は、例えば、遅延拡散の二乗平均(rms)によって与えられる出力γを生成する。遅延拡散推定の一例が、非特許文献8によって与えられる。パラメータγは、送信チャネルが1つの伝搬経路(マルチパスではない伝搬経路)に由来するものと見なせるか否かを判断するために、シングルレイチャネル検出ステップS6に与えられる。単経路伝搬の場合、このステップは、レーキ受信機処理を選択する。
より一般的には、非常に高い遅延拡散(ロングチャネルインパルス応答)とゼロ遅延拡散(シングルレイチャネルインパルス応答)との識別は、受信機をレーキ受信機処理に切り替えるために使用される。当分野では、用語「チャネル長」は、しばしば、チャネルインパルス応答の時間間隔を表すために使用され、チャネル遅延拡散に関係する。
非シングルレイチャネルの場合、プロセスは、z平面のチャネルゼロ点の位置からチャネル特性の推定(S7)に進む。これがどのように行われるかの例は、非特許文献9及びその参照文献に示される。受信機は、イコライザのオペレーションに重要となるチャネル特性、すなわち、z平面の単位円に近接するチャネルゼロ点によるリニア平衡化、又は、フラクショナリスペースド平衡化、又は、より一般的には、イコライザサブチャネルのうちの共通ゼロ点による受信ダイバーシティ平衡化(オーバーサンプリングによって取得されたマルチプル受信アンテナ又はマルチプルサブチャネル)の場合などを識別するゼロ位置の存在下で、レーキ処理に切り替えるように設計される。チャネルゼロ位置γの推定値は、臨界ゼロ位置検出ステップS8に与えられる。このステップは、イコライザのオペレーションに重要となるゼロ位置の存在下でレーキ受信機処理を選択する。非臨界チャネル特性の場合、選択プロセスは、セルジオメトリ比較ステップに続く。
セルジオメトリ推定ブロックは、受信したインターセル出力と雑音対インターセル干渉出力(又はその逆数)との比の推定値γ、又は、受信した総出力と雑音対インターセル干渉出力(又はその逆数)との比の推定値を提供する。ここで使用されたセルジオメトリ推定技術の一例が、同時係属出願である特許文献2に記載されている。あるいは、入来無線信号上の信号対妨害比を推定するために任意の既知の技術が使用されてよい。ここで、妨害は、干渉若しくは雑音、又はそれら両方である。ワイヤレスセルラシステムのための信号対妨害比推定の一例が、非特許文献10に示されている。さらなる変形例として、推定されたチャネル応答の信号対妨害比の推定値γが使用でき、又は、利用可能なチャネル推定値の品質の何か別の指示子が使用できる。
レーキとイコライザとの間の切り替えに加えて、イコライザ16が選択された場合、チャネルパラメータ推定機能10によって推定されたチャネルパラメータは、イコライザ16の実現のためのパラメータθ、ここで、n=1,…,N、を選択するために使用できる。
図6は、イコライザパラメータ選択機能14内のイコライザパラメータ一式の選択のための概略的な構成図である。
イコライザのチャネルインパルス応答の推定のための時間枠Wは、チャネル枠外エネルギーγ及び/又はチャネル遅延拡散γの推定(図5のブロック14)に基づいて選択される。また、この選択は、入力信号対妨害比又はセルジオメトリの推定値γ、及び/又は、推定されたチャネル係数の信号対妨害比の推定値γに従ってもよい。
チャネルインパルス応答の推定のための適切なフィルタの記憶(図5のブロック14b)及び推定されたチャネルインパルス応答の更新周期(図5のブロック14c)は、チャネル非定常性又は時間選択性の程度の推定に基づいて、例えば、チャネルドップラー拡散γの推定を介して選択される。また、チャネル推定フィルタの選択は、入力信号対妨害比又はセジオメトリの推定値γ、及び/又は、推定されたチャネル応答の信号対妨害比の推定値γに基づく。
信号対雑音パルス干渉比の小さい仲介において、総チャネル推定エラーは、適切なしきい値より低い振幅を用いて、推定されたチャネル係数をゼロに設定することによって削減できる。このしきい値の値は、入力信号対妨害比又はセルジオメトリの推定値γ、及び/又は、推定されたチャネル係数に対する信号対妨害比の推定値γに基づいて選択される(図5のブロック14d)。
例えば、MMSE平衡化の場合の入力雑音変数σの推定のために適切なフィルタの記憶は、入力妨害γの比定常性の程度(例えば、雑音がほぼ一定となる時間間隔)を測定することによって、非定常性入力雑音の存在下に適応させられる(図5のブロック14c)。完全に異なる基準では、フィルタリングは、入力雑音上の測定を便利に収集するための周期性に基づいてよい。すなわち、これは、特定のオペレーティング状態又は臨界処理要件下で複雑な実装を減らす必要があることによって単に動機付けられる。
イコライザ係数の数は、例えば、チャネル枠外エネルギーの推定値γ、及び/又は、チャネル長若しくはチャネル遅延拡散の推定値γと、z平面中のチャネルゼロ点の位置の推定値γの推定とに基づいて選択される(図5のブロック14f)。
同様に、デシジョンフィードバック平衡化の場合のフィードフォワード及びフィードバックイコライザ係数の数は、チャネル枠外エネルギーの推定値γ、及び/又は、チャネル長(又はチャネル遅延拡散)の推定値γ、及び、z平面中のチャネルゼロ点の位置γに基づく(図5のブロック14g)。
ブロック平衡化の場合のイコライザ係数の更新間隔、又は適応性平衡化の場合の係数ステップサイズは、チャネル非定常性又は時間選択性の程度の推定に基づいて、例えば、チャネルドップラー拡散の推定値γを介して、選択される(図5のブロック15h)。
イコライザ遅延は、z平面のチャネルゼロ点の位置γから得られたチャネル位相特性の推定に基づいて選択される(図5のブロック14i)。
これより、図7を参照する。図7は、推定されたチャネル状態に基づく特定の平衡化アルゴリズムの選択を示した概略的な構成図である。シーケンスは、以下に記載する本発明の有用な一実施形態を表す。しかしながら、当然、適切なイコライザアルゴリズムの選択を実行するために別のシーケンスが使用されてよい。
図7のレベル7aは、リニア又は非リニアイコライザ構造の選択を表す。トランスバーサルフィルタ構造に基づくリニアイコライザは、Lucky氏(非特許文献11)、Proakis氏及びMiller氏(非特許文献12)、並びにその他の者(非特許文献13及びその参照文献を参照されたい)の初期の研究より使用されてきた。非リニアイコライザには、デシジョンフィードバックイコライザ(例えば、非特許文献14及び非特許文献15に記載)、及び、最大尤度(ML)又は最大事後(posteriori)確率(MAP)トレリスイコライザ(例えば、非特許文献16及び非特許文献17に記載)が含まれる。また、リニア及び非リニアイコライザについては、非特許文献2及び非特許文献18に記載がある。リニアイコライザと非リニアイコライザとの間の選択をなす基準は、例えば、z平面中のチャネルゼロ点の位置γに基づく。さらに、選択は、特定の送信状態に基づいてよい。例えば、HSDPAシステムでは、デシジョンフィードバックイコライザ(換言すれば、非リニア構造を有したイコライザ)の使用は、ユーザにダウンリンク出力の大部分が割り当てられている状態、すなわち、それが、他のユーザのデータの判断(デシジョン)を行う必要無しに、デシジョンフィードバックに使用可能なダウンリンク信号の位置を決定付ける場合に制限される。
図7のレベル7bは、ボースペースド又はフラクショナリスペースドイコライザ構造の選択を表す。ボースペースド(シンボル又はチップスペースド)及びフラクショナリスペースドイコライザは、例えば、非特許文献13及び非特許文献19に記載がある。この選択は、例えば、z平面中のチャネルゼロ点の位置γに基づいてなされるとともに、余剰送信バンド幅(送信及び受信フィルタのロールオフ要素)の量を選択的に考慮してよい。
当然ながら、ボースペースド設計又はフラクショナリスペースド設計のいずれか一方が、リニア構造又は非リニア構造のいずれか一方と共に使用できる。
図7のレベル7cは、特に、最小二乗平均誤差(MMSE)基準、最小二乗法(LS)基準、ゼロフォーシング(ZF)基準、又は、最大尤度(ML)基準及び最大事後確率(MAP)基準を含むさまざまなコスト法に基づく基準からの、イコライザコスト機能の選択を表す。MMSE、LS、ZF、及びMLイコライザについては、非特許文献13及び非特許文献2に記載がある。一方、MAPイコライザについては、非特許文献18及び非特許文献20に記載がある。それらの基準間で選択して使用されるパラメータは、信号対妨害比の推定を含み、又は、その他のパラメータは、妨害の静的分布を表す。例えば、許容可能パラメータは、ZF基準を用いて高い信号対妨害比を得ることができる。他方、LSイコライザの使用は、非ガウシアン妨害の存在下でMMSEイコライザに対して好ましい。
図7のレベル7dは、イコライザブロック処理又はタップ適応規則の実現間の選択を表す。これら2つの方式の選択は、チャネル非定常性又は時間選択性の程度に応じて、例えば、チャネルドップラー拡散の推定値γを介してなされる。
ブロック処理については、例えば、非特許文献3に記載がある。適応アルゴリズムについては、非特許文献21に記載がある。
本発明の実施形態での使用に適したさまざまな命令形式が、図8に示されている。参照符号300には、PSCI設定オペレーション命令があり、特に、例えば、構成要素210、構成要素240、及び/又は構成要素250のうちの1つ以上のための擬似スタティック制御設定オペレーションを実行するように設計されている。PSCI設定命令300は、PSCI命令のタイプを表す第1オペレーションコード(opcode)部分302と、構成を意図する構成要素210,240,250のうちの1つ又はそれぞれに関連した送信先を表す第2オペレーションコード部分303とを含む。命令304の残りの部分は、宛先のためにPSCIを届けるため又はPSCIを指すために使用される。
命令形式400を参照すると、プログラム可能ルックアップテーブル210になされた参照に基づく、動的構造設定命令を含むデータ処理命令のクラスが示されている。命令400は、実行されるデータ処理オペレーションを定義する第1オペレーションコード部分410を含む。好ましくは、第1オペレーションコード部分410には、構成可能実行ユニット230の1つ以上のオペレータを構成するための動的構成可能設定情報含むデータ処理オペレーションのタイプである命令が含まれる。また、命令400は、結果が送信される宛先アドレスを指す第2オペレーションコード部分415と、オペレータ構造情報420を含んだ第3オペレーションコード部分420と、データ処理オペレーションに使用される1つ以上のオペランド430とを含む。あるいは、フィールド430は、レジスタ中の1つ以上のオペランドへのポインタを含む。記載された各フィールドのうちの1つ以上が他の実施形態において組み合わせられて又は省略されてよいということを、当業者は理解する。
オペレータ構造情報420は、ルックアップテーブル210にアクセスするために使用されるとともに、先に記載したように、オペレータ制御入力設定279に役立つように変換される。
300 ネットワーク状態計測部
301 オペレーティングシステム
302 プロセッサリソース計測部
304 チャネルパラメータ推定部
310 選択機能
306 信号処理機能
308 オペレーティング機能

Claims (13)

  1. ワイヤレス通信システムにおけるチャネルを介して送信される信号の処理方法であって、
    受信機で前記チャネルを介して送信される前記信号を受信する段階と、
    前記システムの時間変化する通信環境の少なくとも1つのパラメータを周期的に評価する段階と、
    受信機におけるプロセッサの少なくとも1つのプロセッサ関連基準を監視する段階と、
    前記少なくとも1つのパラメータ及び前記少なくとも1つのプロセッサ関連基準に基づいて、プロセッサによって実現可能な複数の信号処理機能の中から1つの信号処理機能を選択する段階と
    を有し、
    各信号処理機能は、前記受信した信号を処理する複数のコードブロックからなり、
    各コードブロックは、プロセッサのプロセッサプラットフォームでの実行のための一連の命令からなり、
    プロセッサプラットフォームは、複数の所定の構造を有した構成可能オペレータ一式を有し、
    一連の命令のそれぞれは、少なくとも1つの構造命令を有し、
    構造命令は、前記コードブロックを実行するための複数の所定の構造のうちの1つを選択し、
    プロセッサプラットフォームは、複数の所定の構造のうちの選択された1つに従って、選択された信号処理機能のための前記コードブロックを実行するように構成されていて、
    パラメータが、前記チャネルのチャネル状態を表すチャネルパラメータであり、
    チャネルパラメータが、
    (a)チャネルの非定常性の程度を表し、少なくとも1つの可動性しきい値と推定値とを比較するチャネル推定パラメータと、
    (b)所定の時間枠の外側のチャネルのエネルギーを表し、少なくとも1つの枠外エネルギーしきい値と推定値とを比較するチャネル推定パラメータと、
    (c)チャネル応答の時間間隔又はチャネル長、及びチャネル遅延分布のうちの少なくとも1つを表し、推定された時間間隔又はチャネル長又は遅延分布が所定の基準を満たしていた場合に確立されるチャネル推定パラメータと、
    (d)z平面のチャネルゼロ点の位置を表し、チャネルゼロ点の位置が所定の基準を満たした場合に確立されるチャネル推定パラメータと、
    (e)受信した信号の信号対妨害出力比を表し、少なくとも1つの信号対妨害比しきい値と推定された入力信号対妨害比とを比較するチャネル推定パラメータと、
    (f)推定されたチャネル応答の信号対妨害出力比を表すチャネル推定パラメータと、
    (g)受信機入力での妨害の非定常性の程度を表すチャネル推定パラメータと
    の中から選択される
    ことを特徴とする方法。
  2. ワイヤレス通信システムにおけるチャネルを介して送信される信号の処理方法であって、
    受信機で前記チャネルを介して送信される前記信号を受信する段階と、
    前記システムの時間変化する通信環境の少なくとも1つのパラメータを周期的に評価する段階と、
    受信機におけるプロセッサの少なくとも1つのプロセッサ関連基準を監視する段階と、
    前記少なくとも1つのパラメータ及び前記少なくとも1つのプロセッサ関連基準に基づいて、プロセッサによって実現可能な複数の信号処理機能の中から1つの信号処理機能を選択する段階と
    を有し、
    各信号処理機能は、前記受信した信号を処理する複数のコードブロックからなり、
    各コードブロックは、プロセッサのプロセッサプラットフォームでの実行のための一連の命令からなり、
    プロセッサプラットフォームは、複数の所定の構造を有した構成可能オペレータ一式を有し、
    一連の命令のそれぞれは、少なくとも1つの構造命令を有し、
    構造命令は、前記コードブロックを実行するための複数の所定の構造のうちの1つを選択し、
    プロセッサプラットフォームは、複数の所定の構造のうちの選択された1つに従って、選択された信号処理機能のための前記コードブロックを実行するように構成されていて、
    パラメータが、ワイヤレスネットワークのネットワーク状態を表すネットワークパラメータであり、
    ネットワークパラメータが、
    メッセージを送信するためのデータレート割当と、
    メッセージを送信するためのブロックサイズ割当と、
    メッセージを送信するための品質ターゲットの仕様と、
    ネットワークのインターセル又はインターセル干渉のレベル指標と
    から選択され、
    品質ターゲットは、ブロックエラーレート又はビットエラーレートによって選択的に表される
    ことを特徴とする方法。
  3. プロセッサ関連基準が、プロセッサプラットフォームから通知されることを特徴とする請求項1または2に記載の方法。
  4. 各信号処理機能が、処理リソース要件に関連し、
    前記選択する段階が、信号処理機能を選択する際に、リソース要件を考慮することを特徴とする請求項1または2に記載の方法。
  5. ネットワークパラメータが、ネットワークソースから送信された入来メッセージから得られることを特徴とする請求項2に記載の方法。
  6. プロセッサプラットフォームが、
    一連の命令からなる複数のコードブロックをそれぞれ有したオペレーショナル機能を実行することを特徴とする請求項1または2に記載の方法。
  7. 信号処理機能には、フィルタリング機能、チャネル推定機能、レーキ処理機能、平衡化機能、干渉除去機能、マルチプルアンテナ処理機能、及びチャネル復号機能が含まれることを特徴とする請求項1または2に記載の方法。
  8. オペレーショナル機能には、周辺インタフェース機能、プロトコルスタック処理機能、スケジューリング機能、及びドライバ管理機能が含まれることを特徴とする請求項に記載の方法。
  9. プロセッサ関連基準が、現在処理負荷、現在電力消費、及び現在タイミング期限からなるグループから選択されることを特徴とする請求項1または2に記載の方法。
  10. 複数のプロセッサ関連基準が監視されることを特徴とする請求項1、2又はに記載の方法。
  11. ワイヤレス通信システムにおけるチャネルを介して送信された信号を処理するための受信機であって、
    前記チャネルを介して送信された前記信号を受信する受信手段と、
    前記システムの時間変化する通信環境の少なくとも1つのパラメータを周期的に推定する推定手段と、
    プロセッサと、
    プロセッサの少なくとも1つのプロセッサ関連基準を監視する監視手段と
    を具備し、
    前記プロセッサは、複数の所定の構造を有した構成可能オペレータ一式を有したプロセッサプラットフォームを備え、
    更に、プロセッサプラットフォームによって実現可能な複数の信号処理機能を格納する記憶手段と、
    前記少なくとも1つのパラメータ及び前記少なくとも1つのプロセッサ関連基準に基づいて、複数の信号処理機能の中から1つの信号処理機能を選択する選択手段と
    を具備し、
    各信号処理機能は、前記受信した信号を処理する複数のコードブロックからなり、
    各コードブロックは、プロセッサプラットフォームでの実行のための一連の命令をそれぞれ有し、
    一連の命令のそれぞれは、少なくとも1つの構造命令を有し、
    構造命令は、前記コードブロックを実行するための複数の所定の構造のうちの1つを選択し、
    プロセッサプラットフォームは、複数の所定の構造のうちの選択された1つに従って、選択された信号処理機能のための前記コードブロックを実行するように構成されていて、
    パラメータが、前記チャネルのチャネル状態を表すチャネルパラメータであり、
    チャネルパラメータが、
    (a)チャネルの非定常性の程度を表し、少なくとも1つの可動性しきい値と推定値とを比較するチャネル推定パラメータと、
    (b)所定の時間枠の外側のチャネルのエネルギーを表し、少なくとも1つの枠外エネルギーしきい値と推定値とを比較するチャネル推定パラメータと、
    (c)チャネル応答の時間間隔又はチャネル長、及びチャネル遅延分布のうちの少なくとも1つを表し、推定された時間間隔又はチャネル長又は遅延分布が所定の基準を満たしていた場合に確立されるチャネル推定パラメータと、
    (d)z平面のチャネルゼロ点の位置を表し、チャネルゼロ点の位置が所定の基準を満たした場合に確立されるチャネル推定パラメータと、
    (e)受信した信号の信号対妨害出力比を表し、少なくとも1つの信号対妨害比しきい値と推定された入力信号対妨害比とを比較するチャネル推定パラメータと、
    (f)推定されたチャネル応答の信号対妨害出力比を表すチャネル推定パラメータと、
    (g)受信機入力での妨害の非定常性の程度を表すチャネル推定パラメータと
    の中から選択される
    ことを特徴とする受信機。
  12. ワイヤレス通信システムにおけるチャネルを介して送信された信号を処理するための受信機であって、
    前記チャネルを介して送信された前記信号を受信する受信手段と、
    前記システムの時間変化する通信環境の少なくとも1つのパラメータを周期的に推定する推定手段と、
    プロセッサと、
    プロセッサの少なくとも1つのプロセッサ関連基準を監視する監視手段と
    を具備し、
    前記プロセッサは、複数の所定の構造を有した構成可能オペレータ一式を有したプロセッサプラットフォームを備え、
    更に、プロセッサプラットフォームによって実現可能な複数の信号処理機能を格納する記憶手段と、
    前記少なくとも1つのパラメータ及び前記少なくとも1つのプロセッサ関連基準に基づいて、複数の信号処理機能の中から1つの信号処理機能を選択する選択手段と
    を具備し、
    各信号処理機能は、前記受信した信号を処理する複数のコードブロックからなり、
    各コードブロックは、プロセッサプラットフォームでの実行のための一連の命令をそれぞれ有し、
    一連の命令のそれぞれは、少なくとも1つの構造命令を有し、
    構造命令は、前記コードブロックを実行するための複数の所定の構造のうちの1つを選択し、
    プロセッサプラットフォームは、複数の所定の構造のうちの選択された1つに従って、選択された信号処理機能のための前記コードブロックを実行するように構成されていて、
    パラメータが、ワイヤレスネットワークのネットワーク状態を表すネットワークパラメータであり、
    ネットワークパラメータが、
    メッセージを送信するためのデータレート割当と、
    メッセージを送信するためのブロックサイズ割当と、
    メッセージを送信するための品質ターゲットの仕様と、
    ネットワークのインターセル又はインターセル干渉のレベル指標と
    から選択され、
    品質ターゲットは、ブロックエラーレート又はビットエラーレートによって選択的に表される
    ことを特徴とする受信機。
  13. 前記推定手段及び前記監視手段が、プロセッサプラットフォームによって実行可能なコードシーケンスによって実現されることを特徴とする請求項11又は12に記載の受信機。
JP2010531499A 2007-10-31 2008-10-24 ワイヤレス通信環境における信号処理 Active JP5450431B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0721429.9 2007-10-31
GBGB0721429.9A GB0721429D0 (en) 2007-10-31 2007-10-31 Processing signals in a wireless communications environment
PCT/EP2008/064467 WO2009056501A1 (en) 2007-10-31 2008-10-24 Processing signals in a wireless communications environment

Publications (2)

Publication Number Publication Date
JP2011502413A JP2011502413A (ja) 2011-01-20
JP5450431B2 true JP5450431B2 (ja) 2014-03-26

Family

ID=38834646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010531499A Active JP5450431B2 (ja) 2007-10-31 2008-10-24 ワイヤレス通信環境における信号処理

Country Status (8)

Country Link
US (2) US8682272B2 (ja)
EP (1) EP2206237B1 (ja)
JP (1) JP5450431B2 (ja)
CN (1) CN101919166B (ja)
AT (1) ATE554533T1 (ja)
GB (1) GB0721429D0 (ja)
TW (1) TWI469584B (ja)
WO (1) WO2009056501A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201001389D0 (en) 2010-01-28 2010-03-17 Icera Inc A radio receiver in a wireless communication system
US9191059B2 (en) * 2007-10-31 2015-11-17 Icera Inc. Processing digital samples in a wireless receiver
GB0721429D0 (en) 2007-10-31 2007-12-12 Icera Inc Processing signals in a wireless communications environment
GB0721425D0 (en) * 2007-10-31 2007-12-12 Icera Inc Processing digital sampels in a wireless receiver
GB201001482D0 (en) * 2010-01-29 2010-03-17 Icera Inc A cellular communications system
GB0721427D0 (en) * 2007-10-31 2007-12-12 Icera Inc Processing signals in a wireless newtwork
US8411725B2 (en) * 2009-09-25 2013-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Channel geometry detector
US9136882B2 (en) * 2010-09-24 2015-09-15 Intel Corporation Uplink channel estimation for a software defined radio
WO2012103934A1 (en) * 2011-02-01 2012-08-09 Telefonaktiebolaget L M Ericsson (Publ) Configuration of wireless receiver
US9148319B2 (en) * 2013-02-20 2015-09-29 Shanghai Mobilepeak Semiconductor Co., Ltd. Dynamic task scheduling for multi-receive-path equalizer
TWI504169B (zh) * 2013-05-31 2015-10-11 Mstar Semiconductor Inc 加速等化收斂速度的接收裝置與方法
US10060979B2 (en) 2016-08-02 2018-08-28 Texas Instruments Incorporated Generating multiple pseudo static control signals using on-chip JTAG state machine
US10186011B2 (en) 2017-04-28 2019-01-22 Intel Corporation Programmable coarse grained and sparse matrix compute hardware with advanced scheduling
US11240685B2 (en) * 2018-01-29 2022-02-01 Samsung Electronics Co., Ltd. Devices and methods of selecting signal processing algorithm based on parameters
US10833895B2 (en) * 2018-09-19 2020-11-10 Texas Instruments Incorporated Receiver with selectable digital equalization filter options
IT201900002319A1 (it) * 2019-02-18 2020-08-18 Inxpect S P A Sistema di rilevamento di oggetti in un ambiente
US10852353B1 (en) * 2019-07-02 2020-12-01 Texas Instruments Incorporated Scan test control decoder with storage elements for use within integrated circuit (IC) devices having limited test interface

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2317473A1 (en) 1998-01-13 1999-07-22 David L. Tennenhouse Systems and methods for wireless communications
US7430257B1 (en) * 1998-02-12 2008-09-30 Lot 41 Acquisition Foundation, Llc Multicarrier sub-layer for direct sequence channel and multiple-access coding
US5955992A (en) 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
US7548787B2 (en) * 2005-08-03 2009-06-16 Kamilo Feher Medical diagnostic and communication system
US6990087B2 (en) 2002-04-25 2006-01-24 Raytheon Company Dynamic wireless resource utilization
US6731618B1 (en) * 2000-10-20 2004-05-04 Airvana, Inc. Coding for multi-user communication
US6973098B1 (en) * 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
US20030126545A1 (en) * 2001-10-05 2003-07-03 Tan Alfred Keng Tiong Non-linear code-division multiple access technology with improved detection algorithms and error correction coding
US20020183013A1 (en) * 2001-05-25 2002-12-05 Auckland David T. Programmable radio frequency sub-system with integrated antennas and filters and wireless communication device using same
US6983153B2 (en) * 2001-06-07 2006-01-03 Qualcomm Incorporated Method and apparatus for congestion control in a wireless communication system
US7230975B2 (en) * 2001-08-07 2007-06-12 Qualcomm Incorporated Adaptive pilot filter for a wireless communication system
GB2397986B (en) * 2001-11-02 2004-12-15 Toshiba Res Europ Ltd Receiver processing system
US7012883B2 (en) 2001-11-21 2006-03-14 Qualcomm Incorporated Rate selection for an OFDM system
US7212524B1 (en) * 2002-02-27 2007-05-01 Pmc-Sierra, Inc. Multicast connection scheduling in time:space:time switching fabrics
AU2003241592A1 (en) * 2002-05-21 2003-12-12 Jesse E. Russell An advanced multi-network client device for wideband multimedia access to private and public wireless networks
US7212542B2 (en) * 2003-04-08 2007-05-01 Motorola, Inc. Method and apparatus for maximizing a data rate of a wireless data communication system
US6868276B2 (en) * 2003-06-17 2005-03-15 Nokia Corporation Method and apparatus for estimating carrier frequency offset and fading rate using autoregressive channel modeling
US7796568B2 (en) * 2003-12-18 2010-09-14 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for determining the content of bursts to be transmitted from a base station
US7289972B2 (en) * 2004-06-25 2007-10-30 Virginia Tech Intellectual Properties, Inc. Cognitive radio engine based on genetic algorithms in a network
JP2006135674A (ja) 2004-11-05 2006-05-25 Ntt Docomo Inc 移動通信用受信装置、移動通信用送信装置、移動通信用受信方法、および、移動通信用送信方法
CA2588262A1 (en) * 2004-11-05 2006-05-18 Interdigital Technology Corporation Adaptive equalizer with a dual-mode active taps mask generator and a pilot reference signal amplitude control unit
US8966223B2 (en) 2005-05-05 2015-02-24 Icera, Inc. Apparatus and method for configurable processing
BRPI0612995A2 (pt) 2005-07-14 2010-12-14 Matsushita Electric Ind Co Ltd mÉtodo de verificaÇço, dispositivo de processamento de informaÇço, circuito integrado implementado em um dispositivo de processamento de informaÇço, meio de armazenamento e programa de verificaÇço
US7532676B2 (en) * 2005-10-20 2009-05-12 Trellis Phase Communications, Lp Single sideband and quadrature multiplexed continuous phase modulation
US8792588B2 (en) 2006-03-17 2014-07-29 Nokia Corporation Method for operating a software radio receiver and software radio receiver
GB0721429D0 (en) * 2007-10-31 2007-12-12 Icera Inc Processing signals in a wireless communications environment
GB0721427D0 (en) * 2007-10-31 2007-12-12 Icera Inc Processing signals in a wireless newtwork

Also Published As

Publication number Publication date
TW200931897A (en) 2009-07-16
EP2206237A1 (en) 2010-07-14
GB0721429D0 (en) 2007-12-12
WO2009056501A1 (en) 2009-05-07
US8682272B2 (en) 2014-03-25
US20140146858A1 (en) 2014-05-29
US10003378B2 (en) 2018-06-19
ATE554533T1 (de) 2012-05-15
CN101919166A (zh) 2010-12-15
CN101919166B (zh) 2016-06-22
TWI469584B (zh) 2015-01-11
JP2011502413A (ja) 2011-01-20
EP2206237B1 (en) 2012-04-18
US20090111413A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5450431B2 (ja) ワイヤレス通信環境における信号処理
TWI484794B (zh) 無線通訊系統中之無線電接收器(二)
EP2215791B1 (en) Selection of equalization algorithm in a radio receiver
EP2215725B1 (en) Processing signals in a wireless network
TWI469585B (zh) 等化處理技術
TWI481231B (zh) 於無線接收器中處理數位樣本之技術
JP2015533270A (ja) 高電力高性能受信機又は低電力基本受信機を選択するためのデータスケジューリングアクティビティの監視
US8934520B2 (en) Radio receiver in a wireless communication system
CN100375398C (zh) 有色干扰识别

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5450431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250