JP5450291B2 - Heat exchange type hot air generator - Google Patents

Heat exchange type hot air generator Download PDF

Info

Publication number
JP5450291B2
JP5450291B2 JP2010150753A JP2010150753A JP5450291B2 JP 5450291 B2 JP5450291 B2 JP 5450291B2 JP 2010150753 A JP2010150753 A JP 2010150753A JP 2010150753 A JP2010150753 A JP 2010150753A JP 5450291 B2 JP5450291 B2 JP 5450291B2
Authority
JP
Japan
Prior art keywords
heat
temperature
furnace
damper
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010150753A
Other languages
Japanese (ja)
Other versions
JP2012013322A (en
Inventor
淳一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATSURA COMPANY, LTD.
Original Assignee
KATSURA COMPANY, LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATSURA COMPANY, LTD. filed Critical KATSURA COMPANY, LTD.
Priority to JP2010150753A priority Critical patent/JP5450291B2/en
Publication of JP2012013322A publication Critical patent/JP2012013322A/en
Application granted granted Critical
Publication of JP5450291B2 publication Critical patent/JP5450291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱交換式熱風発生装置に関する。更に詳述すると、本発明は、廃熱回収により昇温した熱交換後の熱風の温度を設定温度に保持するPID制御方式の熱交換式熱風発生装置に関する。   The present invention relates to a heat exchange type hot air generator. More specifically, the present invention relates to a PID-controlled heat exchange type hot air generator that maintains the temperature of hot air after heat exchange, which has been raised by waste heat recovery, at a set temperature.

熱交換式熱風発生装置は、清浄な熱風を得ることができると共に廃熱の有効利用によりランニングコストを低減できるというメリットがある。このことから、例えば食品加工設備や塗装物の乾燥炉などの熱風発生源として利用されることが多い。   The heat exchange type hot air generator has an advantage that it can obtain clean hot air and can reduce running cost by effectively using waste heat. For this reason, it is often used as a hot air source such as a food processing facility or a drying furnace for painted objects.

廃熱回収により昇温した熱交換後の熱風の温度を設定温度に保持するPID制御の熱交換式熱風発生装置としては、例えば図8に示すような、被塗装物に熱風を吹きつけて塗膜の焼き付けを行う熱風加熱炉101と、熱風加熱炉101において塗膜から発生する可燃性の有害ガスを焼却脱臭する脱臭炉102とを組み合わせた脱臭炉付き熱風加熱炉の熱源として利用するものが提案されている(特許文献1)。この脱臭炉付き熱風加熱炉は、被処理物を熱風で加熱する加熱炉101と、加熱によって被処理物から蒸発する可燃性の有害ガスを含む加熱炉101の炉内ガスを導入燃焼して有害ガスを無害化する脱臭炉102と、脱臭炉102から排気される排ガスの熱を回収して熱風加熱炉101に供給される熱風を昇温させる熱交換器103とを備える。加熱炉101は、その炉内ガスの一部を熱交換器103に導き脱臭炉102が排出する脱臭処理済ガスと熱交換させたのち炉101内に再び還流させることにより炉内温度を保つように設けられている。他方、脱臭炉102は、加熱炉101に導入される被処理物の負荷量に基づき加熱炉101からの炉内ガスの導入量を調節しつつ、この炉内ガスをバーナで加熱することにより炉内温度を所定範囲内に維持するように設けられている。   As a PID-controlled heat exchange type hot air generator that maintains the temperature of hot air after heat exchange, which has been raised by waste heat recovery, at a set temperature, for example, as shown in FIG. What is used as a heat source for a hot-air heating furnace with a deodorizing furnace that combines a hot-air heating furnace 101 for baking a film and a deodorizing furnace 102 for burning and deodorizing a flammable harmful gas generated from a coating film in the hot-air heating furnace 101. It has been proposed (Patent Document 1). This hot air heating furnace with a deodorizing furnace is harmful by introducing and burning in-furnace gas of a heating furnace 101 that heats the object to be treated with hot air and a combustible harmful gas that evaporates from the object to be treated by heating. A deodorizing furnace 102 that renders the gas harmless and a heat exchanger 103 that recovers the heat of the exhaust gas exhausted from the deodorizing furnace 102 and raises the temperature of the hot air supplied to the hot air heating furnace 101 are provided. The heating furnace 101 keeps the furnace temperature by introducing a part of the furnace gas to the heat exchanger 103 and exchanging heat with the deodorized gas discharged from the deodorization furnace 102 and then refluxing it again in the furnace 101. Is provided. On the other hand, the deodorization furnace 102 adjusts the introduction amount of the in-furnace gas from the heating furnace 101 based on the load amount of the workpiece to be introduced into the heating furnace 101, and heats the in-furnace gas with a burner. The internal temperature is provided so as to be maintained within a predetermined range.

この脱臭炉付き熱風加熱炉においては、加熱炉101の熱風温度の調節を、熱交換器103に導く受熱側風量を制御することにより行うようにしている。即ち、加熱炉101の炉内ガスの一部をバイパス104を利用して熱交換器103を通さずにバイパスさせて熱交換により昇温した後の炉内ガスに混合してから還流させることにより、熱交換量を制御することにより温度制御を行うようにしている。このとき、熱交換器103には脱臭のために750℃以上に保持された脱臭炉102からの排ガスが加熱側流体として導入されるため、熱交換器の受熱側風量を絞る制御量(熱交換器103に導く炉内ガスの一部は、受熱側風量の50%程度が上限であるため、放熱側負荷変動に弱いという問題を有する。そこで、熱交換器103の受熱側風量が最大で50%しか絞れないために脱臭量を絞り、熱交換器103の放熱側の風量を落とすことでターンダウンレシオを確保するようにしている。具体的には、加熱炉101の負荷量に対応する温度検知器T1 の検知信号(第1次制御量)で脱臭炉102への加熱炉101の炉内ガス導入量の第1次目標値を算出設定し、この第1次目標値を、熱風温度に対応する温度検知器T2 の検知信号(第2次制御量)で修正することにより、ファンF1 に対する最終制御量たる第2次制御量を算出設定するようにしている。   In this hot air heating furnace with a deodorizing furnace, the hot air temperature of the heating furnace 101 is adjusted by controlling the amount of air on the heat receiving side guided to the heat exchanger 103. That is, by bypassing a part of the furnace gas of the heating furnace 101 without using the bypass 104 without passing through the heat exchanger 103 and mixing with the furnace gas after the temperature is raised by heat exchange, the mixture is refluxed. The temperature is controlled by controlling the amount of heat exchange. At this time, since the exhaust gas from the deodorizing furnace 102 maintained at 750 ° C. or higher is introduced into the heat exchanger 103 as a heating side fluid for deodorization, a control amount (heat exchange) for reducing the heat receiving side air volume of the heat exchanger. The upper part of the gas in the furnace led to the heat exchanger 103 has a problem that it is vulnerable to fluctuations in the heat radiation side load because the upper limit is about 50% of the heat reception side air volume. Therefore, the deodorizing amount is reduced, and the turndown ratio is ensured by reducing the air volume on the heat radiation side of the heat exchanger 103. Specifically, the temperature corresponding to the load amount of the heating furnace 101. The first target value of the amount of gas introduced into the furnace 101 to the deodorizing furnace 102 is calculated and set by the detection signal (first control amount) of the detector T1, and this first target value is set as the hot air temperature. Detection signal of the corresponding temperature detector T2 (secondary control The secondary control amount that is the final control amount for the fan F1 is calculated and set.

特開平5−23533号公報JP-A-5-23533

しかしながら、熱交換式熱風発生装置は、熱交換器を介在して熱交換を行うので、温度変化に対する応答性が悪く、立ち上げに時間がかかる等の欠点を有している。特に、PID制御は一般にオーバーシュートとならないようにするため、目標温度値の50%〜60%程度から制御を始めるが、その動きはゆっくりしたものとなるため、外乱などに対応してバルブを動かそうとしても、その動きが遅く、風量を増やそうとしても増やせない。かといって、PIDの値(温調計)を極端に小さい値としてオンオフ制御とすると、設定温度に収束できないハンチングを起こす問題を有する。例えば、塗装乾燥炉における熱風供給源として用いる場合には、直接燃焼式と比較して乾燥炉の立ち上がり時間が50分から1時間程度と長くかかったり、外乱応答性が低いので乾燥炉の扉を開け閉めしたときなどに熱が逃げて、元の温度に復帰するまでに時間がかかったり、一定温度に制御しようとしてもハンチングを起こし易く、被乾燥物の量の増減などによる受熱側負荷変動(乾燥炉の負荷変動)に弱いという問題がある。   However, since the heat exchange type hot air generator performs heat exchange via a heat exchanger, it has disadvantages such as poor responsiveness to temperature changes and takes time to start up. In particular, PID control generally starts from about 50% to 60% of the target temperature value in order to prevent overshooting, but since the movement is slow, the valve is moved in response to disturbances, etc. Even so, the movement is slow, and even if you try to increase the air volume, you cannot increase it. However, if the PID value (temperature controller) is set to an extremely small value for on / off control, there is a problem of causing hunting that cannot converge to the set temperature. For example, when used as a hot air supply source in a coating drying furnace, the drying furnace takes a long time of about 50 minutes to 1 hour compared to the direct combustion type, or the disturbance response is low, so the drying furnace door is opened. When it closes, the heat escapes and it takes time to return to the original temperature, or it is easy to cause hunting even if you try to control it to a constant temperature. There is a problem that it is vulnerable to fluctuations in the load of the furnace.

また、特許文献1記載の熱交換式熱風発生装置においても、複数の温度制御表示器TIC2とTIC3がそれぞれ制御対象(バルブ、インバータ周波数)を持っているため、制御系が複雑化して設備費用がかかると共に、お互いの制御が複雑に絡み合いハンチングを起こす可能性が高くなる。しかも、乾燥炉から発生するVOC(揮発性有機臭気成分)の発生量分だけ脱臭しなくてはならないのにインバータ制御により熱交換器放熱側風量を落とさざるを得ない事態が起こることから、加熱炉での負荷量に関係なく脱臭量が変動してしまう問題がある。加熱炉での負荷量が増大したにもかかわらず脱臭量が減ってしまうと、炉内のVOC濃度が増加してしまうため、爆発下限界濃度に達する虞が生ずるなどの危険が伴う。さらに、受熱側風量は50%までしか絞れないので、放熱側負荷変動(脱臭炉の負荷変動)に弱いという問題を有している。   Also, in the heat exchange type hot air generator described in Patent Document 1, since the plurality of temperature control indicators TIC2 and TIC3 each have a control target (valve, inverter frequency), the control system becomes complicated and the equipment cost is increased. At the same time, there is a high possibility of mutual entanglement between the controls and hunting. In addition, although the amount of VOC (volatile organic odorous component) generated from the drying furnace must be deodorized, there is a situation where the air flow on the heat exchanger side of the heat exchanger must be reduced by inverter control. There is a problem that the deodorization amount fluctuates regardless of the load amount in the furnace. If the amount of deodorization decreases even though the load amount in the heating furnace increases, the VOC concentration in the furnace increases, and there is a risk that the lower explosion limit concentration may be reached. Furthermore, since the heat-receiving-side air volume can be reduced only to 50%, there is a problem that the heat-receiving-side air volume is vulnerable to heat radiation side load fluctuations (deodorization furnace load fluctuations).

本発明は、シンプルな構成でありながら応答性を上げると共にハンチングがなく設定温度への収束が速い熱交換式熱風発生装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a heat exchange type hot air generator that has a simple structure, improves responsiveness, has no hunting, and quickly converges to a set temperature.

かかる目的を達成するために請求項1記載の発明は、放熱側となる熱設備と、受熱側となる熱設備と、前記放熱側熱設備からの排ガスと熱交換して前記受熱側熱設備との間を循環する受熱設備側ガスを加熱する熱交換器とを備え、廃熱回収により昇温した熱交換後の前記受熱設備側ガスの温度を設定温度に保持するPID制御の熱交換式熱風発生装置において、前記熱交換器の前記排ガスを通過させる放熱側流路に設けられて前記排ガスの通過量を制御する第1のダンパと、前記放熱側流路の前記第1のダンパの上流と前記熱交換器の出口の下流側とを連通させて前記熱交換器を迂回して前記排ガスを流すバイパス路と、前記バイパス路の開閉を行い前記バイパス路を通過する排ガスの量を制御する第2のダンパと、前記放熱側流路の前記第1のダンパと前記熱交換器との間で外気を前記放熱側流路に導入可能とする第3のダンパとを備え、前記受熱側熱設備の設備内ガス温度を温度センサーで測定して前記第1〜第3のダンパの開度を指示する温度調節計と、前記第1のダンパと第2のダンパと第3のダンパの各ダンパにそれぞれ独立して設けられた信号変換器と、前記第2及び第3のダンパの開閉を制御する各信号変換器の比例帯並びに回転角センターは、開き始める前記第1のダンパに対して速めに閉じる反面、閉じ始める第1のダンパに対しては遅く開き始める比例帯並びに回転角センターに各々設定され、1つの前記温度センサから検出した温度に基づいて1つの前記温度調節計からの指示で前記3つのダンパを予め設定された比例帯と回転角センターで操作するようにしている。   In order to achieve such an object, the invention described in claim 1 includes a heat facility on the heat radiating side, a heat facility on the heat receiving side, and heat exchange with the exhaust gas from the heat radiating side heat facility, A heat exchanger for heating the heat receiving equipment side gas circulating between them, and a PID-controlled heat exchange hot air for maintaining the temperature of the heat receiving equipment side gas after the heat exchange raised in temperature by waste heat recovery at a set temperature In the generator, a first damper that is provided in a heat radiation side passage that allows the exhaust gas of the heat exchanger to pass through and controls an amount of passage of the exhaust gas, and an upstream side of the first damper in the heat radiation side passage; A bypass passage that communicates with the downstream side of the outlet of the heat exchanger to bypass the heat exchanger and flows the exhaust gas; and a first passage that opens and closes the bypass passage and controls the amount of exhaust gas that passes through the bypass passage. 2 dampers and the heat dissipation side flow path A third damper that allows outside air to be introduced into the heat radiation side flow path between the heat exchanger and the heat exchanger, and the temperature of the gas in the facility of the heat receiving side heat facility is measured by a temperature sensor, and A temperature controller for instructing an opening degree of the first to third dampers, a signal converter provided independently for each of the first damper, the second damper, and the third damper; The proportional band and the rotation angle center of each signal converter that controls the opening and closing of the second and third dampers close faster than the first damper that starts to open, but late for the first damper that starts to close. The proportional band and the rotation angle center that are set to open and the rotation angle center are set respectively, and the three dampers are set in advance according to an instruction from one temperature controller based on the temperature detected from one temperature sensor. To operate with To have.

また、請求項2記載の発明は、請求項1記載の熱交換式熱風発生装置において、前記受熱側熱設備は乾燥炉、前記放熱側熱設備は直接燃焼式脱臭炉であり、前記受熱側熱設備たる乾燥炉から抽出され前記直接燃焼式脱臭炉へ導入される乾燥炉内ガスを前記直接燃焼式脱臭炉からの脱臭済み排ガスで加熱するための予熱用熱交換器を前記放熱側熱設備たる脱臭炉と前記熱交換器との間の前記放熱側流路の前記バイパス路を分岐させるよりも上流に備え、前記乾燥炉から抽出された炉内ガスを前記予熱用熱交換器で昇温させてから前記直接燃焼式脱臭炉に導入して脱臭した後に、前記脱臭炉からの脱臭済み排ガスを前記予熱用熱交換器及び前記熱交換器に順次通過させて前記予熱用熱交換器での前記乾燥炉内ガスとの熱交換の熱源として利用すると共に、さらには前記乾燥炉と前記熱交換器との間を循環する前記受熱設備側ガスを加熱する熱源として利用するものである。 The invention according to claim 2 is the heat exchange hot air generator according to claim 1, wherein the heat receiving side heat equipment is a drying furnace, the heat radiation side heat equipment is a direct combustion type deodorizing furnace, and the heat receiving side heat A heat exchanger for preheating for heating the gas in the drying furnace extracted from the drying furnace as the equipment and introduced into the direct combustion deodorization furnace with the deodorized exhaust gas from the direct combustion deodorization furnace is the heat radiation side heat equipment. wherein the bypass passage of the heat radiating side passageway provided upstream of branches, the furnace gas extracted from the drying furnace was raised at the preheating heat exchanger between the deodorizing furnace and the heat exchanger Then, after deodorizing by introducing into the direct combustion deodorization furnace, the deodorized exhaust gas from the deodorization furnace is sequentially passed through the preheating heat exchanger and the heat exchanger, and the preheating heat exchanger utilized as a heat source for heat exchange with the drying oven gas Both further is utilized as a heat source for heating the heat receiving equipment side gas circulating between the heat exchanger and the drying furnace.

また、請求項3記載の発明は、請求項1または2記載の熱交換式熱風発生装置において、前記第2のダンパ及び前記第3のダンパの前記比例帯は75%以下、25%以上でかつ、回転角センターは37.5%以下12.5%以上であることが好ましい。   The invention according to claim 3 is the heat exchange hot air generator according to claim 1 or 2, wherein the proportional band of the second damper and the third damper is 75% or less, 25% or more, and The rotation angle center is preferably 37.5% or less and 12.5% or more.

また、請求項4記載の発明は、請求項1から3のいずれか1つに記載の熱交換式熱風発生装置において、前記熱交換器の前記放熱側流路の出口温度を検出する熱交用温度センサを備え、該熱交用温度センサーの検出信号に基づいて前記各信号変換器を制御する放熱側温度調節計をスレーブとし、前記乾燥炉温度調節計をマスターとしたカスケード接続し、前記乾燥炉の温度センサーの検出値に基づいて前記乾燥炉温度調節計から出力される指示に基づいて前記放熱側温度調節計で前記熱交換器の前記放熱側流路の出口設定温度を演算して前記各信号変換器を前記出口設定温度となるようにカスケード制御することが好ましい。 The invention according to claim 4 is for heat exchange in the heat exchange hot air generator according to any one of claims 1 to 3 for detecting an outlet temperature of the heat radiation side flow path of the heat exchanger. A temperature sensor, a radiating side temperature controller that controls each of the signal converters based on a detection signal of the heat exchanger temperature sensor as a slave, a cascade connection using the drying furnace temperature controller as a master, and the drying Based on the instruction output from the drying furnace temperature controller based on the detection value of the temperature sensor of the furnace, the outlet temperature setting of the heat dissipation side flow path of the heat exchanger is calculated by the heat dissipation side temperature controller It is preferable that each signal converter is cascade-controlled so as to have the outlet set temperature.

また、請求項5記載の発明は、請求項1から4のいずれか1つに記載の熱交換式熱風発生装置において、前記放熱側流路前記バイパス路の合流位置よりも下流にインバータファンを設置し、前記受熱側熱設備の設定温度と前記受熱側熱設備内のガス温度との温度偏差に応じて前記インバータファンのインバータ周波数制御を行って前記放熱側熱設備からの排ガスの風量を制御するゾーンPID制御を実施することが好ましい。 Further, an invention according to claim 5, wherein, in the heat exchange type hot air generating device according to any one of claims 1 4, inverter fan downstream from the joining position between the bypass passage and the heat radiating side passageway And performing an inverter frequency control of the inverter fan in accordance with a temperature deviation between a set temperature of the heat receiving side heat facility and a gas temperature in the heat receiving side heat facility to reduce an air flow rate of the exhaust gas from the heat radiating side heat facility. It is preferable to implement the zone PID control to be controlled .

さらに、請求項6記載の発明は、前記熱交換器の受熱側流路の出口側の前記乾燥炉と前記熱交換器との間で外気の導入を可能とする第4のダンパを備え、前記ゾーンPID制御の前記受熱側熱設備の設定温度を越えたときの減速運転時に前記受熱側流路に外気を導入して前記乾燥炉を急速冷却するものであることが好ましい。 Furthermore, the invention described in claim 6 includes a fourth damper that enables introduction of outside air between the drying furnace and the heat exchanger on the outlet side of the heat receiving side flow path of the heat exchanger, It is preferable that the drying furnace is rapidly cooled by introducing outside air into the heat receiving side flow path during the deceleration operation when the set temperature of the heat receiving side heat equipment in the zone PID control is exceeded .

請求項1記載の熱交換式熱風発生装置では、循環する熱風の温度を下げるときには、第1のダンパの開度を閉じると共に第2のダンパを開いて排ガスをバイパス流路側へ流れるように切り替えると共に第3のダンパを開いて外気(フレッシュエア)を熱交換器に導入して熱交換器に残る余熱を取り除くことにより、熱交換器放熱側を流れるガスの温度を急冷する。また、放熱側温度が低下(外乱)すると、即座に第1のダンパの開度が開かれると共に第2のダンパと第3のダンパも急速に開度を閉じ、第1のダンパよりも速く開度を閉じる。このとき、全閉状態から開き始める第1のダンパは、回転角の変化ほど流路の開度は変化しないにもかかわらず、全開状態から閉じ始める第2及び第3のダンパは同じ回転角の変化の場合にも流路の開度に与える影響は大きい上に比例帯と回転角センターが第1のダンパと異なり小さく設定されているので、急激に第1のダンパの開度変化の影響を与える。したがって、熱交換器に高温の排ガスが流れて熱交換器と受熱側熱設備との間を循環する受熱設備側ガスを加熱して昇温するため、迅速な温度変化への応答が可能となる。即ち、熱交換器受熱側風量を制御しているので外乱応答性が高いものとなる。
また、1つの温度調節計と1つの温度センサーの単純なPID制御系であり、制御が簡単なものとなると共にハンチングがなく設定温度への収束が速いものとなる。
In the heat exchange type hot air generator according to claim 1, when the temperature of the circulating hot air is lowered, the opening degree of the first damper is closed and the second damper is opened to switch the exhaust gas to flow to the bypass flow path side. By opening the third damper and introducing outside air (fresh air) into the heat exchanger to remove residual heat remaining in the heat exchanger, the temperature of the gas flowing on the heat exchanger radiation side is rapidly cooled. In addition, when the temperature on the heat radiation side decreases (disturbance), the opening degree of the first damper is immediately opened and the opening degree of the second damper and the third damper are also rapidly closed and opened faster than the first damper. Close degree. At this time, the first damper that starts to open from the fully closed state has the same rotation angle as the second and third dampers that start to close from the fully open state even though the opening degree of the flow path does not change as the rotation angle changes. Even in the case of a change, the influence on the opening of the flow path is large, and since the proportional band and the rotation angle center are set small unlike the first damper, the influence of the opening change of the first damper is abruptly affected. give. Therefore, since the high temperature exhaust gas flows through the heat exchanger and heats the heat receiving equipment side gas circulating between the heat exchanger and the heat receiving side heat equipment, the temperature rises by heating, and thus it is possible to respond to a rapid temperature change. . That is, since the heat exchanger heat receiving side air volume is controlled, the disturbance responsiveness is high.
Further, it is a simple PID control system of one temperature controller and one temperature sensor, which makes control easy and does not cause hunting and quickly converges to a set temperature.

また、本発明によれば、排ガスと循環する受熱設備側ガスとの間で熱交換させる熱交換器に対し、排ガスの通過を0〜100%の範囲で制御できるので、ターンダウンレシオが高く取れる。   In addition, according to the present invention, the passage of the exhaust gas can be controlled in the range of 0 to 100% with respect to the heat exchanger that exchanges heat between the exhaust gas and the circulating heat receiving equipment side gas, so that a high turn-down ratio can be obtained. .

また、請求項2記載の発明は、乾燥炉と直接燃焼式脱臭炉との組み合わせの熱源として利用しているので、放熱側風量に変動があっても、バイパスさせる排ガス量を制御することで乾燥炉から抽出された炉内ガスとの間の熱交換量を一定にすることができ、放熱側負荷変動(脱臭炉の負荷変動)の影響を受けずに、廃熱回収により昇温した熱交換後の熱風の温度を設定温度に保持することができる。したがって、乾燥炉から発生するVOCの発生量分だけ脱臭しながらも、乾燥炉内の炉内ガス温度を設定温度に維持できる。こうして、乾燥炉内のVOC濃度が増加してしまうことがなく、爆発下限界濃度に達する虞がないので塗装乾燥作業などを安全に実施することができる。 In addition, since the invention according to claim 2 is used as a heat source of a combination of a drying furnace and a direct combustion type deodorizing furnace, even if there is a fluctuation in the airflow on the heat radiation side, the amount of exhaust gas to be bypassed is controlled. Heat exchange with the gas in the furnace extracted from the furnace can be made constant, and heat exchange that has been heated up by waste heat recovery without being affected by load-side load fluctuations (deodorization furnace load fluctuations) The temperature of the subsequent hot air can be maintained at the set temperature. Therefore, the furnace gas temperature in the drying furnace can be maintained at the set temperature while deodorizing the amount of VOC generated from the drying furnace. In this way, the VOC concentration in the drying furnace does not increase, and there is no possibility of reaching the lower explosion limit concentration, so that it is possible to safely perform a paint drying operation or the like.

請求項3記載の発明によると、各信号変換器の比例帯及び回転角センターを変更することにより、熱交換器受熱側の温度変化特性を自在に調整可能となる。   According to the third aspect of the present invention, the temperature change characteristics on the heat exchanger receiving side can be freely adjusted by changing the proportional band and the rotation angle center of each signal converter.

請求項4記載の発明によると、制御対象(受熱側熱設備の炉内温度)が一つで温度調節計がマスターとスレーブでぶら下がった関係になっているカスケード制御をとり、スレーブ側調節計(放熱側温度)が自身で弁開度を調節するため、外乱の収束が速いし、制御系がシンプルで外乱応答性を向上できる。この場合、炉内温度偏差を±1℃以内も可能である。   According to the invention described in claim 4, cascade control is performed in which the control target (in-furnace temperature of the heat-receiving-side heat facility) is one and the temperature controller is suspended by the master and the slave, and the slave-side controller ( Since the heat release side temperature) adjusts the valve opening by itself, the disturbance converges quickly, the control system is simple, and the disturbance response can be improved. In this case, the temperature deviation in the furnace can be within ± 1 ° C.

請求項5記載の発明によると、ゾーンPIDにより、立ち上がり初期には加速運転を行い、設定温度に近づくと定常運転の周波数でインバータ周波数を制御することにより、熱交換量を増やして立ち上がり時間の短縮を可能とする。本発明の場合、従来50分から60分を要していた立ち上げを35分から40分に短縮することができる。即ち、立ち上がり時間を約2/3程度に短縮できる。   According to the invention described in claim 5, by the zone PID, acceleration operation is performed at the initial stage of startup, and when the temperature approaches the set temperature, the inverter frequency is controlled at the steady operation frequency, thereby increasing the heat exchange amount and shortening the startup time. Is possible. In the case of the present invention, the start-up which conventionally required 50 minutes to 60 minutes can be shortened from 35 minutes to 40 minutes. That is, the rise time can be shortened to about 2/3.

請求項6記載の発明によると、オーバーシュート時に放熱側流路のインバータファンのインバータ周波数を制御することにより放熱設備側ガス(脱臭済み排ガス)の風量を抑制すると共に受熱側熱設備に還流する受熱設備側ガスに直接フレッシュエアを導入して急冷することにより、オーバーシュートを抑えることができ、急激な外乱に対する応答性を有する。   According to the sixth aspect of the present invention, the amount of heat of the heat radiating equipment side gas (deodorized exhaust gas) is suppressed by controlling the inverter frequency of the inverter fan in the heat radiating side flow path at the time of overshoot, and the heat receiving heat that is returned to the heat receiving side heat equipment. By introducing fresh air directly into the facility-side gas and quenching it, overshoot can be suppressed and it has responsiveness to sudden disturbances.

本発明の熱交換式熱風発生装置の一実施形態を示す設備フローブロック図である。It is an equipment flow block diagram showing one embodiment of a heat exchange type hot air generator of the present invention. 図1の設備フローブロックの要部を拡大して示す図である。It is a figure which expands and shows the principal part of the equipment flow block of FIG. 本発明の熱交換式熱風発生装置のPID制御の一例を示す図で、温度調節計と信号変換器とダンパとの関係を示す。It is a figure which shows an example of PID control of the heat exchange type | formula hot-air generator of this invention, and shows the relationship between a temperature controller, a signal converter, and a damper. ダンパ開度と制御出力との関係を示すグラフである。It is a graph which shows the relationship between a damper opening degree and a control output. 立ち上げ時のゾーンPIDによる運転状態と炉内ガス温度の変化を示すグラフである。It is a graph which shows the change of the operation state by the zone PID at the time of starting, and furnace gas temperature. 本発明の他の実施形態を示すもので、乾燥炉温度調節計をマスターとしてその下に熱交換器の出口温度を一定にする放熱側温度調節計をスレーブとしたカスケード制御の設備フローブロック図を示す。The other embodiment of this invention is shown, The equipment flow block diagram of the cascade control which made the drying side temperature controller the slave and the heat-radiation side temperature controller which makes constant the exit temperature of a heat exchanger under it as a master is shown. Show. 単純フィードバック制御とカスケード制御とを比較した外乱応答性を示すグラフである。It is a graph which shows the disturbance responsiveness which compared simple feedback control and cascade control. 従来のPID制御の熱交換式熱風発生装置を示す設備フローブロック図である。It is an equipment flow block diagram which shows the heat exchange type hot air generator of the conventional PID control.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings.

図1〜図3に、本発明の熱交換式熱風発生装置を脱臭炉付き塗装乾燥炉の熱源として適用した実施形態の一例を示す。この脱臭炉付き塗装乾燥炉は、乾燥炉(受熱側熱設備)1と、直接燃焼式脱臭炉(放熱側熱設備)2と、脱臭炉2から排出される脱臭済みガス(排ガス)を熱源として乾燥炉1から抽気された乾燥炉内ガス(受熱設備側ガス)を加熱して乾燥炉1に還流させる熱交換器3とを備え、乾燥炉1の炉内ガスの温度偏差に応じて熱交換器3を通過する排ガスの風量を制御することにより乾燥炉1の炉内ガス温度を設定温度に保持するPID制御の熱交換式熱風発生装置を構成している。尚、本実施形態においては、乾燥炉1から抽出された炉内ガスは予熱用熱交換器4で脱臭済み排ガスの廃熱を利用して予熱されてから脱臭炉2に導入される。図中の符号6,7は臭気ガスを流す流路である。   1 to 3 show an example of an embodiment in which the heat exchange type hot air generator of the present invention is applied as a heat source of a paint drying furnace with a deodorizing furnace. This deodorizing furnace-equipped coating drying furnace uses a drying furnace (heat receiving side heat equipment) 1, a direct combustion type deodorizing furnace (heat radiation side heat equipment) 2, and a deodorized gas (exhaust gas) discharged from the deodorizing furnace 2 as a heat source. A heat exchanger 3 that heats the drying furnace gas extracted from the drying furnace 1 and heats it back to the drying furnace 1, and performs heat exchange according to the temperature deviation of the furnace gas in the drying furnace 1. A PID-controlled heat exchange type hot air generator that holds the in-furnace gas temperature of the drying furnace 1 at a set temperature by controlling the air volume of the exhaust gas passing through the vessel 3 is configured. In the present embodiment, the in-furnace gas extracted from the drying furnace 1 is preheated using the waste heat of the deodorized exhaust gas in the preheating heat exchanger 4 and then introduced into the deodorization furnace 2. Reference numerals 6 and 7 in the figure are flow paths for flowing odor gas.

乾燥炉1は、炉内ガスを一旦炉外に取り出し熱交換器3の受熱側流路を通過させてから再び当該乾燥炉1へ還流させる炉内ガス循環系統21を備え、炉内ガスの一部を抽出して熱交換器3に導き、熱交換器3で脱臭炉2から排出される脱臭処理済ガスと熱交換させて加熱し、熱風として乾燥炉1へ戻して被処理物を加熱するようにしている。図中、符号20は炉内ガスを循環させるためのファンである。   The drying furnace 1 includes an in-furnace gas circulation system 21 that takes out the in-furnace gas outside the furnace, passes the heat-receiving side flow path of the heat exchanger 3 and then returns to the drying furnace 1 again. Part is extracted and led to the heat exchanger 3, heat-exchanged with the deodorized gas discharged from the deodorizing furnace 2 by the heat exchanger 3, heated, and returned to the drying furnace 1 as hot air to heat the object to be processed. I am doing so. In the figure, reference numeral 20 denotes a fan for circulating the gas in the furnace.

他方、脱臭炉2は、乾燥炉1から抽気した炉内ガス(臭気ガス)をバーナ火炎に混合して、少なくとも750℃以上の雰囲気下で臭気成分即ちVOC(揮発性有機化合物)を熱分解させる直接燃焼式脱臭炉であり、熱分解により脱臭処理した後のガス(脱臭済みガス)を熱交換器3を通して炉内ガス循環系統21を流れる炉内ガスとの間で熱交換してから排気されるように設けられている。尚、脱臭炉2は、図示していない温度センサーや温度調節計などで脱臭炉内温度を750℃に保持するように制御されている。この実施例では、脱臭炉2は、乾燥炉1からの炉内ガスの導入路にファン5を備えており、風量一定で乾燥炉1から臭気ガスが抽気されて供給されている。他方、炉内ガス循環路21においても、ファン20を制御して、風量一定で炉内ガスが乾燥炉1と熱交換器3との間を循環するように制御されている。尚、図中の符号26は熱交換器3での熱交換後の排ガスを更に低温にして大気中に放出するための外気導入口である。   On the other hand, the deodorizing furnace 2 mixes in-furnace gas (odor gas) extracted from the drying furnace 1 with a burner flame, and thermally decomposes an odor component, that is, VOC (volatile organic compound) in an atmosphere of at least 750 ° C. or more. It is a direct combustion type deodorization furnace, and the gas (deodorized gas) after the deodorization treatment by thermal decomposition is exhausted after exchanging heat with the in-furnace gas flowing through the in-furnace gas circulation system 21 through the heat exchanger 3. It is provided so that. The deodorizing furnace 2 is controlled so as to maintain the temperature in the deodorizing furnace at 750 ° C. by a temperature sensor or a temperature controller (not shown). In this embodiment, the deodorizing furnace 2 is provided with a fan 5 in the introduction path of the in-furnace gas from the drying furnace 1, and the odor gas is extracted and supplied from the drying furnace 1 with a constant air volume. On the other hand, in the furnace gas circulation path 21, the fan 20 is also controlled so that the furnace gas circulates between the drying furnace 1 and the heat exchanger 3 with a constant air flow. Reference numeral 26 in the figure denotes an outside air inlet for releasing the exhaust gas after heat exchange in the heat exchanger 3 to a lower temperature and releasing it into the atmosphere.

ここで、本実施形態の熱交換式熱風発生装置は、図2及び図3に示すように、熱交換器3の放熱側流路8に、熱交換器3の上流側と下流側とを連通させて熱交換器3を迂回して排ガスを流すバイパス路9が設けられている。具体的には、予熱用熱交換器4の後でかつ熱交換器3の入り口側の上流で分岐して熱交換器3の出口側で合流するバイパス路9が設けられている。そして、熱交換器3の上流の放熱側流路8には該放熱側流路8を開閉して熱交換器3に流れ込む排ガスの風量を制御する第1のダンパ11と、第1のダンパ11と熱交換器3との間で外気を放熱側流路8に導入可能とする第3のダンパ13と、バイパス路9を開閉してバイパス路9を通過する排ガスの量を制御する第2のダンパ12とを備えている。第1〜第3の各ダンパ11,12,13には、それぞれ信号変換器15,16,17が備えられ、それぞれ独立して比例帯並びに回転角センターが設定可能とされると共に温度調節計23によってそのダンパ開度が制御されるように設けられている。温度調節計23は、乾燥炉1の炉内温度を検出する温度センサー27の出力信号に基づいて第1〜第3の各ダンパ11,12,13の開度を信号変換器15,16,17に指示するものであり、温度センサ27の検知信号に応じて各信号変換器15,16,17を駆動することにより熱風温度を調節し、乾燥炉1の炉内温度を同じにするようにPID制御するものである。即ち、本実施形態のPID制御システムは、1つの温度センサ27から検出した温度に基づいて1つの温度調節計23からの指示で3つの信号変換器15,16,17を予め設定された比例帯と回転角センターで操作して、対応する第1〜第3のダンパ11,12,13の開閉制御を行うようにしたものである。   Here, as shown in FIGS. 2 and 3, the heat exchange type hot air generator of the present embodiment communicates the upstream side and the downstream side of the heat exchanger 3 with the heat radiation side flow path 8 of the heat exchanger 3. Thus, a bypass path 9 is provided to flow the exhaust gas around the heat exchanger 3. Specifically, a bypass path 9 is provided that branches after the preheating heat exchanger 4 and upstream of the inlet side of the heat exchanger 3 and joins at the outlet side of the heat exchanger 3. A first damper 11 that controls the amount of exhaust gas flowing into the heat exchanger 3 by opening and closing the heat dissipation side flow path 8 in the heat dissipation side flow path 8 upstream of the heat exchanger 3, and the first damper 11 A third damper 13 that can introduce outside air into the heat radiation side flow path 8 between the heat exchanger 3 and the heat exchanger 3, and a second damper that opens and closes the bypass path 9 and controls the amount of exhaust gas that passes through the bypass path 9. And a damper 12. The first to third dampers 11, 12, 13 are provided with signal converters 15, 16, 17, respectively, so that the proportional band and the rotation angle center can be set independently, and the temperature controller 23. Is provided so that the damper opening is controlled. The temperature controller 23 determines the opening degree of each of the first to third dampers 11, 12, 13 based on the output signal of the temperature sensor 27 that detects the furnace temperature of the drying furnace 1, as signal converters 15, 16, 17. The hot air temperature is adjusted by driving each signal converter 15, 16, 17 in accordance with the detection signal of the temperature sensor 27, and the PID is set so that the furnace temperature of the drying furnace 1 is the same. It is something to control. That is, the PID control system according to the present embodiment sets the three signal converters 15, 16, and 17 in advance in accordance with instructions from one temperature controller 23 based on the temperature detected from one temperature sensor 27. And the opening / closing control of the corresponding first to third dampers 11, 12, 13 is performed at the rotation angle center.

本実施形態の場合、各信号変換器15,16,17の開閉動作の設定は、放熱側流路8を開閉する第1のダンパ11の開閉動作に対し、バイパス路9を開閉する第2のダンパ12及び第1のダンパ11の下流で放熱側流路8に外気を必要に応じて導入するための第3のダンパ13の開閉動作は逆モーションとなるように設定されている。具体的には、放熱側流路8の第1のダンパ11が開度100%(全開)のときには、バイパス路9の第2のダンパ12及び外気を導入するための第3のダンパ13の開度は0%(全閉)となり、その逆に第1のダンパ11が全閉のときには、第2及び第3のダンパ12,13は全開となるように設定されている。   In the case of this embodiment, the setting of the opening / closing operation of each signal converter 15, 16, 17 is the second operation of opening / closing the bypass passage 9 with respect to the opening / closing operation of the first damper 11 that opens / closes the heat radiation side passage 8. The opening / closing operation of the third damper 13 for introducing outside air into the heat radiation side flow path 8 downstream of the damper 12 and the first damper 11 as required is set to have a reverse motion. Specifically, when the first damper 11 of the heat radiation side flow path 8 is 100% open (fully open), the second damper 12 of the bypass path 9 and the third damper 13 for introducing outside air are opened. The degree is 0% (fully closed). Conversely, when the first damper 11 is fully closed, the second and third dampers 12 and 13 are set to be fully opened.

さらに、各信号変換器15,16,17の比例帯と回転角センターの設定は、第1のダンパ11の開閉を制御する信号変換器15の比例帯並びに回転角センターの設定に対し、第2及び第3のダンパ12,13の開閉を制御する信号変換器16,17の比例帯並びに回転角センターの設定を異ならせるようにしている。即ち、ダンパの開度(比例帯、回転角センター)を各信号変換器15,16,17毎にそれぞれ設定することにより、ダンパ毎の開閉時期にタイムラグを与えると共に開閉動作の速さに差をもたせることができる。本実施形態では、第2及び第3のダンパ12,13の開閉を制御する信号変換器16,17の比例帯並びに回転角センターの設定は、開き始める第1のダンパ11に対して速めに閉じる反面、閉じ始める第1のダンパ11に対して遅く開き始める関係(遅延時間を有する関係)となるように、比例帯並びに回転角センターが各々設定される。例えば、第1のダンパ11の開閉を制御する信号変換器15は、比例帯100%、回転角センター50%に設定され、第2及び第3の信号変換器16,17は、第1のダンパ11に対して速めに閉じる反面、遅く開き始める関係となるように、比例帯75%以下、回転角センター37.5%以下の範囲で比例帯設定、回転角センター設定が行われる。ここで、この信号変換器16,17の比例帯設定、回転角センター設定の下限値は特に限定されるものではないが、本発明者などの実験によると比例帯25%以上、回転角センター12.5%以上であることが好ましい。したがって、第2及び第3のダンパ12,13の信号変換器16,17の比例帯並びに回転角センターの設定は、比例帯25%〜75%、回転角センター12.5%〜37.5%の範囲で行うことが好ましい。もっとも、第2及び第3のダンパ12,13の信号変換器16,17の比例帯並びに回転角センターの設定は、上述の範囲に限られるものでなく、必要に応じて適宜値に設定できることは言うまでもない。   Furthermore, the setting of the proportional band and the rotation angle center of each signal converter 15, 16, and 17 is the second relative to the setting of the proportional band and the rotation angle center of the signal converter 15 that controls the opening and closing of the first damper 11. In addition, the proportional band and the rotation angle center of the signal converters 16 and 17 for controlling the opening and closing of the third dampers 12 and 13 are set differently. That is, by setting the opening degree of the damper (proportional band, rotation angle center) for each of the signal converters 15, 16, and 17, a time lag is given to the opening / closing timing of each damper and the speed of the opening / closing operation is changed. Can be given. In the present embodiment, the setting of the proportional band and the rotation angle center of the signal converters 16 and 17 that control the opening and closing of the second and third dampers 12 and 13 closes faster than the first damper 11 that starts to open. On the other hand, the proportional band and the rotation angle center are respectively set so as to have a relationship of starting to open slowly (a relationship having a delay time) with respect to the first damper 11 that starts to close. For example, the signal converter 15 that controls opening and closing of the first damper 11 is set to a proportional band of 100% and a rotation angle center of 50%, and the second and third signal converters 16 and 17 are set to the first damper. While the speed is closed earlier than 11, the proportional band setting and the rotation angle center setting are performed in a range where the proportional band is 75% or less and the rotation angle center is 37.5% or less so as to start opening slowly. Here, the lower limit values of the proportional band setting and the rotation angle center setting of the signal converters 16 and 17 are not particularly limited, but according to experiments by the present inventors, the proportional band 25% or more and the rotation angle center 12 are set. It is preferably 5% or more. Accordingly, the proportional band and the rotation angle center of the signal converters 16 and 17 of the second and third dampers 12 and 13 are set to the proportional band 25% to 75% and the rotation angle center 12.5% to 37.5%. It is preferable to carry out in the range. However, the setting of the proportional band and the rotation angle center of the signal converters 16 and 17 of the second and third dampers 12 and 13 is not limited to the above-described range, and can be appropriately set as necessary. Needless to say.

また、放熱側流路8のバイパス路9が合流する位置よりも下流にはインバータ制御のファン10が備えられ、乾燥炉1の立ち上げ時には、乾燥炉1の設定温度と温度センサー27で検出される乾燥炉の温度との温度偏差に応じて周波数制御を行って誘引通風量、即ち脱臭炉2からの排ガスの風量を制御するゾーンPID制御を実施可能とすることが好ましい。ゾーンPID制御は、例えば図5に示すように、周波数帯域ごとにPIDの値を段階的に変えるものである。具体的には、温度偏差が大きいときほど、放熱側及び受熱側の風量をアップすることで、即ちファン5及び10の周波数制御により風量アップして交換熱量を増大するようにしている。例えば、設定温度に対して−20℃の温度偏差となるまでは60Hzでの加速運転域とし、±5℃の温度偏差までの範囲を定常運転域として45Hzで運転し、設定温度を超える減速運転域では40Hzでの運転とする。これにより、立ち上げ時間の短縮化を可能としている。例えば、熱交換式の間接加熱方式による乾燥炉の立ち上げには50〜60分程度かかっていたが35〜40分に短縮された。また、乾燥炉の扉が長時間開け放たれたままの状態となり大幅な炉内温度の低下が起こるなど、外乱などにより大幅な温度低下などが起こった場合にも、周波数変更により急速に温度上昇を行わせて、応答性をあげることも可能である。そして、減速運転域では、オーバーシュートしないように、ファン10の周波数制御により交換熱量を制御すると同時に、外気取り入れ用の第4のダンパ14を開いて熱交換器3を通過した後の炉内還流ガスに外気(新鮮な空気)を取り入れて急冷することで設定温度への収束を速めることが好ましい。尚、第4のダンパ14は電動モータ18によって駆動される電動ダンパであり、温度調節計23の外部接点信号を使用し、予め設定した温度に到達したときに開いて吸気口19から外気を導入することにより急冷を開始するように設けられている。   Further, an inverter-controlled fan 10 is provided downstream of the position where the bypass path 9 of the heat radiation side flow path 8 joins, and is detected by the set temperature of the drying furnace 1 and the temperature sensor 27 when the drying furnace 1 is started up. It is preferable to perform zone PID control in which frequency control is performed in accordance with a temperature deviation from the temperature of the drying furnace to control the amount of induced air, that is, the amount of exhaust gas from the deodorizing furnace 2. In the zone PID control, for example, as shown in FIG. 5, the value of the PID is changed stepwise for each frequency band. Specifically, as the temperature deviation is larger, the air volume on the heat radiating side and the heat receiving side is increased, that is, the air volume is increased by frequency control of the fans 5 and 10 to increase the exchange heat quantity. For example, an acceleration operation range at 60 Hz is used until a temperature deviation of −20 ° C. with respect to the set temperature, and a range up to ± 5 ° C. is operated at 45 Hz as a steady operation range, and the deceleration operation exceeds the set temperature. In the region, the operation is at 40 Hz. This makes it possible to shorten the startup time. For example, it took about 50 to 60 minutes to start the drying furnace by the heat exchange type indirect heating method, but it was shortened to 35 to 40 minutes. In addition, when the temperature of the drying furnace is left open for a long time and the temperature inside the furnace decreases significantly, such as when a significant temperature decrease occurs due to external disturbances, the temperature changes rapidly. It is also possible to increase the responsiveness. In the deceleration operation region, the amount of heat exchanged is controlled by the frequency control of the fan 10 so as not to overshoot, and at the same time, the fourth damper 14 for taking in outside air is opened and the recirculation in the furnace after passing through the heat exchanger 3. It is preferable to accelerate the convergence to the set temperature by taking outside air (fresh air) into the gas and quenching it. The fourth damper 14 is an electric damper driven by an electric motor 18 and uses an external contact signal of the temperature controller 23 to open when a preset temperature is reached and introduce outside air from the intake port 19. By doing so, it is provided to start quenching.

以上のように構成された熱交換式熱風発生装置によると、循環する熱風の温度を下げるときには、第1のダンパ11の開度を閉じると共に第2のダンパ12を開いて排ガスをバイパス流路9側へ流れるように切り替えると共に第3のダンパ13を開いて外気(フレッシュエア)を熱交換器3に導入して熱交換器3の余熱を取り除くことにより、熱交換器3の受熱側流路を流れる炉内ガスの温度を遅滞なく冷やすことができる。また、外乱などにより放熱側温度が低下したり、乾燥炉1の炉内ガス温度が下がったときには、第1のダンパ11の開度が開かれると共に第2のダンパ12と第3のダンパ13が第1のダンパ11よりも速く開度を閉じ、熱交換器3を通す排ガス風量を増やして熱交換器3の受熱側流路を流れる炉内ガスの温度を上げることができる。このとき、全閉状態から第1のダンパ11が開き始める場合には、ダンパ開度と風量の変化特性が急激であることから、第2及び第3のダンパ12,13の変化特性を第1のダンパ11の変化特性に近づける方が望ましい。第2及び第3のダンパ12,13は比例帯と回転角センターが第1のダンパ11よりも小さく、かつ狭く設定されているので、第1のダンパ11の開度の変化の影響を急激に与える。したがって、熱交換器3に高温の排ガスが流れて熱交換器3と乾燥炉1との間を循環する炉内ガスを加熱して昇温するため、迅速な温度変化への応答が可能となる。即ち、熱交換器受熱側風量を制御しているので外乱応答性が高いものとなる。しかも、1つの温度調節計23と1つの温度センサー27の単純なPID制御系であり、制御が簡単なものとなると共にハンチングがなく設定温度への収束が速いものとなる。   According to the heat exchange type hot air generator configured as described above, when the temperature of the circulating hot air is lowered, the opening of the first damper 11 is closed and the second damper 12 is opened to allow the exhaust gas to pass through. And the third damper 13 is opened and outside air (fresh air) is introduced into the heat exchanger 3 to remove the residual heat of the heat exchanger 3, so that the heat receiving side flow path of the heat exchanger 3 is removed. The temperature of the flowing furnace gas can be cooled without delay. Further, when the temperature on the heat radiation side decreases due to disturbance or the temperature in the furnace of the drying furnace 1 decreases, the opening of the first damper 11 is opened and the second damper 12 and the third damper 13 are opened. The opening degree is closed faster than the first damper 11, the amount of exhaust gas flow through the heat exchanger 3 can be increased, and the temperature of the in-furnace gas flowing through the heat receiving side flow path of the heat exchanger 3 can be raised. At this time, when the first damper 11 starts to open from the fully closed state, the change characteristics of the damper opening degree and the air volume are abrupt. Therefore, the change characteristics of the second and third dampers 12 and 13 are the first change characteristics. It is desirable to make it close to the change characteristic of the damper 11. Since the second and third dampers 12 and 13 are set such that the proportional band and the rotation angle center are smaller and narrower than the first damper 11, the influence of the change in the opening degree of the first damper 11 is abruptly affected. give. Therefore, since the high temperature exhaust gas flows through the heat exchanger 3 and the temperature in the furnace gas circulating between the heat exchanger 3 and the drying furnace 1 is increased by heating, the response to a rapid temperature change becomes possible. . That is, since the heat exchanger heat receiving side air volume is controlled, the disturbance responsiveness is high. Moreover, it is a simple PID control system of one temperature controller 23 and one temperature sensor 27, and the control is simple and the convergence to the set temperature is fast without hunting.

また、乾燥炉1の立ち上げ時には、温度センサー27からの炉内温度情報に基づいて温度調節計23からの指示で、第1のダンパ11が全開にされる一方、第2及び第3のダンパ12,13が全閉にされたまま、図5に示すような、ゾーンPID制御が実施される。ファン5,10の周波数制御を行って誘引通風量、即ち脱臭炉2からの排ガスの風量を制御することで、温度偏差に応じた放熱側及び受熱側の風量をアップすることで、交換熱量を増して乾燥炉の立ち上げを行う。具体的には、例えば−20℃の温度偏差となるまでは60Hzでの加速運転域とし、5℃の温度偏差までの範囲を定常運転域として45Hzで運転し、設定温度を超える減速運転域では40Hzでの運転とする。これにより、一定風量で立ち上げる場合よりも1/3程度の時間短縮を可能とし、35〜40分で立ち上げを完了することができる。また、乾燥炉の扉が長時間開け放たれたままの状態となり大幅な炉内温度の低下が起こるなど、外乱などにより大幅な温度低下などが起こった場合にも、同様に周波数変更により急速に温度上昇を行わせて、応答性をあげることも可能である。そして、減速運転域では、オーバーシュートしないように、ファン10の周波数制御により交換熱量を制御すると同時に、外気取り入れ用の第4のダンパ14を開いて熱交換器3を通過した後の炉内還流ガスに外気(新鮮な空気)を取り入れて急冷することで設定温度への収束を速めることができる。   Further, when the drying furnace 1 is started up, the first damper 11 is fully opened by the instruction from the temperature controller 23 based on the furnace temperature information from the temperature sensor 27, while the second and third dampers are opened. Zone PID control as shown in FIG. 5 is carried out while 12 and 13 are fully closed. By controlling the frequency of the fans 5 and 10 to control the amount of induced air, that is, the amount of exhaust gas from the deodorizing furnace 2, the amount of exchange heat can be reduced by increasing the amount of air on the heat radiating side and the heat receiving side according to the temperature deviation. In addition, the drying furnace will be started up. Specifically, for example, an acceleration operation range at 60 Hz is used until a temperature deviation of −20 ° C., and a range up to a temperature deviation of 5 ° C. is operated at 45 Hz as a steady operation range. Operation at 40 Hz is assumed. Thereby, it is possible to shorten the time by about 1/3 compared with the case of starting up with a constant air volume, and the starting up can be completed in 35 to 40 minutes. In addition, when the temperature of the drying furnace is left open for a long time and the temperature in the furnace decreases significantly, such as when a significant temperature decrease occurs due to external disturbances, the temperature changes rapidly in the same way. It is possible to increase the responsiveness. In the deceleration operation region, the amount of heat exchanged is controlled by the frequency control of the fan 10 so as not to overshoot, and at the same time, the fourth damper 14 for taking in outside air is opened and the recirculation in the furnace after passing through the heat exchanger 3. Convergence to the set temperature can be accelerated by taking outside air (fresh air) into the gas and quenching it.

図1の塗装乾燥炉の場合、例えば乾燥炉1の設定温度が180℃に設定されるとき、臭気ガスは140℃程度で抽出されると共に予熱用熱交換器4を経て排ガス(750℃)との間の熱交換で400℃程度に予熱されてから、直接燃焼式脱臭炉2に導入され750℃以上に保たれた炉内燃焼によりVOC(揮発性有機臭気成分)が熱分解された後、予熱用熱交換器4に向けて排出される。他方、乾燥炉1から抽気された160℃程度の炉内ガスは、熱交換器3で予熱用熱交換器4を通気した556℃程度の排ガスとの間で熱交換し、必要に応じて導入したフレッシュエアと混合して220℃程度に昇温されてから乾燥炉1へ還流させる。 In the case of the coating drying furnace of FIG. 1, for example, when the set temperature of the drying furnace 1 is set to 180 ° C., the odor gas is extracted at about 140 ° C. and is passed through the preheating heat exchanger 4 and the exhaust gas (750 ° C.). After being preheated to about 400 ° C. by heat exchange during the period, VOC (volatile organic odor component) is thermally decomposed by in-furnace combustion introduced directly into the combustion type deodorizing furnace 2 and maintained at 750 ° C. or higher. It is discharged toward the preheating heat exchanger 4. On the other hand, the in-furnace gas of about 160 ° C. extracted from the drying furnace 1 is heat- exchanged with the exhaust gas of about 556 ° C. through the preheating heat exchanger 4 in the heat exchanger 3 and introduced as necessary. The mixture is mixed with fresh air and heated to about 220 ° C. and then refluxed to the drying furnace 1.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、温度調節計23で第1〜第3の信号変換器15,16,17を直接駆動する例を挙げて主に説明したが、これに特に限られるものではなく、図6に示すように、温度調節計をカスケード接続することにより更に外乱応答性を向上させるようにしても良い。即ち、熱交換器3の出口温度を検出する熱交用温度センサ25と、該熱交用温度センサー25の検出信号に基づいて各信号変換器15,16,17を制御する放熱側温度調節計24とを備え、放熱側温度調節計24をスレーブとし、乾燥炉温度調節計23をマスターとしたカスケード接続し、乾燥炉1の温度センサー27の検出値に基づいて乾燥炉温度調節計23から出力される指示に基づいて放熱側温度調節計24で熱交換器3の出口設定温度を演算して各信号変換器15,16,17を出口設定温度となるようにカスケード制御することができる。この場合、温度センサー27によって検出される炉内ガス温度の変化に応じて出力0〜100%の間で乾燥炉温度調節計(マスター)23が出力し、それに応じて放熱側温度調節計(スレーブ)24が熱交換器3の出口温度を例えば200〜600℃の範囲で変化させる制御を各信号変換器15,16,17に対して行う。これにより、乾燥炉の温度は図7に実線で示すように速やかに修正される。尚、図7の中で、波線は単純フィードバック制御、実線はカスケード制御である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the present embodiment, the first to third signal converters 15, 16, and 17 are directly driven by the temperature controller 23. However, the present invention is not limited to this example. As shown in FIG. 6, disturbance response may be further improved by cascading temperature controllers. That is, a heat exchanger temperature sensor 25 that detects the outlet temperature of the heat exchanger 3 and a heat radiation side temperature controller that controls the signal converters 15, 16, and 17 based on detection signals of the heat exchanger temperature sensor 25. 24, cascaded with the heat-radiating temperature controller 24 as a slave and the drying furnace temperature controller 23 as a master, and output from the drying furnace temperature controller 23 based on the detected value of the temperature sensor 27 of the drying furnace 1 On the basis of the instruction, the heat radiation side temperature controller 24 calculates the outlet set temperature of the heat exchanger 3, and the signal converters 15, 16, and 17 can be cascade-controlled so as to have the outlet set temperature. In this case, the drying furnace temperature controller (master) 23 outputs the output between 0% and 100% according to the change in the furnace gas temperature detected by the temperature sensor 27, and the heat radiation side temperature controller (slave) accordingly. ) 24 controls the signal converters 15, 16, and 17 to change the outlet temperature of the heat exchanger 3 in the range of 200 to 600 ° C., for example. Thereby, the temperature of the drying furnace is promptly corrected as shown by the solid line in FIG. In FIG. 7, the wavy line is simple feedback control, and the solid line is cascade control.

また、上述の実施形態では、乾燥炉1から抽出した臭気ガスを予熱用熱交換器4で脱臭済み排ガスを利用して予熱してから脱臭炉2に供給するようにしているが、場合によっては乾燥炉1から抽出した臭気ガスを直接脱臭炉2に導入して脱臭炉2で直接燃焼による分解を行ってから熱交換器3に導き、乾燥炉1内から抽出された炉内ガスとの間で熱交換を行って排出するようにしても良い。 In the above-described embodiment, the odor gas extracted from the drying furnace 1 is preheated using the deodorized exhaust gas in the preheating heat exchanger 4 and then supplied to the deodorization furnace 2. The odor gas extracted from the drying furnace 1 is directly introduced into the deodorizing furnace 2, decomposed by direct combustion in the deodorizing furnace 2, led to the heat exchanger 3, and between the furnace gas extracted from the drying furnace 1 The heat may be exchanged and discharged.

また、本実施形態では、脱臭炉付き塗装乾燥炉の熱源としての熱交換式熱風発生装置を例に挙げて主に説明したが、これに特に限定されるものでなく、熱交換後の熱風の温度を設定温度に保持することが可能な熱交換式熱風発生装置に適用できることは言うまでもない。   Further, in the present embodiment, the heat exchange type hot air generator as a heat source of the paint drying furnace with a deodorizing furnace has been mainly described as an example, but it is not particularly limited thereto, and the hot air after heat exchange It goes without saying that the present invention can be applied to a heat exchange type hot air generator capable of maintaining the temperature at a set temperature.

1 乾燥炉(受熱側熱設備)
2 直接燃焼式脱臭炉(放熱側熱設備)
3 熱交換器
8 放熱側流路
9 バイパス流路
10 インバータファン
11 第1のダンパ
12 第2のダンパ
13 第3のダンパ
14 第4のダンパ
15 第1のダンパの信号変換器
16 第2のダンパの信号変換器
17 第3のダンパの信号変換器
18 第4のダンパの信号変換器
20 ファン
21 循環流路
23 温度調節計(乾燥炉温度調節計;マスター)
24 温度調節計(放熱側温度調節計;スレーブ)
25 熱交用温度センサ
27 温度センサー
1 Drying furnace (heat receiving side heat equipment)
2 Direct combustion type deodorization furnace (heat radiation side heat equipment)
DESCRIPTION OF SYMBOLS 3 Heat exchanger 8 Heat radiation side flow path 9 Bypass flow path 10 Inverter fan 11 1st damper 12 2nd damper 13 3rd damper 14 4th damper 15 Signal converter 16 of 1st damper 16 2nd damper 17 Signal converter of the third damper 18 Signal converter of the fourth damper 20 Fan 21 Circulating flow path 23 Temperature controller (drying furnace temperature controller; master)
24 Temperature controller (heat-side temperature controller; slave)
25 Temperature sensor for heat exchange 27 Temperature sensor

Claims (6)

放熱側となる熱設備と、受熱側となる熱設備と、前記放熱側熱設備からの排ガスと熱交換して前記受熱側熱設備との間を循環する受熱設備側ガスを加熱する熱交換器とを備え、廃熱回収により昇温した熱交換後の前記受熱設備側ガスの温度を設定温度に保持するPID制御の熱交換式熱風発生装置において、
前記熱交換器の前記排ガスを通過させる放熱側流路に設けられて前記排ガスの通過量を制御する第1のダンパと、
前記放熱側流路の前記第1のダンパの上流と前記熱交換器の出口の下流側とを連通させて前記熱交換器を迂回して前記排ガスを流すバイパス路と、
前記バイパス路の開閉を行い前記バイパス路を通過する排ガスの量を制御する第2のダンパと、
前記放熱側流路の前記第1のダンパと前記熱交換器との間で外気を前記放熱側流路に導入可能とする第3のダンパとを備え、
前記受熱側熱設備の設備内ガス温度を温度センサーで測定して前記第1〜第3のダンパの開度を指示する温度調節計と、
前記第1のダンパと第2のダンパと第3のダンパの各ダンパにそれぞれ独立して設けられた信号変換器と、
前記第2及び第3のダンパの開閉を制御する各信号変換器の比例帯並びに回転角センターは、開き始める前記第1のダンパに対して速めに閉じる反面、閉じ始める第1のダンパに対しては遅く開き始める比例帯並びに回転角センターに各々設定され、
1つの前記温度センサから検出した温度に基づいて1つの前記温度調節計からの指示で前記3つのダンパを予め設定された比例帯と回転角センターで操作するようにしたものである熱交換式熱風発生装置。
A heat exchanger that heats the heat receiving equipment side gas that circulates between the heat equipment on the heat radiating side, the heat equipment on the heat receiving side, and the exhaust gas from the heat radiating side heat equipment and circulates between the heat receiving side heat equipment. In a PID-controlled heat exchange type hot air generator that maintains the temperature of the heat receiving facility side gas after the heat exchange raised in temperature by waste heat recovery at a set temperature,
A first damper which is provided in a heat radiation side passage through which the exhaust gas of the heat exchanger passes and controls an amount of the exhaust gas passed;
A bypass passage for communicating the upstream side of the first damper of the heat dissipation side passage and the downstream side of the outlet of the heat exchanger to flow the exhaust gas around the heat exchanger;
A second damper that opens and closes the bypass path and controls the amount of exhaust gas passing through the bypass path;
A third damper that enables introduction of outside air into the heat dissipation side flow path between the first damper of the heat dissipation side flow path and the heat exchanger;
A temperature controller that measures the gas temperature in the facility of the heat receiving side heat facility with a temperature sensor and indicates the opening degree of the first to third dampers;
A signal converter provided independently for each of the first damper, the second damper, and the third damper;
The proportional band and the rotation angle center of each signal converter that controls the opening and closing of the second and third dampers close earlier than the first damper that starts to open, whereas the first damper that starts closing Is set to the proportional band and the rotation angle center that start to open slowly,
A heat exchange type hot air in which the three dampers are operated at a preset proportional band and rotation angle center in accordance with an instruction from one temperature controller based on a temperature detected from one temperature sensor. Generator.
前記受熱側熱設備は乾燥炉、前記放熱側熱設備は直接燃焼式脱臭炉であり、前記受熱側熱設備たる乾燥炉から抽出され前記直接燃焼式脱臭炉へ導入される乾燥炉内ガスを前記直接燃焼式脱臭炉からの脱臭済み排ガスで加熱するための予熱用熱交換器を前記放熱側熱設備たる脱臭炉と前記熱交換器との間の前記放熱側流路の前記バイパス路を分岐させるよりも上流に備え、前記乾燥炉から抽出された炉内ガスを前記予熱用熱交換器で昇温させてから前記直接燃焼式脱臭炉に導入して脱臭した後に、前記脱臭炉からの脱臭済み排ガスを前記予熱用熱交換器及び前記熱交換器に順次通過させて前記予熱用熱交換器での前記乾燥炉内ガスとの熱交換の熱源として利用すると共に、さらには前記乾燥炉と前記熱交換器との間を循環する前記受熱設備側ガスを加熱する熱源として利用するものである請求項1記載の熱交換式熱風発生装置。 The heat receiving side heat equipment is a drying furnace, and the heat radiation side heat equipment is a direct combustion type deodorization furnace, and the gas in the drying furnace extracted from the drying furnace as the heat receiving side heat equipment and introduced into the direct combustion type deodorization furnace A heat exchanger for preheating for heating with deodorized exhaust gas from a direct combustion type deodorizing furnace branches the bypass path of the heat radiating side flow path between the deodorizing furnace as the heat radiating side heat equipment and the heat exchanger. provided upstream of the drying oven furnace gas extracted from the allowed to warm by the preheating heat exchanger after deodorized by introducing into the direct fired deodorizing furnace, pre deodorizing from the deodorizing furnace The exhaust gas is sequentially passed through the preheating heat exchanger and the heat exchanger to be used as a heat source for heat exchange with the drying furnace gas in the preheating heat exchanger, and further, the drying furnace and the heat The heat receiving equipment side gas circulating between the exchangers Heat exchange type hot air generating device according to claim 1, wherein is utilized as a heat source for heating the. 前記第2のダンパ及び前記第3のダンパの前記比例帯は75%以下、25%以上でかつ、回転角センターは37.5%以下12.5%以上であることを特徴とする請求項1または2記載の熱交換式熱風発生装置。   2. The proportional band of the second damper and the third damper is 75% or less and 25% or more, and the rotation angle center is 37.5% or less and 12.5% or more. Or the heat exchange type hot air generator of 2. 前記熱交換器の前記放熱側流路の出口温度を検出する熱交用温度センサを備え、該熱交用温度センサーの検出信号に基づいて前記各信号変換器を制御する放熱側温度調節計をスレーブとし、前記乾燥炉温度調節計をマスターとしたカスケード接続し、前記乾燥炉の温度センサーの検出値に基づいて前記乾燥炉温度調節計から出力される指示に基づいて前記放熱側温度調節計で前記熱交換器の前記放熱側流路の出口設定温度を演算して前記各信号変換器を前記出口設定温度となるようにカスケード制御することを特徴とする請求項1から3のいずれか1つに記載の熱交換式熱風発生装置。 A heat exchange temperature sensor that detects an outlet temperature of the heat dissipation side flow path of the heat exchanger, and a heat dissipation side temperature controller that controls each signal converter based on a detection signal of the heat exchange temperature sensor; As a slave, cascaded with the drying furnace temperature controller as a master, and based on an instruction output from the drying furnace temperature controller based on a detection value of the temperature sensor of the drying furnace, 4. The cascade control according to claim 1, wherein the outlet set temperature of the heat radiation side flow path of the heat exchanger is calculated and the respective signal converters are cascade-controlled so as to be the outlet set temperature. 5. The heat exchange type hot air generator described in 1. 前記放熱側流路前記バイパス路の合流位置よりも下流にインバータファンを設置し、前記受熱側熱設備の設定温度と前記受熱側熱設備内のガス温度との温度偏差に応じて前記インバータファンのインバータ周波数制御を行って前記放熱側熱設備からの排ガスの風量を制御するゾーンPID制御を実施する請求項1から4のいずれか1つに記載の熱交換式熱風発生装置。 An inverter fan is installed downstream of the merging position of the heat radiation side flow path and the bypass path, and the inverter depends on a temperature deviation between a set temperature of the heat receiving side heat equipment and a gas temperature in the heat receiving side heat equipment. The heat exchange type hot air generator according to any one of claims 1 to 4, wherein zone PID control is performed to control an air flow rate of exhaust gas from the heat radiation side heat equipment by performing inverter frequency control of a fan . 前記熱交換器の受熱側流路の出口側の前記乾燥炉と前記熱交換器との間で外気の導入を可能とする第4のダンパを備え、前記ゾーンPID制御の前記受熱側熱設備の設定温度を越えたときの減速運転時に前記受熱側流路に外気を導入して前記乾燥炉1を急速冷却するものである請求項5記載の熱交換式熱風発生装置。 A fourth damper that enables introduction of outside air between the drying furnace on the outlet side of the heat-receiving-side flow path of the heat exchanger and the heat exchanger, and the heat-receiving-side heat facility of the zone PID control The heat exchange type hot air generator according to claim 5, wherein the drying furnace 1 is rapidly cooled by introducing outside air into the heat receiving side channel during a deceleration operation when the set temperature is exceeded.
JP2010150753A 2010-07-01 2010-07-01 Heat exchange type hot air generator Active JP5450291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010150753A JP5450291B2 (en) 2010-07-01 2010-07-01 Heat exchange type hot air generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010150753A JP5450291B2 (en) 2010-07-01 2010-07-01 Heat exchange type hot air generator

Publications (2)

Publication Number Publication Date
JP2012013322A JP2012013322A (en) 2012-01-19
JP5450291B2 true JP5450291B2 (en) 2014-03-26

Family

ID=45599970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010150753A Active JP5450291B2 (en) 2010-07-01 2010-07-01 Heat exchange type hot air generator

Country Status (1)

Country Link
JP (1) JP5450291B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104482751B (en) * 2014-12-11 2017-02-22 华南农业大学 Method and device for eliminating thermal inertia of hot air drier
KR101820412B1 (en) 2015-11-19 2018-01-22 바이오매스아시아(주) Spent Mushroom Substrate Dry System using Sterilizer Waste Heat
CN109539766B (en) * 2018-11-14 2020-11-10 楚天科技股份有限公司 Anti-disturbance accurate temperature control method for heating section of tunnel oven
CN116379735B (en) * 2023-03-23 2023-11-10 佛山市科蓝环保科技股份有限公司 Cloth pre-drying device and cloth drying system

Also Published As

Publication number Publication date
JP2012013322A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5450291B2 (en) Heat exchange type hot air generator
CA2826346C (en) A furnace controller and a furnace that control a gas input rate to maintain a discharge air temperature
JP2013518236A (en) Equipment for drying objects
JP2019027637A (en) Heating water heater and its control method
JP6452465B2 (en) Heat supply system
CA2776289C (en) Heated makeup air unit
JP5806149B2 (en) Drying equipment for sludge incinerator
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
BRPI0719942A2 (en) PROCESS, METHOD AND APPARATUS FOR REJECT HEAT RUST
CA2979246A1 (en) Motor controller for blower in gas-burning appliance and method of use
JP2007107842A (en) Hot water system
JP4191747B2 (en) Hot water circulation system
Janprom et al. Embedded control system with PID controller for comfortable room
JPH01273927A (en) Device for room heating with hot water
JP4563350B2 (en) Hot water circulation system
JP2022139853A (en) Combustion device
WO2008049057A3 (en) Process control methodologies for biofuel appliance
JP2531794B2 (en) Dryer
JPS61184354A (en) Hot-water temperature control device of hot-water supplied having after-burning function
JP4239963B2 (en) Hot water heating system
KR970009128B1 (en) Gas combustion apparatus
JP3208836B2 (en) Starting the heat treatment furnace
JPH0720569B2 (en) Drying equipment
JP2004232890A (en) Drying apparatus
JP2017180916A (en) Heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5450291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250