JP5449186B2 - 磁気熱量ジェネレータ - Google Patents

磁気熱量ジェネレータ Download PDF

Info

Publication number
JP5449186B2
JP5449186B2 JP2010536499A JP2010536499A JP5449186B2 JP 5449186 B2 JP5449186 B2 JP 5449186B2 JP 2010536499 A JP2010536499 A JP 2010536499A JP 2010536499 A JP2010536499 A JP 2010536499A JP 5449186 B2 JP5449186 B2 JP 5449186B2
Authority
JP
Japan
Prior art keywords
generator
gear
drive shaft
heat transfer
active element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010536499A
Other languages
English (en)
Other versions
JP2011505543A (ja
Inventor
ヘイツラー,ジーン−クラウデ
ミュラー,クリスチャン
Original Assignee
クールテック アプリケーションズ エス.エー.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クールテック アプリケーションズ エス.エー.エス. filed Critical クールテック アプリケーションズ エス.エー.エス.
Publication of JP2011505543A publication Critical patent/JP2011505543A/ja
Application granted granted Critical
Publication of JP5449186B2 publication Critical patent/JP5449186B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • External Artificial Organs (AREA)
  • Retarders (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
  • Reciprocating Pumps (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Hydraulic Motors (AREA)

Description

本発明は、磁気熱量ジェネレータに関し、特に、磁気熱量材料から形成される能動素子を備え、中心軸を中心に設けられる少なくとも1つの熱ステージと、前記中心軸を中心にアクチュエータによって回転されるドライブシャフトによって支持され、前記能動素子に磁界変化を施すように設けられる磁気構成と、前記ジェネレータ内に含まれ、押出し手段によって前記能動素子を通って押出される少なくとも1つの熱伝達流体と、それぞれ外部利用回路に結合されるように構成された、少なくとも1つの所謂冷却交換室および少なくとも1つの所謂加熱交換室と、を備える磁気熱量ジェネレータに関する。なお、前記ジェネレータは、前記磁気構成のアクチュエータと同じアクチュエータによって駆動されるように前記ドライブシャフトに結合され、熱伝達流体を強制的に循環させるための手段を備える。
磁気冷凍技術が知られるようになって20年以上経過し、エコロジーと持続可能な開発という点でその技術が提供する利点が広く認められている。その実用的な発熱量の出力とその効率性との点での限界もまたよく知られている。その結果、この技術分野におけるどの研究においても、(着磁電源などの様々なパラメータを調整することによって実現される)該ジェネレータの性能、磁気熱量材料によって形成される能動素子の性能、熱伝達流体とこれらの能動素子との間の熱交換面、熱交換器の性能などを改善しようとする傾向がある。
本願出願人によって特許文献1として提出された従来技術に記載された該磁気熱量ジェネレータは、1つ以上の熱ステージを形成するように積層された、1つ以上の熱モジュールを備え、各熱ステージが磁気熱量材料で形成された、N個の隣接する能動素子を備える。なお、各熱ステージは、中心軸を中心に円形に設けられ、磁界変化を施される。その結果、熱ステージの温度が変化する。これらの能動素子は、熱モジュールに含まれた熱伝達流体を反対方向に同時に押出すために、作動カムによって往復平行運動を施されるN本のピストンと関連する。よって、熱伝達流体の第1部が、加熱サイクルが施される能動素子を通って、所謂加熱交換室に向かって押出され、熱伝達流体の第2部が、冷却サイクルが施される能動素子を通って、冷却交換室に向かって押出される(この逆もあり得る)。よって、平行して同時に動作する、N個のミニまたはマイクロ熱ジェネレータを得ることができる。その結果、能動素子と熱伝達流体との間の熱交換面が係数Nによって乗算される。よって、そのようなジェネレータの発熱量が増加する。さらに、各磁気サイクルが最大限使用される。と言うのは、熱伝達流体が両循環方向に移動することによって、磁界(加熱サイクル)の増加が施される能動素子によって生成されるカロリと、磁界(冷却サイクル)の減少が施される能動素子によって生成されるフリゴリとの両方を同時に収集することができるからである。なお、この場合、アイドルタイムも損失サイクルも発生しない。
また、その他の磁気熱量ジェネレータも知られているが、ジェネレータと特に熱交換器を備える外部回路との間に挿入される、二重式外部ポンプまたは2つの外部ポンプによって、熱伝達流体の循環が強制されるようなジェネレータである。その例の1つが本願出願人によって提出された特許文献2に記載される。この種のジェネレータでは、ポンプは、既知のタイプであり、かつ、特に電流を使って電源を供給して動作させる必要がある。その結果、該ジェネレータの全体のエネルギー効率を犠牲にしている。この不利点を回避するため、特許文献3では、熱伝達流体の循環用ポンプをジェネレータの駆動手段に結合することが提案されている。
フランス特許公報07/07612 国際公開第2005/0430052号パンフレット フランス特許出願番号2875895
本発明の目的は、産業および家庭用用途の一部として特定の仕様に沿って構成しやすくできるモジュールとしての様相を保持しながら、その発熱量およびその経済的な利益を高めるために、磁気熱量ジェネレータの効率を向上させることである。
この目的のため、本発明は、プレアンブルに記載された種類の磁気熱量ジェネレータに関する。なお、該ジェネレータは、前記強制循環手段が前記ジェネレータの内部体積に統合されることを特徴とするジェネレータ。
この構成の結果、ジェネレータには、強制循環手段が装着される。その結果、該ジェネレータ内部で流体が確実に混ざる。よって、能動素子を通って押出される該流体がシステマチックに刷新される。さらに、これらの強制循環手段が単一のアクチュエータによって活性化される。その結果、該ジェネレータの発熱量がエネルギー効率を失うことなしに増加する。
押出し手段が能動素子を通して熱伝達流体を押出すように設けられ、前記ドライブシャフトに回転結合された少なくとも1つのカムによって往復平行運動駆動される、少なくとも1つのピストンを備える場合、強制循環手段は、前記ドライブシャフトによって自在に支持され、前記カムによって、往復平行運動駆動される、少なくとも1つの中央ピストンを有する少なくとも1つのピストン式ポンプを備えてよい。この場合、該カムには、ドライブシャフトに遊星ギア機構によって回転結合された内部クラウンギアが装着されてよい。
また、強制循環手段は、該ジェネレータのボディによって支持され、カムと一体化した内部クラウンギアと噛み合う、前記中心軸を中心に設けられた小型遊星ギアと、ミニギア用ポンプを形成する各小型遊星ギアを有する流路とを備えてもよい。さらに、これらの強制循環手段は、前記ドライブシャフトに結合された少なくとも1つのタービンを備えてよい。
その他の代替例では、強制循環手段は、前記ドライブシャフトと一体化した駆動ギアと噛み合い、熱伝達流体を循環させるためのチャンネルが装着されたポンプハウジングと関連する、少なくとも1つの遊星ギアを備えてよい。なお、前記ポンプハウジングと関連した前記遊星ギアは、ギアポンプを形成する。
その他の代替例では、前記強制循環手段は、同時に、前記押出し手段を形成してよい。
この場合、前記強制循環手段が、前記熱ステージの両側に設けられ、かつ角度的にオフセットされた2つのアッセンブリを備え、各アッセンブリが、前記中心軸を中心に設けられ、ジェネレータのボディと一体化した内部クラウンギアと噛み合う遊星ギアを備え、各アッセンブリが、ミニギア用ポンプを形成するギアの2つの歯車のうち1つと回転結合され、前記ギアが、前記ドライブシャフトによって回転駆動されたリング部に統合され、前記アッセンブリが、該当する加熱交換室または冷却交換室と能動素子との間に流体が循環することを可能にする流路を備えてもよい。
本発明およびその利点は、添付の図面を参照して、非限定的な例としての2つの実施形態の以下の説明によく表れるだろう。なお、図面の説明は以下の通りである。
1つの熱ステージを有する本発明による磁気熱量ジェネレータの斜視図である。 図1のジェネレータの軸方向の断面図である。 図1のジェネレータの熱伝達流体の強制循環手段の第1実施形態の部分斜視図である。 図3の図を拡大した詳細図である。 熱伝達流体の強制循環手段の第2実施形態の部分斜視図である。 図5の強制循環手段の一部を形成するポンプハウジングの斜視図である。 熱伝達流体の強制循環手段の第3実施形態の部分断面斜視図である。 図7の平面図である。 IX−IX線に沿った、図8の軸方向の断面図である。 熱伝達流体の強制循環手段の第4実施形態に関する、図1のジェネレータの軸方向の断面図である。 図10のジェネレータの、簡易部分断面斜視図である。 図10のジェネレータの部分分解図である。
図1、2を参照して、本発明による磁気熱量ジェネレータ1(以下、ジェネレータ1と称す)は、磁気熱量材料から成る能動素子2を含む少なくとも1つの熱ステージ10を備える。該ジェネレータ1は、中心軸Aを中心に冠部に設けられ、磁界変化を施される。その結果、カルノーサイクルに従って温度が変化し、かつこれらの能動素子2内で加熱サイクルと冷却サイクルとが交互に形成される。熱ステージ10の数は、ジェネレータ1の仕様に従って、特に、所望の温度勾配に従って決定されるが、その際、各熱ステージ10は、はめ合わせかつ積層可能なモジュールを構成することができる。磁界の変化は、例えば、能動素子2内に設けられる磁気構成3によって生成される。該能動素子2は、アクチュエータによって中心軸Aを中心に回転し、能動素子2のリング部の外側に設けられる磁気閉鎖装置4に関連付けする。この磁気構成3は、永久磁石などを備えてもよく、ドライブシャフト30(図3、7〜9参照。なお、その他の図面では中心軸Aとして示す)によって支持され、既知のいずれかのタイプのアクチュエータ(図示せず)によって、連続または非連続回転、交互回転または非交互回転で駆動されてもよい。
能動素子2は、様々な様態であってよく、つまり、単体または隣接部のアッセンブリから成る冠部であってよいが、穴あきまたは微小穴あき固形材料、多孔質材料、粉末または凝塊化粒子、軸方向または径方向ラミネートなどから形成される幾何学部はあってもなくてもよい。該能動素子2は、単一の磁気熱量材料または様々な磁気熱量材料のアッセンブリ(他の熱伝導材料に関連する場合もある)からなる。
このジェネレータ1は、少なくとも1つの熱伝達流体を備える。該流体は、連続する加熱および冷却サイクルの間に能動素子2によって生成されるカロリおよびフリゴリを収集するために設けられるが、カロリおよびフリゴリは、前記ジェネレータの加熱および冷却端に配置され、カバー50、60によって閉じられる所謂加熱交換室5および所謂冷却交換室6に互いに蓄えられる。これらの両交換室5、6は、例えば、端部金具51、61に接続される熱交換器(図示せず)を介して、外部利用回路を使って収集される、カロリおよびフリゴリを交換するように構成される。
図2を特に参照して、本ジェネレータ1は、熱ステージ10の両側に、能動素子2を通して熱伝達流体を押出すための押出し手段7を備える。なお、該手段7は、能動素子2の反対側に位置するピストン70の形態を取り、磁気構成3の回転を制御するアクチュエータによって中心軸Aを中心に回転する少なくとも1つの(ドライブシャフトに一体化された)カム71によって、往復平行運動に駆動される。ジェネレータ1が複数の熱ステージ10を備える場合、押出し手段7は、2つの連続する熱ステージ10に共通であってよい。これらの押出し手段7は、中空ボディ72に収容されるが、該ボディ72は、一方では、磁気閉鎖装置4を取り付けるために設けられ、その一方では、カバー50、60を取り付けるために設けられる。該ボディ72は、特に、補完しあう雄/雌形状を積層して形成されるが、それは、図1〜3の例を見ればよく分かるだろう。明らかに、アッセンブリはどのような手段でも検討可能であり、外部ケーシングの有無は問わない。図例上、O型リングなど(図示せず)を各部間に挿入して、本アッセンブリの密閉度を確保できるが、その場合、タイロッド11などで密閉し続ける。なお、該タイロッド11は、ジェネレータ1の外周上に均一に設ける。図2の同例において、ボディ72は、径方向に組み立てられた、2つの半殻部によって、形成される。その結果、ピストン70用のチャンバ73および熱伝達流体を含むタンク74の境界が定められる。また、本ボディ72は、カム71を回転させるようにガイドするベアリング75を備える。カム71は、各ピストン70に位置する溝70a内部を移動する、例えば、正弦波状のカム輪郭71aを備える。
本発明の最初の3つの実施形態によるジェネレータ1は、従来技術とは異なる。それは、本発明が熱伝達流体の強制的な循環を生み出すための強制循環の統合手段8a、8b、8cを、少なくとも流体タンク(複数個の場合もあり)74とピストン70のチャンバ(複数個の場合もあり)73とにおいて―ジェネレータ1が1つ以上の熱ステージ10を備え、これらの流体タンク74が相互連結されたり、されていなかったりによって―設けている点である。
実施形態すべてにおいて、強制循環手段8a、8b、8c、180は、図2〜12に示す実施形態のように、前記ジェネレータ1の内部体積に統合されるように構成される。この場合、これら手段は、磁気構成3のドライブシャフトにシフトし、同一のアクチュエータによって駆動される。その結果、構造がコンパクト化し、単一電源化が可能となる。
これらの強制循環手段8a、8b、8c、180によって、各タンク74内で熱伝達流体が混ざる(使用する手段によって、ループ型サイクルまたはオルタネイト型サイクルの後で)ことになるので、能動素子2を通過前および通過後で、流体が混ざることになる―つまり、流体のカロリの割合と、流体のフリゴリの割合のことである―ので、各タンク74内のこの流体の温度のバランスが取れ、かつ、継続的にチャンバ73内の流体(ピストン70によって能動素子2内を押出される)が新しくなる。その結果、前記能動素子2の入出力間の温度勾配が形成維持されやすくなる。従って、同時に、連続する2つの熱ステージ10間の温度勾配およびジェネレータ1の全体的な熱出力が上昇する。
図2〜4に示す第1実施形態では、強制循環手段8aは、中心軸Aを中心に円形に設けられる、一連の小型遊星ギア80を備え、該ギア80は、ボディ72によって支持され、前記ボディ72と一体化する軸Bを中心に回転自在である。分かりやすくするために、図2の右側部分は、簡略化されており、小型ギア80は示されていない。1つの小型ギア80だけが図3に示されており、カム71は、図4では、詳細には示されていない。これらのギア80は、カム71と一体化するクラウンギア81と噛み合い、中心軸Aを中心に回転する。カム71の回転によって、クラウンギア81が回転し、今度は、(ミニギア用ポンプのように動作する)小型ギア80を回転させる。つまり、ギアの歯を介して、タンク74に収められた熱伝達流体をピストン70と能動素子2とに向けて駆動させる。その結果、流体がループ状に循環する。このため、ボディ72は、各小型ギア80用のポンプハウジング84の境界を定め、チャンネル、溝、開口などの形状の流路82(図4参照)がボディ72およびカム71に位置する。これによって、チャンバ73の1つの流路が開くとすぐに、タンク74と対応する交換室5、6とが接続され、または、ジェネレータ1が複数の熱ステージ10を備える場合、一方では、隣接するタンク74と接続され、その他方では、ピストン70のチャンバ73に接続される。好ましくは、小型ギア80は、ピストン70に近くに設けられる。こうすると、能動素子2を通って押出される熱伝達流体の割合は、常時、最新のものとなる。また、これらの強制循環手段8aは、カム71と一体化し、中心軸Aを中心に回転する中央タービン83を備える。その結果、タンク74内の熱伝達流体がさらに混ざる。この目的のため、カム71は、循環用流路82をタービン83のブレードの近くに備える。その結果、熱伝達流体がタービン83およびカム71を循環する。なお、本実施例では、カム71を構成する部分は、複数の機能を組み合わせる。つまり、ピストン70を往復平行運動するように駆動させて、熱伝達流体を、能動素子2を通して押出す機能、小型ギア80を駆動して、ピストン70および能動素子2に向かって熱伝達流体を強制的に循環させるためのミニギア用ポンプを生み出す機能、タンク74内の熱伝達流体を強制的に混ぜる機能である。明らかに、代替例によって、カム71には、タービン83が設けられても設けられなくてもよく、小型ギア80も設けられても設けられなくてもよい。
図5、6に示す第2実施形態では、強制循環手段8bは、少なくとも1つの遊星ギア84を備える。なお、図示した例では、3つの遊星ギア84が設けられるが、この個数は限定されない。該遊星ギア84は、等間隔をおいて(等間隔に限らず)、中心軸Aを中心に設けられ、ボディ72によって支持され、前記ボディ72と一体化した軸Cを中心に回転自在である。これらのギア84は、カム71と一体化した駆動ギア85(図5では、参照線によって表わされる)と噛み合い、中心軸Aを中心に回転する。カム71の回転によって、駆動ギア85が回転し、今度は、(ミニギア用ポンプのように動作する)遊星ギア84を回転させる。つまり、ギアの歯を介して、タンク74に収められた熱伝達流体をピストン70と能動素子2とに向けて駆動させる。その結果、流体がループ状に循環する。このため、各ギア84を中心に流体を循環させるためのチャンネル87を有する、これらのギア84は、ボディ72に搭載された固定式ポンプハウジング86に関連し、カム71およびボディ72に位置する流路82(前述の例を参照して)に接続される。また、本ポンプハウジング86は、熱伝達流体をポンプハウジング86およびカム71を通って循環させるための循環用流路88を備える。第2実施形態では、また、駆動ギア85が、前述の例から、タービン83の役割も果たす。つまり、タンク74内の熱伝達流体がさらに混ざる。
図7〜9に示す第3実施形態では、強制循環手段8cは、往復平行運動の対象であるためピストン式ポンプのように動作し、かつ流体の交互循環を生み出すための中央ピストン90を備える。この中央ピストン90は、平行運動および回転自在に、磁気構成3のドライブシャフト30に搭載される。このドライブシャフト30は、1つ以上のギア92と噛み合う歯車91を支持し、中心軸Aを中心に円形に設けられる。なお、該ギア92は、等間隔をおいて(等間隔に限らず)設けられ、ボディ72によって支持され、かつ、前記ボディ72と一体化した軸Dを中心に回転自在である。これらのギア92は、中心軸Aを中心にカム94を回転させる内部クラウンギア93と噛み合う。カム94は、前述の例のカム71と同じ機能を有し、ピストン70の溝70aの内部を移動する同じタイプのカム輪郭71aを備える。その結果、ピストン70は、往復平行運動し、能動素子2内の熱伝達流体を押出す。同時に、このカム94は、中央ピストン90の周囲に位置するカム路96を移動するフォロア指部95によって、中央ピストン90を間違いなく往復平行運動させる。なお、このカム路96は、略正弦波状形状(図9参照)を有する。中央ピストン90の軸方向のストロークは、一方では、ボディ72によって制限され、他方では、歯車91によって制限される。前述の例のように、流路82は、ボディ72内に位置されることで、タンク(複数個の場合もある)74およびピストン70のチャンバ73の間に、熱伝達流体を循環させることができる。
図10〜12に示す第4実施形態では、強制循環手段180は、押出し手段を同時に形成する。本実施形態では、強制循環手段180は、熱ステージ10の両側に設けられる2つのアッセンブリ181から構成される。図11、12には、それぞれ、単一のアッセンブリ181が示される。もう1つのアッセンブリ181は、同一であり、かつ中心軸Aに対して45度の角度でオフセットされる。例示されるアッセンブリ181は、前記中心軸Aを中心に設けられ、ドライブシャフト30によって回転される支持部186内に統合された4つのギア185を備える。各ギア185は、2つの歯車184、184’を備える。前記歯車のうち一方の歯車184は、内部クラウンギア183(同図では、その歯は図示せず)に噛み合う遊星ギア182に対して回転可能に固定的に接続される。この内部クラウンギア183は、ジェネレータ1のボディ72に一体化するので、支持部186の回転によって、固定式クラウンギア183の歯と噛み合う遊星ギア182の回転が駆動される。それと同時に、歯車184の回転も駆動される。従って、各ギア185の関連する歯車184’が回転する。よって、各ギアによって、流体を熱ステージ10に向かって駆動するポンプが形成される。
このため、熱伝達流体路がアッセンブリ181に設けられる。特に、これらの熱伝達流体路は、各ギア185用の混合室187を備える。なお、前記混合室187は、支持部186の厚みを超えずに形成され、対応するギア185および該当する加熱室5または冷却室6と流体的に接続され、同時に、窪み188が、ギア185間において、支持部186の径方向面のレベルで形成される(図11参照)。支持部186は、支持部186が中心軸Aを中心に回転されたとき、各能動素子2が1つの単一ギア185に対向して配置されるように、45度の角度を付けてオフセットして設けられる。よって、加熱交換室5と同じレベルに位置するギア185によって能動素子2を通して押出される熱伝達流体が、冷却交換室6側に位置する窪み188に出現し、冷却交換室6に到達する。ここで、この冷却交換室6にすでに存在する流体と混ざる。その後、熱伝達流体の一部は、ギア185によって、混合室187内に導入され、能動素子2に向かって押出され、加熱交換室5に向かって押出される。本第4代替例では、アッセンブリ181が角度的にオフセットされているため、ピストンを使用しなくてよい。なぜなら、支持部186が回転するとき、熱伝達流体が同時に押出され、能動素子2の前を移動するギア185によって混合されるからである。
ピストン70を備える場合、ジェネレータ1の動作の本質は、単一のアクチュエータ(図示せず)を使って、磁気構成3の回転を駆動し、加熱および冷却サイクルを能動素子2内に生み出すことであり、カム71の回転を駆動し、ピストン70を往復平行運動させて、熱伝達流体を、前記能動素子2を通して押出すことであり、手段8a〜8cの回転を駆動し、タンク74内で熱伝達流体を混合し、該タンク内で強制循環させ、各熱ステージ10間でその温度を均一化させることである。ピストン70を備えない場合、ジェネレータ1の動作の本質は、単一のアクチュエータ(図示せず)を使って、磁気構成3の回転を駆動し、加熱および冷却サイクルを能動素子2内に生み出すことであり、角度的にオフセットされた支持部186の回転を駆動し、ギア185を回転駆動させ、熱伝達流体を、前記能動素子2を通して押出し、混合室187で混合し、強制循環させ、各熱ステージ10間でその温度を均一化させることである。
複数の熱ステージ10を積層することによって、加熱交換室5および冷却交換室6間の温度勾配が次々に上昇する。なお、両室5,6は、両端に配置され、かつ収集されたカロリおよびフリゴリが、管または熱交換器(図示せず)を介して、外部利用回路(加熱、エアコンディショニング、焼き戻し用などの)に転送できるように構成されたものである。
好ましくは、使用される熱伝達流体は液体である。熱伝達流体は、最大熱交換を達成するように、所望の温度範囲に対して適応される化学成分を有する。よって、この流体は、液体、気体、またはその二相性であってよい。液体の場合、正温度であれば、例えば、純水および不凍材を含む水を使用でき、例えば、負温度の場合、グリコール系製品または塩水を使用できるだろう。
本発明による熱ジェネレータ1を形成する部分は、全て、再生可能な産業プロセスを使って、大量生産可能である。これらの全ての部分は、能動素子2および磁気手段3,4を除いて、成形または射出成形などされた断熱材から形成できる。熱ステージ10は、タイロッド11(図1参照)など、適切な封止手段および適切な既知の取り付け手段で組立可能である。コンパクトで積層可能な熱ステージ10を有するジェネレータ1を製造すれば―標準化可能である―、限られたスペースでの使用要求において、費用対効果が高い産業および家庭用用途両方の幅広い応用を満たすことができ、しかも、カロリ値に関してこのタイプのジェネレータでは現在比類ない高い性能が発揮される。
本発明は、記載した実施形態の例に限定されず、添付の請求項によって定義された通り、保護範囲から逸脱しない程度に、当業者にとって明らかな変更例および代替例をも含むものである。

Claims (8)

  1. 磁気熱量ジェネレータ(1)であって、
    磁気熱量材料から形成される能動素子(2)を備え、中心軸(A)を中心に設けられる少なくとも1つの熱ステージ(10)と、
    前記中心軸(A)を中心にアクチュエータによって回転されるドライブシャフト(30)によって支持され、前記能動素子(2)に磁界変化を施すように設けられる磁気構成(3)と、
    少なくとも1つのタンク(74)内に含まれ、前記ジェネレータ(1)の中空ボディ(72)に収容される押出し手段(7、180)によって前記能動素子(2)を通って押出される少なくとも1つの熱伝達流体と、
    それぞれ外部利用回路に結合されるように構成された、少なくとも1つの所謂冷却交換室(6)および少なくとも1つの所謂加熱交換室(5)と、を備え、
    前記少なくとも1つのタンク(74)内において熱伝達流体を強制的に循環させるための手段(8a、8b、8c、180)、をさらに備え、
    前記熱伝達流体を強制的に循環させるための手段(8a、8b、8c、180)は、前記ジェネレータ(1)の内部体積に統合されており、前記磁気構成(3)のアクチュエータと同じアクチュエータによって駆動されるように前記ドライブシャフト(30)に結合されており、かつ前記ジェネレータ(1)の内部の流体の循環と同時混合とを許可するために、前記ジェネレータ(1)の前記中空ボディ(72)内部に配置される流路(82、87、88、187、188)を備えるジェネレータ。
  2. 前記押出し手段(7)が、前記熱伝達流体を、前記能動素子(2)を通って押出し、前記ドライブシャフト(30)に回転結合された少なくとも1つのカム(94)によって往復平行運動駆動されるように設けられた、少なくとも1つのピストン(70)を備える、請求項1に記載のジェネレータであって、
    前記強制循環手段(8c)が前記ドライブシャフト(30)によって自在に支持された少なくとも1つの中央ピストン(90)を有す、前記カム(94)によって往復平行運動駆動される、少なくとも1つのピストン式ポンプを備えることを特徴とするジェネレータ。
  3. 請求項2に記載のジェネレータであって、
    前記カム(94)が、前記ドライブシャフト(30)に対して、遊星ギア機構(91、92)によって、回転結合される内部クラウンギア(93)を備えることを特徴とするジェネレータ。
  4. 請求項1に記載のジェネレータであって、
    前記強制循環手段(8b)が、前記ドライブシャフト(30)に一体化した駆動ギア(85)と噛み合い、流体(87)循環用のチャンネルを備えるポンプハウジング(86)に関連する、少なくとも1つの遊星ギア(84)を備え、なお、前記遊星ギア(84)は、ギアポンプを形成する前記ポンプハウジング(86)と関連することを特徴とするジェネレータ。
  5. 請求項1に記載のジェネレータであって、
    前記押出し手段(7)は、前記熱伝達流体を、前記能動素子(2)を通して押出すように設けられ、前記ドライブシャフト(30)に回転結合された、少なくとも1つのカム(71)によって、往復平行運動するように駆動された少なくとも1つのピストン(70)を備え、
    前記強制循環手段(8a)は、前記中心軸(A)を中心に設けられ、ジェネレータ(1)のボディ(72)によって支持され、前記カム(71)と一体化した内部クラウンギア(81)と噛み合い、ミニギア用ポンプのように動作する小型遊星ギア(80)と、前記ジェネレータ(1)の前記中空ボディ(72)内の流路(82)と、を備えることを特徴とするジェネレータ。
  6. 請求項5に記載のジェネレータであって、
    前記強制循環手段(8a)は、前記ドライブシャフト(30)に結合された少なくとも1つのタービン(83)を備えることを特徴とするジェネレータ。
  7. 請求項1に記載のジェネレータであって、
    前記強制循環手段(180)は、同時に、前記押出し手段を形成することを特徴とするジェネレータ。
  8. 請求項7に記載のジェネレータであって、
    前記強制循環手段(180)が、前記熱ステージ(10)の両側に設けられ、かつ角度的にオフセットされた2つのアッセンブリ(181)を備え、各アッセンブリ(181)が、前記中心軸(A)を中心に設けられ、ジェネレータ(1)のボディ(72)と一体化した内部クラウンギア(183)と噛み合う遊星ギア(182)を備え、遊星ギア(182)の各々が、ミニギア用ポンプを形成するようにギア(185)の2つの歯車(184、184’)のうち1つと回転結合され、前記ギア(185)が、前記ドライブシャフト(30)によって回転駆動された支持体(186)に統合され、
    前記アッセンブリ(181)が、該当する加熱交換室(5)または冷却交換室(6)と能動素子(2)との間に流体が循環することを可能にする循環路を備えることを特徴とするジェネレータ。
JP2010536499A 2007-12-04 2008-11-25 磁気熱量ジェネレータ Expired - Fee Related JP5449186B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0708472 2007-12-04
FR0708472A FR2924489B1 (fr) 2007-12-04 2007-12-04 Generateur magnetocalorique
PCT/FR2008/001639 WO2009098391A1 (fr) 2007-12-04 2008-11-25 Generateur magnetocalorique

Publications (2)

Publication Number Publication Date
JP2011505543A JP2011505543A (ja) 2011-02-24
JP5449186B2 true JP5449186B2 (ja) 2014-03-19

Family

ID=39577565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010536499A Expired - Fee Related JP5449186B2 (ja) 2007-12-04 2008-11-25 磁気熱量ジェネレータ

Country Status (15)

Country Link
US (1) US8418476B2 (ja)
EP (1) EP2223022B1 (ja)
JP (1) JP5449186B2 (ja)
KR (1) KR101579328B1 (ja)
CN (1) CN101889179B (ja)
AR (1) AR069457A1 (ja)
AT (1) ATE511623T1 (ja)
BR (1) BRPI0820547A2 (ja)
CA (1) CA2706504C (ja)
ES (1) ES2367272T3 (ja)
FR (1) FR2924489B1 (ja)
HK (1) HK1150652A1 (ja)
PL (1) PL2223022T3 (ja)
TW (1) TWI438950B (ja)
WO (1) WO2009098391A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267613B2 (ja) * 2011-04-25 2013-08-21 株式会社デンソー 磁気熱量効果型ヒートポンプ装置
JP5278486B2 (ja) * 2011-04-25 2013-09-04 株式会社デンソー 熱磁気エンジン装置、および可逆熱磁気サイクル装置
JP5338889B2 (ja) 2011-04-28 2013-11-13 株式会社デンソー 磁気ヒートポンプシステム及び該システムを用いた空気調和装置
FR2982015B1 (fr) * 2011-10-28 2019-03-15 Cooltech Applications Generateur thermique magnetocalorique
FR2983281B1 (fr) * 2011-11-24 2015-01-16 Cooltech Applications Generateur thermique magnetocalorique
JP5644812B2 (ja) 2012-06-06 2014-12-24 株式会社デンソー 磁気ヒートポンプシステム及び該システムを用いた空気調和装置
FR3014178B1 (fr) * 2013-11-29 2015-11-20 Cooltech Applications Appareil thermique magnetocalorique
KR102149733B1 (ko) 2013-12-27 2020-08-31 삼성전자주식회사 자기냉각장치 및 이를 갖춘 자기냉각시스템
FR3028927A1 (fr) 2014-11-26 2016-05-27 Cooltech Applications Appareil thermique magnetocalorique
DE102015112407A1 (de) 2015-07-29 2017-02-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Einrichtung zur Klimatisierung, insbesondere Kühlung, eines Mediums mittels elektro- oder magnetokalorischen Materials
WO2017162243A1 (de) 2016-03-24 2017-09-28 Hanning Elektro-Werke Gmbh & Co. Kg Antriebseinheit
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US11022348B2 (en) * 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11092364B2 (en) * 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
US20210080155A1 (en) * 2019-09-16 2021-03-18 Heat X, LLC Tankless magnetic induction water heater/chiller assembly
WO2021086916A1 (en) * 2019-10-28 2021-05-06 Heat X, LLC Magnetic induction furnace, cooler or magnetocaloric fluid heat pump integrated into a rotary blower and including two stage inductive heating or cooling
CN112146306A (zh) * 2020-09-27 2020-12-29 叶剑春 一种以amr技术为核心的永磁式磁制冷机
ES2815626B2 (es) 2021-03-05 2021-09-08 Emsc Global Water Solutions S L Dispositivo conversor de energia termica en energia electrica o mecanica por efecto magnetocalorico

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH649133A5 (de) * 1980-10-29 1985-04-30 Glyco Antriebstechnik Gmbh Zahnradpumpenanordnung.
US4642994A (en) * 1985-10-25 1987-02-17 The United States Of America As Represented By The United States Department Of Energy Magnetic refrigeration apparatus with heat pipes
US6758046B1 (en) * 1988-08-22 2004-07-06 Astronautics Corporation Of America Slush hydrogen production method and apparatus
US5249424A (en) * 1992-06-05 1993-10-05 Astronautics Corporation Of America Active magnetic regenerator method and apparatus
US6332323B1 (en) * 2000-02-25 2001-12-25 586925 B.C. Inc. Heat transfer apparatus and method employing active regenerative cycle
CN100412467C (zh) * 2000-08-09 2008-08-20 美国宇航公司 旋转床磁制冷装置
US7273981B2 (en) * 2001-02-09 2007-09-25 Bsst, Llc. Thermoelectric power generation systems
US6676772B2 (en) * 2001-03-27 2004-01-13 Kabushiki Kaisha Toshiba Magnetic material
JP4622179B2 (ja) * 2001-07-16 2011-02-02 日立金属株式会社 磁気冷凍作業物質および蓄冷式熱交換器ならびに磁気冷凍装置
US7008544B2 (en) * 2002-05-08 2006-03-07 Marine Desalination Systems, L.L.C. Hydrate-based desalination/purification using permeable support member
CH695836A5 (fr) * 2002-12-24 2006-09-15 Ecole D Ingenieurs Du Canton D Procédé et dispositif pour générer en continu du froid et de la chaleur par effet magnetique.
US7168255B2 (en) * 2003-03-28 2007-01-30 Kabushiki Kaisha Toshiba Magnetic composite material and method for producing the same
US7341632B2 (en) * 2003-05-09 2008-03-11 Intellipack Dispensing system with means for easy access of dispenser components and method of using same
WO2005017353A1 (de) * 2003-07-07 2005-02-24 Mereg Gmbh Verfahren und vorrichtung zur wandlung von wärme in mechanische oder elektrische energie
FR2861454B1 (fr) * 2003-10-23 2006-09-01 Christian Muller Dispositif de generation de flux thermique a materiau magneto-calorique
FR2875895A1 (fr) * 2004-09-28 2006-03-31 Christian Muller Dispositif de production d'energie thermique a materiau magneto-calorifique a moyens internes de commutation et synchronisation automatique des circuits de fluides caloporteurs
JP4564883B2 (ja) * 2005-04-28 2010-10-20 中部電力株式会社 磁気式温度調整装置
TWI259569B (en) * 2005-06-09 2006-08-01 Ind Tech Res Inst Micro channel heat sink driven by hydromagnetic wave pump
EP1736719A1 (en) * 2005-06-20 2006-12-27 Haute Ecole d'Ingénieurs et de Gestion du Canton Continuously rotary magnetic refrigerator or heat pump
FR2890158A1 (fr) * 2005-09-01 2007-03-02 Cooltech Applic Soc Par Action Generateur thermique a materiau magnetocalorique
JP4533838B2 (ja) * 2005-12-06 2010-09-01 株式会社東芝 熱輸送装置、冷凍機及びヒートポンプ
CH699375B1 (fr) * 2005-12-13 2010-02-26 Heig Vd Haute Ecole D Ingenier Dispositif de génération de froid et de chaleur par effet magneto-calorique.
JP4160604B2 (ja) * 2006-04-07 2008-10-01 ジヤトコ株式会社 内接ギヤ式のオイルポンプ
FR2922999A1 (fr) * 2007-10-30 2009-05-01 Cooltech Applic Soc Par Action Generateur thermique a materiau magnetocalorique
JP2010112606A (ja) * 2008-11-05 2010-05-20 Toshiba Corp 磁気式温度調整装置

Also Published As

Publication number Publication date
EP2223022B1 (fr) 2011-06-01
CA2706504C (fr) 2015-10-06
FR2924489A1 (fr) 2009-06-05
CN101889179A (zh) 2010-11-17
US8418476B2 (en) 2013-04-16
BRPI0820547A2 (pt) 2015-06-16
JP2011505543A (ja) 2011-02-24
ATE511623T1 (de) 2011-06-15
ES2367272T3 (es) 2011-10-31
CN101889179B (zh) 2012-04-04
HK1150652A1 (en) 2012-01-06
CA2706504A1 (fr) 2009-08-13
PL2223022T3 (pl) 2011-10-31
AR069457A1 (es) 2010-01-20
KR101579328B1 (ko) 2015-12-21
KR20100105563A (ko) 2010-09-29
TWI438950B (zh) 2014-05-21
WO2009098391A1 (fr) 2009-08-13
EP2223022A1 (fr) 2010-09-01
US20100300118A1 (en) 2010-12-02
FR2924489B1 (fr) 2015-09-04
TW200926468A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
JP5449186B2 (ja) 磁気熱量ジェネレータ
RU2502025C2 (ru) Тепловой генератор с магнитокалорическим материалом
JP6191539B2 (ja) 熱磁気サイクル装置
US8820093B2 (en) Magnetocaloric heat generator
US20110314836A1 (en) Magnetocaloric heat generator
MX2009000543A (es) Generador termico magnetocalorico.
JP6464922B2 (ja) 熱磁気サイクル装置
JP5949159B2 (ja) 磁気ヒートポンプシステム
CN108699998B (zh) 旋转式斯特林循环装置及其方法
US20110061378A1 (en) Liquid Cooled Stirling Engine with a Segmented Rotary Displacer
JP2005076557A (ja) スターリングエンジン
PL219116B1 (pl) Beztłokowy rotacyjny silnik Stirlinga
KR100831703B1 (ko) 외연열기관의 열매체 순환용 컴프레서
JPH0791360A (ja) ヒートパイプエンジン
JP2011038460A (ja) スターリング機関熱交換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5449186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees