JP5448888B2 - Liquid mixing device - Google Patents

Liquid mixing device Download PDF

Info

Publication number
JP5448888B2
JP5448888B2 JP2010019442A JP2010019442A JP5448888B2 JP 5448888 B2 JP5448888 B2 JP 5448888B2 JP 2010019442 A JP2010019442 A JP 2010019442A JP 2010019442 A JP2010019442 A JP 2010019442A JP 5448888 B2 JP5448888 B2 JP 5448888B2
Authority
JP
Japan
Prior art keywords
flow
liquid
flow path
switching
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010019442A
Other languages
Japanese (ja)
Other versions
JP2011158332A (en
Inventor
秀行 杉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010019442A priority Critical patent/JP5448888B2/en
Priority to US13/013,652 priority patent/US9221023B2/en
Publication of JP2011158332A publication Critical patent/JP2011158332A/en
Application granted granted Critical
Publication of JP5448888B2 publication Critical patent/JP5448888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3031Micromixers using electro-hydrodynamic [EHD] or electro-kinetic [EKI] phenomena to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps

Description

本発明は、チップ上で化学分析や化学合成を行う小型化学分析・合成システム等に適用可能な液体混合装置に関し、具体的には、誘起電荷電気浸透を用いた液体混合装置に関する。   The present invention relates to a liquid mixing apparatus applicable to a small chemical analysis / synthesis system or the like that performs chemical analysis or chemical synthesis on a chip, and more specifically to a liquid mixing apparatus using induced charge electroosmosis.

電気浸透を用いるマイクロポンプは、構造が比較的簡単である、微小流路(マイクロ流路)内への実装が容易、等の理由でμTAS(Micro‐Total Analysis System)等の分野で使用されている。   A micropump using electroosmosis is used in fields such as μTAS (Micro-Total Analysis System) because of its relatively simple structure and easy mounting in a microchannel (microchannel). Yes.

こうした中、近年、誘起電荷電気浸透(ICEO:Induced‐Charge Electro Osmosis)を用いたマイクロポンプが、液体の流速を大きくできる、電極と液体の間に生ずる化学反応をAC駆動が可能なことにより抑制できる等の理由から着目されている。   Under these circumstances, in recent years, micropumps using induced-charge electroosmosis (ICEO) can increase the flow rate of liquid and suppress the chemical reaction that occurs between the electrode and liquid by AC drive. It is attracting attention for reasons such as being able to.

特許文献1及び非特許文献1は、誘起電荷電気浸透を用いたミキサ(混合装置)であって、円柱金属ポストのまわりのICEO流れによる渦を利用したマイクロミキサを開示する。   Patent Document 1 and Non-Patent Document 1 disclose a mixer (mixing device) using induced charge electroosmosis, which utilizes a vortex generated by an ICEO flow around a cylindrical metal post.

非特許文献2では、円柱金属ポストに垂直電界と斜め電界を交互に印加し、2つの渦流を交互に切り替えるミキサを開示する。   Non-Patent Document 2 discloses a mixer in which a vertical electric field and an oblique electric field are alternately applied to a cylindrical metal post to alternately switch two vortices.

米国特許第7081189号明細書U.S. Pat. No. 7,081,189

M.Z.Bazant and T.M.Squires,Phys.Rev.Lett.92,066101(2004)M.M. Z. Bazant and T.W. M.M. Squires, Phys. Rev. Lett. 92,066101 (2004) H.Zhao and H.Bau,Phys.Rev.E 75 066217(2007)H. Zhao and H.C. Bau, Phys. Rev. E 75 066217 (2007)

微小流路の中では、レイノルズ数が低いために乱流による混合が期待できず、混合は分子拡散によるものが主となる。   In a microchannel, since the Reynolds number is low, mixing by turbulent flow cannot be expected, and mixing is mainly by molecular diffusion.

このため特許文献1や非特許文献1に開示されたICEO流れによる渦をマイクロ流路中で発生させるものでは、十分な混合を得るのに必要な時間、及び、必用な流路長が比較的長くなるという問題が生ずる。   Therefore, in the case where the vortex caused by the ICEO flow disclosed in Patent Document 1 and Non-Patent Document 1 is generated in the microchannel, the time required to obtain sufficient mixing and the necessary channel length are relatively long. The problem of lengthening arises.

一方、非特許文献2に記載のミキサでは、流路壁面に対して斜め方向に傾いた斜め電界を必要とするために、実際に装置を構成しようとすると、電極配置にそれなりの工夫を必用とし小型集積化が困難となるおそれがある。   On the other hand, since the mixer described in Non-Patent Document 2 requires an oblique electric field inclined in an oblique direction with respect to the flow path wall surface, when an apparatus is actually configured, a certain device is required for electrode arrangement. There is a risk that miniaturization will be difficult.

本発明は、短時間で効率的な液体の混合をなし得、小型集積化が可能な液体混合装置を提供することを目的とする。   An object of the present invention is to provide a liquid mixing apparatus capable of efficiently mixing liquids in a short time and capable of being miniaturized.

本発明により提供される液体混合装置は、液体を搬送するための微小流路と、該流路内に設けられた導電性部材と該導電性部材に電界を与える電極とを備え前記電界により前記流路内に前記液体の渦流を生じさせる渦流発生手段と、前記流路に沿った方向の前記液体の流れを発生させる方向性流れ発生手段と、前記渦流と前記方向性流れとを所定の周波数で交互に切り替える切り替え手段と、を有することを特徴とする。 A liquid mixing apparatus provided by the present invention includes a micro flow channel for transporting a liquid, a conductive member provided in the flow channel, and an electrode for applying an electric field to the conductive member. Eddy current generating means for generating a vortex flow of the liquid in the flow path, directional flow generating means for generating the flow of the liquid in a direction along the flow path, and the vortex flow and the directional flow at a predetermined frequency. And switching means for switching alternately .

本発明の液体混合装置は、流路内に液体の渦流を生じさせる渦流発生手段と、流路の端部に接続され流路に沿った方向の流れを発生させる方向性流れ発生手段と、これら手段の切り替え手段を有し、渦流と方向性流れとを切り替えることが可能となる。これにより、短時間で効率的な液体の混合が可能となる。さらに、斜め電界を必用とせず、小型集積化が容易な液体混合装置を提供できる。   The liquid mixing apparatus of the present invention includes a vortex generating means for generating a vortex of liquid in the flow path, a directional flow generating means connected to the end of the flow path to generate a flow in the direction along the flow path, and these It has means switching means, and it is possible to switch between vortex flow and directional flow. This enables efficient liquid mixing in a short time. Furthermore, it is possible to provide a liquid mixing device that does not require an oblique electric field and is easy to be miniaturized and integrated.

(a)は本発明の液体混合装置の一例を示す模式図、(b)は切り替え手段による駆動切り替えのタイミング例を示すタイミングチャート(A) is a schematic diagram showing an example of the liquid mixing apparatus of the present invention, (b) is a timing chart showing an example of timing of drive switching by the switching means. 本発明の液体混合装置における液体の流速分布を示す図The figure which shows the flow velocity distribution of the liquid in the liquid mixing apparatus of this invention ある時間における本発明の液体混合装置中の液体の位置を示す図The figure which shows the position of the liquid in the liquid mixing apparatus of this invention in a certain time ある時間における本発明の液体混合装置中の液体の位置を示す図The figure which shows the position of the liquid in the liquid mixing apparatus of this invention in a certain time ある時間における本発明の液体混合装置中の液体の位置を示す図The figure which shows the position of the liquid in the liquid mixing apparatus of this invention in a certain time ある時間における本発明の液体混合装置中の液体の位置を示す図The figure which shows the position of the liquid in the liquid mixing apparatus of this invention in a certain time 混合係数とストローハル数との関係を示すグラフGraph showing the relationship between mixing coefficient and Strouhal number 混合時間とストローハル数との関係を示すグラフGraph showing the relationship between mixing time and Strouhal number 混合時間とストローハル数との関係を示すグラフGraph showing the relationship between mixing time and Strouhal number 本発明の液体混合装置の一例を示す模式図Schematic diagram showing an example of the liquid mixing apparatus of the present invention 比較例における液体混合装置中の液体の位置を示す図The figure which shows the position of the liquid in the liquid mixing apparatus in a comparative example 液体混合装置中の液体の位置を示す図Diagram showing the position of the liquid in the liquid mixing device 本発明の液体混合装置の一例を示す模式図Schematic diagram showing an example of the liquid mixing apparatus of the present invention

以下、本発明の液体混合装置について、図を参照して説明する。   Hereinafter, the liquid mixing apparatus of the present invention will be described with reference to the drawings.

本発明に係る液体混合装置は、液体を搬送するための流路と、該流路内に設けられた導電性部材と該導電性部材に電界を与える電極とを備え前記電界により前記流路内に前記液体の渦流を生じさせる渦流発生手段と、前記流路に沿った方向の前記液体の流れを発生させる方向性流れ発生手段と、前記渦流と前記方向性流れとを切り替える切り替え手段と、を有することを特徴とする。   A liquid mixing apparatus according to the present invention includes a flow path for transporting a liquid, a conductive member provided in the flow path, and an electrode for applying an electric field to the conductive member. Eddy current generating means for generating the liquid vortex flow, directional flow generating means for generating the liquid flow in the direction along the flow path, and switching means for switching between the vortex flow and the directional flow. It is characterized by having.

図1は本発明の液体混合装置の一例を示す模式図である。   FIG. 1 is a schematic view showing an example of the liquid mixing apparatus of the present invention.

図1において、5は液体を搬送するための流路(長さL、幅w、深さd2(>w))、3は流路内に設けられた導電性部材、4は電極1及び2に接続されており、導電性部材3に電界を与える電源である。ここで電極1、2と電源4と、導電性部材3とは、流路内に液体の渦流を生じさせる渦流発生手段を構成する。   In FIG. 1, 5 is a flow path (length L, width w, depth d2 (> w)) for transporting liquid, 3 is a conductive member provided in the flow path, 4 is electrodes 1 and 2 Is a power source that applies an electric field to the conductive member 3. Here, the electrodes 1, 2, the power source 4, and the conductive member 3 constitute eddy current generating means for generating a liquid vortex in the flow path.

8a及び8bは流路5内に該流路(流路の延びる方向)に沿った方向の液体の流れを発生させる方向性流れ発生手段としてポンプであり、このポンプを作動させることで流路の入口と出口における液体に圧力差ΔPを生じさせる。9は渦流発生手段と方向性流れ発生手段とを切り替える切り替え手段である。   8a and 8b are pumps as directional flow generating means for generating a liquid flow in the direction along the flow path (the direction in which the flow path extends) in the flow path 5. By operating this pump, A pressure difference ΔP is generated in the liquid at the inlet and outlet. Reference numeral 9 denotes switching means for switching between the eddy current generating means and the directional flow generating means.

図1の装置においては、電極1及び2間に電圧を印加することで電界が生じ、この電界により導電性部材3の表面に電荷が誘起される。誘起された電荷に液体中の帯電成分(陽イオン、負イオン等)が吸い寄せられて、所謂、電気二重層が形成される。誘起される電荷と対をなして形成される電気二重層部分に起こる電気浸透流に起因して渦流が発生する。   In the apparatus of FIG. 1, an electric field is generated by applying a voltage between the electrodes 1 and 2, and an electric charge is induced on the surface of the conductive member 3 by this electric field. Charged components (cations, negative ions, etc.) in the liquid are attracted to the induced charges, and so-called electric double layers are formed. An eddy current is generated due to the electroosmotic flow that occurs in the electric double layer portion formed in a pair with the induced charge.

本発明の液体混合装置では、流路内に主に発生する液体の流れとして渦流と方向性流れとを切り替えることにより短時間で効率的な液体の混合が可能となる。   In the liquid mixing apparatus of the present invention, the liquid can be efficiently mixed in a short time by switching between the vortex flow and the directional flow as the liquid flow mainly generated in the flow path.

導電性部材を構成する材料は、電界により電荷を誘起する材料が用いられ、金属(例えば、金、白金)の他、炭素や炭素系の材料等が挙げられる。しかしこの部材についても搬送する液体に対して安定な材料で構成するのが好適である。   As a material constituting the conductive member, a material that induces an electric charge by an electric field is used, and in addition to a metal (for example, gold or platinum), carbon or a carbon-based material may be used. However, this member is also preferably made of a material that is stable with respect to the liquid to be conveyed.

また、流路内に設けられる導電性部材の数は、効率的に渦流を発生させるためには複数とするのが好ましく、流路の長さと導電性部材の大きさ、搬送する液体の粘性等を考慮して選択することができる。   The number of conductive members provided in the flow path is preferably plural in order to efficiently generate a vortex, and the length of the flow path, the size of the conductive member, the viscosity of the liquid to be transported, etc. Can be selected.

導電性部材の配置は、流路の中心を境として、液体の搬送される方向に関して、ジグザグ状に配置することが渦流の効率的観点から好ましい。図1では流路の中心を境に2個づつ、計4個を配したが、個数は適宜選択することができる。   The conductive member is preferably arranged in a zigzag shape with respect to the direction in which the liquid is conveyed with the center of the flow path as a boundary from the viewpoint of the efficiency of vortex flow. In FIG. 1, a total of four are arranged, two at the center of the flow path, but the number can be selected as appropriate.

導電性部材に電界を与える電極は、図1では対向する一対の電極1及び2が設けられているが、導電性部材に電荷が効果的に誘起できる配置であれば、3個あるいは4個以上を配置することも可能である。電極を構成する材料としては、金属等からなる一般的な電極材料の他、金、白金、炭素、炭素系導電体等が挙げられる。また、図1では、渦流発生用の電源としてAC(交流)電源が用いて電界を用いて駆動する例を示しているが、DC(直流)電源を用いることも可能である。   In FIG. 1, the electrodes for applying an electric field to the conductive member are provided with a pair of opposing electrodes 1 and 2, but three or four or more electrodes are provided as long as the charge can be effectively induced in the conductive member. Can also be arranged. Examples of the material constituting the electrode include gold, platinum, carbon, carbon-based conductors, and the like in addition to general electrode materials made of metal or the like. Although FIG. 1 shows an example in which an AC (alternating current) power source is used as a power source for generating eddy currents and is driven using an electric field, a DC (direct current) power source can also be used.

本発明において、流路に沿った方向の流れを発生させる方向性流れ発生手段には、各種ポンプを採用することができるがμTAS(マイクロトータルアナリシスシステム)等の分野で一般的に使用されるダイアフラムポンプ、圧電アクチュエータポンプ、電気泳動ポンプ、電気浸透ポンプ等のマイクロポンプを用いるのが好ましい。   In the present invention, various pumps can be used as the directional flow generating means for generating a flow in the direction along the flow path, but a diaphragm generally used in the field of μTAS (micro total analysis system) and the like. It is preferable to use a micro pump such as a pump, a piezoelectric actuator pump, an electrophoretic pump, or an electroosmotic pump.

方向性流れ発生手段(ポンプ)と渦流発生手段との切り替え手段は、例えば、2つのチャンネルを持つ任意波形発生器を用いて構成することができる。   The switching means between the directional flow generating means (pump) and the vortex flow generating means can be configured using, for example, an arbitrary waveform generator having two channels.

この発生器は、例えば、最大値を5V(ON状態)、最小値を0V(OFF状態)とする矩形波(ゲートパルス)をチャンネル1とチャンネル2で逆位相に発生させるものであり、方向性流れ発生手段はチャンネル1のゲートパルスに応じてON状態またはOFF状態に制御されるインターフェースを持ち、渦流発生手段は方向性流れ発生手段はチャンネル2のゲートパルスに応じてON状態またはOFF状態に制御されるインターフェースを持つことになる。   This generator generates, for example, a rectangular wave (gate pulse) having a maximum value of 5V (ON state) and a minimum value of 0V (OFF state) in opposite phases in channel 1 and channel 2, and directivity The flow generating means has an interface that is controlled to be ON or OFF according to the channel 1 gate pulse, and the vortex generating means is controlled to be ON or OFF according to the channel 2 gate pulse. You will have an interface that will be

もちろん、チャンネル2のON状態期間のピーク駆動電圧(+V,−V)と周波数を適宜調整して、直接、AC電圧を電極に接続してもかまわない。また、小型システムを構成する観点から切り替え替え手段に含まれる電気回路部をICチップに集積することも可能である。 Of course, the AC voltage may be directly connected to the electrode by appropriately adjusting the peak drive voltage (+ V 0 , −V 0 ) and frequency during the ON state period of the channel 2. Moreover, it is also possible to integrate the electric circuit part included in the switching means from the viewpoint of configuring a small system on the IC chip.

本発明において、流体を搬送する流路は、μTAS等の分野で一般的に使用される材料で構成することができる。具体的には、搬送する液体に対して安定な材料で構成でき、そのような材料としては、SiO、Si、フッ素樹脂、高分子樹脂等が挙げられる。 In the present invention, the flow path for conveying the fluid can be made of a material generally used in the field such as μTAS. Specifically, it can be composed of a material that is stable with respect to the liquid to be transported, and examples of such a material include SiO 2 , Si, a fluororesin, and a polymer resin.

流路の大きさは、所謂、マイクロリアクターとして使用され得る大きさとするのが好ましい。具体的な流路幅として好ましくは1000μm以下、より好ましくは500μm以下、望ましくは200μm以下である。流路幅が狭くなるにつれ、液体の拡散距離が短くなり、混合時間の短縮、反応時間の短縮につながる。また、流路の深さについては、混合させる液体同士の接触面積を広くさせるという観点から流路幅よりも深い(大きい)ことが好ましい。具体的には、深さ/流路幅は0.1以上、より好ましくは0.5以上、より好ましくは1以上最適には2以上が好ましい。さらに深さ/流路幅が大きくなることは流路の断面積が大きくなり多くの流体が流せるという効果も奏する。   The size of the channel is preferably set to a size that can be used as a so-called microreactor. The specific channel width is preferably 1000 μm or less, more preferably 500 μm or less, and desirably 200 μm or less. As the channel width becomes narrower, the liquid diffusion distance becomes shorter, leading to a reduction in mixing time and reaction time. The depth of the channel is preferably deeper (larger) than the channel width from the viewpoint of increasing the contact area between the liquids to be mixed. Specifically, the depth / flow path width is 0.1 or more, more preferably 0.5 or more, more preferably 1 or more, optimally 2 or more. Furthermore, increasing the depth / flow path width also has the effect of increasing the cross-sectional area of the flow path and allowing more fluid to flow.

本発明において、流路内を搬送可能な液体は、基本的には、帯電成分を含有する極性分子を含むものであり、水や、各種電解質を含む溶液等が挙げられる。   In the present invention, the liquid that can be transported in the flow path basically includes polar molecules containing a charged component, and examples thereof include water and solutions containing various electrolytes.

以下、具体的な実施例を挙げて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with specific examples.

図1は、実施例1の混合装置を示す断面図である。同図において、1及び2は一対の電極、3は導電性部材、4は電源、5は幅w(=100μm)、長さL(=225μm)、深さd(>w)の流路であり、流路5には水や電解質水溶液など分極可能な溶液が充たされている。ここで、一対の電極1、2はDCまたはAC電界を流路に印加する手段である。電極1、2と電源4と、導電性部材3とは、流路内に液体の渦流を生じさせる渦流発生手段を構成する。 FIG. 1 is a cross-sectional view showing the mixing apparatus of the first embodiment. In the figure, 1 and 2 are a pair of electrodes, 3 is a conductive member, 4 is a power source, 5 is a channel having a width w (= 100 μm), a length L (= 225 μm), and a depth d 2 (> w). The flow path 5 is filled with a polarizable solution such as water or an aqueous electrolyte solution. Here, the pair of electrodes 1 and 2 are means for applying a DC or AC electric field to the flow path. The electrodes 1 and 2, the power source 4, and the conductive member 3 constitute eddy current generating means for generating a liquid vortex in the flow path.

また、8a、8bは流路5の端部に接続され流路に沿った方向の流れを発生させる方向性流れ発生手段としてのポンプである。   Reference numerals 8a and 8b denote pumps as directional flow generating means that are connected to the end of the flow path 5 and generate a flow in a direction along the flow path.

9は、方向性流れ発生手段8a、8bによって発生する方向性流れと、渦流発生手段によって発生する渦流と、を交互に切り替える切り替え手段である。   Reference numeral 9 denotes switching means for alternately switching between the directional flow generated by the directional flow generation means 8a and 8b and the vortex flow generated by the vortex flow generation means.

本発明では、2種の流れを切り替えることにより混合に必要な流路長及び時間を短縮し、斜め電界のいらない小型集積化が容易な高性能な液体混合装置(マイクロミキサ)を提供できる。   The present invention can provide a high-performance liquid mixing apparatus (micromixer) that can shorten the flow path length and time required for mixing by switching between the two types of flows, and can be easily miniaturized and integrated without an oblique electric field.

ここで、渦流発生手段は流路5内に配した導電性部材3と、導電性部材3に電界を与える電極1、2と、を備え、電界により導電構造体3に誘起される電荷と対をなして形成される電気二重層部分に起こる電気浸透流(ICEO)を用いる。ICEO流れによる渦流を利用するため、渦流の流れ速度を大きくできるとともに、AC駆動可能なためにDCの場合に問題となる化合物の分解等を回避できる効果がある。   Here, the eddy current generating means includes a conductive member 3 disposed in the flow path 5 and electrodes 1 and 2 for applying an electric field to the conductive member 3, and a pair of charges induced in the conductive structure 3 by the electric field. The electroosmotic flow (ICEO) occurring in the electric double layer portion formed by forming Since the vortex flow generated by the ICEO flow is used, the flow velocity of the vortex flow can be increased, and the AC drive can be effective in avoiding the decomposition of a compound that causes a problem in the case of DC.

本実施例では、導電性部材3は、半径c(直径2c)の円柱で構成されている。図1において、φは、円柱上の位置を表すパラメータであり、Eは電極に垂直な垂直電界を示す。また、4つの円柱の位置は(x,y)(i=1,2,3,4)で示され、2δ(=d)は、円柱配置のx方向の間隔を示す。 In this embodiment, the conductive member 3 is formed of a cylinder having a radius c (diameter 2c). In FIG. 1, φ is a parameter representing a position on a cylinder, and E represents a vertical electric field perpendicular to the electrode. The positions of the four cylinders are indicated by (x i , y i ) (i = 1, 2, 3, 4), and 2δ (= d 0 ) indicates the interval in the x direction of the cylinder arrangement.

つまり、流路下部の円柱のx位置は、x=x=0.5w+δ、流路上部の円柱のx位置は、x=x=0.5w−δ、y/w=0.45,y/w=0.9、y/w=1.35、y/w=1.8である。 That is, the x position of the cylinder at the lower part of the flow path is x 1 = x 3 = 0.5 w + δ, and the x position of the cylinder at the upper part of the flow path is x 2 = x 4 = 0.5 w−δ, y 1 / w = 0. .45, y 2 /w=0.9, y 3 /w=1.35, y 4 /w=1.8.

また、図1(b)は、方向性流れ発生手段による駆動と、渦流発生手段による駆動と、の切り替えのタイムチャートであり、Tは、方向性流れ発生手段による圧力差(流路の入口と出口の圧力差)印加期間である。また、Tは渦流発生手段によるAC電圧印加期間である。T=T+Tは、切り替え周期を示す。 FIG. 1B is a time chart for switching between driving by the directional flow generating means and driving by the vortex generating means, and T 1 indicates a pressure difference (inlet of the flow path) by the directional flow generating means. And the pressure difference at the outlet). Further, T 2 is the AC voltage application period by vortex generating means. T = T 1 + T 2 indicates a switching cycle.

図2は、本実施例の装置の流速分布の計算図であり、図2(a)は方向性流れ発生手段8a、8bによって発生する方向性流れの流速分布図、図2(b)は、渦流発生手段によって発生する渦流の流速分布図である。   FIG. 2 is a calculation diagram of the flow velocity distribution of the apparatus of the present embodiment, FIG. 2A is a flow velocity distribution diagram of the directional flow generated by the directional flow generating means 8a and 8b, and FIG. It is a flow velocity distribution map of the vortex generated by the vortex generator.

ここでの計算値は誘起電荷浸透効果を考慮したストークス流体方程式を用いた計算による。
c/w=0.1、δ/w=0.3、方向性流れ発生手段による流路の入口と出口の圧力差ΔP=2.4Pa(圧力勾配ΔP/L)、w=100μm、L/w=2.25、渦流発生手段の印加電圧V=2.38Vとして計算している。
The calculated value here is based on the calculation using the Stokes fluid equation considering the induced charge penetration effect.
c / w = 0.1, δ / w = 0.3, pressure difference ΔP = 2.4 Pa (pressure gradient ΔP / L) between the inlet and outlet of the flow path by the directional flow generating means, w = 100 μm, L / Calculation is made assuming that w = 2.25 and the applied voltage V 0 = 2.38 V of the eddy current generating means.

図3、図4、図5及び図6は、周期境界を使って計算した液体混合装置中の液体の位置を示す図である。図1におけるLq1とLq2を流路5の入口部に流入する2種の液体を図3(t=0)において、31、32として示し、この2種の液体の経時的な位置変化を図4(t=100ms)、図5(t=200ms)、図6(t=500ms)で示している。図6より500ms程度の時間で2種の液体が良好に混合することが理解される。ここで、方向性流れ発生期間及び渦流発生期間は、T/2=20msとした。   3, 4, 5, and 6 are diagrams illustrating the position of the liquid in the liquid mixing apparatus calculated using the periodic boundaries. The two types of liquids that flow Lq1 and Lq2 in FIG. 1 into the inlet of the flow path 5 are shown as 31 and 32 in FIG. 3 (t = 0), and the positional changes of these two types of liquid over time are shown in FIG. (T = 100 ms), FIG. 5 (t = 200 ms), and FIG. 6 (t = 500 ms). It can be understood from FIG. 6 that the two liquids are well mixed in a time of about 500 ms. Here, the directional flow generation period and the vortex generation period were set to T / 2 = 20 ms.

また、図7は、定量的に混合を評価する手法であるボックス計測法によって定義された十分に時間が経過した後の液体の混ざり具合を表わす混合係数(ε3,max)のストローハル数St=fd/U、St=fd/U依存性を示すグラフ(計算図)である。 FIG. 7 shows the Strouhal number St of the mixing coefficient (ε 3, max ) representing the degree of mixing of the liquid after a sufficient time defined by the box measurement method, which is a method for quantitatively evaluating the mixing. 1 = the fd 1 / U 1, St 0 = fd 0 / U 0 shows the dependency graph (calculated view).

ここで、ストローハル数は時間変化による慣性力と場所移動による慣性力の無次元数であり、fは切り替え周波数、dは渦流の前記流路に沿った方向の幅、dは渦流の流路に沿った方向と垂直な方向の幅、Uは流路に沿った方向の液体の平均流速、Uは渦流の前記垂直な方向の速度を、それぞれ示している。 Here, the Strouhal number is a dimensionless number of inertial force due to time change and inertial force due to location movement, f is the switching frequency, d 1 is the width of the vortex in the direction along the flow path, and d 0 is the vortex flow. The width in a direction perpendicular to the direction along the flow path, U 1 represents the average flow velocity of the liquid in the direction along the flow path, and U 0 represents the velocity of the vortex in the vertical direction.

混合係数は   The mixing factor is

Figure 0005448888

で定義される。
Figure 0005448888

Defined by

ただし、n<naveの場合ω=n/nave、その他の場合ω=1である。また、nave=N/K、N=(N0.5,n=(n0.5であり、n,nは仮想粒子1,2のボックス内の数、N=N=20X40=800は仮想流体粒子1、2の総数、K=10X20=200は評価ボックスの数を示す。 However, if n i <n ave ω i = n i / n ave , otherwise ω i = 1. In addition, n ave = N 3 / K, N 3 = (N 1 N 2 ) 0.5 , n i = (n 1 n 2 ) 0.5 , and n 1 and n 2 are the virtual particles 1 and 2. The number in the box, N 1 = N 2 = 20 × 40 = 800 is the total number of virtual fluid particles 1 and 2, and K = 10 × 20 = 200 indicates the number of evaluation boxes.

ここで、ω=n/naveは平均粒子数以下のボックスで低い値となり、平均粒子数以上の過剰粒子数のボックスで1となり、よく混合されているとみなされる(εが1に近づくほど良好な混合を示し、0に近づくと混合がなされていない)。それゆえ、2種の液体31、32の仮想粒子が流路全体に均一に広がるにつれて、混合係数は1に近づき、全体としてよく混合した状態を示す。 Here, ω i = n i / n ave becomes a low value in a box having an average number of particles or less, becomes 1 in a box having an excess particle number that is more than the average number of particles, and is considered to be well mixed (ε 3 is 1). The better the mixing is, the better the mixing is. Therefore, as the virtual particles of the two kinds of liquids 31 and 32 spread uniformly throughout the entire flow path, the mixing coefficient approaches 1 and shows a well-mixed state as a whole.

図7から、St=fd/U<1、St=fd/U<1で良好な混合が得られることが理解される。 It can be seen from FIG. 7 that good mixing is obtained with St 1 = fd 1 / U 1 <1 and St 0 = fd 0 / U 0 <1.

また、図8は混合時間tとストローハル数の関係、図9は混合距離Lとストローハル数の関係を示す。 8 shows the relationship between the mixing time t m and the Strouhal number, and FIG. 9 shows the relationship between the mixing distance L m and the Strouhal number.

図8、図9より、St=fd/U<1、St=fd/U<1なる条件で、tは〜1s程度、Lは〜1mm程度であり、短い時間と距離で十分な混合が起きることが分かる。ただし、T=1msである。また、実線、破線、点線は、切り替え時間をT/(2T)=20,40,80としたときの単純モデルによる解析解である。また、混合距離は、図3のように周期条件を使わない実際の流路で必要となる距離であり、L=Uである。 8 and 9, from the condition that St 1 = fd 1 / U 1 <1, St 0 = fd 0 / U 0 <1, t m is about 1 s, L m is about 1 mm, and a short time. It can be seen that sufficient mixing occurs at the distance. However, T 0 = 1 ms. The solid line, the broken line, and the dotted line are analytical solutions based on a simple model when the switching time is T / (2T 0 ) = 20, 40, 80. Further, the mixing distance is a distance required in an actual flow path that does not use a periodic condition as shown in FIG. 3, and is L m = U 1 t m .

通常、流路幅100μm程度の流路内では混合時間は60s程度以上、混合流路長は1cm程度必要と言われるため、本発明により、大幅に混合時間及び混合流路長を短くできることがわかる。また、計算ではレイノルズ数がゼロ、及び、ピクレー数が無限大の極限を考えた。ここでピクレー数は拡散係数に関係する無次元数であって、ピクレー数が無限大のときに拡散係数は0となる。   Usually, it is said that a mixing time of about 60 s or more and a mixing channel length of about 1 cm are required in a channel having a channel width of about 100 μm, so that the present invention can greatly reduce the mixing time and the mixing channel length. . In the calculation, we considered the limit where the Reynolds number is zero and the Piclay number is infinite. Here, the Piclay number is a dimensionless number related to the diffusion coefficient, and the diffusion coefficient is 0 when the Piclay number is infinite.

本発明では、複数種の流れを切り替えるカオス混合を用いているために、レイノルズ数が極めて低く、ピクレー数が大きい場合にも効果があることが分かる。   In the present invention, since chaotic mixing for switching plural kinds of flows is used, it can be seen that the present invention is effective even when the Reynolds number is extremely low and the Piclay number is large.

また、本発明の液体混合装置は、レイノルズ数が低く、乱流による混合が期待できないマイクロ流体システムにおいて、極めて有用である。本発明の液体混合装置は、マイクロ流体システムが適用可能な種々の分野に適用可能であり、具体的には、DNAやタンパク質の解析、細胞のソーティング、ハイスループットスクリーニング、化学反応、微小量(1−100nl)の移動手段等に利用可能である。   In addition, the liquid mixing apparatus of the present invention is extremely useful in a microfluidic system that has a low Reynolds number and cannot be expected to be mixed by turbulent flow. The liquid mixing apparatus of the present invention can be applied to various fields to which a microfluidic system can be applied. Specifically, DNA and protein analysis, cell sorting, high-throughput screening, chemical reaction, minute amount (1 It can be used for a moving means of −100 nl).

DNAやタンパク質、あるいは細胞では、分子量が大きいために、拡散係数が小さくなり、システムのピクレー数が極めて大きくなるため、ピクレー数が無限大でも効果を発揮する本発明の混合装置は、極めて有用となる。さらに、化学分析等に利用されるマイクロ流体デバイスには、通常、使い捨てができるように高価でなく、単純な構造のものが望まれるため、この点でも、本発明は好適な混合装置となり得る。   Since the molecular weight is large in DNA, protein, or cells, the diffusion coefficient is small, and the number of Piclays in the system is extremely large. Therefore, the mixing apparatus of the present invention that is effective even when the number of Piclays is infinite is extremely useful. Become. Furthermore, since a microfluidic device used for chemical analysis or the like is usually not expensive so as to be disposable and has a simple structure, the present invention can also be a suitable mixing apparatus in this respect.

(比較例1)
図11、図12は、渦流と方向性流れを切り替えずに同時に発生させた場合の液体混合装置中の液体の位置を示す図である。
(Comparative Example 1)
FIG. 11 and FIG. 12 are diagrams showing the position of the liquid in the liquid mixing apparatus when the vortex flow and the directional flow are generated simultaneously without switching.

これらの図において、混合させる2種の液体を801と802として示しており、経時的な位置変化を図11(a)(t=0ms)、図11(b)(t=100ms)図12(a)(t=200ms)、図12(b)(t=500ms)で示している。   In these figures, the two kinds of liquids to be mixed are shown as 801 and 802, and the positional changes over time are shown in FIG. 11 (a) (t = 0 ms), FIG. 11 (b) (t = 100 ms), and FIG. a) (t = 200 ms) and FIG. 12B (t = 500 ms).

これらの図より、切り替えなしの本例の装置では、実施例1に示した装置と異なり、時間経過と共に良好な混合は得られないことが理解される。   From these figures, it can be understood that the device of this example without switching does not achieve good mixing over time, unlike the device shown in Example 1.

すなわち、分子拡散が極めて小さい場合には、渦流と方向性流れを切り替えないと良好な混合は生じない。   That is, when the molecular diffusion is extremely small, good mixing does not occur unless the vortex flow and the directional flow are switched.

図9は、本発明の実施例2の液体混合装置の特徴を示す図である。本実施例の装置は、実施例1に示した方向性流れ発生手段8a、8b(ポンプ)に代えて、方向性流れ発生手段61a及び61bを有することが特徴である。   FIG. 9 is a diagram showing the characteristics of the liquid mixing apparatus according to the second embodiment of the present invention. The apparatus of the present embodiment is characterized by having directional flow generating means 61a and 61b instead of the directional flow generating means 8a and 8b (pump) shown in the first embodiment.

方向性流れ発生手段61a及び61bは、それぞれ楕円型の導電性部材13a、13bを挟んだ位置に、該導電性部材に電界を付与することで発生する液体の流れの内、逆方向の流れを抑制する抑制部材65a及び65bを配置して構成されている。   The directional flow generating means 61a and 61b, in the positions sandwiching the elliptical conductive members 13a and 13b, respectively, generate a flow in the reverse direction among the liquid flows generated by applying an electric field to the conductive members. The suppression members 65a and 65b to be suppressed are arranged.

62は実施例1に示したのと同様の渦流発生手段である。   Reference numeral 62 denotes eddy current generating means similar to that shown in the first embodiment.

本実施例の装置は、渦流発生手段62に接続された電源、方向性流れ発生手段61a及び61bにそれぞれ接続された電源が切り替え手段9に接続され、液体の流れを制御できるようになっている。   In the apparatus of the present embodiment, a power source connected to the vortex generator 62 and a power source connected to the directional flow generators 61a and 61b are connected to the switching unit 9 to control the flow of liquid. .

この装置では、図9の左側より右側に向かう流体の流れを順方向として、方向性流れ発生装置61aによる順方向流れ、渦流発生手段62による渦流、方向性流れ発生装置61bによる逆方向流れ、渦流発生手段62による渦流の順に液体の流れを順次生じさせることが(交互に切り替え)可能となる。   In this apparatus, the fluid flow from the left side to the right side in FIG. 9 is assumed to be the forward direction, the forward flow by the directional flow generator 61a, the vortex flow by the vortex generator 62, the reverse flow by the directional flow generator 61b, and the vortex It is possible to sequentially generate a liquid flow in the order of the vortex flow by the generating means 62 (alternate switching).

こうした切り替えを行う本実施例の装置では、実質的な流路長を3L=6.75μm程度に大幅に縮小できる。   In the apparatus of this embodiment that performs such switching, the substantial flow path length can be greatly reduced to about 3L = 6.75 μm.

1 電極
3 13a 13b 導電性部材
8a 8b 61a 61b 方向性流れ発生手段
62 渦流発生手段
9 切り替え手段
1 Electrode 3 13a 13b Conductive member 8a 8b 61a 61b Directional flow generating means 62 Eddy current generating means 9 Switching means

Claims (5)

液体を搬送するための微小流路と、該流路内に設けられた導電性部材と該導電性部材に電界を与える電極とを備え前記電界により前記流路内に前記液体の渦流を生じさせる渦流発生手段と、前記流路に沿った方向の前記液体の流れを発生させる方向性流れ発生手段と、前記渦流と前記方向性流れとを所定の周波数で交互に切り替える切り替え手段と、を有することを特徴とする液体混合装置。 A micro flow path for transporting a liquid, a conductive member provided in the flow path, and an electrode for applying an electric field to the conductive member, and the electric field generates a vortex flow of the liquid in the flow path Eddy current generating means, directional flow generating means for generating the liquid flow in the direction along the flow path, and switching means for alternately switching the vortex flow and the directional flow at a predetermined frequency. A liquid mixing apparatus. 前記微小流路の流路幅が1000μm以下であることを特徴とする請求項1に記載の液体混合装置。The liquid mixing apparatus according to claim 1, wherein a flow path width of the micro flow path is 1000 μm or less. 前記渦流発生手段は、前記電界により前記導電性部材に生ずる電気二重層に起因する電気浸透流を用いるものであることを特徴とする請求項1または2に記載の液体混合装置。   3. The liquid mixing apparatus according to claim 1, wherein the eddy current generating unit uses an electroosmotic flow caused by an electric double layer generated in the conductive member by the electric field. 前記方向性流れ発生手段に該方向性流れ発生手段に起因して生ずる前記液体の流れる方向を切り替える切り替え手段が接続されていることを特徴とする請求項1乃至3のいずれかに記載の液体混合装置。 Liquid according to any one of claims 1乃optimum 3, characterized in that the switching means for switching the direction of flow of the liquid caused due to the directional flow generating means to the directional flow generating means is connected Mixing equipment. 液体を搬送するための微小流路と、該流路内に設けられた導電性部材と該導電性部材に電界を与える電極とを備え前記電界により前記流路内に前記液体の渦流を生じさせる渦流発生手段と、前記流路に沿った方向の前記液体の流れを発生させる方向性流れ発生手段と、前記渦流と前記方向性流れとを切り替える切り替え手段と、を有し、
前記方向性流れ発生手段に該方向性流れ発生手段に起因して生ずる前記液体の流れる方向を切り替える切り替え手段が接続され、前記切り替え手段を用いて、前記流路内に、前記液体の第一の方向の方向性流れ、前記液体の渦流、前記液体の第二の方向の方向性流れ、前記液体の渦流、を順次生じさせることを特徴とする液体混合装置。
A micro flow path for transporting a liquid, a conductive member provided in the flow path, and an electrode for applying an electric field to the conductive member, and the electric field generates a vortex flow of the liquid in the flow path Eddy current generating means, directional flow generating means for generating the liquid flow in the direction along the flow path, and switching means for switching between the vortex flow and the directional flow,
Switching means for switching the flow direction of the liquid generated due to the directional flow generation means is connected to the directional flow generation means, and the first flow of the liquid is introduced into the flow path using the switching means. direction direction flow, vortex of the liquid, the second direction of the directional flow, liquids mixing apparatus you characterized by sequentially generating vortices of the liquid in the liquid.
JP2010019442A 2010-01-29 2010-01-29 Liquid mixing device Expired - Fee Related JP5448888B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010019442A JP5448888B2 (en) 2010-01-29 2010-01-29 Liquid mixing device
US13/013,652 US9221023B2 (en) 2010-01-29 2011-01-25 Liquid mixing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019442A JP5448888B2 (en) 2010-01-29 2010-01-29 Liquid mixing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013209629A Division JP2014050837A (en) 2013-10-04 2013-10-04 Liquid mixing apparatus

Publications (2)

Publication Number Publication Date
JP2011158332A JP2011158332A (en) 2011-08-18
JP5448888B2 true JP5448888B2 (en) 2014-03-19

Family

ID=44340674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019442A Expired - Fee Related JP5448888B2 (en) 2010-01-29 2010-01-29 Liquid mixing device

Country Status (2)

Country Link
US (1) US9221023B2 (en)
JP (1) JP5448888B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210712A1 (en) 2012-06-25 2014-01-02 Carl Zeiss Smt Gmbh Method and cooling system for cooling an optical element for EUV applications
CN109541248B (en) * 2018-12-11 2023-09-15 苏州英赛斯智能科技有限公司 Flow injection reaction tank device and reversing fluid unit for same
CN111778092B (en) * 2020-07-27 2022-05-20 重庆合晶能源科技有限公司 Magnetic lubricating oil and preparation method thereof
CN113588350B (en) * 2021-09-28 2021-12-17 哈焊所华通(常州)焊业股份有限公司 Quick sampling device of cistern

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985119A (en) * 1994-11-10 1999-11-16 Sarnoff Corporation Electrokinetic pumping
US7691244B2 (en) * 2001-12-18 2010-04-06 Massachusetts Institute Of Technology Microfluidic pumps and mixers driven by induced-charge electro-osmosis
WO2003052269A1 (en) * 2001-12-18 2003-06-26 Massachusetts Institute Of Technology Microfluidic pumps and mixers driven by induced-charge electro-osmosis
JP4208820B2 (en) * 2003-11-28 2009-01-14 株式会社東芝 Nucleic acid detection cassette
JP4269001B1 (en) * 2008-07-31 2009-05-27 株式会社フォスメガ Reaction apparatus and method

Also Published As

Publication number Publication date
US9221023B2 (en) 2015-12-29
JP2011158332A (en) 2011-08-18
US20110186435A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
Sasaki et al. AC electroosmotic micromixer for chemical processing in a microchannel
Ng et al. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels
Fu et al. A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency
Lin et al. Microfluidic T-form mixer utilizing switching electroosmotic flow
Wu et al. A novel micromixer based on the alternating current-flow field effect transistor
Sun et al. Continuous particle trapping, switching, and sorting utilizing a combination of dielectrophoresis and alternating current electrothermal flow
Paustian et al. Induced charge electroosmosis micropumps using arrays of Janus micropillars
Stubbe et al. A short review on AC electro-thermal micropumps based on smeared structural polarizations in the presence of a temperature gradient
Wu Ac electro-osmotic micropump by asymmetric electrode polarization
JP5448888B2 (en) Liquid mixing device
Chang et al. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes
Bazant Induced-charge electrokinetic phenomena
Liu et al. Simulation analysis of rectifying microfluidic mixing with field‐effect‐tunable electrothermal induced flow
Tavari et al. A systematic overview of electrode configuration in electric‐driven micropumps
Lim et al. A study on the MHD (magnetohydrodynamic) micropump with side-walled electrodes
Liu et al. On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: Physical perspectives and theoretical analysis
Mohammad Jafarpour et al. Experimental study on the performance of a mini-scale Y-type mixer with two liquid metal-enabled pumps
Rallabandi et al. Analysis of optimal mixing in open-flow mixers with time-modulated vortex arrays
Adam et al. The electroosmosis mechanism for fluid delivery in PDMS multi-layer microchannel
Ren et al. Liquid metal droplet-enabled electrocapillary flow in biased alternating electric fields: a theoretical analysis from the perspective of induced-charge electrokinetics
Fu et al. Contactless microfluidic pumping using microchannel-integrated carbon black composite membranes
Dong et al. Mixing enhancement of electroosmotic flow in microchannels under DC and AC electric field
JP5804785B2 (en) pump
JP2014050837A (en) Liquid mixing apparatus
KR100767277B1 (en) Fluid mixing method in micro channel and system thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

LAPS Cancellation because of no payment of annual fees