JP5448647B2 - Light oil composition and method for producing the same - Google Patents

Light oil composition and method for producing the same Download PDF

Info

Publication number
JP5448647B2
JP5448647B2 JP2009198964A JP2009198964A JP5448647B2 JP 5448647 B2 JP5448647 B2 JP 5448647B2 JP 2009198964 A JP2009198964 A JP 2009198964A JP 2009198964 A JP2009198964 A JP 2009198964A JP 5448647 B2 JP5448647 B2 JP 5448647B2
Authority
JP
Japan
Prior art keywords
fuel
light oil
oil
volume
oil composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009198964A
Other languages
Japanese (ja)
Other versions
JP2011046895A (en
Inventor
行男 赤坂
英治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2009198964A priority Critical patent/JP5448647B2/en
Publication of JP2011046895A publication Critical patent/JP2011046895A/en
Application granted granted Critical
Publication of JP5448647B2 publication Critical patent/JP5448647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ディーゼルエンジン用の軽油組成物及びその製造方法、特には、ディーゼルパティキュレートフィルターを装着した大型ディーゼルエンジン車用の軽油組成物に関するものである。   The present invention relates to a diesel oil composition for a diesel engine and a method for producing the diesel oil composition, and particularly to a diesel oil composition for a large diesel engine vehicle equipped with a diesel particulate filter.

自動車の緊急且つ重要な課題は「CO2と排出ガスの同時削減」であり、該課題に対し、自動車単体での改良に加えて、交通流対策も検討されている。交通流対策としては、IT技術の活用によって自動車の流れをスムーズにすることに加えて、自動車の種別による規制も大気質の改善に寄与することが知られている。すなわち、大型ディーゼルエンジン車は、原則として都市間の物流に活用し、その都市部内への進入を規制することは、大気環境が悪化している都市部の大気改善に寄与する。都市間走行では、加減速や始動、アイドリングが少なく中高負荷条件下で長離走行をするので、排出ガス温度が高く、排出ガスを浄化するための後処理触媒を効果的に利用できることとなる。そのため、大型ディーゼルエンジン車用の燃料としては、排出ガスの削減よりも出力や燃費の優れた燃料が求められる。また、小型車(乗用車など)は、都市内走行を担うため、始動、アイドリングに加えて加減速頻度の多い走行条件となるので、後処理触媒の温度も低くなる。そのため、小型ディーゼルエンジン車用の燃料としては、後処理装置への負荷が少なく、排出ガスが少なく、運転性に優れた燃料が求められる。すなわち、交通流規制の施行により、軽油の使用実態によって要求燃料品質が異なることとなる。なお、都市内の物流は、都市部に大型物流拠点を設けて、小規模な個別配送拠点を削減して、排出ガスの少ない天然ガス車などクリーンエンジンの導入で対応することも提案されている。 An urgent and important issue for automobiles is “simultaneous reduction of CO 2 and exhaust gas”, and in addition to the improvement of the automobile alone, traffic flow countermeasures are being considered. As a traffic flow countermeasure, in addition to smoothing the flow of automobiles by utilizing IT technology, it is known that regulations by type of automobile also contribute to air quality improvement. In other words, large diesel engine vehicles are used for logistics between cities in principle, and restricting their entry into urban areas contributes to improving the atmosphere in urban areas where the atmospheric environment is deteriorating. In intercity travel, acceleration / deceleration, start-up, and idling are reduced, and long-distance travel is performed under medium and high load conditions. Therefore, the exhaust gas temperature is high, and an aftertreatment catalyst for purifying exhaust gas can be used effectively. For this reason, a fuel having a higher output and fuel efficiency than the reduction of exhaust gas is required as a fuel for a large diesel engine vehicle. In addition, since a small car (passenger car, etc.) is responsible for traveling in the city, in addition to starting and idling, it becomes a traveling condition with a high acceleration / deceleration frequency, so the temperature of the post-treatment catalyst is also lowered. Therefore, as a fuel for a small diesel engine vehicle, a fuel having a small load on the aftertreatment device, a small amount of exhaust gas, and an excellent drivability is required. In other words, due to the enforcement of traffic flow regulations, the required fuel quality will vary depending on the actual use of light oil. In addition, it has been proposed that urban logistics will be handled by introducing large-scale logistics bases in urban areas, reducing small individual delivery bases, and introducing clean engines such as natural gas vehicles with low emissions. .

一方、化石燃料の有効利用や非石油系燃料の導入・拡大は、エネルギーセキュリティーの観点から極めて重要な課題であり、そのためには、セタン価が低く、芳香族が多い分解系軽油基材(石油系の接触分解軽油基材(LCO)やオイルサンド由来の軽油基材)の活用が必要であり、多方面で研究されている。しかしながら、この種の研究は、ディーゼルエンジン車の種別(小型車と大型車の区別)や走行条件(都市間と都市内)を問わずに一括で規制されている既存の交通流を前提にした軽油品質規格を満足させるためのアップグレーディングを目指しており(非特許文献1および2)、燃料品質の向上(水素化精製)による多大なCO2排出を伴うこととなる。さらに、アップグレーディングの程度(シビアリティー)を高めると、燃料の製造価格が高くなることから、経済性の観点からも、よりマイルドな条件で水素化精製した分解系軽油の基材の利用が求められている。 On the other hand, the effective use of fossil fuels and the introduction / expansion of non-petroleum-based fuels are extremely important issues from the viewpoint of energy security. It is necessary to utilize a catalytically cracked light oil base material (LCO) or a light oil base material derived from oil sand), which has been studied in various fields. However, this type of research is based on the premise of existing traffic flows that are regulated collectively regardless of the type of diesel engine vehicle (distinguishment between small and large vehicles) and driving conditions (between cities and within cities). The aim is to upgrade to satisfy quality standards (Non-Patent Documents 1 and 2), and this involves enormous CO 2 emissions due to improved fuel quality (hydrorefining). Furthermore, if the degree of upgrading (severity) is increased, the production cost of the fuel will increase, so from the economical point of view, it is necessary to use a base material of cracked gas oil hydrorefined under milder conditions. It has been.

さらに、石油のノーブルユースや経済性の観点からは、製油所で製造される既存の軽油基材留分を余すことなく利用し、分解系軽油基材を含む望ましい軽油を生産する必要がある。すなわち、軽油基材の特定の留分や成分のみを利用した製造法では、上述の観点から実現性がなく、避けるべきである。   Furthermore, from the viewpoint of noble use of petroleum and economic efficiency, it is necessary to produce a desirable light oil including a cracked light oil base material by making full use of the existing light oil base material fraction produced at a refinery. That is, in the manufacturing method using only the specific fraction and components of the light oil base material, there is no feasibility from the above viewpoint and should be avoided.

そこで、上述の交通流規制が施行され、従来とは異なる燃料の配送・消費形態が確立した場合において、該配送・消費形態に基づいた「軽油品質とディーゼルエンジン車の利用形態との組み合わせ」でトータルとして、「排出ガスとCO2の同時削減」を維持しつつ「エネルギーセキュリティー(すなわち、分解系軽油の利用)」を「経済性をも加味して」達成する方策を見出すことが、極めて重要な課題になっている。 Therefore, when the above-mentioned traffic flow regulations are enforced and a fuel delivery / consumption form different from the conventional one is established, the "combination of light oil quality and diesel engine vehicle use form" based on the delivery / consumption form In total, it is extremely important to find a way to achieve “energy security (ie, use of cracked diesel oil)” in consideration of economics while maintaining “simultaneous reduction of exhaust gas and CO 2 ” It is a difficult issue.

石油産業活性化センター第23回技術開発研究成果発表会予稿集、「超重質油(オイルサンド油)等の分解有用化技術開発」(2009年6月3日)Petroleum Industry Revitalization Center 23rd Technology Development Research Results Preliminary Proceedings, “Development of Technology for Useful Decomposition of Super Heavy Oil (Oil Sand Oil)” (June 3, 2009) 石油産業活性化センター第23回技術開発研究成果発表会予稿集、「オイルサンド合成原油のわが国石油製品への適用化の技術開発」(2009年6月3日)Petroleum Industry Revitalization Center 23rd Technology Development Research Results Preliminary Proceedings, “Technology Development for Applying Oil Sand Synthetic Crude Oil to Japanese Petroleum Products” (June 3, 2009)

したがって、上記の交通流対策として、大型ディーゼルエンジン車(例えば、長距離輸送用のトラックなど)の都市内への進入が制限される状況における軽油の配送・消費形態を前提とし、且つディーゼルエンジン車に微粒子を捕捉・浄化するディーゼルパティキュレートフィルター(DPF)が装着されている場合においては、「都市部を走行する小型ディーゼルエンジン車には既存の軽油よりも排出ガスが少ない軽油」を、「都市間を走行する大型ディーゼルエンジン車には既存の軽油と同等の排出ガスであるが、燃費の良い軽油」を以下の両条件を満たして製造することが課題となる。
1)分解系軽油基材を製造時のCO2排出量を最小にし、且つ経済性も加味してマイルドな条件で水素化精製して利用する。
2)上記のエネルギーセキュリティー、石油のノーブルユースや経済性の観点で、製油所で製造される既存の軽油基材留分を有効利用する(特定の留分や成分のみが利用され、残りの留分や成分の利用法が見出せない対応は避ける)。
Therefore, as a countermeasure against the above-mentioned traffic flow, it is assumed that diesel oil vehicles will be delivered and consumed in a situation where large diesel engine vehicles (for example, trucks for long-distance transportation) are restricted from entering the city. When a diesel particulate filter (DPF) that captures and purifies particulates is installed in a small diesel engine vehicle that travels in urban areas, the diesel fuel that emits less exhaust gas than existing diesel oil A large diesel engine vehicle that travels between them has an exhaust gas equivalent to that of existing diesel oil, but it is a challenge to produce a diesel fuel with good fuel efficiency that satisfies both of the following conditions.
1) Use hydrocracked cracked diesel oil bases under mild conditions, minimizing CO 2 emissions during production and taking economy into consideration.
2) From the viewpoints of energy security, oil noble use and economy, the existing gas oil base fraction produced at the refinery is used effectively (only specific fractions and components are used and the remaining fractions are used). Avoid responses where you cannot find out how to use minutes or ingredients).

このような状況下、本発明の目的は、上記の条件を満たしつつ、エンジンが要求する品質を確保でき、且つ製造時のCO2排出量が少なく、さらにはエネルギーセキュリティーに貢献する、大型ディーゼルエンジン車用の軽油組成物及びその製造方法を提供することにある。なお、本願に記載した大型ディーゼルエンジン車とは、専ら荷物や多数の乗客の搬送に利用される自動車で、自動車の用途による分類では、貨客兼用車、貨物自動車、乗り合い自動車に分類されるディーゼルエンジン駆動の自動車である。また、車体による分類では、バス、トラック、トレーラートラックに分類されるディーゼル車である(新編 自動車工学便覧、自動車技術会、1984年)。 Under such circumstances, an object of the present invention is to provide a large diesel engine that can ensure the quality required by the engine while satisfying the above-described conditions, has low CO 2 emission during production, and contributes to energy security. It is providing the light oil composition for vehicles, and its manufacturing method. The large diesel engine vehicle described in the present application is an automobile that is exclusively used for transporting luggage and a large number of passengers, and classified according to the use of the automobile as a diesel passenger car, a freight car, and a shared car. It is a driving car. In addition, diesel vehicles are classified as buses, trucks, and trailer trucks according to vehicle bodies (new edition Automotive Engineering Handbook, Automobile Engineering Association, 1984).

本発明者らは、上記目的を達成するために鋭意検討した結果、低品質な軽油基材、特には、セタン価が30以下で、全芳香族分が50容量%以上の軽油基材を、特定の蒸留性状を有し、主としてセタン価及び全芳香族分が特定範囲の値となるよう水素化精製して得た燃料を、重質な軽油に多く混合することで得られる軽油組成物が、DPFを装着した大型ディーゼルエンジン車用の燃料として好適であり、該軽油組成物を使用することで、石油のノーブルユースとエネルギーセキュリティーに貢献でき、また、該軽油組成物は、製造時のCO2排出量や経済性が考慮されており、排出ガスは既存軽油と同等であるものの、既存軽油よりも燃費に優れることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that a low-quality light oil base, particularly a light oil base having a cetane number of 30 or less and a total aromatic content of 50% by volume or more, A gas oil composition obtained by mixing a large amount of fuel obtained by hydrorefining with a heavy gas oil so that it has a specific distillation property and mainly has a cetane number and a total aromatic content within a specific range. It is suitable as a fuel for a large diesel engine vehicle equipped with a DPF, and by using the light oil composition, it can contribute to noble use of petroleum and energy security. 2 Emissions and economy are taken into consideration, and although the exhaust gas is equivalent to the existing light oil, it has been found that it has better fuel efficiency than the existing light oil, and the present invention has been completed.

即ち、本発明の軽油組成物は、軽油基材を水素分圧が3〜15MPa、温度が250〜420℃、液空間速度が0.3〜10.0hr -1 、水素/オイル比が100〜2,000L/Lの条件で水素化精製することにより得られる水添軽油に、軽油基材を250〜320℃で分留した重質留分である重質軽油を混合してなり、セタン価が45以上、全芳香族分が20〜40容量%、初留点が150〜250℃、終点が300〜370℃、硫黄分が50質量ppm以下、15℃における密度が0.840〜0.870g/cm3であることを特徴とする、ディーゼルパティキュレートフィルターを装着したディーゼルエンジン用の軽油組成物である。 That is, in the light oil composition of the present invention, the gas oil base material has a hydrogen partial pressure of 3 to 15 MPa, a temperature of 250 to 420 ° C., a liquid space velocity of 0.3 to 10.0 hr −1 , and a hydrogen / oil ratio of 100 to 100. A hydrogen gas oil obtained by hydrorefining under conditions of 2,000 L / L is mixed with a heavy gas oil that is a heavy fraction obtained by fractionating a gas oil base material at 250 to 320 ° C. Is 45 or more, the total aromatic content is 20-40% by volume, the initial boiling point is 150-250 ° C., the end point is 300-370 ° C., the sulfur content is 50 mass ppm or less, and the density at 15 ° C. is 0.840-0. It is a light oil composition for a diesel engine equipped with a diesel particulate filter, characterized by being 870 g / cm 3 .

また、本発明の軽油組成物の製造方法は、軽油基材を250〜320℃で分留した重質留分である、セタン価が60〜80、全芳香族分が15〜30容量%、初留点が260〜300℃、終点が320〜400℃、15℃における密度が0.830〜0.900g/cm3である重質軽油を20〜80容量%、軽油基材を水素分圧が3〜15MPa、温度が250〜420℃、液空間速度が0.3〜10.0hr -1 、水素/オイル比が100〜2,000L/Lの条件で水素化精製することにより得られる、セタン価が36以下、全芳香族分が36〜60容量%、初留点が110〜200℃、終点が300〜400℃、15℃における密度が0.840〜0.990g/cm3である水添軽油を20〜80容量%配合することを特徴とする。 Moreover, the manufacturing method of the light oil composition of this invention is the heavy fraction which fractionated the light oil base material at 250-320 degreeC, the cetane number is 60-80, the total aromatic content is 15-30 volume%, Heavy gas oil having an initial boiling point of 260 to 300 ° C., an end point of 320 to 400 ° C., and a density at 15 ° C. of 0.830 to 0.900 g / cm 3 is 20 to 80% by volume, and the gas oil base material is a hydrogen partial pressure. Is obtained by hydrorefining under conditions of 3 to 15 MPa, temperature of 250 to 420 ° C., liquid space velocity of 0.3 to 10.0 hr −1 , and hydrogen / oil ratio of 100 to 2,000 L / L. The cetane number is 36 or less, the total aromatic content is 36 to 60% by volume, the initial boiling point is 110 to 200 ° C., the end point is 300 to 400 ° C., and the density at 15 ° C. is 0.840 to 0.990 g / cm 3 . 20 to 80% by volume of hydrogenated light oil is blended.

本発明の軽油組成物によれば、石油系の接触分解軽油基材(LCO)やオイルサンド由来の軽油基材等の低品質な軽油基材、さらには石油系の重質な軽油基材を有効利用できる効果を奏することで石油のノーブルユースとエネルギーセキュリティーに貢献し、且つ、製造時のCO2排出量並びに製造コスト、及びNOx等の排出ガスの量を増加させることなく、燃費に優れるという格別な効果を奏する。 According to the light oil composition of the present invention, a low-quality light oil base material such as a petroleum-based catalytic cracking light oil base material (LCO) or an oil sand-derived light oil base material, and further a heavy petroleum-based light oil base material It contributes to the noble use and energy security of oil by having the effect that it can be used effectively, and it is excellent in fuel efficiency without increasing the amount of CO 2 emission and production cost at the time of production and the amount of exhaust gas such as NOx. Has a special effect.

以下に、本発明の詳細を説明する。本発明の軽油組成物は、例えば、石油系の接触分解軽油基材(LCO)やオイルサンド由来の軽油基材等の低品質な軽油基材のような低質油を原料とし、該原料をマイルドな運転条件で水素化精製して得た基材を、重質な軽油に多く混合した軽油組成物であって、品質が以下の性状を有する燃料であり、DPFを装着したディーゼルエンジン用の燃料として用いられることを特徴とする。   Details of the present invention will be described below. The light oil composition of the present invention uses, as a raw material, a low-quality oil such as a low-quality light oil base material such as a petroleum-based catalytic cracking light oil base material (LCO) or a light oil base material derived from oil sand. Is a light oil composition in which a base material obtained by hydrorefining under various operating conditions is mixed with heavy light oil, and has the following properties, and is a fuel for a diesel engine equipped with a DPF It is used as.

<密度>
本発明の軽油組成物は、15℃での密度が0.840〜0.870g/cm3である。軽油組成物の密度が0.870g/cm3を超えると、燃料の霧化特性の悪化などから、エンジン出口の粒子状物質(PM)の排出量が顕著に増加して、DPF通過後のPMも増大するので環境負荷を十分に低減できない。また、密度が高過ぎると、燃焼効率の低下を引き起こす場合があるため、本発明の軽油組成物は、密度が0.870g/cm3以下、好ましくは0.865g/cm3以下、更に好ましくは0.860g/cm3以下である。一方、密度が0.840g/cm3未満では、容量基準の燃料消費率の向上効果が小さくなるので、本発明の軽油組成物は、密度が0.840g/cm3以上、好ましくは0.845g/cm3以上、更に好ましくは0.850g/cm3以上である。
<Density>
The light oil composition of the present invention has a density at 0.8 ° C. of 0.840 to 0.870 g / cm 3 . When the density of the light oil composition exceeds 0.870 g / cm 3 , the amount of particulate matter (PM) discharged from the engine outlet significantly increases due to deterioration of the atomization characteristics of the fuel, and the PM after passing through the DPF. Therefore, the environmental load cannot be reduced sufficiently. Further, if the density is too high, since that may cause a reduction in combustion efficiency, the gas oil composition of the present invention has a density of 0.870 g / cm 3 or less, preferably 0.865 g / cm 3 or less, more preferably 0.860 g / cm 3 or less. On the other hand, when the density is less than 0.840 g / cm 3 , the effect of improving the fuel consumption rate based on the capacity is reduced, so the light oil composition of the present invention has a density of 0.840 g / cm 3 or more, preferably 0.845 g. / Cm 3 or more, more preferably 0.850 g / cm 3 or more.

<硫黄分>
本発明の軽油組成物は、硫黄分が50質量ppm以下であり、好ましくは15質量ppm以下、更に好ましくは10質量ppm以下である。本発明の軽油組成物は、硫黄分が50質量ppm以下であるため、燃焼生成物である硫黄酸化物が少なく、環境負荷の低減に寄与できる。また、硫黄分は、PMを酸化・除去するDPF触媒を被毒するので、硫黄分の低減は、PMの浄化率を維持するために極めて重要である。更に、NOx吸蔵還元触媒を装着した車輌においては、該触媒の硫黄被毒の再生に燃料を使用するので、硫黄分の低減は、燃費の向上にも寄与する。そして、これらの効果は、硫黄分が低い程顕著であるため、本発明の軽油組成物中の硫黄分は50質量ppm以下であり、好ましくは15質量ppm以下、更に好ましくは10質量ppm以下である。
<Sulfur content>
The light oil composition of the present invention has a sulfur content of 50 mass ppm or less, preferably 15 mass ppm or less, more preferably 10 mass ppm or less. Since the light oil composition of the present invention has a sulfur content of 50 ppm by mass or less, there are few sulfur oxides as combustion products, which can contribute to a reduction in environmental burden. Moreover, since sulfur content poisons the DPF catalyst which oxidizes and removes PM, reduction of sulfur content is very important in order to maintain the purification rate of PM. Furthermore, in a vehicle equipped with a NOx occlusion reduction catalyst, fuel is used for regeneration of sulfur poisoning of the catalyst. Therefore, reduction of the sulfur content also contributes to improvement of fuel consumption. And since these effects are so remarkable that a sulfur content is low, the sulfur content in the light oil composition of this invention is 50 mass ppm or less, Preferably it is 15 mass ppm or less, More preferably, it is 10 mass ppm or less. is there.

<蒸留性状>
本発明の軽油組成物は、初留点(IBP)が150〜250℃であり、好ましくは170〜250℃、更に好ましくは180〜250℃である。軽油組成物の初留点が150℃を下回ると、高温条件下では燃料の噴射系に燃料蒸気が発生し、必要な燃料噴射量を確保できなくなることが懸念される。また、初留点が低過ぎると、燃料の取り扱いや燃料の供給システムでの燃料の気化に伴う危険性が増すことからも、初留点は150℃以上であることが必要であり、好ましくは170℃以上、更に好ましくは180℃以上である。また、初留点が250℃を超えると、本発明の軽油組成物に利用できる軽油基材の量(得率)が少なくなりすぎるので、経済性や必要な軽油基材量の確保の観点から、本発明の軽油組成物は、初留点が250℃以下である。また、初留点が高過ぎると、軽油組成物の低温流動性の悪化や、粘度の増大を招くことからも、本発明の軽油組成物は、初留点が250℃以下であることを要する。
<Distillation properties>
The light oil composition of the present invention has an initial boiling point (IBP) of 150 to 250 ° C, preferably 170 to 250 ° C, more preferably 180 to 250 ° C. When the initial boiling point of the light oil composition is lower than 150 ° C., there is a concern that fuel vapor is generated in the fuel injection system under a high temperature condition, and a necessary fuel injection amount cannot be secured. In addition, if the initial boiling point is too low, the initial boiling point needs to be 150 ° C. or higher because the risk associated with fuel handling and fuel vaporization in the fuel supply system increases. It is 170 degreeC or more, More preferably, it is 180 degreeC or more. In addition, when the initial boiling point exceeds 250 ° C., the amount (yield) of the light oil base material that can be used in the light oil composition of the present invention is too small. From the viewpoint of economic efficiency and securing the necessary light oil base material amount. The gas oil composition of the present invention has an initial boiling point of 250 ° C. or lower. In addition, if the initial boiling point is too high, the low temperature fluidity of the light oil composition is deteriorated and the viscosity is increased, so that the light oil composition of the present invention requires the initial boiling point to be 250 ° C. or lower. .

また、本発明の軽油組成物は、終点(EP)が300〜370℃であり、好ましくは330〜365℃、更に好ましくは340〜360℃である。軽油組成物の終点が370℃を超えると、粒子状物質(PM)の排出量増加が顕著になり、DPF通過後のPMも増大するので環境負荷を十分に低減できない。また、終点が高過ぎると、未燃の燃料の一部がオイルパンへと流れ込み、エンジンオイルの希釈を引き起こし易くなるので、本発明の軽油組成物の終点は370℃以下であることが必要であり、好ましくは365℃以下、更に好ましくは360℃以下である。また、本発明の軽油組成物は、燃料噴射ポンプの潤滑性の維持や燃料噴射ノズルの摩耗防止の観点から、終点が300℃以上であることを要し、好ましくは330℃以上、更に好ましくは340℃以上である。   The light oil composition of the present invention has an end point (EP) of 300 to 370 ° C, preferably 330 to 365 ° C, more preferably 340 to 360 ° C. When the end point of the light oil composition exceeds 370 ° C., the emission amount of particulate matter (PM) increases remarkably, and the PM after passing through the DPF also increases, so the environmental load cannot be reduced sufficiently. In addition, if the end point is too high, a part of unburned fuel flows into the oil pan and easily causes dilution of the engine oil. Therefore, the end point of the light oil composition of the present invention needs to be 370 ° C. or lower. Yes, preferably 365 ° C. or lower, more preferably 360 ° C. or lower. In addition, the light oil composition of the present invention requires an end point of 300 ° C. or higher, preferably 330 ° C. or higher, more preferably, from the viewpoint of maintaining lubricity of the fuel injection pump and preventing wear of the fuel injection nozzle. 340 ° C. or higher.

<セタン価>
本発明の軽油組成物は、セタン価が45以上、好ましくは48以上、更に好ましくは50以上である。セタン価が45未満では、特に低温始動条件下において、着火性の悪化によって着火遅れが長くなり、排出ガスの悪化が顕著になる。さらに、セタン価の低下は燃焼変動の増大を引き起こし、エンジン性能の悪化を起こすので、本発明の軽油組成物は、セタン価が45以上、好ましくは48以上、更に好ましくは50以上である。一方、セタン価がある値以上になると、セタン価の向上に伴う着火遅れの短縮が得られないので、必要以上に高くすることは、エンジン性能上からは無意味である。また、セタン価を高めると、製造時のCO2排出量が増加するばかりでなく、燃料の製造価格が高くなるので、経済性の観点からも、エンジンが要求する最低のセタン価に設定する必要があり、特に限定されるものではないが、セタン価を60以下とすることが好ましく、57以下とすることが更に好ましい。
<Cetane number>
The light oil composition of the present invention has a cetane number of 45 or more, preferably 48 or more, more preferably 50 or more. When the cetane number is less than 45, the ignition delay becomes longer due to the deterioration of the ignitability, particularly under the low temperature starting condition, and the deterioration of the exhaust gas becomes remarkable. Furthermore, since a decrease in cetane number causes an increase in combustion fluctuations and deterioration of engine performance, the light oil composition of the present invention has a cetane number of 45 or more, preferably 48 or more, more preferably 50 or more. On the other hand, if the cetane number exceeds a certain value, the ignition delay accompanying the improvement of the cetane number cannot be shortened. Therefore, it is meaningless from the standpoint of engine performance to increase it higher than necessary. In addition, increasing the cetane number not only increases CO 2 emissions during production, but also increases the production price of fuel, so it is necessary to set the minimum cetane number required by the engine from the viewpoint of economy. Although there is no particular limitation, the cetane number is preferably 60 or less, and more preferably 57 or less.

<芳香族>
本発明の軽油組成物は、全芳香族分が40容量%以下であり、好ましくは35容量%以下、更に好ましくは30容量%以下である。軽油組成物中の芳香族の含有量が増大し過ぎると、DPF通過後でも粒子状物質(PM)の排出量が増加して、環境負荷を十分に低減できないからである。また、本発明の軽油組成物は、全芳香族分が20容量%以上であり、好ましくは25容量%以上、更に好ましくは28容量%以上である。軽油組成物中の芳香族の含有量が多いほど、製造時のCO2排出量並びに製造コストを抑えることができ、且つマイルドに水素化精製した低質油をより多く混合できるので、石油のノーブルユースとエネルギーセキュリティーに貢献するからである。さらには、軽油組成物中の芳香族の含有量が少な過ぎると、自動車の燃料系ゴム材が設計上見込まれる程には膨張しないので、燃料の滲みや漏れを引き起こす原因となる。また、特に限定されるものではないが、2環以上の芳香族が1環芳香族よりもPM排出量の増加への影響が大きいので、本発明の軽油組成物中の2環以上芳香族含有量は、好ましくは15容量%以下、より好ましくは10容量%以下、更に好ましくは7容量%以下であるなお、石油系軽油では、芳香族含有量と密度には大凡の相関性があり、密度と芳香族含有量の両者が高い燃料では排出ガス(特に、PM)の悪化が顕著であるため、高密度燃料では、全芳香族分は35.0容量%以下が望ましい。
<Aromatic>
The light oil composition of the present invention has a total aromatic content of 40% by volume or less, preferably 35% by volume or less, more preferably 30% by volume or less. This is because if the aromatic content in the light oil composition increases too much, the amount of particulate matter (PM) discharged increases even after passing through the DPF, and the environmental load cannot be sufficiently reduced. Further, the light oil composition of the present invention has a total aromatic content of 20% by volume or more, preferably 25% by volume or more, and more preferably 28% by volume or more. The higher the aromatic content in the gas oil composition, the lower the CO 2 emissions during production and the production cost, and the more low quality oil that has been mildly hydrorefined can be mixed. It contributes to energy security. Furthermore, if the aromatic content in the light oil composition is too small, the fuel system rubber material of the automobile does not expand as expected in design, which causes fuel bleeding and leakage. In addition, although not particularly limited, since aromatics having two or more rings have a greater influence on the increase in PM emissions than those having one ring, the aromatics containing two or more rings in the gas oil composition of the present invention are included. The amount is preferably 15% by volume or less, more preferably 10% by volume or less, and still more preferably 7% by volume or less . In petroleum-based light oil, there is a general correlation between the aromatic content and density, and in fuels with both high density and aromatic content, exhaust gas (especially PM) is significantly deteriorated. In the density fuel, the total aromatic content is desirably 35.0% by volume or less.

(軽油組成物の調製)
上記の交通流対策では、軽油が「都市間走行用(大型ディーゼルエンジン車用)軽油(トラック用軽油)」と「都市内走行用(小型ディーゼルエンジン車用)軽油(乗用車用軽油)」に分けられる。前者、すなわち本発明の軽油組成物には、マイルドな条件で水素化精製された(製造時のCO2排出量が少ない)分解系軽油基材を混合することができる。また、本発明の軽油組成物は、輸送業者などが保有する大型の燃料給油所に供給して利用され、後者の軽油は一般の給油所(SS)に供給して利用されることとなるが、実態としては大型ディーゼルエンジン車でもSSを利用する場合があると想定される。また、上述と逆の場合(即ち、小型ディーゼルエンジン車が大型給油所を利用する場合)は、殆どないと予想されるが、消費者の利便性を損なわないように、ディーゼルエンジン車の種別によらずに利用しても、両軽油の品質はエンジン性能に悪影響を及ぼさない規格とすることが好ましい。具体的には、以下の製造条件を全て満たすことで、本発明の効果が得られる。
1)市販型軽油の全留分、すなわち初留点約140℃から終点370℃までの範囲の留分を全てディーゼルエンジン車用燃料の軽油として利用する。
2)マイルドな条件で水素化精製した分解系軽油基材を20容量%以上混合する。
(Preparation of light oil composition)
In the above traffic flow countermeasures, light oil is divided into "intercity driving (for large diesel engine vehicles) light oil (truck diesel oil)" and "city driving (for small diesel engine vehicles) light oil (passenger vehicle diesel oil)". It is done. The former, that is, the light oil composition of the present invention, can be mixed with a cracked light oil base that has been hydrorefined under mild conditions (low CO 2 emission during production). In addition, the light oil composition of the present invention is used by being supplied to a large fuel gas station owned by a transportation company or the like, and the latter light oil is supplied to a general gas station (SS) for use. As a matter of fact, it is assumed that SS may be used even in large diesel engine vehicles. In the opposite case (ie, when a small diesel engine vehicle uses a large gas station), it is expected that there will be little, but in order not to impair consumer convenience, It is preferable that the quality of both diesel oils should be set so as not to adversely affect the engine performance even if they are used regardless. Specifically, the effects of the present invention can be obtained by satisfying all the following manufacturing conditions.
1) All fractions of commercial diesel oil, that is, fractions ranging from an initial boiling point of about 140 ° C. to an end point of 370 ° C., are all used as diesel fuel for diesel engine vehicles.
2) Mix 20% by volume or more of cracked gas oil base hydrorefined under mild conditions.

上記の条件を全て満たし、上記の性状を満たす本発明の軽油組成物を生産するためには、製油所で生産される脱硫軽油基材を250〜320℃、特には280〜300℃で分留し、軽質留分は乗用車用軽油に、重質留分にはマイルドな条件で水素化精製した接触分解軽油基材(LCO)を混合して本発明の軽油組成物とすることで対応できる。すなわち、乗用車用軽油は軽質化で対応し、一方、大型ディーゼルエンジン車用の軽油、すなわち、本発明の軽油組成物は重質化に伴うセタン価の向上効果を低セタン価であるマイルドな条件で水素化精製したLCOの有効利用に活用し、且つ高密度である両者(重質油、水添LCO)の混合で、本発明の軽油組成物を製造できる。   In order to produce the light oil composition of the present invention satisfying all the above conditions and satisfying the above properties, the desulfurized light oil base material produced at the refinery is fractionated at 250 to 320 ° C, particularly 280 to 300 ° C. However, it is possible to cope with the light oil composition of the present invention by mixing the light fraction with passenger car light oil and mixing the heavy fraction with a catalytically cracked light oil base material (LCO) hydrorefined under mild conditions. That is, light oil for passenger cars can be handled by lightening, while light oil for heavy-duty diesel engine vehicles, that is, the light oil composition of the present invention has a mild condition in which the effect of improving the cetane number accompanying heaviness is low cetane number. The gas oil composition of the present invention can be produced by mixing the two (heavy oil, hydrogenated LCO) that are utilized for effective utilization of the hydrorefined LCO and having a high density.

一方、軽油基材を250〜320℃、特には280〜300℃で分留した軽質油は、排出ガスが少ない環境対応型軽油として、乗用車に利用できるので、軽油基材留分を全てディーゼルエンジン車に利用でき、トータルの軽油生産量を削減することとはならないので、LCOの有効利用が図られる分、エネルギーセキュリティーに寄与することとなる。   On the other hand, light oils obtained by fractionating light oil bases at 250 to 320 ° C, particularly 280 to 300 ° C, can be used in passenger cars as environment-friendly light oils with less exhaust gas. Since it can be used for cars and does not reduce the total amount of light oil produced, it contributes to energy security as much as LCO can be used effectively.

なお、軽油の軽質化が排出ガスの削減に効果があることは広く知られており、北欧の一部の国では、都市型軽油として市販された実績がある。しかしながら、環境対応型軽油として提案されている軽質軽油は、種々散見されるが、残りの重質留分の活用法は提案されていない。従って、軽油の需要に変化がなければ、軽質留分の利用割合が増加するほど、残りの一般軽油が重質化することを意味しており、ディーゼルエンジン車の種別(小型、大型車)によらず、一般軽油を利用する状況下では、軽質軽油のみの導入(重質油の有効活用がない対応)は、トータルでは大気環境の改善に寄与しないこととなる。   In addition, it is widely known that lighter gas oil is effective in reducing exhaust gas, and in some Nordic countries, it has been marketed as urban light oil. However, there are various light diesel oils proposed as environmentally friendly diesel oils, but no method for utilizing the remaining heavy fractions has been proposed. Therefore, if there is no change in the demand for light oil, it means that the remaining general light oil becomes heavier as the utilization ratio of light fractions increases. For diesel engine vehicles (small and large vehicles) Regardless, under the circumstances where general light oil is used, the introduction of only light light oil (response to the lack of effective use of heavy oil) will not contribute to the improvement of the air environment as a whole.

本発明の軽油組成物は、上記の性状を満たすように、分解系軽油基材(LCO)やオイルサンド由来の軽油基材等の低品質な軽油基材、特には、セタン価が30以下で、全芳香族分が50容量%以上の軽油基材(低質油)を原料に用い、該軽油基材(低質油)をマイルドな条件で水素化精製することにより得られる水添軽油(以下、水添軽油という)に、水素化脱硫した軽油基材を250〜320℃、特には280〜300℃で分留した重質留分(以下、重質軽油という)を混合して調製することができる。水添軽油に関しては、特定の芳香族濃度を有する軽油、例えば分解系軽油留分(例えば、初留点120℃から終点400℃までの温度範囲の留分)を特定の条件で水素化精製することにより、適切なセタン価を有し、しかも残留硫黄分の低い軽油留分を得ることができる。さらに、反応塔を2基に分けて、その中間に既知の硫化水素除去装置を設けて水素化脱硫工程で生じた硫化水素を除去することも有効である。また、本発明の軽油組成物は、高圧流通式反応器に固定床式触媒を形成した通常の反応装置を使用し、かつ比較的マイルドな反応条件で軽油留分を処理して調製することもできる。よって、本発明によれば、例えば余剰の分解系軽油をディーゼル燃料等の軽油留分へ経済的に転化することができる。   The light oil composition of the present invention has a low quality light oil base material such as a cracked light oil base material (LCO) or a light oil base material derived from oil sand, in particular, a cetane number of 30 or less so as to satisfy the above properties. , Hydrogenated gas oil obtained by hydrorefining the light oil base material (low quality oil) under mild conditions using a light oil base material (low quality oil) having a total aromatic content of 50% by volume or more as a raw material. A hydrogenated gas oil) and a heavy fraction obtained by fractionating a hydrodesulfurized gas oil base material at 250 to 320 ° C., particularly 280 to 300 ° C. (hereinafter referred to as heavy gas oil). it can. With regard to hydrogenated gas oil, hydrorefining is performed on gas oil having a specific aromatic concentration, for example, a cracked gas oil fraction (for example, a fraction in a temperature range from an initial boiling point of 120 ° C. to an end point of 400 ° C.) under specific conditions. Thus, a gas oil fraction having an appropriate cetane number and low residual sulfur content can be obtained. Furthermore, it is also effective to divide the reaction tower into two groups and provide a known hydrogen sulfide removing device in the middle to remove hydrogen sulfide generated in the hydrodesulfurization step. Further, the light oil composition of the present invention may be prepared by using a normal reaction apparatus in which a fixed bed type catalyst is formed in a high-pressure flow reactor and treating the light oil fraction under relatively mild reaction conditions. it can. Therefore, according to the present invention, for example, surplus cracking gas oil can be economically converted to a gas oil fraction such as diesel fuel.

(重質軽油)
上記重質軽油の性状は、セタン価が60〜80、特には65〜75、全芳香族分が15〜30容量%、特には16〜20容量%、初留点が260〜300℃、特には280〜300℃、終点が320〜400℃、特には350〜380℃、15℃における密度が0.830〜0.900g/cm3、特には0.830〜0.850g/cm3である。本発明の軽油組成物は、上記した軽油組成物の性状を満たすように、該重質軽油を基材として軽油組成物全量基準で20〜80容量%含むことが好ましい。該重質軽油の混合割合は、更に好ましくは30〜70容量%であり、より好ましくは45〜65容量%である。軽油基材の有効利用の観点で20容量%以上が好ましく、物理性状や化学性状を所望の範囲にしやすいので80容量%以下が好ましい。
(Heavy diesel oil)
The heavy gas oil has a cetane number of 60 to 80, particularly 65 to 75, a total aromatic content of 15 to 30% by volume, particularly 16 to 20% by volume, and an initial boiling point of 260 to 300 ° C. Has an end point of 320 to 400 ° C., particularly 350 to 380 ° C., and a density at 15 ° C. of 0.830 to 0.900 g / cm 3 , particularly 0.830 to 0.850 g / cm 3 . . The light oil composition of the present invention preferably contains 20 to 80% by volume based on the total amount of the light oil composition based on the heavy light oil so as to satisfy the properties of the light oil composition described above. The mixing ratio of the heavy gas oil is more preferably 30 to 70% by volume, and more preferably 45 to 65% by volume. From the viewpoint of effective utilization of the light oil base material, 20% by volume or more is preferable, and 80% by volume or less is preferable because the physical properties and chemical properties are easily in a desired range.

上記の低質油のマイルドな水素化精製に使用する水素化精製触媒は、特に限定されるものではないが、以下に例示する担体に金属を担持した触媒が好ましい。担体としては種々のものが使用できるが、例えば、シリカ、アルミナ、ボリア、マグネシア、チタニア、ゼオライトなどの無機酸化物が挙げられる。これらの無機酸化物は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。さらに、上記担体に6族金属、8族金属から選ばれる少なくとも1種の金属を担持した触媒が好ましい。水素化精製条件は、水素分圧が3〜15MPa、温度が250〜420℃、液空間速度が0.3〜10.0hr-1、水素/オイル比が100〜2,000L/Lの範囲で適宜選択すればよい。 The hydrorefining catalyst used for the mild hydrorefining of the above-mentioned low quality oil is not particularly limited, but a catalyst in which a metal is supported on the carrier exemplified below is preferable. Various carriers can be used, and examples thereof include inorganic oxides such as silica, alumina, boria, magnesia, titania and zeolite. These inorganic oxides may be used alone or in combination of two or more. Furthermore, a catalyst in which at least one metal selected from Group 6 metals and Group 8 metals is supported on the carrier is preferable. The hydrorefining conditions are such that the hydrogen partial pressure is 3 to 15 MPa, the temperature is 250 to 420 ° C., the liquid space velocity is 0.3 to 10.0 hr −1 , and the hydrogen / oil ratio is 100 to 2,000 L / L. What is necessary is just to select suitably.

(水添軽油)
上記の水素化精製条件で低質油をマイルドに水素化精製して得た水添軽油の性状は、セタン価が36以下、特には30以下、全芳香族分が36〜60容量%、特には45〜50容量%、初留点が110〜200℃、特には140〜180℃、終点が300〜400℃、特には330〜380℃、15℃における密度が0.840〜0.990g/cm3、特には0.860〜0.900g/cm3である。本発明の軽油組成物は、上記した軽油組成物の性状を満たすように、該水添軽油を基材として軽油組成物全量基準で20〜80容量%含むことが好ましい。なお、該水添軽油の混合割合は、更に好ましくは30〜70容量%であり、より好ましくは35〜55容量%である。該水添軽油の配合量が20容量%未満では、低品質な軽油基材を十分に利用できなくなり、一方、80容量%を超えると、排出ガス性状(特に、PM)の悪化が顕著であるため、好ましくは80容量%以下である。
(Hydrogenated gas oil)
The properties of hydrogenated gas oil obtained by mild hydrorefining of low quality oil under the above hydrorefining conditions are as follows: cetane number of 36 or less, particularly 30 or less, total aromatic content of 36 to 60% by volume, 45 to 50% by volume, initial boiling point is 110 to 200 ° C, particularly 140 to 180 ° C, end point is 300 to 400 ° C, particularly 330 to 380 ° C, density at 15 ° C is 0.840 to 0.990 g / cm 3 , in particular 0.860-0.900 g / cm 3 . The gas oil composition of the present invention preferably contains 20 to 80% by volume of the hydrogenated gas oil as a base material based on the total amount of the gas oil composition so as to satisfy the properties of the gas oil composition described above. The mixing ratio of the hydrogenated gas oil is more preferably 30 to 70% by volume, and more preferably 35 to 55% by volume. If the blended amount of the hydrogenated gas oil is less than 20% by volume, a low-quality gas oil base material cannot be used sufficiently. On the other hand, if it exceeds 80% by volume, the exhaust gas properties (particularly PM) are significantly deteriorated. Therefore, it is preferably 80% by volume or less.

<添加剤>
(セタン価向上剤)
本発明の軽油組成物には、必要に応じてセタン価向上剤を添加しても良く、上記セタン価向上剤としては、アルキルナイトレート系セタン価向上剤や、有機過酸化物系セタン価向上剤が挙げられる。ここで、上記アルキルナイトレート系セタン価向上剤としては、炭素数6〜12のアルキルナイトレートが好ましく、2−メチルヘキシルナイトレートが特に好ましい。また、上記有機過酸化物系セタン価向上剤としては、炭素数6〜12のジアルキルパーオキサイドが好ましく、ジ−t−ブチルパーオキサイドが特に好ましい。そして、これらセタン価向上剤の添加量は、0.5質量%以下が好ましく、0.1質量%以下が更に好ましい。セタン価向上剤の添加量を増すとセタン価は高くなるが、その増加の割合は、添加量が0.5質量%を超えると極めて小さくなるので、セタン価向上剤添加の費用対効果の観点から添加量は0.5質量%以下とすることが好ましい。
<Additives>
(Cetane improver)
A cetane number improver may be added to the light oil composition of the present invention as necessary. Examples of the cetane number improver include alkyl nitrate cetane number improvers and organic peroxide cetane number improvers. Agents. Here, as said alkyl nitrate type | system | group cetane number improver, a C6-C12 alkyl nitrate is preferable and 2-methylhexyl nitrate is especially preferable. Moreover, as said organic peroxide type | system | group cetane number improver, a C6-C12 dialkyl peroxide is preferable and di-t-butyl peroxide is especially preferable. And the addition amount of these cetane improvers is preferably 0.5% by mass or less, and more preferably 0.1% by mass or less. Increasing the amount of cetane number improver increases the cetane number, but the rate of increase becomes extremely small when the amount added exceeds 0.5% by mass. Therefore, the addition amount is preferably 0.5% by mass or less.

(その他の添加剤)
また、本発明の軽油組成物には、任意に、軽油組成物の安定性を確保するための酸化防止剤、軽油組成物の低温流動性を確保するための低温流動性向上剤、軽油組成物の潤滑性を確保するための潤滑性向上剤、エンジンの清浄性を確保するための清浄剤等を適宜添加することができる。
(Other additives)
Further, the light oil composition of the present invention optionally includes an antioxidant for ensuring the stability of the light oil composition, a low temperature fluidity improver for ensuring the low temperature fluidity of the light oil composition, and a light oil composition. It is possible to appropriately add a lubricity improver for ensuring the lubricity and a detergent for ensuring the cleanliness of the engine.

ここで、上記酸化防止剤としては、2,6−ジ−t−ブチルフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、2,4−ジメチル−6−t−ブチルフェノール、2,4,6−トリ−t−ブチルフェノール、2−t−ブチル−4,6−ジメチルフェノール、2−t−ブチルフェノール等のフェノール系酸化防止剤や、N,N'−ジイソプロピル−p−フェニレンジアミン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン等のアミン系酸化防止剤、およびこれらの混合物が挙げられる。ここで、これら酸化防止剤の添加量は、0.001〜0.10質量%の範囲が好ましい。酸化防止剤の添加効果は大きいので、実用的には0.10質量%の添加で十分な効果が得られるからである。   Here, as the antioxidant, 2,6-di-t-butylphenol, 2,6-di-t-butyl-4-methylphenol, 2,4-dimethyl-6-t-butylphenol, 2,4 , 6-tri-t-butylphenol, 2-t-butyl-4,6-dimethylphenol, 2-t-butylphenol, and other phenolic antioxidants, N, N′-diisopropyl-p-phenylenediamine, N, Examples thereof include amine antioxidants such as N′-di-sec-butyl-p-phenylenediamine, and mixtures thereof. Here, the addition amount of these antioxidants is preferably in the range of 0.001 to 0.10% by mass. This is because the effect of addition of the antioxidant is great, so that practically sufficient effect can be obtained by adding 0.10% by mass.

上記低温流動性向上剤としては、公知のエチレン共重合体等が挙げられ、特に、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等の飽和脂肪酸のビニルエステルが好ましい。これら低温流動性向上剤の添加量は、特に限定されず、目的に応じて適宜選択することができる。   Examples of the low temperature fluidity improver include known ethylene copolymers, and vinyl esters of saturated fatty acids such as vinyl acetate, vinyl propionate and vinyl butyrate are particularly preferable. The addition amount of these low-temperature fluidity improvers is not particularly limited, and can be appropriately selected according to the purpose.

上記潤滑性向上剤としては、長鎖(例えば、炭素数12〜24)の脂肪酸またはその脂肪酸エステルが挙げられる。そして、軽油組成物に対し該潤滑性向上剤を10〜500質量ppm、好ましくは50〜100質量ppm添加することにより、軽油組成物の潤滑性を向上して燃料噴射器の摩耗を抑制することができる。   Examples of the lubricity improver include long-chain (for example, having 12 to 24 carbon atoms) fatty acids or fatty acid esters thereof. And by adding 10 to 500 mass ppm, preferably 50 to 100 mass ppm of the lubricity improver to the light oil composition, the lubricity of the light oil composition is improved and the wear of the fuel injector is suppressed. Can do.

上記清浄剤としては、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミン等が挙げられる。これら清浄剤の添加量は、特に限定されず、目的に応じて適宜選択することができる。   Examples of the detergent include succinimide, polyalkylamine, and polyetheramine. The addition amount of these detergents is not particularly limited, and can be appropriately selected according to the purpose.

<DPF付きディーゼルエンジン>
上述した本発明の軽油組成物は、ディーゼルパティキュレートフィルター(DPF)が装着されたディーゼルエンジンに用いられる。該ディーゼルパティキュレートフィルター(DPF)は、エンジンから排出される微粒子(PM)を捕集し、一定の走行距離(例えば、150km程度)に達したら(DPFへのPM捕集量が一定値に達したと推定される距離)、DPFの温度を高めてPMを燃焼させ、PMを浄化する装置であり、PMの浄化率は80%以上に達する。したがって、極端な低質燃料を用いないならば、PMは十分に削減され、燃料性状のPMへの影響は極めて小さくなるので、DPF触媒に悪影響を及ぼす硫黄分を除けば、燃料性状への要求は小さくなる。すなわち、より広範囲な性状を有する燃料を利用できることとなる。また、DPFを装着したディーゼルエンジンであれば、低質な燃料を使用しても、DPF通過後のPMは殆ど、または、全く増大しないため、低質な燃料の使用が可能となる。そして、低質な燃料は、製油所における水素化精製条件がマイルドであるため、製造時のCO2排出量(WtT−CO2)が少なく、製造時のCO2排出量とエンジンからのCO2排出量の合計で見た場合、従来の軽油よりも、WtW−CO2(合計でのCO2排出量)を低減できる。
<Diesel engine with DPF>
The light oil composition of the present invention described above is used for a diesel engine equipped with a diesel particulate filter (DPF). The diesel particulate filter (DPF) collects particulates (PM) discharged from the engine and reaches a certain distance (for example, about 150 km) (the amount of PM trapped in the DPF reaches a certain value). This is an apparatus for purifying PM by increasing the temperature of the DPF by increasing the temperature of the DPF, and the PM purification rate reaches 80% or more. Therefore, if extremely low quality fuel is not used, PM is sufficiently reduced and the influence of PM on fuel properties is extremely small. Therefore, if the sulfur content that adversely affects the DPF catalyst is excluded, the demand for fuel properties is Get smaller. That is, a fuel having a wider range of properties can be used. Further, in the case of a diesel engine equipped with a DPF, even if a low-quality fuel is used, the PM after passing through the DPF hardly increases or does not increase at all, so that a low-quality fuel can be used. Then, low-quality fuel, since hydrotreating conditions in refineries is mild, CO 2 emissions during production (WtT-CO2) less, CO 2 emissions during production and CO 2 emissions from the engine when viewed in total, than the conventional light oil, it can be reduced WtW-CO2 (CO 2 emissions in total).

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<軽油組成物の調製>
まず以下のようにして、評価試験のために用いる軽油組成物(燃料−1〜燃料−11)を調製した。これら燃料−1〜燃料−11の組成等の分析値を表1に示す。
<Preparation of light oil composition>
First, light oil compositions (fuel-1 to fuel-11) used for the evaluation test were prepared as follows. Table 1 shows the analysis values of these fuel-1 to fuel-11.

・燃料−1:市販JIS 2号軽油
・燃料−2:石油系直留軽油基材を280℃で分留した重質留分
・燃料−3:LCOをマイルドな条件で水素化精製した燃料 [LCOを原料として、Ni、Mo系触媒の存在下で、反応温度360℃、水素分圧11MPa、水素/オイル比1002、通油量1.0h-1で水素化精製した製品の初留点156.0℃〜終点349.5℃留出分]
・燃料−4:LCOをシビアな条件で水素化精製した燃料 [LCOを原料として、Ni、Mo系触媒の存在下で、反応温度360℃、水素分圧14MPa、水素/オイル比997、通油量0.5h-1で水素化精製した製品の初留点138.0℃〜終点341.5℃留出分]
・燃料−5:LCOをマイルドな条件で水素化精製した燃料 [LCOを原料として、Ni、Mo系触媒の存在下で、反応温度380℃、水素分圧8MPa、水素/オイル比996、通油量0.5h-1で水素化精製した製品の初留点110.5℃〜終点350.0℃留出分]
・ Fuel-1: Commercial JIS No. 2 diesel oil ・ Fuel-2: Heavy fraction obtained by fractionating petroleum-based straight-run diesel fuel at 280 ° C. ・ Fuel-3: Fuel obtained by hydrorefining LCO under mild conditions [ Initial boiling point 156 of a product hydrorefined with LCO as a raw material in the presence of a Ni or Mo catalyst at a reaction temperature of 360 ° C., a hydrogen partial pressure of 11 MPa, a hydrogen / oil ratio of 1002, and an oil flow rate of 1.0 h −1. 0 ° C to end point 349.5 ° C distillate]
・ Fuel-4: Fuel obtained by hydrorefining LCO under severe conditions [Using LCO as a raw material in the presence of Ni and Mo-based catalysts, reaction temperature of 360 ° C., hydrogen partial pressure of 14 MPa, hydrogen / oil ratio of 997, oil passage The first distillation point 138.0 ° C. to the end point 341.5 ° C. distillate of the product hydrorefined in an amount of 0.5 h −1 ]
・ Fuel-5: Fuel obtained by hydrotreating LCO under mild conditions [Using LCO as a raw material in the presence of Ni and Mo-based catalysts, reaction temperature of 380 ° C., hydrogen partial pressure of 8 MPa, hydrogen / oil ratio of 996, oil flow The first distillation point 110.5 ° C. to the end point 350.0 ° C. distillate of the product hydrorefined with an amount of 0.5 h −1 ]

・燃料−6:軽油基材を280℃で分留した重質留分(燃料−2)60容量%と、LCOをマイルドな条件で水素化精製した燃料(燃料−3)40容量%との混合物 [(60%燃料−2)+(40%燃料−3)]
・燃料−7:軽油基材を280℃で分留した重質留分(燃料−2)60容量%と、LC
Oをマイルドな条件で水素化精製した燃料(燃料−5)40容量%との混合物 [(60%燃料−2)+(40%燃料−5)]
・燃料−8:燃料−1が60容量%と、LCOをマイルドな条件で水素化精製した燃料(燃料−3)が40容量%の混合物 [(60%燃料−1)+(40%燃料−3)]
・燃料−9:燃料−1が60容量%と、LCOをシビアな条件で水素化精製した燃料(燃料−4)が40容量%の混合物 [(60%燃料−1)+(40%燃料−4)]
・燃料−10:燃料−1が90容量%と、LCOをマイルドな条件で水素化精製した燃料(燃料−3)が10容量%の混合物 [(90%燃料−1)+(10%燃料−3)]
・燃料−11:石油系直留軽油基材を280℃で分留した軽質留分にアルキルナイトレートセタン価向上剤を0.5(容量%)添加 [燃料−2の軽質留分にセタン価向上剤を添加]
・ Fuel-6: 60% by volume of heavy fraction (fuel-2) obtained by fractionating light oil base material at 280 ° C. and 40% by volume of fuel (fuel-3) obtained by hydrorefining LCO under mild conditions Mixture [(60% fuel-2) + (40% fuel-3)]
-Fuel-7: 60% by volume of heavy fraction (fuel-2) obtained by fractionating light oil base material at 280 ° C, LC
Mixture of 40% by volume of hydrorefined O under mild conditions (fuel-5) [(60% fuel-2) + (40% fuel-5)]
・ Fuel-8: Mixture of 60% by volume of fuel-1 and 40% by volume of fuel (fuel-3) hydrorefined under mild conditions of LCO [(60% fuel-1) + (40% fuel− 3)]
Fuel-9: Mixture of 60% by volume of fuel-1 and 40% by volume of fuel (fuel-4) hydrorefined under severe conditions of LCO [(60% fuel-1) + (40% fuel- 4)]
Fuel-10: Mixture of 90% by volume of fuel-1 and 10% by volume of fuel (fuel-3) hydrorefined under mild conditions of LCO [(90% fuel-1) + (10% fuel- 3)]
・ Fuel-11: 0.5% by volume of alkyl nitrate cetane improver is added to the light fraction obtained by fractionating petroleum base gas oil base at 280 ℃ [Cetane number to the light fraction of fuel-2 Add improver]

<燃料の性状分析>
・密度:JIS K2249「原油及び石油製品の密度試験法」
・蒸留性状:JIS K2254「蒸留試験法」
・硫黄分:JIS K2541−6「硫黄分試験法(紫外蛍光法)」
・全芳香族分、2環以上の芳香族分:石油学会法JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」
・セタン価:JIS K2280「石油製品−燃料油−オクタン価およびセタン価試験方法並びにセタン指数算出法」
・H分とC分:有機元素分析装置(LECO社製CHN−1000型)を用いて測定した。
<Fuel property analysis>
・ Density: JIS K2249 “Density test method for crude oil and petroleum products”
・ Distillation properties: JIS K2254 "Distillation test method"
・ Sulfur content: JIS K2541-6 “Sulfur content test method (ultraviolet fluorescence method)”
-Total aromatic content, aromatic content of 2 or more rings: Petroleum Society method JPI-5S-49-97 "Petroleum products-Hydrocarbon type test method-High performance liquid chromatographic method"
-Cetane number: JIS K2280 "Petroleum products-Fuel oil-Octane number and cetane number test method and cetane index calculation method"
-H component and C component: Measured using an organic element analyzer (CHN-1000 type manufactured by LECO).

<供試機関諸元と運転条件>
気筒数:1
排気量:1007(cm3
圧縮比:20
燃料噴射系:コモンレール、高圧噴射
後処理装置:Ptを担持した触媒を有するディーゼルパティキュレートトラップ
<Test engine specifications and operating conditions>
Number of cylinders: 1
Displacement: 1007 (cm 3 )
Compression ratio: 20
Fuel injection system: common rail, high-pressure injection Aftertreatment device: Diesel particulate trap having a catalyst carrying Pt

エンジン回転速度を1300(rpm)に固定し、20(%)及び80(%)負荷条件での排出ガス及び燃費を測定した。また、始動性はエンジン及び環境温度を室温に10時間以上保った後に、エンジンを始動し、燃焼挙動を解析した。   The engine rotation speed was fixed at 1300 (rpm), and the exhaust gas and fuel consumption were measured under 20 (%) and 80 (%) load conditions. As for startability, the engine and the environmental temperature were kept at room temperature for 10 hours or more, then the engine was started and the combustion behavior was analyzed.

<エンジン性能評価方法>
燃焼解析:圧力センサーで燃焼室内圧力を検出して司測研製燃焼装置で、図示平均有効圧力、燃焼変動などの燃焼挙動を解析した。
排出ガス:堀場製排出ガス分析装置を用いて、排出ガス中のPM、NOx、HC、CO、CO2を分析した。
始動性:上述の燃焼解析で得た図示平均有効圧力の観察から、始動直後の燃焼変動の大きさ、燃焼が安定するまでの時間から始動性を評価した。
燃料消費率(燃費):司測研製燃料流量計で燃料消費速度(ml/分)を測定し、上述の燃焼解析で得た図示平均有効圧力(kg/cm2)から、燃費(ml/kw・h)を算出した。
<Engine performance evaluation method>
Combustion analysis: The pressure in the combustion chamber was detected with a pressure sensor, and the combustion behavior such as the indicated mean effective pressure and combustion fluctuation was analyzed with a combustion device manufactured by Shikenken.
Exhaust gas: PM, NOx, HC, CO and CO 2 in the exhaust gas were analyzed using an exhaust gas analyzer manufactured by Horiba.
Startability: From the observation of the indicated mean effective pressure obtained by the combustion analysis described above, the startability was evaluated from the magnitude of the combustion fluctuation immediately after the start and the time until the combustion became stable.
Fuel consumption rate (fuel consumption): The fuel consumption rate (ml / min) is measured with a fuel flow meter manufactured by Shikenken, and the fuel efficiency (ml / kw) is calculated from the indicated mean effective pressure (kg / cm 2 ) obtained by the combustion analysis described above. -H) was calculated.

<エンジン性能の評価・判定方法>
エンジン試験で各燃料からの排出ガスは、市販軽油JIS 2号軽油(燃料−1)を基準に、これよりも排出ガスが多い燃料を(×)、同等な燃料を(△)、少ない燃料を(○)として表した。また、始動性も排出ガスと同様に、燃料−1との比較で評価し、燃料−1よりも始動性が悪い燃料を(×)、同等な燃料を(△)、良好な燃料を(○)で表した。さらに、燃費も燃料−1を基準として、各燃料の燃費向上度(%)で表した。
<Method for evaluating and judging engine performance>
Emissions from each fuel in engine tests are based on commercial diesel oil JIS No. 2 diesel oil (fuel-1) as a standard (x) for fuel with more exhaust gas, (△) for equivalent fuel, and fuel for less Expressed as (◯). Similarly to the exhaust gas, the startability is evaluated by comparison with the fuel-1. The fuel having a startability worse than that of the fuel-1 (×), the equivalent fuel (△), and the good fuel (○ ) Furthermore, the fuel efficiency was also expressed as the fuel efficiency improvement (%) of each fuel with reference to fuel-1.

<LCO水素化精製時のCO2排出量>
LCOを水素化精製する条件である温度や水素消費量などから、精製に伴うCO2排出量を算出し、マイルドな水素化精製条件である燃料−3及び燃料−5と、シビアな条件である燃料−4を比較した結果、燃料−4の条件では燃料−3及び燃料−5の条件に比較して、水素消費量が極めて多いのでCO2排出量が多い。また、水素分圧が高いことなどから水素化精製に伴う経済性も燃料−4の方が悪い。したがって、LCO水素化精製時(LCO水添時)のCO2排出量は、燃料−3及び燃料−5を(○)、燃料−4を(×)とした。これらの結果を表1に示す。
<CO 2 emissions during LCO hydrorefining>
From the temperature and hydrogen consumption, which are the conditions for hydrotreating LCO, the CO 2 emissions associated with refining are calculated, and the conditions are severe, with mild hydrotreating conditions for fuel-3 and fuel-5. As a result of comparing fuel-4, the amount of CO 2 emission is large under the condition of fuel-4 because the amount of hydrogen consumption is extremely large compared with the conditions of fuel-3 and fuel-5. In addition, fuel-4 is worse in economics associated with hydrorefining due to high hydrogen partial pressure. Therefore, the CO 2 emissions during LCO hydrorefining (LCO hydrogenation) were set to (◯) for fuel-3 and fuel-5, and (x) for fuel-4. These results are shown in Table 1.

Figure 0005448647
Figure 0005448647

表1に示した各燃料の評価結果は次の通りである。まず、燃料−2は、エンジン性能には問題は無いが、分解系軽油基材が活用されていない。また、燃料−3と燃料−5共に、分解系軽油基材の活用の点では優れているが、満足すべきエンジン性能が得られない。また、燃料−4は、エンジン性能、分解系軽油基材の活用の点では、共に満足できるが、シビアな水素化精製条件であるため、製造時のCO2排出量や経済性の観点で問題がある。また、燃料−8は、分解系軽油基材が活用されているものの、満足すべきエンジン性能が得られない。また、燃料−9は、エンジン性能、分解系軽油基材の活用の点では、共に満足できるが、燃料−4に比較すると軽微であるものの、燃料−4を混合しているので、製造時のCO2排出量や経済性の観点で問題が残る。また、エンジン性能、製造時のCO2排出量や経済性の観点を満足するように調合した燃料−10では、分解系軽油基材の混合比率が少ないため、本発明の前提条件を満たしていない。 The evaluation results of each fuel shown in Table 1 are as follows. First, Fuel-2 has no problem in engine performance, but a cracked light oil base material is not utilized. In addition, both Fuel-3 and Fuel-5 are excellent in terms of utilization of cracked light oil base materials, but satisfactory engine performance cannot be obtained. Fuel-4 is satisfactory in terms of engine performance and utilization of cracked diesel oil base, but it is a severe hydrorefining condition, so it is a problem in terms of CO 2 emissions during production and economical efficiency. There is. In addition, although fuel-8 uses a cracked light oil base material, satisfactory engine performance cannot be obtained. Fuel-9 is satisfactory both in terms of engine performance and utilization of cracked light oil base material, but it is minor compared to fuel-4, but it is mixed with fuel-4. Problems remain in terms of CO 2 emissions and economy. In addition, the fuel-10 prepared so as to satisfy the viewpoints of engine performance, CO 2 emission during production, and economic efficiency does not satisfy the preconditions of the present invention because the mixing ratio of the cracked light oil base material is small. .

一方、燃料−6と燃料−7は共に、燃費が良い上、エンジン性能、分解系軽油基材の活用の点でも共に満足でき、更には、製造時のCO2排出量や経済性の観点でも問題がなく、最適である。 On the other hand, both fuel-6 and fuel-7 are satisfactory in terms of fuel efficiency, engine performance, utilization of cracked diesel oil base, and also from the viewpoint of CO 2 emissions during production and economy. No problem and optimal.

また、燃料−2の軽質留分は、セタン価向上剤を添加すると燃料−11となり、燃費は劣るが、環境対応型軽油として有効に利用できるので、本発明が解決しようとする課題の条件2、すなわち、上記のエネルギーセキュリティー、石油のノーブルユースや経済性の観点で、製油所で製造される既存の軽油基材留分を有効利用する(特定の留分や成分のみが利用され、残りの留分や成分の利用法が見出せない対応は避ける)点を満足している。   Further, the light fraction of fuel-2 becomes fuel-11 when a cetane number improver is added, and the fuel efficiency is inferior. However, since it can be effectively used as an environmentally friendly light oil, Condition 2 of the problem to be solved by the present invention In other words, from the viewpoints of energy security, oil noble use and economy, the existing gas oil base fraction produced at the refinery is effectively used (only specific fractions and components are used and the remaining The response that avoids finding out how to use fractions and ingredients is avoided).

Claims (2)

軽油基材を水素分圧が3〜15MPa、温度が250〜420℃、液空間速度が0.3〜10.0hr -1 、水素/オイル比が100〜2,000L/Lの条件で水素化精製することにより得られる水添軽油に、軽油基材を250〜320℃で分留した重質留分である重質軽油を混合してなり、
セタン価が45以上、全芳香族分が20〜40容量%、初留点が150〜250℃、終点が300〜370℃、硫黄分が50質量ppm以下、15℃における密度が0.840〜0.870g/cm3であることを特徴とする、ディーゼルパティキュレートフィルターを装着したディーゼルエンジン用の軽油組成物。
Hydrogenation of gas oil base under conditions of hydrogen partial pressure of 3-15 MPa, temperature of 250-420 ° C., liquid space velocity of 0.3-10.0 hr −1 , hydrogen / oil ratio of 100-2,000 L / L A heavy gas oil that is a heavy fraction obtained by fractionating a gas oil base material at 250 to 320 ° C. is mixed with hydrogenated gas oil obtained by refining,
A cetane number of 45 or more, a total aromatic content of 20 to 40% by volume, an initial boiling point of 150 to 250 ° C., an end point of 300 to 370 ° C., a sulfur content of 50 mass ppm or less, and a density at 15 ° C. of 0.840 to A diesel oil composition for a diesel engine equipped with a diesel particulate filter, characterized by being 0.870 g / cm 3 .
軽油基材を250〜320℃で分留した重質留分である、セタン価が60〜80、全芳香族分が15〜30容量%、初留点が260〜300℃、終点が320〜400℃、15℃における密度が0.830〜0.900g/cm3である重質軽油を20〜80容量%、
軽油基材を水素分圧が3〜15MPa、温度が250〜420℃、液空間速度が0.3〜10.0hr -1 、水素/オイル比が100〜2,000L/Lの条件で水素化精製することにより得られる、セタン価が36以下、全芳香族分が36〜60容量%、初留点が110〜200℃、終点が300〜400℃、15℃における密度が0.840〜0.990g/cm3である水添軽油を20〜80容量%配合することを特徴とする、請求項1記載の軽油組成物の製造方法。
A heavy fraction obtained by fractionating a light oil base at 250 to 320 ° C, a cetane number of 60 to 80, a total aromatic content of 15 to 30% by volume, an initial boiling point of 260 to 300 ° C, and an end point of 320 to Heavy gas oil having a density at 400 ° C. and 15 ° C. of 0.830 to 0.900 g / cm 3 is 20 to 80% by volume,
Hydrogenation of gas oil base under conditions of hydrogen partial pressure of 3-15 MPa, temperature of 250-420 ° C., liquid space velocity of 0.3-10.0 hr −1 , hydrogen / oil ratio of 100-2,000 L / L The cetane number obtained by refining is 36 or less, the total aromatic content is 36-60% by volume, the initial boiling point is 110-200 ° C, the end point is 300-400 ° C, and the density at 15 ° C is 0.840-0. The method for producing a light oil composition according to claim 1, wherein 20 to 80% by volume of hydrogenated light oil of 990 g / cm 3 is blended.
JP2009198964A 2009-08-28 2009-08-28 Light oil composition and method for producing the same Active JP5448647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198964A JP5448647B2 (en) 2009-08-28 2009-08-28 Light oil composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198964A JP5448647B2 (en) 2009-08-28 2009-08-28 Light oil composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011046895A JP2011046895A (en) 2011-03-10
JP5448647B2 true JP5448647B2 (en) 2014-03-19

Family

ID=43833554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198964A Active JP5448647B2 (en) 2009-08-28 2009-08-28 Light oil composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5448647B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6885708B2 (en) * 2016-11-10 2021-06-16 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223656B2 (en) * 2000-04-20 2009-02-12 新日本石油株式会社 Light oil composition
JP4477267B2 (en) * 2001-09-28 2010-06-09 新日本石油株式会社 Diesel engine diesel oil composition for DPF

Also Published As

Publication number Publication date
JP2011046895A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
Song Introduction to chemistry of diesel fuels
JP5288740B2 (en) Method for producing light oil composition
JP4648618B2 (en) Light oil composition
JP4567947B2 (en) Light oil composition
JP5072008B2 (en) Method for producing light oil composition
JP4575646B2 (en) Light oil composition
JP4460200B2 (en) Fuel oil base and light oil composition containing the same
JP4567948B2 (en) Light oil composition and method for producing the same
JP5520115B2 (en) Light oil composition
JP2004269685A (en) Gas oil composition and its manufacturing method
JP2013545856A (en) Improvement of fuel economy
Rocher et al. New generation fuel borne catalyst for reliable DPF operation in globally diverse fuels
JP5520114B2 (en) Light oil composition
JP5518454B2 (en) Fuel composition for diesel hybrid
JP5448647B2 (en) Light oil composition and method for producing the same
CN101283077B (en) A diesel fuel and a method of operating a diesel engine
JP5072007B2 (en) Method for producing light oil composition
JP2004067906A (en) Gas oil composition and its manufacturing method
JP4477267B2 (en) Diesel engine diesel oil composition for DPF
AU2001251660B2 (en) Low sulfur/low aromatics distillate fuels
JP5530702B2 (en) Light oil composition and method for producing the same
JP4119190B2 (en) Light oil composition and method for producing the same
JP5437193B2 (en) Light oil composition
JP5436041B2 (en) Light oil composition
JP4919572B2 (en) Low sulfur distillate fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5448647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250