JP5444538B2 - Zirconium (Zr) bellows - Google Patents
Zirconium (Zr) bellows Download PDFInfo
- Publication number
- JP5444538B2 JP5444538B2 JP2009023083A JP2009023083A JP5444538B2 JP 5444538 B2 JP5444538 B2 JP 5444538B2 JP 2009023083 A JP2009023083 A JP 2009023083A JP 2009023083 A JP2009023083 A JP 2009023083A JP 5444538 B2 JP5444538 B2 JP 5444538B2
- Authority
- JP
- Japan
- Prior art keywords
- zirconium
- pipe
- bellows
- thin
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Joints Allowing Movement (AREA)
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Description
本発明は化学プラント、製薬メーカー等における、腐食性流体が流れる配管及び圧力容器の変位を吸収する、高耐食性ジルコニウム(Zr)金属製液圧成形もしくはロール成形ベローズに関する。 The present invention relates to a high-corrosion-resistant zirconium (Zr) metal hydroformed or roll-formed bellows that absorbs the displacement of piping and pressure vessels through which corrosive fluid flows, such as in chemical plants and pharmaceutical manufacturers.
耐食性金属として、ステンレスとチタンは優れた成形性があり、何十年も前から、両金属製ベローズは配管システムに使用されている。更に、チタン製ベローズの疲労特性を向上させるため、溶接継手の厚さの制御及びゲッターを用いた真空熱処理方法が特開平5−318110に開示されている。特開平9−14549には、ステンレス製ベローズの疲労特性を向上させるため、ベローズの山部分の肉厚と谷部分の肉厚の比を制御することが開示されている。 As corrosion resistant metals, stainless steel and titanium have excellent formability, and both metal bellows have been used in piping systems for decades. Furthermore, in order to improve the fatigue characteristics of the titanium bellows, JP-A-5-318110 discloses a method for controlling the thickness of a welded joint and a vacuum heat treatment method using a getter. Japanese Patent Application Laid-Open No. 9-14549 discloses that the ratio of the thickness of the peak portion of the bellows to the thickness of the valley portion is controlled in order to improve the fatigue characteristics of the stainless steel bellows.
化学工業の各分野で使用されている、チタンやステンレス鋼の耐食性の欠点である還元性液、ガスに使用されている伸縮管継手は、フッ素樹脂製ベローズによって構成されることは一般的である。フッ素樹脂は、時間の経過により劣化、変質し、ベローズ寿命に問題がある。また、フッ素樹脂製ベローズは耐高温、耐高圧性が金属より低いので、使用条件が制限される問題がある。従って、より高温、高圧性の優れた金属製ベローズが要求されている。 The expansion pipe joints used in reducing liquids and gases, which are disadvantages of corrosion resistance of titanium and stainless steel, used in various fields of the chemical industry are generally composed of fluororesin bellows. . The fluororesin deteriorates and deteriorates over time and has a problem in the bellows life. Further, since the fluororesin bellows has lower resistance to high temperature and high pressure than metal, there is a problem that usage conditions are limited. Accordingly, there is a demand for a metal bellows having higher temperature and higher pressure.
チタンやステンレス鋼の耐食性の欠点である還元性液、ガスに対して、金属ジルコニウムはフッ素樹脂並みの耐食性を持っている。当社は1996年4月からジスク形ジルコニウム製ベローズを客先に納めている。 Zirconium metal has corrosion resistance comparable to that of fluororesin against reducing liquids and gases, which are disadvantages of corrosion resistance of titanium and stainless steel. Since April 1996, our company has been supplying disc-shaped zirconium bellows to customers.
しかし、ジスク形ベローズより材料を大幅に節約でき、変位吸収性能がより良いU形ジルコニウム製ベローズは存在していない。その原因は、U形ベローズの液圧成形もしくはロール成形には、過酷な成形加工に耐えるパイプが必要とされる。通常成形用パイプは、板を曲げ溶接して造管される。ジルコニウム(Zr)材料は酸素と窒素との親和性がチタンより高い。通常のTIG溶接、プラズマ溶接、レーザ溶接方法の場合は、ジルコニウム材の溶接金属と熱影響範囲に、酸素と窒素が金属内に固溶されることにより延性が減少し、過酷な液圧成形もしくはロール成形に耐えない。従って、これまでは液圧成形もしくはロール成形によるU形ジルコニウム(Zr)製ベローズを製造することが不可能であった。 However, there is no U-shaped zirconium bellows that can save much more material than the disc-shaped bellows and has better displacement absorption performance. The cause is that a pipe that can withstand a severe molding process is required for the hydraulic forming or roll forming of the U-shaped bellows. Usually, a forming pipe is formed by bending and welding a plate. Zirconium (Zr) material has higher affinity between oxygen and nitrogen than titanium. In the case of ordinary TIG welding, plasma welding, and laser welding methods, the ductility decreases due to the solid solution of oxygen and nitrogen into the weld metal and heat affected range of the zirconium material, and severe hydroforming or It cannot withstand roll forming. Therefore, it has been impossible to produce a U-shaped zirconium (Zr) bellows by hydraulic molding or roll molding.
ジルコニウムは超高真空を得るための酸素ゲッターとして使用される素材と知られている。真空中で行われるジルコニウムの溶接において、ジルコニウム材料の中に雰囲気中残留された酸素と窒素の固溶が避けられない。
気密性のシールドボックスの中で行われる溶接において、アフターシールド、バックシールド等で充分なシールを行っても、シールドガスとして使用されるアルゴンガスの純度は100%ではないことと、ガス系統をON、OFFする時の残留ガスの混入があるので、ジルコニウム材料の中にppmオーダでの不純ガスの固溶が避けられない。
ベローズ成形用大口径(32A〜650A)パイプのTIG溶接、プラズマ溶接、レーザ溶接の手動、半自動、自動溶接において、一般的に非気密性のシールドボックスの中でシールドガスを流しながら行われる。ワークとトーチとの相対運動があるので、空気の巻き込みを完全に防ぐことが困難である。
シールドボックス内高純度ガスのppmオーダでの純度低下によって、溶接金属と熱影響範囲での素地内部に酸素と窒素が固溶される。酸素と窒素の固溶は過酷なベローズ成形の障害になる。
本発明は、溶接金属と熱影響範囲での素地内部に酸素と窒素の固溶を抑制し、過酷な成形加工に耐えるジルコニウム製薄肉パイプを造管し、これまで製造不可能であった、耐食性の優れたジルコニウム(Zr)材の液圧成形もしくは、ロール成形ベローズを提供することを目的とする。 Zirconium is known as a material used as an oxygen getter for obtaining an ultra-high vacuum. In the welding of zirconium performed in vacuum, solid solution of oxygen and nitrogen remaining in the atmosphere in the zirconium material is inevitable.
In welding performed in an airtight shield box, the purity of argon gas used as the shielding gas is not 100% even if sufficient sealing is performed with after-shielding, back-shielding, etc. Since residual gas is mixed when turning OFF, solid solution of impure gas in the order of ppm is inevitable in the zirconium material.
In TIG welding, plasma welding, laser welding manual, semi-automatic, and automatic welding of large diameter (32A to 650A) pipes for bellows molding, it is generally performed while flowing a shielding gas in a non-hermetic shielding box. Since there is relative movement between the work and the torch, it is difficult to completely prevent air entrainment.
As the purity of the high-purity gas in the shield box is reduced to the order of ppm, oxygen and nitrogen are dissolved in the weld metal and the substrate within the heat-affected range. The solid solution of oxygen and nitrogen is an obstacle to severe bellows molding.
The present invention suppresses the solid solution of oxygen and nitrogen inside the base metal in the heat affected area with the weld metal, and forms a thin zirconium pipe that can withstand severe forming processing. It is an object of the present invention to provide a hydroformed or roll-formed bellows of a zirconium (Zr) material having excellent quality.
上記目的を達成するために、本発明はベローズ成形用薄肉パイプの長手溶接過程において、溶接金属及び熱影響範囲部分の、酸素プラス窒素の含有量の増加を100ppm以下に抑制する造管方法で、液圧成形もしくはロール成形に耐えられるジルコニウム(Zr)製溶接薄肉パイプを製造する。 In order to achieve the above object, the present invention is a pipe forming method for suppressing an increase in the content of oxygen plus nitrogen in a weld metal and a heat-affected range part to 100 ppm or less in a longitudinal welding process of a thin pipe for bellows molding, A welded thin pipe made of zirconium (Zr) that can withstand hydraulic forming or roll forming is manufactured.
前記薄肉パイプの長手溶接過程において、溶接金属及び熱影響範囲部分の酸素と窒素の含有量の増加を抑制する方法は、溶接部と熱影響範囲を急冷する方法である。 In the longitudinal welding process of the thin-walled pipe, the method of suppressing the increase in the content of oxygen and nitrogen in the weld metal and the heat affected zone is a method of rapidly cooling the weld and the heat affected zone.
前記薄肉パイプの溶接方法としては、TIG溶接、プラズマ溶接、レーザ溶接、電子ビーム溶接など適用する。 As a method for welding the thin-walled pipe, TIG welding, plasma welding, laser welding, electron beam welding, or the like is applied.
本発明は、従来の方法で造管したジルコニウム薄肉パイプをベローズ成形し、成形過程に発生した溶接金属と、熱影響範囲での割れについて種々検討した結果、割れの発生形態は、熱影響範囲と溶接金属の境界に発生した割れと、溶接金属部に発生した割れの2種類がある。その内訳とは4分の3が熱影響範囲と溶接金属の境界に発生し、4分の1が溶接金属に発生したことが判明した。本発明者の知見として、ジルコニウムの溶接パイプについて、表面酸化皮膜の最も厚い箇所は熱影響範囲と母材との境界であることから、割れ発生の主な原因は表面酸化皮膜の割れによるものではない、素地内部に酸素と窒素の固溶によるものと推定された。The present invention is a forming tube by zirconium thin pipe in a conventional manner to the bellows shaped, and weld metal generated in the molding process, a result of various studies for cracking in the heat affected area, generating the form of cracks, a heat affected area There are two types: cracks that occur at the boundary of the weld metal and cracks that occur at the weld metal part. It was found that three-quarters occurred at the boundary between the heat affected zone and the weld metal, and one-quarter occurred at the weld metal. As the inventor's knowledge, for the zirconium welded pipe, the thickest part of the surface oxide film is the boundary between the heat-affected area and the base material, so the main cause of cracking is not due to cracking of the surface oxide film It was estimated that there was no solid solution of oxygen and nitrogen inside the substrate.
そこで、本発明は溶接部と熱影響範囲を急冷することによって、高温時の時間を短縮して、酸素と窒素の固溶を抑制する方法で、過酷な成形加工に耐えるジルコニウム製薄肉パイプを造管する。これまで製造不可能であった耐食性の優れたジルコニウム(Zr)材の液圧成形もしくはロール成形ベローズを提供することができた。 In view of this, the present invention provides a zirconium thin-walled pipe that can withstand severe molding by shortening the time at high temperatures and suppressing solid solution of oxygen and nitrogen by rapidly cooling the weld zone and the heat affected zone. Tube. It has been possible to provide a hydroformed or roll-formed bellows of a zirconium (Zr) material having excellent corrosion resistance, which has been impossible to produce until now.
ジルコニウムZr702(ASTM R60702)で、板厚0.8mmの材料を用いて、ベローズ成形加工用パイプをTIG溶接方法で本発明例、及び比較例として造管した。比較例として造管した150Aのパイプを4本、本発明例として造管した150Aのパイプを1本用いて、液圧成形方法でベローズ成形試験を行った。 Using Zirconium Zr702 (ASTM R60702), a material having a plate thickness of 0.8 mm, pipes for bellows forming were formed by the TIG welding method as examples of the present invention and comparative examples. A bellows molding test was performed by a hydraulic molding method using four 150A pipes piped as comparative examples and one 150A pipe piped as an example of the present invention.
表1に材料メーカーからのミルシートで提供された母材の酸素と窒素の含有量、比較例の従来のTIG溶接法での溶接部と熱影響範囲での酸素と窒素濃度のIGA分析結果、本発明例の急冷したTIG溶接部と熱影響範囲での酸素と窒素濃度のIGA分析結果を記した。 Table 1 shows the contents of oxygen and nitrogen in the base metal provided in the mill sheet from the material manufacturer, the results of IGA analysis of oxygen and nitrogen concentrations in the weld zone and the heat-affected area in the conventional TIG welding method of the comparative example, IGA analysis results of oxygen and nitrogen concentrations in the TIG welded part of the invention example and the heat affected range are described.
表2に液圧成形に際して、比較例1〜4の割れが発生した時点で溶接金属部と熱影響範囲部の伸び率、本発明例の成形に成功したベローズの溶接金属部と熱影響範囲部の伸び率を記した。 In the case of hydroforming in Table 2, when the cracks of Comparative Examples 1 to 4 occur, the elongation ratio of the weld metal part and the heat-affected zone, the weld metal part of the bellows and the heat-affected zone part of the present invention example successfully formed The growth rate of
Claims (2)
前記溶接パイプを用いて製造したジルコニウム(Zr)製薄肉(板厚0.5〜3.2mm)U形ベローズ。And zirconium (Zr) Sei溶 contact pipe is characterized withstand harsh hydraulic forming or roll forming,
Zirconium (Zr) thin-walled (thickness 0.5 to 3.2 mm) U-shaped bellows manufactured using the welded pipe.
ジルコニウム製薄肉U型ベローズを成形するため使用されるジルコニウム製薄肉溶接パイプの造管過程において、シールドボックス内高純度ガスのppmオーダでの純度低下を考慮し、溶接過程中でジルコニウムが溶融状態から862℃までの冷却時間を短縮して、溶接金属及び熱影響範囲での酸素プラス窒素の含有量の増加を、100ppm以下に抑制した造管方法により造管したものである
請求項1に記載のジルコニウム製薄肉U型ベローズ。The zirconium weld pipe is:
In the process of forming a zirconium thin welded pipe used to form a thin zirconium U-shaped bellows, the purity of the high purity gas in the shield box is reduced in the order of ppm. The cooling time to 862 ° C. was shortened, and the pipe was formed by a pipe making method in which the increase in the content of oxygen plus nitrogen in the weld metal and heat-affected range was suppressed to 100 ppm or less.
The zirconium thin U-shaped bellows according to claim 1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009023083A JP5444538B2 (en) | 2009-01-08 | 2009-01-08 | Zirconium (Zr) bellows |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009023083A JP5444538B2 (en) | 2009-01-08 | 2009-01-08 | Zirconium (Zr) bellows |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010159870A JP2010159870A (en) | 2010-07-22 |
JP5444538B2 true JP5444538B2 (en) | 2014-03-19 |
Family
ID=42577164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009023083A Active JP5444538B2 (en) | 2009-01-08 | 2009-01-08 | Zirconium (Zr) bellows |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5444538B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2525960B2 (en) * | 1991-01-25 | 1996-08-21 | 新日本製鐵株式会社 | Method for manufacturing titanium anticorrosion velours |
FR2684910B1 (en) * | 1991-12-12 | 1995-07-28 | Air Liquide | METHOD FOR WELDING OR BRAZING OF HIGHLY OXIDIZABLE METAL PARTS. |
JP3271000B2 (en) * | 1997-10-31 | 2002-04-02 | 中島精管工業株式会社 | Method for manufacturing welded pipe of high melting point metal |
JP2954580B1 (en) * | 1998-09-18 | 1999-09-27 | 日本ニユクリア・フユエル株式会社 | Fuel rod end plug welding method |
JP3919595B2 (en) * | 2002-05-10 | 2007-05-30 | 入江工研株式会社 | Manufacturing method of pipe for bellows made of titanium |
-
2009
- 2009-01-08 JP JP2009023083A patent/JP5444538B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010159870A (en) | 2010-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2553136C1 (en) | Metal resistant to carburising | |
US5830408A (en) | Stainless steel for high-purity gases | |
EP2671669A1 (en) | Ni-BASED HIGH-CR ALLOY WIRE FOR WELDING, ROD FOR ARC-SHIELDED WELDING, AND METAL FOR ARC-SHIELDED WELDING | |
JP2012011429A (en) | Fillet welded joint, and gas shielded arc welding method | |
WO2016009996A1 (en) | TANDEM SUBMERGED ARC WELDING METHOD FOR HIGH Cr CSEF STEEL | |
JPH11236652A (en) | Gasket and pipe joint | |
KR20090066000A (en) | Austenitic stainless steel for the high vacuum or high purity gas tube application | |
JP2004276035A (en) | Welded joint excellent in resistance to caulking of metallic composite pipe | |
JP2009022989A (en) | WELDING MATERIAL FOR Ni BASED HIGH Cr ALLOY | |
JP2011147947A (en) | Copper member and method for preventing corrosion of the same | |
JP5444538B2 (en) | Zirconium (Zr) bellows | |
JP2014073516A (en) | Manufacturing method of bend steel tube | |
JP4584002B2 (en) | Flux-cored wire for ferritic stainless steel welding | |
JP2020508872A (en) | Use of nickel-chromium-molybdenum alloy | |
KR102069157B1 (en) | Welding wire for Fe-36Ni alloy | |
JP6688163B2 (en) | Low-hydrogen coated arc welding rod | |
JP5742091B2 (en) | Submerged arc welding method for steel with excellent toughness of weld heat affected zone | |
KR20210007628A (en) | Manufacturing Method for High-Manganese Cold Drawn Steel Pipes for Cryogenic Usage for the Shipbuilding and Marine Plant and the High-Manganese Cold Drawn Steel Pipes Thereof | |
KR102499653B1 (en) | A METHOD OF JOINING A FeCrAl ALLOY WITH A FeNiCr ALLOY USING A FILLER METAL BY WELDING | |
JP2017185539A (en) | Device supplied to use in corrosive atmosphere | |
KR101243006B1 (en) | Aluminium plated ferritic stainless steel welding method | |
CN110421232B (en) | MAG surfacing welding process for civil nuclear reactor pressure vessel inlet and outlet adapter tube corrosion-resistant layer robot | |
JP2021094597A (en) | TIG welding flux for super duplex stainless steel | |
JP3475885B2 (en) | Welding material for low thermal expansion alloy, method for manufacturing welded pipe, and method for circumferential welding of welded pipe | |
Baxter et al. | Welding of zeron 100 super duplex stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100701 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120907 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5444538 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |