JP5444029B2 - Method for manufacturing composite reinforcing member and composite reinforcing member - Google Patents

Method for manufacturing composite reinforcing member and composite reinforcing member Download PDF

Info

Publication number
JP5444029B2
JP5444029B2 JP2010024977A JP2010024977A JP5444029B2 JP 5444029 B2 JP5444029 B2 JP 5444029B2 JP 2010024977 A JP2010024977 A JP 2010024977A JP 2010024977 A JP2010024977 A JP 2010024977A JP 5444029 B2 JP5444029 B2 JP 5444029B2
Authority
JP
Japan
Prior art keywords
welding
aluminum alloy
region
flange
hollow profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010024977A
Other languages
Japanese (ja)
Other versions
JP2011161466A (en
Inventor
雅男 杵渕
誠二 笹部
松本  剛
康生 村井
泰三 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010024977A priority Critical patent/JP5444029B2/en
Publication of JP2011161466A publication Critical patent/JP2011161466A/en
Application granted granted Critical
Publication of JP5444029B2 publication Critical patent/JP5444029B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、鋼板とアルミニウム合金中空形材とを組み合わせた複合補強部材の溶接による製造方法および製造された複合補強部材に関するものである。   The present invention relates to a manufacturing method by welding of a composite reinforcing member in which a steel plate and an aluminum alloy hollow profile are combined, and the manufactured composite reinforcing member.

自動車などの輸送機車体には、軽量化のために、曲げ強度部材などの補強部材として、アルミニウム合金中空形材が多く用いられる。この曲げ強度部材としては、バンパー補強材( バンパーリインフォースメントあるいはバンパーアマチャアなどとも言う) やドアビーム、あるいはフレ−ム部材などが例示される。この曲げ強度部材には、外から加わる荷重 (外力) のエネルギーを、部材自らの曲げ変形および断面方向の変形 (横圧壊) により吸収し、車体を保護する性能が求められている。   In order to reduce the weight, an aluminum alloy hollow shape material is often used as a reinforcing member such as a bending strength member in a vehicle body such as an automobile. Examples of the bending strength member include a bumper reinforcing material (also referred to as bumper reinforcement or bumper armature), a door beam, or a frame member. This bending strength member is required to absorb the energy of externally applied load (external force) by the member's own bending deformation and cross-sectional deformation (lateral crushing) to protect the vehicle body.

これら曲げ強度部材に用いられるアルミニウム合金中空形材は、基本的に、曲げ荷重を受ける前面側フランジと、前記曲げ荷重が作用した際の引張側となる後面側フランジと、これら互いに平行な2本のフランジ間をつなぐ互いに平行な2本のウエブとからなる矩形断面(口型断面)を有している。そして、多くの場合は、この矩形断面内に、更に中リブを前記ウエブと平行に1本設けて補強した日形断面形状などを有している。このアルミニウム合金中空形材は、主として6000系、7000系等の高強度なアルミニウム合金を熱間押出加工および調質処理(熱処理)して製造され、長手方向に均一な前記日形断面形状を有していることが特徴である。以下、このアルミニウム合金中空形材を単に中空形材とも言う。   The aluminum alloy hollow shape member used for these bending strength members basically includes a front side flange that receives a bending load, a rear side flange that becomes a tensile side when the bending load is applied, and two parallel to each other. It has a rectangular cross section (mouth cross section) composed of two parallel webs that connect between the flanges. In many cases, this rectangular cross section has, for example, a daily cross-sectional shape in which one intermediate rib is provided in parallel with the web and reinforced. This aluminum alloy hollow profile is manufactured by hot extrusion and tempering treatment (heat treatment) of high-strength aluminum alloys such as 6000 series and 7000 series, and has the above-mentioned uniform shape of the cross section in the longitudinal direction. It is a feature. Hereinafter, this aluminum alloy hollow shape member is also simply referred to as a hollow shape member.

このようなアルミニウム合金中空形材に、更に比較的薄い高強度鋼板(高張力鋼板)を積層して一体化させた複合補強部材とすれば、さしたる重量増加とならずに、補強効果を上げることができる。すなわち、前記前面側フランジとは反対側の、曲げ荷重が作用する際に引張側となる後面側フランジの背面領域に薄い鋼板を積層して補強すれば、この鋼板が負荷される曲げ荷重を分担して受け持つことができる。したがって、鋼板が負荷される曲げ荷重を分担することで、アルミニウム合金中空形材の過度の変形を抑制でき、中空形材の矩形断面構造体の変形による本来のエネルギー吸収を生じさせることができる。   If a composite reinforcing member in which a relatively thin high-strength steel plate (high-tensile steel plate) is laminated and integrated with such an aluminum alloy hollow shape material, the reinforcing effect is increased without a significant increase in weight. Can do. That is, if a thin steel plate is laminated and reinforced on the back region of the rear side flange, which is the tension side when a bending load is applied, on the side opposite to the front side flange, the bending load applied to the steel plate is shared. Can take charge. Therefore, by sharing the bending load to which the steel plate is loaded, excessive deformation of the aluminum alloy hollow profile can be suppressed, and original energy absorption due to the deformation of the rectangular cross-section structure of the hollow profile can be caused.

しかし、周知の通り、これら鋼板とアルミニウム合金中空形材とを溶接により接合する場合に、その接合部(界面)には、脆いFe−Al金属間化合物からなる反応層が生成しやすい。鋼板はアルミニウム合金中空形材と比較して、融点、電気抵抗が高く、熱伝導率が小さいため、まず低融点のアルミニウム側が溶融する。次に鋼板の表面が溶融し、結果として界面にて、Fe−Al系の脆い金属間化合物層が形成する。このために、信頼性のある高強度を有する接合部(接合強度)を得ることは非常に困難であった。   However, as is well known, when these steel plates and aluminum alloy hollow shapes are joined by welding, a reaction layer made of a brittle Fe-Al intermetallic compound is likely to be formed at the joint (interface). Since the steel sheet has a higher melting point, higher electric resistance, and lower thermal conductivity than the aluminum alloy hollow profile, the low melting point aluminum side first melts. Next, the surface of the steel plate is melted, and as a result, a Fe—Al-based brittle intermetallic compound layer is formed at the interface. For this reason, it has been very difficult to obtain a reliable joint having high strength (joint strength).

これに対して、これら異種金属材(異材)同士の接合に、セルフピアスリベットに代表される機械的な接合を用いるのは、溶接接合に比して、接合継手の信頼性や、新たな設備や部品点数の必要により手間や接合コスト等が増加するなどの大きな問題がある。また、機械的な接合は点接合しかできないという不利もある。   On the other hand, mechanical joints represented by self-piercing rivets are used to join these dissimilar metal materials (dissimilar materials), compared to welded joints, the reliability of joints and new equipment. In addition, there are major problems such as increased labor and joining costs due to the need for the number of parts. In addition, there is a disadvantage that mechanical joining can only be point joining.

因みに、従来から、この鋼板に代えて、前記アルミニウム合金中空形材の後面側フランジ背面に、炭素繊維、ガラス繊維等の無機繊維や、ケプラーなどの有機繊維などで強化した繊維強化樹脂材(FRP材)を設けて複合部材化して補強する技術も公知ではある。しかし、前記鋼板に比べれば、補強効果が小さかったり、補強効果が十分でもコストが上昇する、といった実用上の問題がある。   Incidentally, instead of this steel plate, a fiber reinforced resin material (FRP) reinforced with inorganic fibers such as carbon fiber and glass fiber, organic fibers such as Kepler, etc., on the rear side of the rear surface side flange of the aluminum alloy hollow shape member. A technique for reinforcing a composite member by providing a material is also known. However, compared with the steel plate, there are practical problems that the reinforcing effect is small or the cost increases even if the reinforcing effect is sufficient.

従来より、鋼材とアルミニウム合金材との、アーク溶接(溶融溶接)による、部材長手方向に亙る長い溶接線での異材接合方法については、多くの検討がなされてきている。例えば、より高温において接合を行うアーク溶接(溶融溶接)では、少なくともシリコンを3〜15wt%添加したアルミニウム合金製のソリッドワイヤを溶接ワイヤとし、アルミニウム合金材と亜鉛メッキなどを表面に施した鋼材とをパルスMIG溶接によって接合する方法が提案されている(特許文献1参照)。この方法では、溶接ワイヤの溶融と共に、シリコンも母材へと移行させ、溶融池界面に浸透して、アークの熱によって高温となり、溶融金属のぬれ性を良くして接着性を向上させている。   Conventionally, many studies have been made on a method for joining dissimilar materials with a long weld line extending in the longitudinal direction of a member by arc welding (melt welding) between a steel material and an aluminum alloy material. For example, in arc welding (melt welding) for joining at higher temperatures, a solid wire made of an aluminum alloy to which at least silicon is added in an amount of 3 to 15 wt% is used as a welding wire, and a steel material having an aluminum alloy material and galvanized surface applied to the surface. Has been proposed (see Patent Document 1). In this method, along with the melting of the welding wire, silicon is also transferred to the base material, penetrates into the molten pool interface, becomes hot due to the heat of the arc, improves the wettability of the molten metal, and improves the adhesion. .

更に、アーク溶接に用いるフラックスの組成を改善して、溶接継手強度を高めようとするも提案されている。この例として、フッ化物(フッ化セシウム、フッ化アルミニウム、フッ化カリウム及び酸化アルミニウム)を含むフラックスを芯材とし、アルミニウム又はアルミニウム合金で被覆して形成されるフラックス入りワイヤにより、鉄鋼(軟鋼)とアルミニウム合金材とをアーク溶接する方法が提案されている(特許文献2参照)。   It has also been proposed to improve the strength of the welded joint by improving the composition of the flux used for arc welding. As an example of this, iron (steel) is made of a flux-cored wire formed by covering a flux containing fluoride (cesium fluoride, aluminum fluoride, potassium fluoride and aluminum oxide) with aluminum or an aluminum alloy. There has been proposed a method of arc welding an aluminum alloy material (see Patent Document 2).

また、フッ化カリウムとフッ化アルミニウムなど、フッ化セシウム、フッ化アルミニウム、フッ化カリウム、フッ化亜鉛の一種以上を含むフッ化物系混合フラックスを塗布して用いる種々の溶接法により、鋼材とアルミニウム合金材とを異材接合する溶接する方法が提案されている(特許文献3参照)。これらの方法は、上記フラックスの化学反応によって、鉄鋼表面の清浄作用を促すと共に、アルミニウムから成る溶融金属のぬれ性及び接着性を良好にし、脆弱な厚い金属間化合物層の形成を阻止する。   In addition, steel and aluminum are applied by various welding methods using and applying a fluoride-based mixed flux containing at least one of cesium fluoride, aluminum fluoride, potassium fluoride, and zinc fluoride, such as potassium fluoride and aluminum fluoride. There has been proposed a welding method in which an alloy material is joined to a different material (see Patent Document 3). These methods promote the cleaning action of the steel surface by the chemical reaction of the flux, improve the wettability and adhesion of the molten metal made of aluminum, and prevent the formation of a fragile thick intermetallic compound layer.

更に、強固な酸化皮膜が形成されているアルミニウム合金材の表面から、酸化皮膜を還元、溶解除去する効果を有するフッ化物系フラックスをアルミニウム合金材表面に塗布して、軟鋼と6000系アルミニウム合金材とをスポット溶接する方法も提案されている(特許文献4参照)。また、これらフッ化物系フラックスは、アルミニウム合金材同士の溶融溶接接合などにも用いられている(特許文献5、6参照)。   Further, a fluoride-based flux having an effect of reducing, dissolving and removing the oxide film from the surface of the aluminum alloy material on which a strong oxide film is formed is applied to the surface of the aluminum alloy material, so that mild steel and 6000 series aluminum alloy material are applied. A method of spot welding is proposed (see Patent Document 4). These fluoride fluxes are also used for fusion welding between aluminum alloy materials (see Patent Documents 5 and 6).

しかし、これらのフラックスを用いた溶接方法では、前記高張力鋼材と6000系アルミニウム合金材など、高強度な異材同士の線溶接では、高い接合強度が得られないという問題がある。このため、フラックス組成を工夫し、フッ化アルミニウムなどを含むフッ化物組成や、塩化物を含まないフッ化物組成としたフラックスなどの、ノコロックフラックスと称せられるフラックスを活用したMIG溶接法およびレーザブレージング法も開発されている(特許文献7〜10など)。そして、これらの溶接方法では、フラックスの供給として、アルミニウム材外皮内部にフラックスを充填してなるフラックスコアードワイヤ(以下、FCWあるいはフラックス入りワイヤとも言う)が活用され、施工性の向上が図られている。   However, in the welding method using these fluxes, there is a problem that high joint strength cannot be obtained by wire welding between different high strength materials such as the high-strength steel material and 6000 series aluminum alloy material. For this reason, the MIG welding method and laser brazing utilizing a flux called a nocolok flux, such as a fluoride composition containing aluminum fluoride or a flux containing a fluoride composition not containing chloride, etc. Methods have also been developed (Patent Documents 7 to 10 etc.). In these welding methods, a flux cored wire (hereinafter also referred to as FCW or a flux-cored wire) formed by filling the aluminum material outer shell with a flux is used as a flux supply, thereby improving workability. ing.

特開2004−223548号公報JP 2004-223548 A 特開2003−211270号公報JP2003-2111270A 特開2003- 48077号公報JP 2003-48077 A 特開2004−351507号公報JP 2004-351507 A 特開2004−210013号公報JP 2004-210013 A 特開2004−210023号公報JP 2004-210023 A 特開2007−136524号公報JP 2007-136524 A 特開2007−136525号公報JP 2007-136525 A 特開2007−301634号公報JP 2007-301634 A 特開2008−68290号公報JP 2008-68290 A

確かに、前記フラックス入りワイヤを活用したMIG溶接法およびレーザブレージング法(以下、FCW溶接法とも言う)は非常に効率的な溶接方法である。しかし、このFCW溶接法でも、前記アルミニウム合金中空形材の後面側フランジ背面に対して鋼板を溶接する場合、前記曲げ強度部材として要求される、高い接合強度が得られない(保証できない)という、前記曲げ強度部材に特有の問題がある。   Certainly, the MIG welding method and the laser brazing method (hereinafter also referred to as the FCW welding method) utilizing the flux-cored wire are very efficient welding methods. However, even in this FCW welding method, when a steel plate is welded to the rear surface of the rear surface side flange of the aluminum alloy hollow shape member, the high bonding strength required as the bending strength member cannot be obtained (cannot be guaranteed). There is a problem peculiar to the bending strength member.

すなわち、前記日形断面形状を有するアルミニウム合金中空形材は、前記曲げ強度部材として、前記前面側と後面側のフランジをつなぐ左右一対のウエブとともに、この矩形断面内の中央部に設けた前記中リブで剪断力を伝える。このため、前記中空形材の後面側フランジの背面に鋼板を積層してFCW溶接する場合には、前記剪断力が伝わる、前記後面側フランジの前記ウエブが交差する両端部側の背面領域2箇所と、前記後面側フランジの前記中リブが交差する中央部側の背面領域1箇所の、合計3箇所で前記中空形材の長手方向に亙って溶接する必要がある。
しかし、これら3箇所とも、以下に記載する理由で、溶接施工は可能だが、接合強度が弱くなる。
That is, the aluminum alloy hollow shape member having the above-mentioned day-shaped cross-sectional shape is provided with a pair of left and right webs that connect the front and rear flanges as the bending strength member, and the middle portion provided in the center in the rectangular cross section. Transmit shearing force with ribs. For this reason, when laminating steel plates on the back side of the rear surface side flange of the hollow shape member and performing FCW welding, the shear force is transmitted, and two back surface regions on both end sides where the web of the rear side flange intersects. And it is necessary to weld along the longitudinal direction of the hollow profile at a total of three locations, one at the back region on the center side where the middle ribs of the rear surface side flange intersect.
However, although these three places can be welded for the reasons described below, the joint strength is weakened.

先ず、前記中リブが交差する前記後面側フランジの中央部側の背面領域で、アルミニウム合金と鋼板同士をFCW溶接するためには、積層した鋼板側からそのまま溶接することは、下層にあるアルミニウム合金側が露出しておらず、必然的に不可能である。したがって、重ね隅肉溶接の要領である、前記ウエブが交差する前記後面側フランジの両端部側の背面領域2箇所と同様に、空間を設けてアルミニウム合金を露出させて、重ね隅肉溶接する必要がある。   First, in order to FCW weld the aluminum alloy and the steel plates to each other in the back region on the center side of the rear side flange where the middle ribs intersect, welding from the laminated steel plate side as it is is an aluminum alloy in the lower layer. The side is not exposed and is inevitably impossible. Therefore, it is necessary to provide a space to expose the aluminum alloy and perform overlap fillet welding in the same manner as the two back regions on both ends of the rear flange on which the web intersects, which is the point of overlap fillet welding. There is.

このため、通常は、積層する鋼板を2分割し、前記中空形材の後面側フランジの前記中リブが交差する中央部側の背面領域に隙間(空間)を設けて、鋼板同士を積層する。すなわち、積層した互いの鋼板の前記中央部側に臨む各側面側と、前記隙間における中空形材の後面側フランジの中央部側の背面領域とを、1箇所ずつ、合計2箇所で、前記重ね隅肉溶接の要領で溶接することとなる。しかし、このような溶接接合方法では、各鋼板の前記中央部側に臨む各側面側における互いの溶接線同士が近接することとなる。前記中空形材のウエブや中リブの厚さは、数ミリ程度の厚さしかなく、互いの鋼板の中央部側の溶接線に設ける間隔には大きな限界があるためである。   For this reason, usually, the steel plates to be laminated are divided into two, and a gap (space) is provided in the back region on the center portion side where the middle ribs of the rear side flanges of the hollow shape members intersect, and the steel plates are laminated. That is, each side surface facing the central portion side of the laminated steel plates and the back region on the central portion side of the rear surface side flange of the hollow shape member in the gap, one at a time, a total of two locations, the overlap It will be welded in the manner of fillet welding. However, in such a welding joining method, the respective welding lines on the side surfaces facing the center side of the steel plates come close to each other. This is because the thickness of the hollow profile webs and intermediate ribs is only about a few millimeters, and there is a great limit to the distance between the weld lines on the center side of the steel plates.

すなわち、いずれか片側の鋼板の1回目の中央部側の溶接により、アルミニウム合金側が溶解すると、他方の鋼板の2回目の中央部側の溶接時に、溶接継手部の形状が不安定になる。また、前記1回目の溶接で形成された溶接ビード部に、前記2回目の溶接ビードが重なると、溶け込み不良が起こりやすくなる。また、前記1回目の溶接に伴う熱ひずみのために、継手形状(鋼板間のギャップや隙間)が変化し、前記2回目の溶接がより不安定になる。更には、前記後面側フランジの中央部に、近接した2回の溶接を行うことで、溶接後の熱ひずみが大きくなり、補強部材の形状に悪影響を及ぼす。また、前記したように、鋼板を2枚に分割すると、単純に、溶接線の長さが2倍になるため、溶接コストも2倍になるという問題もある。   That is, if the aluminum alloy side is melted by the first welding on the one side of the steel plate on either side, the shape of the weld joint becomes unstable during the second welding on the center side of the other steel plate. Further, if the second weld bead overlaps the weld bead portion formed by the first welding, a poor penetration is likely to occur. Further, due to the thermal strain accompanying the first welding, the joint shape (gap or gap between the steel plates) changes, and the second welding becomes more unstable. Furthermore, by performing two close weldings at the center of the rear side flange, the thermal strain after welding increases, which adversely affects the shape of the reinforcing member. Further, as described above, when the steel plate is divided into two sheets, the length of the weld line is simply doubled, so that there is a problem that the welding cost is also doubled.

また、前記後面側フランジの中央部側の背面領域に臨む前記2枚の鋼板の各々の中央部側の側面部分と、前記後面側フランジの鋼板間の隙間部分とを合わせて、前記後面側フランジの前記中リブが交差する中央部側の溶接箇所として、一体に溶接することも考えられる。しかし、この場合には、2枚の鋼板とアルミニウム合金とを一度に溶接する必要が生じ、入熱量の増大に伴って、アルミニウム合金側の溶損が生じやすくなり、重ね隅肉溶接施工自体が困難である。   Further, the rear surface side flange is formed by combining a side surface portion on the center portion side of each of the two steel plates facing a rear region on the center portion side of the rear surface side flange and a gap portion between the steel plates of the rear surface side flange. It is also conceivable that welding is integrally performed as a welding portion on the center side where the middle ribs intersect. However, in this case, it is necessary to weld the two steel plates and the aluminum alloy at a time, and as the heat input increases, the aluminum alloy side is likely to be melted, and the lap fillet welding construction itself is difficult. Have difficulty.

また、前記アルミニウム合金中空形材の前記後面側フランジにおける、前記ウエブが交差する両端部側の背面領域2箇所の長手方向の溶接も、施工自体は可能ではあるが、鋼板の両側面側(前記アルミニウム合金中空形材の両側面側)が開放されているために、高い接合強度は期待できない。言い換えると、前記中リブが交差する前記後面側フランジの中央部側の背面領域での溶接が無い、これら両端部側の背面領域2箇所の溶接だけでは、前記曲げ強度部材として要求される、高い接合強度が得られない。   Further, in the rear flange of the aluminum alloy hollow profile, welding in the longitudinal direction of two back regions on both end sides where the web intersects is also possible, but both sides of the steel plate (the above-mentioned Since both sides of the aluminum alloy hollow profile are open, high bonding strength cannot be expected. In other words, there is no welding in the back region on the center side of the rear side flange where the middle ribs intersect, and only welding in the two back regions on both ends is required as the bending strength member. Bonding strength cannot be obtained.

以上の理由により、前記アルミニウム合金中空形材の後面側フランジ背面に鋼板を溶接して複合補強部材を製造することはなかなか難しく、例え溶接したとしても、前記曲げ強度部材として要求される、高い接合強度が得られないし、保証もできない。   For the above reasons, it is quite difficult to manufacture a composite reinforcing member by welding a steel plate to the back side of the rear surface side flange of the aluminum alloy hollow material, and even if it is welded, it is required as the bending strength member, which is a high joint. Strength cannot be obtained and cannot be guaranteed.

本発明は、このような問題に鑑み、前記アルミニウム合金中空形材の後面側フランジ背面に対して鋼板を溶接する場合でも、前記曲げ強度部材として要求される高い接合強度が得られる複合補強部材の製造方法および複合補強部材を提供することを目的とする。   In view of such a problem, the present invention provides a composite reinforcing member that can obtain a high joint strength required as the bending strength member even when a steel plate is welded to the rear surface of the rear surface side flange of the aluminum alloy hollow shape member. It aims at providing a manufacturing method and a composite reinforcement member.

上記目的を達成するための、本発明の複合補強部材の製造方法の要旨は、矩形断面内に中リブを設けた日形断面形状を有するアルミニウム合金中空形材の、曲げ荷重が作用した際に引張側となる後面側フランジの背面に鋼板を積層し、これら積層した鋼板とアルミニウム合金中空形材とを、前記後面側フランジの両端部側と、前記後面側フランジの前記中リブが交差する中央部側との三箇所で、前記アルミニウム合金中空形材の長手方向に亙って、重ね隅肉アーク溶接によりアルミニウム合金溶加材を用いて一体に接合するに際し、前記アルミニウム合金中空形材の前記後面側フランジの前記中リブが交差する前記中央部側の背面領域を、前記アルミニウム合金中空形材の長手方向に亙って予め凸状に形成しておき、この凸状に形成した背面領域を間に挟むように2枚の前記鋼板を積層して、この凸状に形成した背面領域が、下記条件を満たして、これら鋼板間に突出するようにし、この状態で、前記後面側フランジの凸状に形成した背面領域と、この背面領域に臨む前記2枚の鋼板の各々の中央部側の側面部分とを合わせて、前記後面側フランジの前記中リブが交差する中央部側の溶接箇所として、前記アルミニウム合金中空形材の長手方向に亙って、前記鋼板の前記側面とそれに続く表面に対して一体に溶接することである。
ここで、前記凸状に形成した背面領域が満たす前記条件とは、前記アルミニウム合金中空形材の最大の厚みを8mm以下とし、前記鋼板の板厚を0.3〜4.0mmの範囲とした際に、前記凸状に形成した背面領域の、前記鋼板の上面レベルよりも上部側の領域における縦断面の面積Sが10mm以下で、前記後面側フランジの背面と面一な根元部の前記中空形材の幅方向の長さである後端部の幅L1が8mm以下、このL1と前記中リブの幅twとの比L1/twが0.6以上、1.2以下の範囲(但し、前記中リブの幅twは8mm以下)を満たすものとする。
In order to achieve the above object, the gist of the manufacturing method of the composite reinforcing member of the present invention is that when a bending load is applied to an aluminum alloy hollow shape member having a daily cross-sectional shape with an intermediate rib in a rectangular cross-section. A steel plate is laminated on the back side of the rear side flange to be the tension side, and the laminated steel plate and the aluminum alloy hollow profile are centered at both ends of the rear side flange and the middle rib of the rear side flange. The three parts of the aluminum alloy hollow shape member are joined together using the aluminum alloy filler material by lap fillet arc welding in the longitudinal direction of the aluminum alloy hollow shape member at three locations on the part side. The back surface region on the center portion side where the middle ribs of the rear flange intersect is formed in advance in the longitudinal direction of the aluminum alloy hollow shape member, and the back surface formed in this convex shape In this state, the rear surface side flange is formed by laminating the two steel plates so as to sandwich the region therebetween, and the rear region formed in this convex shape satisfies the following conditions and protrudes between the steel plates. The rear region formed in a convex shape and the side surface portion on the central portion side of each of the two steel plates facing this rear region are welded on the central portion side where the middle rib of the rear flange intersects As a place, it is welding to the said side surface of the said steel plate, and the surface which follows it over the longitudinal direction of the said aluminum alloy hollow shape material.
Here, the conditions that the convexly formed back region satisfies are that the maximum thickness of the aluminum alloy hollow profile is 8 mm or less, and the plate thickness of the steel sheet is in the range of 0.3 to 4.0 mm. when, before Symbol rear region formed in a convex shape, the area S of the longitudinal section in the upper side region than the upper surface level of the steel sheet by 10 mm 2 or less, the back and flush the root portion of the rear surface side flange The width L1 of the rear end portion, which is the length in the width direction of the hollow shape member, is 8 mm or less, and the ratio L1 / tw between the L1 and the width tw of the middle rib is 0.6 or more and 1.2 or less ( However, the width tw of the middle rib is 8 mm or less).

ここで、前記溶接が、アルミニウム材外皮内部にフラックスを充填してなるフラックスコアードワイヤを用いた、MIG溶接あるいはレーザ溶接であることが好ましい。   Here, it is preferable that the welding is MIG welding or laser welding using a flux cored wire in which a flux is filled inside the aluminum outer shell.

また、上記目的を達成するための、本発明の複合補強部材の要旨は、上記各製造方法で製造された複合補強部材であって、矩形断面内に中リブを設けた日形断面形状を有するアルミニウム合金中空形材の曲げ荷重が作用した際に引張側となる後面側フランジの背面に鋼板が積層されているとともに、これら積層された鋼板とアルミニウム合金中空形材とが、前記後面側フランジの両端部側と、前記後面側フランジの前記中リブが交差する中央部側との三箇所で、前記アルミニウム合金中空形材の長手方向に亙って、重ね隅肉アーク溶接によりアルミニウム合金溶加材を用いて一体に接合されており、前記アルミニウム合金中空形材の前記後面側フランジの前記中リブが交差する前記中央部側の背面領域に、前記アルミニウム合金中空形材の長手方向に亙って予め形成された凸状の背面領域が、この凸状の背面領域を間に挟むように積層された2枚の前記鋼板間に突出するように設けられ、この状態で、前記凸状の背面領域と、この背面領域に臨む前記2枚の鋼板の各々の中央部側の側面部分とが合わせて、前記後面側フランジの前記中リブが交差する中央部側の溶接箇所として、アルミニウム合金ビードで前記アルミニウム合金中空形材の長手方向に亙って、前記鋼板の前記側面とそれに続く表面とに前記ビードが盛り上がり状に覆い被さって一体に接合されていることである。 In order to achieve the above object, the gist of the composite reinforcing member of the present invention is a composite reinforcing member manufactured by each of the above manufacturing methods, and has a daily cross-sectional shape in which a middle rib is provided in a rectangular cross section. A steel plate is laminated on the back side of the rear side flange, which becomes the tension side when the bending load of the aluminum alloy hollow shape is applied, and the laminated steel plate and the aluminum alloy hollow shape member are connected to the rear side flange. Aluminum alloy filler by overlapped fillet arc welding in the longitudinal direction of the aluminum alloy hollow shape at three locations, both ends and the central side where the middle rib of the rear flange intersects The aluminum alloy hollow shape member is joined to the back surface region on the center side where the intermediate ribs of the rear surface side flange of the aluminum alloy hollow shape member intersect with each other. A convex back surface region formed in advance in the direction is provided so as to protrude between the two steel plates laminated so as to sandwich the convex back surface region therebetween. A convex back region and a side portion on the center portion side of each of the two steel plates facing the back region are combined, and as a welding portion on the center portion side where the middle rib of the rear surface side flange intersects, The bead is covered with the aluminum alloy bead in a longitudinal direction of the hollow shape of the aluminum alloy, and is integrally joined to the side surface of the steel plate and the subsequent surface .

前記アルミニウム合金中空形材と鋼板とを、前記FCW溶接法を用いて溶接する際に、前記曲げ強度部材として要求される高い接合強度が得られない理由は、前記した溶接施工の難しさだけでなく、前記曲げ強度部材という特有の用途と、前記中空形材の日形断面形状という特有の断面形状との関係にもよる。   The reason why the high joint strength required as the bending strength member cannot be obtained when the aluminum alloy hollow shape member and the steel plate are welded using the FCW welding method is only due to the difficulty of the welding operation described above. In addition, it depends on the relationship between the specific use of the bending strength member and the specific cross-sectional shape of the hollow cross-sectional shape of the sun.

日形断面では、前面側のフランジで受けたせん断力(衝突荷重)を、フランジ両端部の各ウェブとフランジ中央部の中リブとで、後面側フランジに伝える。このため、複合補強材としては、両端部の各ウェブ付近ととともに、中央部の中リブ付近の三箇所で、中空形材の長手方向に溶接線を設けるのが有効である。   In the daily section, the shear force (impact load) received by the flange on the front side is transmitted to the rear side flange by the webs at both ends of the flange and the middle rib at the center of the flange. For this reason, as a composite reinforcing material, it is effective to provide weld lines in the longitudinal direction of the hollow shape material at three locations near the middle ribs in the central portion along with the webs at both ends.

ただ、この場合に、前記後面側フランジの両端部側の前記ウエブが交差する背面領域(前記両端部の各ウェブ付近)よりも、特に、前記後面側フランジの前記中リブが交差する中央部側の背面領域(前記中央部の中リブ付近)に負荷される荷重が大きくなる。このため、自動車の車体衝突による、曲げ荷重が作用した場合に、前記後面側フランジの中央部側の背面領域の溶接部が特に破壊しやすくなる。   However, in this case, in particular, the center side where the middle ribs of the rear surface side flange intersect with each other than the back surface region (near each web of the both end portions) where the webs on both end sides of the rear surface side flange intersect. The load applied to the rear region (near the central rib in the center) increases. For this reason, when the bending load by the vehicle body collision of a motor vehicle acts, it becomes easy to destroy especially the welding part of the back surface area | region of the center part side of the said rear surface side flange.

したがって、前記後面側フランジの中央部側の背面領域の溶接部には、特に接合強度が要求されるが、この溶接部は、前記した通り、前記後面側フランジの両端部側の前記ウエブが交差する背面領域の溶接部よりも、著しく重ね隅肉溶接施工しにくい箇所である。   Accordingly, the welded portion in the rear region on the center side of the rear flange is particularly required to have a bonding strength. As described above, the welded portion intersects the webs on both ends of the rear flange. This is a place where it is significantly more difficult to carry out the overlap fillet welding than the welded portion in the back region.

これに対して、本発明では、前記要旨の通り、接合される前記中空形材の前記後面側フランジの中央部側の背面領域を予め凸状に形成するとともに、この凸状に形成した背面領域(突起)を間に挟み、この凸部が積層された2枚の前記鋼板間に突出するように前記鋼板を積層して、この凸状に形成した背面領域と、この背面領域に臨む前記2枚の鋼板の各々の中央部側の側面部分とを合わせて、一体に溶接する。   On the other hand, in this invention, as the said summary, while forming the back area | region of the center part side of the said rear surface side flange of the said hollow shape material joined beforehand in convex shape, this back area formed in this convex shape (Protrusions) sandwiched between them, the steel plates are laminated so as to protrude between the two steel plates on which the convex portions are laminated, and the back region formed in this convex shape, and the 2 facing the back region The steel sheet is joined together with the side surface portion on the center side of each of the steel plates.

本発明では、このように、凸部が積層された2枚の前記鋼板間に突出するような、前記中空形材の前記凸部と鋼板中央部側端部との凹凸がかみ合った状態で、このかみ合い領域を一体として、アルミニウム合金溶加材を用いて、前記中空形材の長手方向に亙って重ね隅肉アーク溶接施工して、アルミニウム合金ビードで被覆する。   In the present invention, as described above, in a state where the projections and projections of the hollow shape member project between the two steel plates on which the projections are laminated, the projections and depressions of the steel plate central portion side are engaged, The meshing area is integrated, and an aluminum alloy filler material is used, and the fillet arc welding is performed over the longitudinal direction of the hollow profile and covered with an aluminum alloy bead.

このため、後述する通り、前記中空形材の前記凸状を前記鋼板よりも上側に突出させた効果によって、アルミニウム溶湯の広がりが適正化され、鋼板接合部表面へのフラックスの供給も十分となり、アルミニウム溶湯と鋼との濡れ性改善効果が大きくなる。   For this reason, as will be described later, due to the effect of projecting the convex shape of the hollow profile upward from the steel plate, the spread of the molten aluminum is optimized, and the supply of flux to the steel plate joint surface is also sufficient, The effect of improving the wettability between molten aluminum and steel is increased.

この結果、前記鋼板と中空形材との両方の溶接面に亙るアルミニウム溶接材料によるビードを形成できる。これによって、本発明では、前記中空形材と鋼板とを前記FCW溶接法を用いて溶接する際に、負荷される荷重が大きな溶接箇所でも、高い接合強度を安定的に確保することができる。   As a result, it is possible to form a bead made of an aluminum welding material that extends over both the steel plate and the hollow profile. Thereby, in this invention, when welding the said hollow shape material and a steel plate using the said FCW welding method, high joint strength can be ensured stably also in the welding location where the load loaded is large.

本発明の一態様を示し、アルミニウム合金中空形材と鋼板とを積層する前の状態を示す斜視図である。It is a perspective view which shows the one aspect | mode of this invention, and shows the state before laminating | stacking an aluminum alloy hollow shape material and a steel plate. 本発明の一態様を示し、アルミニウム合金中空形材と鋼板とを溶接する前の積層した状態を示す斜視図である。It is a perspective view which shows the one aspect | mode of this invention, and shows the laminated | stacked state before welding an aluminum alloy hollow shape material and a steel plate. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 本発明の一態様を示し、アルミニウム合金中空形材と鋼板とを溶接した後の複合補強部材を示す側面図である。It is a side view which shows the one aspect | mode of this invention and shows the composite reinforcement member after welding the aluminum alloy hollow shape material and the steel plate. 本発明の一態様を示し、溶接後の複合補強部材を示す斜視図である。It is a perspective view which shows the one aspect | mode of this invention and shows the composite reinforcement member after welding. 図4の複合補強部材の使用態様を示す平面図である。It is a top view which shows the usage condition of the composite reinforcement member of FIG.

以下に、本発明の実施態様と、本発明の各要件の意義とを図を用いて具体的に説明する。   The embodiment of the present invention and the significance of each requirement of the present invention will be specifically described below with reference to the drawings.

複合補強部材の製造方法を図1〜図4を用いて順に説明する。図1に、アルミニウム合金中空形材2と鋼板10、11とを積層する前の状態を斜視図で示す。また、図2に、アルミニウム合金中空形材2と鋼板10、11とを積層した後の状態を斜視図で示す。なお、これら図1、2および後述する図4では、各図の下側から上側の前面側フランジ3に向かう、Fで示す自動車車体衝突時の曲げ荷重を矢印で記載している。   The manufacturing method of a composite reinforcement member is demonstrated in order using FIGS. In FIG. 1, the state before laminating | stacking the aluminum alloy hollow shape material 2 and the steel plates 10 and 11 is shown with a perspective view. Moreover, the state after laminating | stacking the aluminum alloy hollow shape material 2 and the steel plates 10 and 11 in FIG. 2 is shown with a perspective view. In FIGS. 1 and 2 and FIG. 4 to be described later, the bending load at the time of an automobile body collision indicated by F from the lower side of each figure toward the upper front side flange 3 is indicated by an arrow.

図1、2、4の態様では、中空形材2に積層、接合する鋼板10、11の長さを同じとしているが、鋼板10、11の長さは、必要に応じて選択され、必ずしも中空形材2の長さと同じ長さとする必要はなく、短くしても良い。鋼板10、11の長さを中空形材2の長さよりも短くすれば、異材接合となる溶接線を短くできる利点もある。   In the embodiments of FIGS. 1, 2, and 4, the lengths of the steel plates 10 and 11 to be laminated and bonded to the hollow shape member 2 are the same, but the lengths of the steel plates 10 and 11 are selected as necessary and are not necessarily hollow. The length need not be the same as the length of the profile 2 and may be shortened. If the lengths of the steel plates 10 and 11 are made shorter than the length of the hollow shape member 2, there is also an advantage that the weld line to be joined to the different material can be shortened.

中空形材2は、曲げ荷重Fが作用した際に圧縮側となる前面側フランジ(前壁)3と、引張側となる後面側フランジ(後壁)4と、これら互いに平行な2本のフランジ3、4間をつなぐ、互いに平行な2本のウエブ(横壁)5、6とから矩形断面を形成している。そして、更に、この矩形断面内に、ウエブ5、6に平行な中リブ7を、フランジ3、4の中央部(ウエブ5、6間の中間部)に設けて補強した日形断面形状を有する。   The hollow shape member 2 includes a front side flange (front wall) 3 that becomes a compression side when a bending load F acts, a rear side flange (rear wall) 4 that becomes a tension side, and two flanges that are parallel to each other. A rectangular cross section is formed from two webs (horizontal walls) 5 and 6 that are connected to each other between 3 and 4 and are parallel to each other. Further, in this rectangular cross section, a middle cross section 7 parallel to the webs 5 and 6 is provided at the central part of the flanges 3 and 4 (intermediate part between the webs 5 and 6) to have a daily cross section shape. .

中空形材2の断面形状としては、他に口型、目型、田型などが公知である。しかし、本発明では、本発明の製造方法(溶接方法)が適用でき、重量が増加せずに口型断面形状よりも高強度化(補強)できる、軽量化と補強効果との兼ね合いから、日形断面形状を選択する。   As the cross-sectional shape of the hollow shape member 2, a mouth shape, an eye shape, a rice field shape, and the like are also known. However, in the present invention, the manufacturing method (welding method) of the present invention can be applied, and the weight can be increased (reinforced) from the cross-sectional shape of the mouth without increasing the weight. Select the cross-sectional shape.

(凸状領域の形成)
この中空形材2は、特徴的には、中リブ7が交差する前記後面側フランジ4の中央部側の背面領域4aを、中空形材2の長手方向に亙って予め凸状(突起状)に形成している。
(Formation of convex region)
Characteristically, the hollow shape member 2 has a convex shape (protruding shape) in which the rear region 4a on the center side of the rear surface side flange 4 where the intermediate ribs 7 intersect is extended in the longitudinal direction of the hollow shape member 2. ).

図2に示す通り、この凸状に形成した背面領域(突起)8を間に挟むように、中空形材2の後面側フランジ4の背面9に、2枚の鋼板10、11を上側から積層した際に、この凸状に形成された領域8(凸状に形成した背面領域8、以下簡便に凸部8とも言う)が、これら鋼板10、11間から、その先端8aが、好ましくは鋼板10、11の上側表面よりも上方に突出するようにする。   As shown in FIG. 2, two steel plates 10 and 11 are laminated on the back surface 9 of the rear surface side flange 4 of the hollow shape member 2 so as to sandwich the convex back surface region (projection) 8 therebetween. In this case, the convex region 8 (the rear region 8 formed in a convex shape, hereinafter simply referred to as the convex portion 8) is formed between the steel plates 10 and 11, and the tip 8a is preferably a steel plate. It protrudes above the upper surface of 10 and 11.

図2において、鋼板10、11の下側となる中空形材2において、凸部(突起)8の先端8aの上下方向の位置(レベル)は、溶接施工方向である、中空形材2の長手方向に亙って、鋼板10、11の表面(上面)である鋼板溶接面の上下方向の位置(点線で示すレベル)よりも上側にXmmの長さだけ、突出した状態としている。言い換えると、図3に示すように、凸部8の先端8aが、鋼板10、11の表面よりも、上側にXmmだけ突出するように、凸部8の大きさや高さの形状条件が決定されている。ここで、後述する効果を得るための、この凸部8の鋼板10、11表面レベルよりも上側への突出量Xの最適範囲は、後述する通り、諸条件によって異なるが、前記自動車車体などの補強部材の分野では0.5mm〜5mmの範囲である。   In FIG. 2, in the hollow profile 2 on the lower side of the steel plates 10, 11, the vertical position (level) of the tip 8 a of the projection (projection) 8 is the longitudinal direction of the hollow profile 2, which is the welding direction. In the direction, it protrudes by a length of X mm above the vertical position (level indicated by the dotted line) of the steel plate welding surface which is the surface (upper surface) of the steel plates 10 and 11. In other words, as shown in FIG. 3, the shape conditions of the size and height of the convex portion 8 are determined so that the tip 8a of the convex portion 8 protrudes by X mm above the surfaces of the steel plates 10 and 11. ing. Here, in order to obtain the effect described later, the optimum range of the protrusion amount X above the surface level of the steel plates 10 and 11 of the convex portion 8 varies depending on various conditions as described later. In the field of reinforcing members, the range is 0.5 mm to 5 mm.

このように、中空形材2の溶接面となる凸部8の先端8aを、鋼板10、11の表面(上面)の溶接面の位置よりも、上側に突出させると、前記中空形材2の長手方向に亙る前記溶接施工方向に対して、少なくとも中空形材2 の溶接面は鋼板10、11の溶接面よりも上側となる。   Thus, when the front-end | tip 8a of the convex part 8 used as the welding surface of the hollow shape material 2 is made to protrude above the position of the welding surface of the surface (upper surface) of the steel plates 10 and 11, the said hollow shape material 2 of FIG. At least the weld surface of the hollow profile 2 is above the weld surface of the steel plates 10 and 11 with respect to the welding direction in the longitudinal direction.

本発明では、このような中空形材2側の凸状領域(凸部)8の先端部8aが、積層された2枚の前記鋼板10、11表面よりも、上側に突出するような、凹凸がかみ合った状態で、このかみ合い領域を一体として、アルミニウム合金溶加材を用いて、中空形材2の長手方向に亙って、重ね隅肉アーク溶接施工して、アルミニウム合金ビードで被覆する。   In the present invention, the projections and depressions such that the tip 8a of the convex region (convex part) 8 on the hollow profile 2 side protrudes upward from the surface of the two steel plates 10 and 11 stacked. In this state, the meshing area is integrated, and an aluminum alloy filler material is used, and the fillet arc welding is performed over the longitudinal direction of the hollow member 2 and covered with an aluminum alloy bead.

この結果、図4に示す通り、重ね隅肉溶接施工によって、後面側フランジ4の中リブ7が交差する中央部側の溶接箇所においても、鋼板中央部側端部10a、11aと、中空形材2の中央部側の背面領域4aとの、両方の溶接面に亙るアルミニウム溶接材料による良好なビード12を形成できる。これによって、中空形材2と鋼板10、11とを前記FCW溶接法を用いて溶接する際に、中空形材2の中央部側の背面領域4aの溶接箇所でも、高い接合強度を安定的に確保することができる。   As a result, as shown in FIG. 4, the steel plate center side end portions 10a and 11a and the hollow profile are also formed at the welded portion on the center side where the middle rib 7 of the rear surface side flange 4 intersects by overlap fillet welding. A good bead 12 made of an aluminum welding material over both welding surfaces with the back region 4a on the center side of 2 can be formed. As a result, when the hollow shape member 2 and the steel plates 10 and 11 are welded using the FCW welding method, a high joint strength can be stably obtained even at the welded portion of the back region 4a on the center side of the hollow shape member 2. Can be secured.

より具体的には、後面側フランジ4の中リブ7が交差する中央部側の背面領域4aの溶接箇所における、アルミニウム溶湯の広がりが適正化され、鋼板接合部表面へのフラックスの供給も十分となるため、アルミニウム溶湯と鋼との濡れ性改善効果が大きくなる。すなわち、図4に示す通り、上側である中空形材2の溶接面(凸部8の先端8a)からのアルミニウム溶湯6(ビードとなる)が、下側の鋼板10、11の表面(溶接面)に広がりやすい。これは、溶接面に供給されるフラックスにおいても言える。したがって、フラックスを活用した場合も(前記FCW溶接法による場合も)、フラックスが下側の鋼板10、11の表面(溶接面)に広がりやすい。このため、鋼板10、11の溶接面とアルミニウム溶湯との濡れ性を改善し、また鋼板10、11の表面(溶接面)の酸化膜除去を促進できる。この結果、鋼板溶接面とアルミニウム合金中空形材溶接面との両方の溶接面に亙るアルミニウム溶接材料によるビード12を形成でき、良好な異材接合が実現できる。   More specifically, the spread of the molten aluminum is optimized at the welded portion of the back region 4a on the center side where the middle ribs 7 of the rear surface side flange 4 intersect, and the supply of flux to the steel plate joint surface is sufficient. Therefore, the effect of improving the wettability between the molten aluminum and the steel is increased. That is, as shown in FIG. 4, the molten aluminum 6 (becomes a bead) from the welding surface (the tip 8 a of the convex portion 8) of the hollow shape member 2 on the upper side is the surface (welding surface) of the lower steel plates 10 and 11. ) Easy to spread. This is also true for the flux supplied to the weld surface. Therefore, even when the flux is utilized (in the case of the FCW welding method), the flux tends to spread on the surfaces (welded surfaces) of the lower steel plates 10 and 11. For this reason, the wettability of the welding surface of the steel plates 10 and 11 and the molten aluminum can be improved, and the removal of the oxide film on the surfaces (welding surfaces) of the steel plates 10 and 11 can be promoted. As a result, the bead 12 made of the aluminum welding material over both the steel plate welding surface and the aluminum alloy hollow profile welding surface can be formed, and good dissimilar material joining can be realized.

他方、前記フラックスによる清浄作用及びぬれ性、接着性良好化作用によって、鋼板10、11の溶接面には、アルミニウム溶湯が広く覆い被さり、密着状態にある。したがって、鋼板10、11へは、アークから直接的に入熱されることはなく、覆い被さったアルミニウム溶湯を介して間接的に入熱される。このために、鋼板10、11はアークによって過剰に加熱されて溶融することはなく、密着したアルミニウム溶湯との接合界面に数μm程度と薄い金属間化合物層を形成することになる。この金属間化合物層が数十μm程度以上と厚くなると、脆弱になり、溶接割れが発生して強度が劣化するが、数μm程度と薄い金属間化合物層は、脆弱ではなく、強固な接合状態となる。   On the other hand, the molten aluminum is widely covered on the welded surfaces of the steel plates 10 and 11 by the cleaning action, the wettability and the adhesion improving action by the flux, and is in a close contact state. Therefore, the steel plates 10 and 11 are not directly input heat from the arc, but are indirectly input through the aluminum melt covered. For this reason, the steel plates 10 and 11 are not heated and melted excessively by the arc, and a thin intermetallic compound layer of about several μm is formed at the bonding interface with the molten aluminum that is in close contact. When this intermetallic compound layer becomes thicker than about several tens of μm, it becomes brittle and weld cracks occur and the strength deteriorates. However, a thin intermetallic compound layer of about several μm is not brittle and has a strong bonding state. It becomes.

(複合補強部材の基本構造)
図4の複合補強部材の使用態様を図5に示す。図5はバンパー補強材として、溶接時の向きを示す図4の複合補強部材を、その前面側フランジ3と後面側フランジ4とを自動車車体の前後方向に配置するとともに、その長手方向を自動車車体の幅方向に延在させたものである。
(Basic structure of composite reinforcing member)
FIG. 5 shows how the composite reinforcing member shown in FIG. 4 is used. FIG. 5 shows a composite reinforcing member shown in FIG. 4 showing a direction during welding as a bumper reinforcing material, with the front side flange 3 and the rear side flange 4 arranged in the front-rear direction of the automobile body, and the longitudinal direction of the composite reinforcing member shown in FIG. It extends in the width direction.

図5の通り、本発明において最終的に製造された複合補強部材1は、日形断面形状を有するアルミニウム合金中空形材2の後面側フランジ4の背面9に、鋼板10、11を並べて積層、溶接して補強している。これらの鋼板10、11と中空形材2とは、ウエブ5、6が交差する後面側フランジ4の両端部側の背面領域4b、4cと、中リブ7が交差する後面側フランジ4の中央部側の背面領域4aとの3箇所を溶接箇所として、3本のアルミニウム合金ビード12(中央部側)、13(端部側)、14(端部側)で、中空形材2の長手方向に亙って被覆されて、一体に接合されている。   As shown in FIG. 5, the composite reinforcing member 1 finally produced in the present invention has the steel plate 10, 11 stacked side by side on the back surface 9 of the rear surface side flange 4 of the aluminum alloy hollow shape member 2 having a daily cross-sectional shape. Reinforced by welding. These steel plates 10 and 11 and the hollow shape member 2 are the central portions of the rear surface side flange 4 where the intermediate ribs 7 intersect with the back surface regions 4b and 4c on the both end sides of the rear surface side flange 4 where the webs 5 and 6 intersect. Three aluminum alloy beads 12 (center side), 13 (end side), and 14 (end side) in the longitudinal direction of the hollow shape member 2 with the three backside regions 4a as welding locations They are covered and joined together.

前記した通り、日形断面では、前面側フランジ3で受けた、左方向からの矢印で示すせん断力(衝突荷重)Fを、フランジ両端部の各ウェブからf1、f3として、フランジ中央部の中リブからf2として、分担して後面側フランジ4に伝える。この場合、後面側フランジ4の両端部側の前記ウエブが交差する背面領域(両端部の各ウェブ付近)4b、4cへの荷重f1、f3よりも、特に、後面側フランジ4の中リブ7が交差する中央部側の背面領域(前記中央部の中リブ付近)4aに負荷される荷重f2が大きくなる。このため、自動車の車体衝突による、曲げ荷重が作用した場合に、この後面側フランジ4の中央部側の背面領域4aの溶接部である、アルミニウム合金ビード12(中央部側)が特に破壊しやすくなる。   As described above, in the case of a Japanese section, the shear force (impact load) F indicated by the arrow from the left direction received by the front side flange 3 is set to f1 and f3 from the webs at both ends of the flange, so that As f2 from the rib, it is shared and transmitted to the rear surface side flange 4. In this case, in particular, the middle rib 7 of the rear surface side flange 4 is larger than the loads f1 and f3 on the rear regions (near the webs on both ends) 4b and 4c where the webs on both ends of the rear surface side flange 4 intersect. The load f2 applied to the intersecting back side region (near the middle rib in the center) 4a increases. For this reason, when a bending load is applied due to a vehicle body collision of an automobile, the aluminum alloy bead 12 (center side), which is a welded portion of the rear region 4a on the center side of the rear flange 4 is particularly easily broken. Become.

これに対して、本発明では、特に、この後面側フランジ4の中央部側の背面領域4aの溶接部である、アルミニウム合金ビード12(中央部側)の接合強度が優れている。このため、ウエブ5、6が交差する後面側フランジ4の両端部側の背面領域4b、4cでの2箇所の溶接部、すなわち、アルミニウム合金ビード13(端部側)、14(端部側)による接合強度が、前記段落0020で記載した通り、比較的低くても、前記曲げ強度部材として要求される、高い接合強度が得られる。   On the other hand, in this invention, especially the joining strength of the aluminum alloy bead 12 (center part side) which is a welding part of the back surface area | region 4a of the center part side of this rear surface side flange 4 is excellent. For this reason, two welded portions in the rear regions 4b and 4c on both ends of the rear flange 4 where the webs 5 and 6 intersect, that is, aluminum alloy beads 13 (end side) and 14 (end side) As described in the paragraph 0020, even if the joint strength is relatively low, a high joint strength required as the bending strength member can be obtained.

このように、本発明では、中空形材2と鋼板10、11とを前記FCW溶接法を用いて溶接する際に、中央部側の背面領域4aの溶接箇所でも、前記溶接施工の難しさが大きく改善される。この結果、日形断面形状特有の、負荷される荷重が特に大きくなるような、中央部側の背面領域4aの溶接箇所でも、高い接合強度を安定的に確保することができる。この結果、ウエブ5、6が交差する後面側フランジ4の両端部側の背面領域4b、4cでの他の2箇所の溶接部の接合強度が比較的低くても、前記曲げ強度部材全体としては、要求される高い接合強度が得られる。   As described above, in the present invention, when the hollow shape member 2 and the steel plates 10 and 11 are welded using the FCW welding method, the welding operation is difficult even at the welding portion of the back region 4a on the center side. Greatly improved. As a result, high joint strength can be stably ensured even at the welded portion of the back region 4a on the center side, where the applied load, which is specific to the shape of the sectional shape of the sun, is particularly large. As a result, even if the joint strength of the other two welds in the rear regions 4b and 4c on the both ends of the rear flange 4 where the webs 5 and 6 intersect is relatively low, The required high bonding strength can be obtained.

図5の態様を、図6(a) に平面視(平面図)で示す通り、曲げ荷重が作用した当初、この曲げ荷重を支えるのは、曲げ強度部材1(中空形材2)の曲げ荷重が負荷された部位 (中央部15) を曲げ中心 (曲げ部) とする曲げ変形となる。この点、本発明において製造された複合補強部材1は、鋼板10、11の接合強度が優れているために、鋼板10、11によるアルミニウム合金中空形材2の補強効果が十分に発揮される。   As shown in FIG. 6 (a) in plan view (plan view), the bending load of the bending strength member 1 (hollow shape member 2) is the one that supports the bending load at the beginning when the bending load is applied. This is a bending deformation with the portion (center portion 15) loaded with the center being the bending center (bending portion). In this respect, since the composite reinforcing member 1 manufactured in the present invention has excellent bonding strength between the steel plates 10 and 11, the reinforcing effect of the aluminum alloy hollow profile 2 by the steel plates 10 and 11 is sufficiently exhibited.

この結果、車体衝突による曲げ荷重が負荷された際に、曲げ強度部材1(中空形材2)断面のつぶれ変形を防止して、加わる曲げ荷重に対して、部材自らの曲げ変形および断面方向の変形 (横圧壊) により、エネルギー吸収する。言い換えると、曲げ強度部材1の全断面が効率的に応力を負担する、矩形断面構造体本来の変形による本来のエネルギー吸収を生じる。したがって、曲げ強度部材の強度およびエネルギー吸収量を高めることができる。   As a result, when a bending load due to a vehicle collision is applied, the bending strength member 1 (hollow profile 2) is prevented from being crushed and deformed in cross section, and the bending deformation of the member itself and the cross-sectional direction of the member against the applied bending load are prevented. Energy is absorbed by deformation (lateral collapse). In other words, the original cross-section of the bending strength member 1 efficiently bears stress, and the original energy absorption due to the original deformation of the rectangular cross-section structure occurs. Therefore, the strength and energy absorption amount of the bending strength member can be increased.

これに対し、中空形材2の後面側フランジ4の背面への鋼板の従来の接合方法では、特に、後面側フランジ4の中央部側の背面領域4aの溶接部のアルミニウム合金ビード12(中央部側)の接合強度が劣る。このため、車体衝突による曲げ荷重が負荷された際に、この溶接部の破壊が生じて、鋼板による中空形材2の補強効果が十分に発揮されない。   On the other hand, in the conventional joining method of the steel plate to the back surface of the rear surface side flange 4 of the hollow shape member 2, in particular, the aluminum alloy bead 12 (center portion of the welded portion of the back surface region 4 a on the center portion side of the rear surface side flange 4. Side) joint strength is poor. For this reason, when a bending load due to a vehicle body collision is applied, the welded portion is broken, and the reinforcing effect of the hollow shape member 2 by the steel plate is not sufficiently exhibited.

このため、図6(b) に示すように、曲げ荷重が負荷された曲げ強度部材1(中空形材2)中央部15などで、早期に圧縮側の前面側フランジ3およびウエブ5(6)に局部的な座屈が生じ、更に変形が進んだ場合、前面側フランジ3やウエブ5(6)が顕著に湾曲する変形を生じつつ、これらで形成する断面のつぶれ変形が進行する。この断面のつぶれ変形が進行した場合、前面側フランジ3やウエブ5(6)が湾曲するため、十分に荷重を負担できない。また、断面の深みが減少するため、曲げ変形に対する抵抗モーメントが減少し、耐曲げ荷重が減少する。この結果、曲げ強度部材の強度およびエネルギー吸収量はより大幅に低下してしまう。   Therefore, as shown in FIG. 6 (b), the front-side flange 3 and the web 5 (6) on the compression side are quickly brought into contact with the bending strength member 1 (hollow profile 2) central portion 15 to which a bending load is applied. When the local buckling occurs and the deformation further progresses, the front side flange 3 and the web 5 (6) are deformed so as to be remarkably curved, and the crushing deformation of the cross section formed by them progresses. When this cross-sectional deformation progresses, the front side flange 3 and the web 5 (6) are curved, so that a sufficient load cannot be borne. Moreover, since the depth of the cross section is reduced, the resistance moment against bending deformation is reduced, and the bending load is reduced. As a result, the strength and energy absorption amount of the bending strength member are significantly reduced.

(凸状領域の設計方法)
矩形断面内に中リブ7を設けて補強した日形断面形状を有する中空形材2からなる曲げ強度部材には、前記した通り、引張側となる後面側フランジ4の背面領域への荷重伝達が不均一となり、両端部側のウエブ5、6が交差する背面領域4b、4cよりも、特に、中リブ7が交差する中央部側の背面領域4aに負荷される荷重が大きくなる。このため、自動車の車体衝突による、曲げ荷重が作用した場合に、後面側フランジの中央部側の背面領域4aの溶接部が特に圧壊しやすくなる。
(Convex area design method)
As described above, the bending strength member made of the hollow shape member 2 having the shape of the cross section of the sun with the intermediate rib 7 provided in the rectangular cross section has a load transmission to the back surface region of the rear side flange 4 on the tension side. In particular, the load applied to the back region 4a on the center side where the middle rib 7 intersects becomes larger than the back regions 4b and 4c where the webs 5 and 6 on both ends intersect. For this reason, when the bending load by the vehicle body collision of a motor vehicle acts, the welding part of the back surface area | region 4a of the center part side of a rear surface side flange becomes especially easy to be crushed.

このため、凸状領域(凸部)8を設ける位置は、前記した通り、負荷される荷重が特に大きくなる、中央部側の背面領域4aの溶接箇所とする。すなわち、中空形材2の後面側フランジ4の、荷重を伝達する中リブ7の端部が交差する中央部側の背面領域4aとする。   For this reason, the position where the convex region (convex portion) 8 is provided is a welded portion of the back region 4a on the central portion side where the applied load is particularly large as described above. That is, the rear surface side flange 4 of the rear surface side flange 4 of the hollow shape member 2 is defined as a back region 4a on the center side where the ends of the intermediate ribs 7 that transmit the load intersect.

凸状領域形成方法:
凸状領域(凸部)8は、中空形材2の後面側フランジ4の、中リブ7の端部が交差する中央部側の背面領域4aを予め部分的に厚肉とすることによって実現できる。このような中央部側の背面領域4aの部分的な厚肉化は、アルミニウム合金中空形材を熱間押出加工により製造すれば、その厚肉化(凸部8)形状も含めて予め一体に形成することが、簡単に可能である。
Convex region forming method:
The convex region (convex portion) 8 can be realized by partially thickening the back region 4a on the center side where the end of the middle rib 7 of the rear flange 4 of the hollow profile 2 intersects in advance. . Such partial thickening of the back side region 4a on the central side can be integrated in advance, including the thickened (convex 8) shape, if an aluminum alloy hollow profile is manufactured by hot extrusion. It is easy to form.

凸状領域の形状:
この凸状領域(凸部)8の形状は、中央部側の背面領域4aの溶接箇所で前記した凸凹のかみ合い効果を発揮させて高い接合強度を得るために、この中央部側のこの凸部の作用である鋼板10、11側の設計条件と、中空形材2側の設計条件と、複合補強部材1として要求される接合強度などから、その条件が決定される。
Convex area shape:
The shape of the convex region (convex portion) 8 is such that this convex portion on the central portion side is used to obtain a high joint strength by exerting the above-described convex / concave meshing effect at the welded portion of the back region 4a on the central portion side. The conditions are determined from the design conditions on the steel plates 10 and 11 side, the design conditions on the hollow shape member 2 side, the bonding strength required for the composite reinforcing member 1, and the like.

ここで、図3では、この凸部8の形状を台形として例示しているが、この場合の形状因子は、凸部8の縦断面面積S(mm)、凸部8の後端部(根元部)の中空形材幅方向の幅(長さ)L1(mm)、凸部8の先端部の中空形材幅方向の幅(長さ)L2(mm)、鋼板表面レベルよりも上側への突出量X(mm)である。 Here, in FIG. 3, the shape of the convex portion 8 is illustrated as a trapezoid, but the shape factor in this case is the vertical cross-sectional area S (mm 2 ) of the convex portion 8, the rear end portion of the convex portion 8 ( Width (length) L1 (mm) in the hollow shape width direction of the root portion), width (length) L2 (mm) in the hollow shape width direction of the tip portion of the convex portion 8, and above the steel plate surface level Is the protrusion amount X (mm).

この図3の記号を用いて表すと、上記した条件とは具体的には以下のような条件となる。すなわち、前記凸状に形成した背面領域が満たす前記条件とは、前記アルミニウム合金中空形材2の最大の厚みを8mm以下とし、前記鋼板10、11の板厚を0.3〜4.0mmの範囲とした際に、図3に示す記号で、前記凸状に形成した背面領域(突起)の、縦断面の面積Sが10mm以下で、後端部の幅L1が8mm以下、このL1と前記中リブの幅twとの比L1/twが0.6以上、1.2以下の範囲(但し、前記中リブの幅twは8mm以下)を満たすものとする。この条件は、図3に例示した凸部(突起)8の形状が台形の場合だけでなく、これに近似した矩形、半円形などの他の形状の場合でも共通する。 When expressed using the symbols in FIG. 3, the above-described conditions are specifically the following conditions. That is, the conditions satisfied by the convexly formed back region are that the maximum thickness of the aluminum alloy hollow profile 2 is 8 mm or less, and the plate thickness of the steel plates 10 and 11 is 0.3 to 4.0 mm. In the range shown in FIG. 3, the rear surface area (projection) formed in the convex shape has a vertical cross-sectional area S of 10 mm 2 or less and a rear end width L 1 of 8 mm or less. The ratio L1 / tw with the width tw of the middle rib satisfies the range of 0.6 or more and 1.2 or less (however, the width tw of the middle rib is 8 mm or less). This condition is common not only when the shape of the protrusion (projection) 8 illustrated in FIG. 3 is a trapezoid, but also when the shape is similar to a rectangle, semicircular shape, or the like.

前記凸部8の縦断面面積Sとは、図3に網掛け(ハッチィング)で示す通り、前記凸部8の上部側の領域のみの縦断面面積、すなわち、点線で示す鋼板10、11の上面レベルよりも上部側の領域であって、前記点線(鋼板10、11の上面レベル)よりも下部側を除く領域の縦断面の面積である。この凸部8の縦断面面積Sは、後述する鋼板10、11側の形状条件範囲と、中空形材2側の形状条件範囲で、1回の溶接により、凸部に形成した背面領域8(凸部8の領域、突き出し部)への、アルミニウム合金材料の十分な溶け込みと、鋼板への溶接ビードの広がりを確保するためには、前記Sを10mm以下とする。 The vertical sectional area S of the convex portion 8 is the vertical sectional area of only the region on the upper side of the convex portion 8, that is, the steel plates 10 and 11 indicated by dotted lines, as shown by hatching in FIG. It is the area of the longitudinal section of the region above the upper surface level and excluding the lower side from the dotted line (the upper surface level of the steel plates 10 and 11). The vertical cross-sectional area S of this convex part 8 is the back surface area | region 8 (it formed in the convex part by one welding in the shape condition range by the side of the steel plates 10 and 11 mentioned later, and the shape condition range by the side of the hollow shape 2). In order to ensure sufficient penetration of the aluminum alloy material into the region of the convex portion 8 and the protruding portion and the spread of the weld bead to the steel plate, the S is set to 10 mm 2 or less.

また、前記凸部8の後端部、すなわち、後面側フランジ4の背面(上面)と面一な根元部の、中空形材2の幅方向の長さ(幅)L1は、前記突出量Xの好ましい範囲と、中央部側の背面領域4a負荷される荷重の大きさを決める中リブ7の幅(厚み)twとの関係によって定める。その上で、鋼板10、11側の厚みt1、t2、中空形材2側の後面側フランジ4の厚みt3、t4、そして溶接方法、溶接装置や溶接条件なども考慮して、前記凸部8の縦断面面積Sや、凸部8の先端部の中空形材幅方向の幅(長さ)L2をともに定める。   The length (width) L1 of the hollow member 2 in the width direction of the rear end portion of the convex portion 8, that is, the base portion flush with the back surface (upper surface) of the rear flange 4 is the projection amount X. And a width (thickness) tw of the middle rib 7 that determines the magnitude of the load applied to the back region 4a on the center side. In addition, considering the thicknesses t1 and t2 on the steel plates 10 and 11 side, the thicknesses t3 and t4 on the rear flange 4 on the hollow profile 2 side, and the welding method, welding apparatus, welding conditions, etc., the convex portion 8 And the width (length) L2 of the front end portion of the convex portion 8 in the width direction of the hollow member are determined.

前記L1につき、中央部側の背面領域4aへの、溶接時のアルミニウム合金材料の十分な溶け込みと、鋼板10、11側(中央部側側面10a、11a)への溶接ビードの広がりを確保するためには、中空形材2側の中リブ7の幅(厚み)twに対して、凸部8(突き出し部)の幅が十分であることが好ましい。   In order to ensure sufficient penetration of the aluminum alloy material during welding into the back region 4a on the center side and spread of the weld bead on the steel plates 10 and 11 side (center side surfaces 10a and 11a) with respect to L1. For this, it is preferable that the width of the convex portion 8 (protruding portion) is sufficient with respect to the width (thickness) tw of the middle rib 7 on the hollow shape member 2 side.

この点、前記中リブ7の幅twを8mm以下とすると、凸部8の前記後端部(根元部)の幅L1は、中リブ7の幅(厚み)twとの比L1/twで、0.6以上、より好ましくは0.7以上とする。L1が2mm未満、あるいは前記L1/twで0.6未満と小さ過ぎると、中リブ7の強度(負荷荷重)に対して、接合部の強度が不足する。一方、前記L1/twが1.2を超えて大きすぎると、中リブ7から鋼板が離れすぎるため、最も補強が必要な中リブ7の部分の、鋼板による補強効果が小さくなる。したがって前記L1/twの範囲は0.6以上、1.2以下とする。   In this regard, when the width tw of the middle rib 7 is 8 mm or less, the width L1 of the rear end portion (root portion) of the convex portion 8 is a ratio L1 / tw to the width (thickness) tw of the middle rib 7; 0.6 or more, more preferably 0.7 or more. If L1 is less than 2 mm or less than 0.6 at L1 / tw, the strength of the joint is insufficient with respect to the strength (load load) of the middle rib 7. On the other hand, if L1 / tw exceeds 1.2 and is too large, the steel plate is too far away from the middle rib 7, so that the reinforcing effect of the steel plate on the portion of the middle rib 7 that requires the most reinforcement is reduced. Therefore, the range of L1 / tw is 0.6 or more and 1.2 or less.

その一方で、このL1が大きくなっても、ウィービングによりある程度の範囲で対応可能であるが、このL1が8mmを超えると、ウィービング幅が大きくなりすぎ、溶接入熱が大きくなりすぎて、金属間化合物が成長しやすくなる。このため、接合部の強度が不足する。また、L1の幅が大きくなり過ぎると、端部側の溶接線と十分離して配置できなくなり、溶接時の熱ひずみの問題も発生しやすくなる。したがって、中リブ7の幅(厚み)twが8mm以下の範囲とすると、L1の幅は8mm以下、好ましくは2〜8mmの範囲、より好ましくは3〜7mmの範囲とする。   On the other hand, even if this L1 becomes large, it is possible to cope with a certain range by weaving, but if this L1 exceeds 8 mm, the weaving width becomes too large, the welding heat input becomes too large, The compound grows easily. For this reason, the strength of the joint is insufficient. Moreover, if the width of L1 becomes too large, it is impossible to dispose the L1 sufficiently apart from the weld line on the end side, and a problem of thermal strain during welding is likely to occur. Therefore, if the width (thickness) tw of the middle rib 7 is in the range of 8 mm or less, the width of L1 is 8 mm or less, preferably in the range of 2 to 8 mm, more preferably in the range of 3 to 7 mm.

前記凸部(突起)8の突出量Xは、好ましくは、前記した通り0.5mm以上、5mm以下とする。この凸部8の突出量Xは、当然ながら、複合補強部材の設計条件や、溶接方法、溶接条件などに応じて適宜選択される。即ち、アルミニウム溶湯の凸部8の下側となる鋼板10、11側表面(溶接面)への広がりやすさや、フラックスの凸部8の下側となる鋼板10、11側表面(溶接面)への広がりやすさ(濡れ性改善、鋼板溶接面の酸化膜除去促進)の程度などから、適宜選択される。   The protrusion amount X of the convex portion (protrusion) 8 is preferably 0.5 mm or more and 5 mm or less as described above. The protrusion amount X of the convex portion 8 is appropriately selected according to the design conditions, welding method, welding conditions, etc. of the composite reinforcing member. That is, it is easy to spread to the steel plates 10 and 11 side surface (welding surface) which is the lower side of the convex portion 8 of the molten aluminum, and to the steel plates 10 and 11 side surface (welding surface) which is the lower side of the convex portion 8 of the flux. Is selected as appropriate based on the degree of ease of spreading (improvement of wettability and promotion of removal of oxide film on the steel plate weld surface).

この突出量Xが少ないと、鋼板側溶接面にアルミニウム溶湯が十分に広がらない。一方、この突出量Xが大きすぎると、中空形材2側への溶け込み確保が難しい。また、溶け込み確保のために、溶接入熱を上げすぎると、接合界面の金属間化合物が厚く成長してしまい、極端な場合は、鋼板側を溶融させてしまうため、接合強度の確保が難しい。なお、この突出量:Xmmは、当然ながら、中空形材2に上側から積層される鋼板10、11とのクリアランスを加味して(クリアランスに応じて、考慮して)適宜設計される。   When this protrusion amount X is small, the molten aluminum does not spread sufficiently on the steel plate side welding surface. On the other hand, when the protrusion amount X is too large, it is difficult to ensure the penetration into the hollow shape member 2 side. Further, if the welding heat input is increased too much to ensure the penetration, the intermetallic compound at the bonding interface grows thick, and in an extreme case, the steel plate side is melted, so it is difficult to ensure the bonding strength. It should be noted that this protrusion amount: Xmm is appropriately designed taking into account the clearance with the steel plates 10 and 11 laminated on the hollow shape member 2 from the upper side (in consideration of the clearance).

また、中空形材2の後面側フランジ4aの表面と、上側から積層される鋼板10、11下面とのクリアランス(隙間)Cはできるだけ少なくする。その一方で、凸部8の後端部(根元部)と各鋼板の中央部側側面10a、11aとのクリアランス(隙間)Gは、接合強度を高めるために、このクリアランスGへのある程度のアルミニウム合金材料(溶湯)の溶け込み流入量を確保する意味から、片側当たり0.1〜2.0mmの範囲とすることが好ましい。   Further, the clearance (gap) C between the surface of the rear surface side flange 4a of the hollow profile 2 and the lower surfaces of the steel plates 10 and 11 stacked from above is minimized. On the other hand, the clearance (gap) G between the rear end portion (root portion) of the convex portion 8 and the central portion side surfaces 10a and 11a of each steel plate has a certain amount of aluminum to the clearance G in order to increase the bonding strength. In order to secure the inflow amount of the alloy material (molten metal), it is preferable to set the range of 0.1 to 2.0 mm per side.

なお、本実施態様では、凸部8の断面形状(縦断面形状)を台形としているが、これが矩形や半楕円形、波型、あるいはこれらの形状の組み合わせとなっても良い。いずれの形状でも、中空形材2を押出中空形材とすれば、余程複雑な形状としない限り、熱間押出加工によって、簡単に、凸部8を設けた日型断面形状を長手方向に亙って均一に得ることができる。   In the present embodiment, the cross-sectional shape (vertical cross-sectional shape) of the convex portion 8 is a trapezoid, but this may be a rectangle, a semi-elliptical shape, a wave shape, or a combination of these shapes. In any shape, if the hollow shape member 2 is an extruded hollow shape member, the shape of the cross section of the daily shape provided with the convex portions 8 can be easily changed in the longitudinal direction by hot extrusion unless the shape is so complicated. It can be obtained uniformly.

(鋼板、アルミニウム合金中空形材の厚み)
本発明で異材接合される鋼板の板厚は0.3〜4.0mmの範囲とする。鋼板10、11側の厚みt1、t2は同じでも、必ずしも同じで無くてもいいが、軽量化(重量増加の限界)からは最大の厚みでも4.0mm以下とする。一方、鋼板の補強効果からすると0.3mm以上とする。鋼板の板厚が0.3mm未満の場合、前記したアルミニウム合金中空形材2の補強効果(複合化効果)が達成できない。
(Thickness of steel plate and aluminum alloy hollow profile)
The plate | board thickness of the steel plate joined by different materials by this invention shall be the range of 0.3-4.0 mm. The thicknesses t1 and t2 on the steel plates 10 and 11 side may or may not be the same, but the maximum thickness is set to 4.0 mm or less from the viewpoint of weight reduction (limit of weight increase). On the other hand, it is 0.3 mm or more from the reinforcing effect of the steel plate. When the thickness of the steel sheet is less than 0.3 mm, the reinforcing effect (compositing effect) of the aluminum alloy hollow shape member 2 cannot be achieved.

また、中空形材2側のフランジ3、4の厚み(t3、t4)や中リブ7の幅(厚み、tw)なども、同じでも、必ずしも同じで無くてもいい。ただ、中空形材2自体の、曲げ補強部材として断面剛性や強度が十分高く、溶接による熱ひずみの問題が発生しにくいことと、軽量化(重量増加の限界)との兼ね合いからは、前記各部の厚みは最大でも8mm以下とする。一方、補強部材に要求される強度(剛性)、すなわち車体衝突時のエネルギ吸収性などからすると0.5mm以上が好ましい。   Further, the thicknesses (t3, t4) of the flanges 3 and 4 on the hollow profile 2 side and the widths (thicknesses, tw) of the middle ribs 7 may be the same or not necessarily the same. However, the hollow section 2 itself has a sufficiently high cross-sectional rigidity and strength as a bending reinforcement member, and the problem of thermal distortion due to welding is less likely to occur, and the balance between weight reduction (limit of weight increase) The thickness of the maximum is 8 mm or less. On the other hand, 0.5 mm or more is preferable from the viewpoint of strength (rigidity) required for the reinforcing member, that is, energy absorption at the time of a vehicle collision.

なお、図4に示すように、複合補強部材1としては、これらの鋼板10、11とアルミニウム合金中空形材2とが、後面側フランジ4の両端部側のウエブ5、6が交差する背面領域4b、4cと、後面側フランジの中リブ7が交差する中央部側の背面領域4aとの3箇所で、中空形材2の長手方向に亙って溶接して、一体に接合する。   As shown in FIG. 4, as the composite reinforcing member 1, these steel plates 10 and 11 and the aluminum alloy hollow profile 2 are rear regions where the webs 5 and 6 on both ends of the rear flange 4 intersect. 4b and 4c are welded over the longitudinal direction of the hollow shape member 2 at three locations, that is, the central region side rear surface region 4a where the middle ribs 7 of the rear flange intersect, and are integrally joined.

(溶接施工法)
前記図4に示した溶接は、中空形材2(鋼板10、11)の長手方向に亙って、鋼板10、11の長さ分だけ(鋼板10、11の長さを溶接線長さとして)、前記FCWなどの重ね隅肉アーク溶接法により施工する。このための、鋼板10、11と中空形材2との位置関係は、鋼板10、11を上側とし、中空形材2を下側として、前記3箇所において、互いに重ね合わせて、中空形材2の長手方向に亙って隅肉溶接する。
(Welding method)
The welding shown in FIG. 4 is performed by the length of the steel plates 10 and 11 (the length of the steel plates 10 and 11 is defined as the weld line length) in the longitudinal direction of the hollow profile 2 (steel plates 10 and 11). ), By the lap fillet arc welding method such as FCW. For this purpose, the positional relationship between the steel plates 10 and 11 and the hollow profile 2 is such that the steel plates 10 and 11 are on the upper side and the hollow profile 2 is on the lower side, and the hollow profile 2 is overlapped with each other at the three locations. The fillet is welded along the longitudinal direction.

なお、後面側フランジ4の両端部側のウエブ5、6が交差する背面領域4b、4cの溶接施工は従来通りで良い。すなわち、鋼板10、11側の幅を後面側フランジ4の幅よりも狭くして(短くして)、前記背面領域4b、4cでアルミニウム合金表面が露出するようにして、両鋼板の各端部側側面10b、11bとで、重ね隅肉溶接となる形状とする。   In addition, the welding work of the back surface area | regions 4b and 4c where the webs 5 and 6 of the both ends of the rear surface side flange 4 cross | intersect may be as usual. That is, the widths of the steel plates 10 and 11 are made narrower (shorter) than the width of the rear flange 4 so that the aluminum alloy surfaces are exposed in the back regions 4b and 4c. It is set as the shape used as the overlap fillet welding with the side surface 10b, 11b.

この結果、一体に接合された複合補強部材としては、前記した通り、後面側フランジ4の中央部側の背面領域4aの溶接箇所には1本の溶接ビード12が、後面側フランジ4の両端部側のウエブ5、6が交差する背面領域4b、4cの溶接箇所には2本の溶接ビード13、14が、各々中空形材2の長手方向に亙って形成される。   As a result, as a composite reinforcing member joined integrally, as described above, one weld bead 12 is provided at the welded portion of the rear region 4a on the center side of the rear surface side flange 4, and both end portions of the rear surface side flange 4 are provided. Two weld beads 13, 14 are formed along the longitudinal direction of the hollow profile 2 at the welded portions of the rear areas 4 b, 4 c where the side webs 5, 6 intersect.

重ね隅肉アーク溶接は、アルミニウム材外皮内部にフラックスを充填してなるFCW(フラックス入りワイヤ、フラックスコアードワイヤ)を用いた、MIG溶接あるいはレーザ溶接であることが、溶接効率上や汎用性の点で好ましい。より具体的には、アーク溶接方法として、直流のMIG溶接、直流のパルスMIG溶接、交流MIG溶接、交流パルスMIG溶接、直流/交流TIG溶接、プラズマアーク溶接、アーク溶接とレーザ照射とを同時に使用する複合方式のレーザ照射アーク溶接等を使用することができる。   The lap fillet arc welding is MIG welding or laser welding using FCW (flux-cored wire, flux-cored wire) filled with flux inside the aluminum outer shell. This is preferable. More specifically, as the arc welding method, DC MIG welding, DC pulse MIG welding, AC MIG welding, AC pulse MIG welding, DC / AC TIG welding, plasma arc welding, arc welding and laser irradiation are simultaneously used. Combined laser irradiation arc welding or the like can be used.

本発明に使用する異材接合用フラックスコアードワイヤ(FCW)は、溶融溶接の効率化のために、フッ化物系混合フラックスをアルミニウム合金外皮で被覆した、FCWを用いることが好ましい。内部にフラックスを充填する、管状のアルミニウム合金外皮(フープ)は、シーム(合わせ目:隙間、開口部)を有するシーム有りタイプと、このシームを溶接等で接合したシームが無いシームレスタイプとがあるが、いずれでも良い。   As the flux cored wire (FCW) for joining different materials used in the present invention, it is preferable to use FCW in which a fluoride-based mixed flux is covered with an aluminum alloy skin in order to improve the efficiency of fusion welding. There are two types of tubular aluminum alloy hoops that fill the inside with a seam with a seam (joint: gap, opening) and a seamless type without a seam where this seam is joined by welding. But either is fine.

前記FCWの外皮に用いるアルミニウム合金としては、特に制限はないが、A4043、A4047等の4000系アルミニウム合金やA5356、A5183等の5000系アルミニウム合金を用いることができる。この他、3000系や6000系などのアルミニウム合金を用いても良い。この中でも、JISで規定される、A4043−WY、A4047−WY、A5356−WY、A5183−WYなどが、好適に例示される。   The aluminum alloy used for the FCW shell is not particularly limited, but 4000 series aluminum alloys such as A4043 and A4047 and 5000 series aluminum alloys such as A5356 and A5183 can be used. In addition, aluminum alloys such as 3000 series and 6000 series may be used. Among these, A4043-WY, A4047-WY, A5356-WY, A5183-WY, and the like defined by JIS are preferably exemplified.

前記FCWの線径は、高効率の全自動溶接若しくは半自動溶接として用いられている溶接施工用として、ワイヤ送給機の特性なども含めた溶接作業性に応じて最適な径を選定すれば良い。例えば、MIG溶接、一般的な炭酸ガスシールドアーク溶接等であれば、汎用されている0.8〜1.6mmφ程度の細径であれば良い。   As for the wire diameter of the FCW, an optimum diameter may be selected according to the welding workability including the characteristics of the wire feeder, etc., for welding work used as high-efficiency fully automatic welding or semi-automatic welding. . For example, in the case of MIG welding, general carbon dioxide shielded arc welding, etc., it may be a small diameter of about 0.8 to 1.6 mmφ which is widely used.

前記線径の範囲で、より小さい線径のワイヤを用いるほど、溶接を行なうに際しての入熱量を低くし、低電流条件とすることができる。この結果、フッ化物系混合フラックス自体の飛散を防止し、溶接作業性が改善でき、また、脆弱な金属間化合物生成抑制できる。ワイヤ径が1.6φmmを超えると、安定したアークを得るための電流が過大となって、フッ化物系混合フラックス自体の飛散が大きくなる、母材の溶融が過剰気味となり、脆弱な金属間化合物の生成につながる可能性がある。   As the wire having a smaller wire diameter is used within the range of the wire diameter, the amount of heat input during welding can be reduced, and the low current condition can be achieved. As a result, scattering of the fluoride-based mixed flux itself can be prevented, welding workability can be improved, and formation of fragile intermetallic compounds can be suppressed. If the wire diameter exceeds 1.6 mm, the current to obtain a stable arc becomes excessive, the scattering of the fluoride-based mixed flux itself increases, the base material melts excessively, and the brittle intermetallic compound May lead to the generation of

前記FCWへのフラックスの充填率は、フラックス組成にも勿論よるが、前記FCWの全体質量に対して、0.1質量%以上、24質量%未満程度と比較的少なくすることが好ましい。この充填率が低い方が、フラックス自体の飛散を防止して、溶接作業性を改善できる。なお、フラックスの充填率が少な過ぎると、フラックスの効果が発揮できず、健全で信頼性の高い溶接継手が得られない。   Of course, the filling rate of the flux into the FCW is relatively small, such as about 0.1% by mass or more and less than 24% by mass with respect to the total mass of the FCW, although it depends on the flux composition. A lower filling rate can prevent the flux itself from scattering and improve welding workability. If the filling rate of the flux is too small, the effect of the flux cannot be exhibited, and a sound and highly reliable welded joint cannot be obtained.

前記FCWに使用する(充填する)フラックス組成を、フッ化物系混合フラックスの中でも、特にフッ化アルミニウムとフッ化カリウムなど、フッ化物同士を混合した、特定組成の混合フラックス(ノコロックフラックス)とすることが好ましい。また、塩化物量を1mol%以下と規制するか、塩化物を含まないフッ化物組成とすることが好ましい。塩化物は、溶接部に残留すると、溶接部乃至異材接合体の腐食促進因子として作用するからである。   The flux composition used (filled) in the FCW is a mixed flux (nocolock flux) having a specific composition in which fluorides such as aluminum fluoride and potassium fluoride are mixed, among fluoride-based mixed fluxes. It is preferable. Moreover, it is preferable to regulate the amount of chloride to 1 mol% or less or to make a fluoride composition not containing chloride. This is because, when chloride remains in the welded portion, it acts as a corrosion promoting factor for the welded portion or the dissimilar material joined body.

また、このフラックスに、アルミニウム合金粉末を混合添加すると、溶接時のスパッタが減少する他、溶融金属の過大な濡れが抑制される等の効果が得られる場合がある。外皮へのフラックス充填量が少ないと、フラックス量が安定せず、FCWの部位によってフラックス充填量(充填率、含有率)がばらつく問題が生じる。これに対して、特に、フラックス充填量が少ない場合に、フラックスとアルミニウム合金粉末を外皮に混合して充填すると、この問題が解消乃至緩和されるし、同時に、FCWの製造自体も容易になる利点も得られて好ましい。   In addition, when aluminum alloy powder is mixed and added to this flux, spattering during welding is reduced, and excessive wetness of the molten metal may be suppressed. When the amount of flux filling the outer skin is small, the amount of flux is not stable, and the flux filling amount (filling rate, content rate) varies depending on the part of the FCW. On the other hand, in particular, when the flux filling amount is small, mixing the flux and aluminum alloy powder into the outer shell and filling the outer shell eliminates or alleviates this problem, and at the same time, facilitates the manufacture of the FCW itself. Is also preferable.

このような特定組成の混合フラックスとすることで、比較的厚い溶融亜鉛めっき(合金化を含む)を被覆した鋼板でも、前記中空形材との異材接合が可能となる。即ち、亜鉛めっき鋼板や前記中空形材との材料表面を清浄化でき、溶接金属の濡れ性が向上する。この結果、ビードの形成が良好となる。また、異材接合部に生成する、脆いAl-Fe 系金属間化合物層や、亜鉛めっきに由来する脆いZn-Fe 系化合物層の生成が抑制される。これらの結果、接合強度が向上する。勿論、この効果は、亜鉛めっきの無い裸の鋼板と前記中空形材との異材接合でも発揮される。   By using a mixed flux having such a specific composition, even when a steel plate coated with a relatively thick hot dip galvanizing (including alloying) is used, different materials can be joined to the hollow profile. That is, the material surface with the galvanized steel sheet or the hollow shape can be cleaned, and the wettability of the weld metal is improved. As a result, bead formation is improved. In addition, generation of a brittle Al—Fe based intermetallic compound layer generated in the dissimilar material joint and a brittle Zn—Fe based compound layer derived from galvanization is suppressed. As a result, the bonding strength is improved. Of course, this effect is also exhibited in the dissimilar material joining of the bare steel plate without galvanization and the hollow shape member.

FCW溶接条件:
FCWは、巻き取られているスプールから、巻き戻され、送給ロールなどによって、溶接トーチを通って、予め定めた送給速度で、前記溶接箇所に各々送給される。この際、シールドガスが溶接トーチ内に供給される。
FCW welding conditions:
The FCW is unwound from the spool being wound, and is fed to the welding location through a welding torch by a feeding roll or the like at a predetermined feeding speed. At this time, the shielding gas is supplied into the welding torch.

ここで、中空形材と鋼板との界面に生成する金属間化合物の生成を抑制するためには、前記した通り、母材である鋼板を過剰量溶融させることなく、必要最小限の母材溶融(希釈)量で健全な接合状態が得られるような、以下の溶接条件を選択することが好ましい。   Here, in order to suppress the formation of intermetallic compounds generated at the interface between the hollow shape member and the steel plate, as described above, the minimum necessary base material melting is performed without melting an excessive amount of the base steel plate. It is preferable to select the following welding conditions so that a sound joined state can be obtained with a (diluted) amount.

溶接電流は、70A以上、好ましくは80A以上で、120A以下、より好ましくは110A以下である。大電流となるほど、少なからず生成する接合界面の金属間化合物が、接合強度に悪影響をおよぼす可能性があるので、こうした金属間化合物を抑制する上で、比較的低い電流条件で接合することが推奨される。   The welding current is 70A or more, preferably 80A or more, 120A or less, more preferably 110A or less. The larger the current, the more the intermetallic compound at the bonding interface that is generated may adversely affect the bonding strength. Therefore, it is recommended to bond under relatively low current conditions to suppress these intermetallic compounds. Is done.

溶接電圧は、10V以上、好ましくは15V以上で、30V以下、より好ましくは20V以下である。   The welding voltage is 10V or more, preferably 15V or more, 30V or less, more preferably 20V or less.

溶接速度は、上記溶接電流および溶接電圧に応じて、母材のFeおよびAlを過剰溶融させない範囲で適当に決めればよい。ただ、溶接能率なども考慮して好ましいのは20CPM以上、好ましくは30CPM以上で、100CPM以下、より好ましくは90CPM以下である。   The welding speed may be appropriately determined in accordance with the welding current and the welding voltage as long as the base material Fe and Al are not excessively melted. However, considering the welding efficiency and the like, it is preferably 20 CPM or more, preferably 30 CPM or more, and 100 CPM or less, more preferably 90 CPM or less.

シールドガスは、Arなど汎用されるガスが適宜使用でき、ガス流量も、汎用流量が選択でき、特に制限は無い。   As the shield gas, a general-purpose gas such as Ar can be used as appropriate, and a general-purpose flow rate can be selected as the gas flow rate, and there is no particular limitation.

鋼板:
本発明で異材接合される鋼板は、自動車部材などの軽量な高強度構造部材(異材接合体)を得るためには、鋼板の引張強度が400MPa以上、望ましくは500MPa以上の高張力鋼(ハイテン)とする。引張強度が400MPa未満の低強度鋼や軟鋼では、一般に低合金鋼が多く、酸化皮膜が鉄酸化物からなるため、FeとAlの拡散が容易となり、脆い金属間化合物が形成しやすい。また、必要強度を得るための板厚が厚くなり、軽量化が犠牲となる。この鋼板表面は、絶縁皮膜による被覆を除き、亜鉛めっきなどの表面処理が施されている、いないを問わない。
steel sheet:
In order to obtain a lightweight high-strength structural member (dissimilar material joined body) such as an automobile member, the steel plate to be joined to the dissimilar material in the present invention has a tensile strength of 400 MPa or higher, preferably 500 MPa or higher. And Low-strength steel and mild steel with a tensile strength of less than 400 MPa are generally low-alloy steels, and the oxide film is made of iron oxide. Therefore, diffusion of Fe and Al is facilitated, and brittle intermetallic compounds are easily formed. Further, the plate thickness for obtaining the required strength is increased, and the weight reduction is sacrificed. The surface of the steel sheet may or may not be subjected to surface treatment such as galvanization except for coating with an insulating film.

アルミニウム合金中空形材:
中空形材2は、長手方向に亙って、前記凸部8を設けた均一な日形断面形状を有する中空形材が簡便で安価に得られるように、前記した6000系、7000系等の高強度アルミニウム合金を、ビレット鋳造、ビレット均熱後に熱間押出加工し、オンラインあるいはオフラインで調質処理(熱処理)して製造される。中空形材の強度は、補強部材であるがゆえに、上記鋼板の場合と同様に高い方が望ましい。異材接合される中空形材表面も、絶縁皮膜による被覆を除き、表面処理が施されているか、いないかを問わない。
Aluminum alloy hollow profile:
The hollow profile 2 is made of the above-described 6000 series, 7000 series, etc. so that a hollow profile having a uniform daily cross-sectional shape provided with the projections 8 can be obtained easily and inexpensively in the longitudinal direction. A high-strength aluminum alloy is manufactured by billet casting, hot extrusion after billet soaking, and tempering treatment (heat treatment) online or offline. Since the strength of the hollow shape member is a reinforcing member, it is desirable that the strength is high as in the case of the steel plate. It does not matter whether the surface of the hollow material to be joined with the different material is subjected to surface treatment except for coating with an insulating film.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより、下記実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited to the following examples. Of course, it is also possible to implement them, and they are all included in the technical scope of the present invention.

前記図1〜図4に示したように、アルミニウム合金中空形材2の長手方向の溶接施工方向に対して、鋼板10、11を上側とし、中空形材2を下側として、互いに重ね合わせた形状を用いて、FCW溶接(MIG溶接)による重ね隅肉溶接を実施した。   As shown in FIG. 1 to FIG. 4, with respect to the welding direction in the longitudinal direction of the aluminum alloy hollow shape member 2, the steel plates 10 and 11 are placed on the upper side and the hollow shape member 2 is placed on the lower side. Using the shape, lap fillet welding by FCW welding (MIG welding) was performed.

溶接箇所は、後面側フランジ4の中央部側の背面領域4aの一箇所のみとし、後面側フランジ4の両端部側のウエブ5、6が交差する背面領域4b、4cの溶接は行わなかった。例え、溶接が比較的容易なこれら背面領域4b、4cの溶接性が良好であっても、後面側フランジ4の中央部側の背面領域4aの溶接性が不良であれば意味がないからである。   The welding location was only one in the back region 4a on the center side of the rear flange 4, and the back regions 4b and 4c where the webs 5 and 6 on both ends of the rear flange 4 intersect were not performed. For example, even if these back regions 4b and 4c, which are relatively easy to weld, have good weldability, it is meaningless if the back region 4a on the center side of the rear flange 4 is poor. .

この際、アルミニウム合金中空形材側の断面が台形状の凸部8の鋼板溶接面(上側表面)からの突出量(Xmm)や他の設計条件を種々変えて行い、この突出量の異材接合の際の溶接性への影響を調査した。この結果を表1に示す。   At this time, the amount of protrusion (Xmm) from the steel plate welding surface (upper surface) of the convex portion 8 having a trapezoidal cross section on the side of the aluminum alloy hollow shape member and other design conditions are variously changed. The effect on weldability at the time of welding was investigated. The results are shown in Table 1.

凸部8の台形形状として、表1には、凸部8の後端部の中空形材幅方向の幅L1(mm)、凸部8の先端部の中空形材幅方向の幅L2(mm)、凸部8の縦断面面積S(mm2 )、鋼板表面レベルよりも上側への突出量X(mm)、L1と中リブ7の幅twとの比L1/twを記載している。なお、アルミニウム合金中空形材2の後面側フランジ4表面と、上側から積層される鋼板10、11下面とのクリアランスCは0とし、凸部8の根元と各鋼板の中央部側側面10a、11aとのクリアランスGは0.5mmとした。 As the trapezoidal shape of the convex portion 8, Table 1 shows the width L1 (mm) of the rear end portion of the convex portion 8 in the width direction of the hollow member and the width L2 (mm) of the tip portion of the convex portion 8 in the width direction of the hollow member. ), The longitudinal sectional area S (mm 2 ) of the convex portion 8, the protruding amount X (mm) above the steel plate surface level, and the ratio L 1 / tw between L 1 and the width tw of the middle rib 7. The clearance C between the rear flange 4 surface of the aluminum alloy hollow shape member 2 and the lower surfaces of the steel plates 10 and 11 laminated from above is set to 0, and the root of the convex portion 8 and the center side surfaces 10a and 11a of the respective steel plates. The clearance G was set to 0.5 mm.

上側の鋼板10、11は引張強度が980MPa級の合金化溶融亜鉛めっき(GA)を施した冷延鋼板(ハイテン、板厚1.4mm)を用いた。下側の日形断面形状を有するアルミニウム合金中空形材2は0.2%耐力が500MPa級の7000系アルミニウム合金の調質押出形材(各部の厚みは共通して4.0mm)を用いた。前面側フランジ3と後面側フランジ4との長さはともに150mm、各フランジ中央部と交差する中リブ7と、各フランジ端部と交差する2本のウエブ5、6との長さは、ともに65mmとした矩形断面とした。アルミニウム合金中空形材2(溶接線)の長さは250mmとした。   The upper steel plates 10 and 11 were cold-rolled steel plates (high tensile, thickness 1.4 mm) subjected to alloying hot dip galvanizing (GA) with a tensile strength of 980 MPa. The aluminum alloy hollow profile 2 having a lower cross-sectional shape was a tempered extruded profile of a 7000 series aluminum alloy having a 0.2% proof stress of 500 MPa class (the thickness of each part is 4.0 mm in common). . The lengths of the front side flange 3 and the rear side flange 4 are both 150 mm, and the lengths of the middle rib 7 intersecting the center of each flange and the two webs 5 and 6 intersecting each flange end are both The rectangular cross section was 65 mm. The length of the aluminum alloy hollow profile 2 (welding line) was 250 mm.

フラックスコアードワイヤ(FCW)は、アルミニウム合金粉末を混合した前記ノコロックフラックスを、FCWの全体質量に対して12質量%充填し、A4047アルミニウム合金アルミニウム合金外皮で被覆した、シーム有りタイプの1.2mmφの細径を用いた。MIG溶接条件は、溶接電流80〜90A、溶接電圧16〜18V、溶接速度40〜70cpm(cm/min)、溶接線の長さは250mmの条件とした。シールドガスはArとした。   The flux cored wire (FCW) is a seam-type type 1 in which the Nocolok flux mixed with aluminum alloy powder is filled with 12% by mass with respect to the total mass of FCW and covered with an A4047 aluminum alloy aluminum alloy skin. A small diameter of 2 mmφ was used. The MIG welding conditions were a welding current of 80 to 90 A, a welding voltage of 16 to 18 V, a welding speed of 40 to 70 cpm (cm / min), and a weld line length of 250 mm. The shielding gas was Ar.

継手溶接性評価:継手の溶接性は、ビードの概観目視と、たがねによるはく離試験とでおこなった。ビードの概観目視は、合格(◎)は、ビード12が鋼板10、11の溶接面と、アルミニウム合金中空形材2の後面側フランジ4の中央部の背面領域4aの溶接面との両方に亙って、連続して良好に形成されている状態とした。そして、これとの比較で、特に、鋼板の溶接面側のビードの大きさによって、○、△、×の順で評価した。因みに「×」はビード12が鋼板10、11の溶接面側に殆ど無いか、あっても極小の場合とした。   Joint weldability evaluation: The weldability of the joint was determined by visual observation of the bead and a peeling test using chisel. As for the visual inspection of the bead, the pass (合格) indicates that the bead 12 is on both the welded surface of the steel plates 10 and 11 and the welded surface of the back region 4a at the center of the rear side flange 4 of the aluminum alloy hollow profile 2. Thus, it was in a state of being continuously formed well. And by comparison with this, it evaluated in order of (circle), (triangle | delta), and x by especially the magnitude | size of the bead of the welding surface side of a steel plate. Incidentally, “x” indicates that the bead 12 is hardly present on the welding surface side of the steel plates 10 and 11 or is extremely small.

たがねによるはく離試験は、先端を溶接部(ビード12)中央付近につけた、たがね(切断用鍛造工具)頭部を上からハンマーで1回大きな力でたたいて、ビード12の長手方向に亙る剥離状態(破壊状態)を調査した。そして、ビード12の長手方向全般に亙って、剥離(破壊)が全く無いものを合格(◎)と評価し、これとの比較で、ビード12の一部に生じた剥離(破壊)の大きさによって、○、△、×の順で評価した。因みに「×」はビード12が大きく剥離して、継手が破壊されたと見なせる場合とした。このたがねによるはく離試験は、◎であれば、継手の破断強度が250N/mm以上あるという目安になり、×であれば、継手の破断強度が100N/mm未満程度しか無いという目安になる。   In the peeling test using chisel, the tip of the bead 12 is placed near the center of the welded portion (bead 12). The peeled state (destructive state) in the direction was investigated. And the thing with no peeling (destruction) at all over the longitudinal direction of the bead 12 is evaluated as a pass (◎), and compared with this, the magnitude of the peeling (destruction) generated in a part of the bead 12 is large. The evaluation was made in the order of ○, Δ, and ×. Incidentally, “x” indicates a case where the bead 12 is largely peeled and the joint can be considered broken. The peel test with this chisel is a measure that the fracture strength of the joint is 250 N / mm or more if ◎, and a measure that the fracture strength of the joint is less than about 100 N / mm if the symbol is x. .

表1から、アルミニウム合金中空形材2側の凸部8の鋼板溶接面(上側表面)からの突出量X(mm)や、凸部8の後端部の幅L1(mm)と中リブ7の幅twとの比L1/twが適切な発明例は、ビードの概観目視やはく離試験の評価に優れている。しかし、これらが不適切な比較例は、ウイービングを施しても、ビードの概観目視やはく離試験の評価が劣っている。   From Table 1, the protruding amount X (mm) of the convex portion 8 on the aluminum alloy hollow profile 2 side from the steel plate welding surface (upper surface), the width L1 (mm) of the rear end portion of the convex portion 8 and the middle rib 7 The invention example in which the ratio L1 / tw to the width tw of the above is appropriate is excellent in the visual inspection of the beads and the evaluation of the peeling test. However, the comparative examples in which these are inappropriate are inferior in evaluation of the visual observation of the beads and the peeling test even when weaving is performed.

比較例4、5は、前記L1/twが小さ過ぎる。すなわち、中リブ7の幅twに対して、凸部8の後端部の幅L1が小さ過ぎる。この結果から、従来通り、後面側フランジの中央部4aの背面に、凸部8を設けずに、平坦な背面として溶接する場合には、これら比較例4、5よりも、更にビードの概観目視や、はく離試験の評価が劣ることが裏付けられる。   In Comparative Examples 4 and 5, the L1 / tw is too small. That is, the width L1 of the rear end portion of the convex portion 8 is too small with respect to the width tw of the middle rib 7. From this result, when welding as a flat back surface without providing the convex portion 8 on the back surface of the central portion 4a of the rear surface side flange as in the past, it is more visually observed than the comparative examples 4 and 5. It is confirmed that the peel test is inferior.

比較例7は、発明例6とともに、凸部8の鋼板溶接面(上側表面)からの突出量Xが比較的大きい。このため、突出量Xが適切な他の発明例に比して、溶接性が比較的劣る。また、比較例7や11は、前記断面積Sが大きすぎることが、溶接性が劣る主因である。このうち比較例11は、L1が8mmと大きいのでウィービングを施しているが、同じくL1が大きく、ウィービングを施して対応している発明例9、10に比して、前記断面積Sが大きすぎ、溶接性が劣っている。   In Comparative Example 7, together with Invention Example 6, the protruding amount X of the convex portion 8 from the steel plate welding surface (upper surface) is relatively large. For this reason, the weldability is relatively inferior compared to other invention examples in which the protrusion amount X is appropriate. In Comparative Examples 7 and 11, the cross-sectional area S is too large, which is the main cause of poor weldability. Of these, Comparative Example 11 is weaving because L1 is as large as 8 mm, but the cross-sectional area S is too large as compared with Invention Examples 9 and 10 which are also large and corresponding to weaving. The weldability is inferior.

Figure 0005444029
Figure 0005444029

本発明によれば、アルミニウム合金中空形材の後面側フランジ背面に対して鋼板を溶接する場合でも、前記曲げ強度部材として要求される高い接合強度が得られる複合補強部材の製造方法および複合補強部材を提供できる。また、施工方法も容易で、線溶接が効率的に可能なアーク溶接を活用した接合方法を提供できる。したがって、自動車車体の補強部材の製造など鋼板とアルミニウム合金中空形材との異材接合の分野に有用である。   According to the present invention, even when a steel plate is welded to the rear surface of the rear surface side flange of the aluminum alloy hollow profile, a method for producing a composite reinforcing member and a composite reinforcing member that can obtain high joint strength required as the bending strength member Can provide. Moreover, the construction method is also easy, and a joining method utilizing arc welding capable of efficiently performing wire welding can be provided. Therefore, it is useful in the field of dissimilar material joining between a steel plate and an aluminum alloy hollow member, such as production of a reinforcing member for an automobile body.

1:複合補強部材、2:アルミニウム合金中空形材(アルミニウム合金押出形材)、3:前面側フランジ(前壁)、4:後面側フランジ(後壁)、5、6:ウエブ、7:中リブ、8:凸部(凸状領域)、9:後面側フランジ背面、10、11:鋼板、12、13、14:溶接ビード 1: Composite reinforcing member, 2: Aluminum alloy hollow profile (aluminum alloy extruded profile), 3: Front flange (front wall), 4: Rear flange (rear wall), 5, 6: Web, 7: Medium Rib, 8: convex portion (convex region), 9: rear flange rear surface, 10, 11: steel plate, 12, 13, 14: weld bead

Claims (3)

矩形断面内に中リブを設けた日形断面形状を有するアルミニウム合金中空形材の、曲げ荷重が作用した際に引張側となる後面側フランジの背面に鋼板を積層し、これら積層した鋼板とアルミニウム合金中空形材とを、前記後面側フランジの両端部側と、前記後面側フランジの前記中リブが交差する中央部側との三箇所で、前記アルミニウム合金中空形材の長手方向に亙って、重ね隅肉アーク溶接によりアルミニウム合金溶加材を用いて一体に接合するに際し、前記アルミニウム合金中空形材の前記後面側フランジの前記中リブが交差する前記中央部側の背面領域を、前記アルミニウム合金中空形材の長手方向に亙って予め凸状に形成しておき、この凸状に形成した背面領域を間に挟むように2枚の前記鋼板を積層して、この凸状に形成した背面領域が、下記条件を満たして、これら鋼板間に突出するようにし、この状態で、前記後面側フランジの凸状に形成した背面領域と、この背面領域に臨む前記2枚の鋼板の各々の中央部側の側面部分とを合わせて、前記後面側フランジの前記中リブが交差する中央部側の溶接箇所として、前記アルミニウム合金中空形材の長手方向に亙って、前記鋼板の前記側面とそれに続く表面に対して一体に溶接することを特徴とする複合補強部材の製造方法。
ここで、前記凸状に形成した背面領域が満たす前記条件とは、前記アルミニウム合金中空形材の最大の厚みを8mm以下とし、前記鋼板の板厚を0.3〜4.0mmの範囲とした際に、前記凸状に形成した背面領域の、前記鋼板の上面レベルよりも上部側の領域における縦断面の面積Sが10mm以下で、前記後面側フランジの背面と面一な根元部の前記中空形材の幅方向の長さである後端部の幅L1が8mm以下、このL1と前記中リブの幅twとの比L1/twが0.6以上、1.2以下の範囲(但し、前記中リブの幅twは8mm以下)を満たすものとする。
Laminated steel sheets with aluminum ribs in the shape of a rectangular cross section and laminated on the back side of the rear flange on the tension side when a bending load is applied. The alloy hollow profile is formed at three locations, that is, both ends of the rear flange and the central portion where the middle rib of the rear flange intersects in the longitudinal direction of the aluminum alloy hollow profile. When the aluminum alloy filler metal is integrally joined by lap fillet arc welding, the central region side rear region where the middle rib of the rear side flange of the aluminum alloy hollow profile intersects the aluminum alloy It was formed in advance in the longitudinal direction of the alloy hollow profile, and the two steel plates were laminated so as to sandwich the back region formed in this convex shape, and this convex shape was formed. Back The region satisfies the following conditions so as to protrude between these steel plates, and in this state, the rear surface region formed in a convex shape of the rear surface side flange, and the center of each of the two steel plates facing the back surface region Combined with the side portion on the portion side, as a welded portion on the central portion side where the middle rib of the rear surface side flange intersects, the side surface of the steel plate and the side surface thereof along the longitudinal direction of the aluminum alloy hollow profile A method for manufacturing a composite reinforcing member, wherein welding is integrally performed on a subsequent surface .
Here, the conditions that the convexly formed back region satisfies are that the maximum thickness of the aluminum alloy hollow profile is 8 mm or less, and the plate thickness of the steel sheet is in the range of 0.3 to 4.0 mm. when, before Symbol rear region formed in a convex shape, the area S of the longitudinal section in the upper side region than the upper surface level of the steel sheet by 10 mm 2 or less, the back and flush the root portion of the rear surface side flange The width L1 of the rear end portion, which is the length in the width direction of the hollow shape member, is 8 mm or less, and the ratio L1 / tw between the L1 and the width tw of the middle rib is 0.6 or more and 1.2 or less ( However, the width tw of the middle rib is 8 mm or less).
前記アーク溶接が、アルミニウム材外皮内部にフラックスを充填してなるフラックスコアードワイヤを用いた、MIG溶接あるいはレーザ溶接である請求項1に記載の複合補強部材の製造方法。   The method of manufacturing a composite reinforcing member according to claim 1, wherein the arc welding is MIG welding or laser welding using a flux cored wire formed by filling a flux inside an aluminum material outer shell. 請求項1または2の方法で製造された複合補強部材であって、矩形断面内に中リブを設けた日形断面形状を有するアルミニウム合金中空形材の曲げ荷重が作用した際に引張側となる後面側フランジの背面に鋼板が積層されているとともに、これら積層された鋼板とアルミニウム合金中空形材とが、前記後面側フランジの両端部側と、前記後面側フランジの前記中リブが交差する中央部側との三箇所で、前記アルミニウム合金中空形材の長手方向に亙って、重ね隅肉アーク溶接によりアルミニウム合金溶加材を用いて一体に接合されており、前記アルミニウム合金中空形材の前記後面側フランジの前記中リブが交差する前記中央部側の背面領域に、前記アルミニウム合金中空形材の長手方向に亙って予め形成された凸状の背面領域が、この凸状の背面領域を間に挟むように積層された2枚の前記鋼板間に突出するように設けられ、この状態で、前記凸状の背面領域と、この背面領域に臨む前記2枚の鋼板の各々の中央部側の側面部分とが合わせて、前記後面側フランジの前記中リブが交差する中央部側の溶接箇所として、アルミニウム合金ビードで前記アルミニウム合金中空形材の長手方向に亙って、前記鋼板の前記側面とそれに続く表面とに前記ビードが盛り上がり状に覆い被さって一体に接合されていることを特徴とする複合補強部材。 A composite reinforcing member manufactured by the method according to claim 1 or 2, which is on the tension side when a bending load is applied to an aluminum alloy hollow shape member having a daily cross-sectional shape provided with an intermediate rib in a rectangular cross-section. A steel plate is laminated on the back surface of the rear surface side flange, and the laminated steel plate and the aluminum alloy hollow profile are in the center where both end portions of the rear surface side flange intersect the middle rib of the rear surface side flange. Are joined together using an aluminum alloy filler material by lap fillet arc welding in the longitudinal direction of the aluminum alloy hollow shape member at three locations on the part side. A convex back surface region formed in advance in the longitudinal direction of the aluminum alloy hollow profile is formed on the back surface region on the center side where the middle ribs of the rear surface side flange intersect. Provided so as to protrude between the two steel plates laminated so as to sandwich the back region, in this state, each of the convex back region and the two steel plates facing the back region Combined with the side surface portion on the center portion side, as a welding portion on the center portion side where the middle rib of the rear surface side flange intersects with the aluminum alloy hollow profile in the longitudinal direction of the aluminum alloy hollow profile , the steel plate A composite reinforcing member , wherein the bead is covered and integrally joined to the side surface and the subsequent surface .
JP2010024977A 2010-02-08 2010-02-08 Method for manufacturing composite reinforcing member and composite reinforcing member Expired - Fee Related JP5444029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024977A JP5444029B2 (en) 2010-02-08 2010-02-08 Method for manufacturing composite reinforcing member and composite reinforcing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024977A JP5444029B2 (en) 2010-02-08 2010-02-08 Method for manufacturing composite reinforcing member and composite reinforcing member

Publications (2)

Publication Number Publication Date
JP2011161466A JP2011161466A (en) 2011-08-25
JP5444029B2 true JP5444029B2 (en) 2014-03-19

Family

ID=44592780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024977A Expired - Fee Related JP5444029B2 (en) 2010-02-08 2010-02-08 Method for manufacturing composite reinforcing member and composite reinforcing member

Country Status (1)

Country Link
JP (1) JP5444029B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010050960A1 (en) * 2010-11-10 2012-05-10 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) A bumper cross member for a motor vehicle, a reinforcing member for a bumper cross member, and a method of manufacturing a bumper cross member
CN106573653B (en) * 2014-08-29 2020-03-03 日本制铁株式会社 Joint structure
JP6654008B2 (en) * 2015-08-24 2020-02-26 株式会社神戸製鋼所 Structure and structural member including joining structure of different materials
SE1750635A1 (en) * 2017-05-22 2018-11-23 Gestamp Hardtech Ab Bumper beam with reinforcement patch

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438691B2 (en) * 2004-06-11 2010-03-24 株式会社神戸製鋼所 Dissimilar material joint and weld joint method in which iron material and aluminum material are joined
JP2006159253A (en) * 2004-12-07 2006-06-22 Kobe Steel Ltd Weld joint of different material of iron-based material and aluminum-based material
JP4256879B2 (en) * 2006-02-17 2009-04-22 株式会社神戸製鋼所 Method of joining iron-based material and aluminum-based material and joint
JP4933923B2 (en) * 2007-03-15 2012-05-16 株式会社神戸製鋼所 Dissimilar material joining method
JP5203870B2 (en) * 2007-09-26 2013-06-05 株式会社神戸製鋼所 Automotive body reinforcement with excellent bending crush characteristics

Also Published As

Publication number Publication date
JP2011161466A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
US20170274479A1 (en) Flux-cored wire for different-material bonding and method of bonding different materials
KR101280176B1 (en) Flux-cored wire for welding different materials, method for laser welding of different materials, and method for mig welding of different materials
JP5014834B2 (en) MIG welding method for aluminum and steel
JP3927987B2 (en) Dissimilar material joining method
JP5226564B2 (en) Dissimilar material joining method
WO2014148348A1 (en) Welding filler material for bonding different kind materials, and method for producing different kind material welded structure
JP4256886B2 (en) Flux cored wire for dissimilar material joining and dissimilar material joining method
JP5014833B2 (en) MIG welding method for aluminum and steel
JP4836234B2 (en) Dissimilar material joining method
JP2008207245A (en) Joined product of dissimilar materials of steel and aluminum material
JP5466632B2 (en) Dissimilar material joining method
JP5444029B2 (en) Method for manufacturing composite reinforcing member and composite reinforcing member
JP4438691B2 (en) Dissimilar material joint and weld joint method in which iron material and aluminum material are joined
JP2007136525A (en) Method for joining dissimilar materials
JP6996547B2 (en) MIG brazing method, lap joint member manufacturing method, and lap joint member
JP4933923B2 (en) Dissimilar material joining method
JP4256892B2 (en) Dissimilar material joining method
JP2006088174A (en) Method for joining dissimilar materials
JP7048355B2 (en) Dissimilar material joining joint and dissimilar material joining method
JP6133286B2 (en) MIG welded joint structure of aluminum and steel
JP5600652B2 (en) Dissimilar metal joining method
JP5600653B2 (en) Dissimilar metal joining method
JP5600619B2 (en) Dissimilar material joining method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131220

R150 Certificate of patent or registration of utility model

Ref document number: 5444029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees