JP5442425B2 - Underground heat collection / radiation pipe installation method - Google Patents

Underground heat collection / radiation pipe installation method Download PDF

Info

Publication number
JP5442425B2
JP5442425B2 JP2009294661A JP2009294661A JP5442425B2 JP 5442425 B2 JP5442425 B2 JP 5442425B2 JP 2009294661 A JP2009294661 A JP 2009294661A JP 2009294661 A JP2009294661 A JP 2009294661A JP 5442425 B2 JP5442425 B2 JP 5442425B2
Authority
JP
Japan
Prior art keywords
casing
sampling
tip
ground
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009294661A
Other languages
Japanese (ja)
Other versions
JP2011133194A (en
Inventor
耕之 吉田
敏雄 篠原
友久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Geotech Co Ltd
Original Assignee
Chiyoda Geotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Geotech Co Ltd filed Critical Chiyoda Geotech Co Ltd
Priority to JP2009294661A priority Critical patent/JP5442425B2/en
Publication of JP2011133194A publication Critical patent/JP2011133194A/en
Application granted granted Critical
Publication of JP5442425B2 publication Critical patent/JP5442425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

この発明は地中熱利用採/放熱管の設置方法、詳しくは、地中熱を冷暖房や融雪などの熱源として利用する為の採/放熱管を地中へ埋設する方法に関するものである。   The present invention relates to a method for installing a ground heat collection / radiation pipe, and more particularly, to a method for burying a collection / radiation pipe for use in underground heat as a heat source for air conditioning and snow melting.

地中深く埋設した採/放熱管、つまり地中熱交換用のチューブ内に、不凍液入り水などの熱交換媒体を循環させて、地上に設置したヒートポンプを用いて冷暖房や融雪などを行う、所謂、地中熱ヒートポンプシステムは、地球環境に優しい省エネルギー技術として注目されており、欧米では既に広く普及している。このシステムは一年を通して温度が一定で、夏は冷たく、冬は暖かい、地中(地盤)を熱源とする為、空気を熱源とする一般のヒートポンプシステムに比べ、ヒートポンプの運転に要する電力量を数十パーセント節約出来るというメリットがある。   A so-called sampling / radiating pipe buried deep underground, that is, a heat exchange medium such as water containing antifreeze liquid is circulated in a tube for underground heat exchange, and a so-called heat pump installed on the ground is used for air conditioning and snow melting. The geothermal heat pump system is attracting attention as an energy-saving technology that is friendly to the global environment, and is already widely used in Europe and the United States. Since this system has a constant temperature throughout the year, it is cold in summer, warm in winter, and the ground (the ground) as a heat source, compared to a general heat pump system that uses air as a heat source, it requires less energy to operate the heat pump. There is an advantage of saving several tens of percent.

しかし、その反面、空気熱源の場合は不要な熱交換媒体を循環させる採/放熱管を地中に設置する為の初期投資が必要となり、この採/放熱管の設置工事費が高額であることが、地中熱ヒートポンプシステムの大きな問題点であった。つまり、採/放熱管の設置費用が高いと、運転に必要な電力費が安くても、経済的には見合わないので、地中熱ヒートポンプシステムの普及が進まないのである。   On the other hand, in the case of an air heat source, an initial investment is required to install a sampling / radiating pipe that circulates an unnecessary heat exchange medium in the ground, and the installation cost of the sampling / radiating pipe is high. However, it was a big problem of the geothermal heat pump system. In other words, if the installation cost of the sampling / radiating pipe is high, even if the power cost required for operation is low, it is not economically appropriate, so the spread of the geothermal heat pump system does not proceed.

一般に、地中熱ヒートポンプシステムにおける採/放熱管の埋設は、通常深さ50〜200mの岩盤中までボーリングで直径15〜20cm程度の縦孔を掘り、その縦孔の底まで、採/放熱管を挿入した後、孔の隙間にグラウト等を充填して封止する方法がとられていた。   Generally, in the underground heat pump system, the sampling / radiating pipe is buried by drilling a vertical hole with a diameter of about 15-20 cm by drilling into a bedrock of a depth of 50-200 m, and the sampling / radiating pipe to the bottom of the vertical hole. After insertion, a method of filling the gap between the holes with grout or the like and sealing it has been used.

採/放熱管としては、経済性と施工性の観点から、ポリエチレンチューブなどの樹脂管が多く使用されている。又、掘削にボーリングマシンを利用する方法は、岩盤でも削孔可能で、地中深くまで深い孔を形成出来る長所がある一方で、削孔作業の際に、ベントナイトが混じった泥状土が排出され、その処理が容易ではない、といった欠点が存在していた。   As the sampling / radiating tube, a resin tube such as a polyethylene tube is often used from the viewpoint of economy and workability. In addition, drilling using drilling machines has the advantage of being able to drill holes in rock and forming deep holes deep into the ground, while mud soil mixed with bentonite is discharged during drilling operations. However, there is a drawback that the processing is not easy.

又、削孔した孔は、ベントナイト液などの泥水で満たされているので、採/放熱管をそのままこの中に挿入しても、浮力で浮き上がってしまう為、浮き上がりを阻止する為、予め採/放熱管の中に水を充填するなど、何らかの対策が必要であった。   In addition, since the drilled hole is filled with muddy water such as bentonite liquid, even if the sampling / radiating pipe is inserted as it is, it floats up by buoyancy, so that the lifting / prevention is prevented in advance. Some measures were necessary, such as filling the radiator pipe with water.

削孔しやすい石灰質地盤が多い欧米では、このボーリングマシンによる削孔が適しており、主にこの方法で用いられているが、地層が複雑で、かつ硬い岩盤が多い日本では、ボーリングマシンにより掘削は効率が悪く、作業コストが高く、必ずしも状況に合った方法ではなかった。   Drilling with this boring machine is suitable in Europe and the United States where there are many calcareous grounds that are easy to drill, and this method is mainly used, but in Japan where the formation is complex and there are many hard rocks, drilling is performed with a boring machine. Was inefficient, expensive to work, and not always suited to the situation.

そこで、コスト高の原因となるボーリングマシンを使用せず、採/放熱管を岩盤までではなく、深さ数十mの浅い深度に埋設する為、効率よく掘削する方法がいくつか提案されている。   Therefore, several methods have been proposed for efficient excavation in order to embed the sampling / radiating pipe at a shallow depth of several tens of meters rather than to the bedrock without using a boring machine that causes high costs. .

特開2002−303088号公報JP 2002-303088 A 特開2007−17138号公報JP 2007-17138 A 特開2009−41894号公報JP 2009-41894 A

なしNone

特許文献1には、先端付近にねじ込み用の螺旋羽根を設けた上下鋼管を地中に回転貫入させた後、鋼管内に採/放熱管を挿入し、上鋼管を下鋼管から切り離した後、上鋼管を引き抜きながら孔内間隙にグラウト材を充填する地中熱利用鋼管チューブの設置方法が、特許文献2には、オーガー方式掘削機で穴を掘削し、オーガーを引き抜いてから、孔内に採/放熱管を挿入して、最後に孔内間隙に土砂を充填する熱交換井形成方法が、特許文献3には、先端外周部に螺旋状羽根板を溶接した鋼管を回転貫入させ、採/放熱管を鋼管底部まで挿入した後、鋼管を逆転させて引き抜き、孔内間隙に土砂を充填して、採/放熱管を地中に埋設する地中熱交換方法がそれぞれ開示されている。   In Patent Document 1, after rotating and penetrating the upper and lower steel pipes provided with screwed spiral blades near the tip into the ground, the sampling / radiating pipe is inserted into the steel pipe, and the upper steel pipe is separated from the lower steel pipe, A method for installing a steel pipe tube using underground heat that fills the gap in the hole while pulling out the upper steel pipe is disclosed in Patent Document 2, in which a hole is excavated with an auger type excavator, the auger is pulled out, and then into the hole. A heat exchange well forming method in which a sampling / radiating tube is inserted and finally filled with earth and sand in the gap in the hole is disclosed in Patent Document 3, in which a steel tube having a spiral blade plate welded to the outer peripheral portion of the tip is rotated and penetrated. / Ground heat exchange methods are disclosed in which a heat radiating pipe is inserted to the bottom of the steel pipe, and then the steel pipe is reversed and pulled out, and a gap in the hole is filled with earth and sand, and a sampling / radiating pipe is buried in the ground.

特許文献1に開示されている方法においては、上鋼管(削孔鋼管)と下鋼管(先端鋼管)とは、離脱可能な連結構造となっており、その具体例として、突起と鍵形切り込みとの組合せが示されており、削孔鋼管を逆回転させれば、連結部が外れて先端鋼管から離脱出来る様に説明されている。しかしながら、発明者らは、これと類似の構造をした連結部を切り離す現場実験を数度実施したが、容易に切り離すことは出来なかった。これは、鍵形の切り込みに小石などが挟まり、逆回転させても切り込み部が容易に移動しない為であり、この特許文献1に開示された方法は、上鋼管と下鋼管とが容易に離脱しない点において、実用上重大な欠陥を有すると言わざるを得ない。   In the method disclosed in Patent Document 1, the upper steel pipe (drilled steel pipe) and the lower steel pipe (tip steel pipe) have a detachable connection structure. As a specific example thereof, a protrusion and a key-shaped notch are used. The combination is shown, and it is explained so that the connecting portion can be detached and detached from the tip steel pipe by rotating the hole-piercing steel pipe in the reverse direction. However, the inventors conducted several field experiments to disconnect the connecting portion having a structure similar to this, but could not easily disconnect it. This is because pebbles or the like are sandwiched between the key-shaped cuts and the cuts do not move easily even if they are rotated in the reverse direction. In the method disclosed in Patent Document 1, the upper steel pipe and the lower steel pipe are easily separated. In that respect, it must be said that it has a practically serious defect.

一方、特許文献2に開示されている方法において、オーガー方式の掘削刃で掘削した孔内に採/放熱管を挿入するタイミングは特に言及されておらず、現実的にはオーガー方式の掘削刃を引き抜いてから、と考えざるを得ないが、この様な施工方法では、砂質、礫質あるいは軟弱粘性質の地盤では、掘削した孔壁の孔壁が崩壊してしまう可能性があり、この為、採/放熱管の挿入や孔内間隙への充填が困難になるおそれがある。これを防ぐ為には、ケーシングや掘削用泥水を用いて孔壁の崩壊を防ぐなど、何らかの対策が必要となり、その分、時間をコストが余分にかかっていた。又、孔内間隙に土砂を充填する具体的方法についての記述はないが、たとえ、孔壁が崩壊しない場合でも、採/放熱管が配置された非常に狭く細長い間隔に土砂を充填するのは、特別な機材を使用しない限り、実際上困難であり、この点において、特許文献2に開示されている方法は、実用性に欠けると言わざるを得ない。   On the other hand, in the method disclosed in Patent Document 2, the timing of inserting the sampling / radiating pipe into the hole excavated with the auger type excavating blade is not particularly mentioned, and in reality, the auger type excavating blade is used. However, in such a construction method, there is a possibility that the hole wall of the excavated hole wall may collapse on the ground of sandy, gravel or soft viscosity. Therefore, it may be difficult to insert the sampling / radiating tube and fill the gap in the hole. In order to prevent this, some measures were required, such as preventing the collapse of the hole wall using a casing or mud for excavation, and this required extra time. Also, there is no description of a specific method of filling the gap in the hole with earth and sand, but even if the hole wall does not collapse, filling the earth and sand into a very narrow and narrow space where the sampling / radiating pipe is arranged is not Unless special equipment is used, it is practically difficult, and in this respect, the method disclosed in Patent Document 2 is impractical.

又、特許文献3に開示されている方法においては、所定深度まで貫入させた先導管内に、採/放熱管(地中熱交換器)を挿入する為に、螺旋状掘削機を用いて管内に侵入した土砂を除去する必要があり、この為に、時間とコストがかかってしまう問題点があった。又、この方法においては、採/放熱管挿入後、先導管を逆回転させて引く際、採/放熱管が共回りして抜き上がることを防ぐ為、採/放熱管下端に回転防止板を取り付ける様にしているが、この回転防止板は、地盤中に強く固定されていないので、共上がり現象を起こし、先導鋼管と一緒に抜き上がるおそれがある。しかも、孔内間隔への土砂の充填に関しては、特許文献2と同じ問題を有していた。   In addition, in the method disclosed in Patent Document 3, a spiral excavator is used to insert a sampling / radiating pipe (ground heat exchanger) into a leading conduit penetrated to a predetermined depth. There is a problem that it takes time and cost because it is necessary to remove the intruded earth and sand. Also, in this method, after inserting the sampling / radiating tube, when the tip conduit is rotated backward, the anti-rotation plate is attached to the lower end of the sampling / radiating tube to prevent the sampling / radiating tube from rotating together. Although it is attached, since this anti-rotation plate is not firmly fixed in the ground, there is a possibility that it will rise together and be pulled out together with the leading steel pipe. And it had the same problem as patent document 2 regarding the filling of the earth and sand to the space | interval in a hole.

一般に、採/放熱管として使用されている樹脂製のチューブは、製造直後から現場搬入までの間、直径1.5m程度のリング状に巻かれており、それ自体強い巻き癖が残っている為、ケーシング内に挿入しても容易には直線状にはならない。この為、採/放熱管の先端を所定深度に止めておく為の連結機構には、以下の様な相反する二つの構造が求められる。
1)巻き癖の為、採/放熱管の先端は通常は鉛直方向を向いていないが、巻き癖が残っていても、採/放熱管先端を所定深度に確実に止められる様な構造であること。
2)巻き癖の為、採/放熱管は、ケーシング内壁の至る所で接触しているので、ケーシングに逆回転をかけてこれを引き抜く際、内壁との間で摩擦し、採/放熱管はねじれたり、共上がりの挙動をすることがある。従って、採/放熱管の先端が連結構造から容易に外れない構造であること。
Generally, a resin tube used as a sampling / radiating tube is wound in a ring shape with a diameter of about 1.5 m from immediately after manufacture until it is brought into the field. Even if it is inserted into the casing, it is not easily linear. For this reason, the following two conflicting structures are required for the coupling mechanism for keeping the tip of the sampling / radiating tube at a predetermined depth.
1) Because of the curl, the tip of the sampling / radiating tube is not normally oriented vertically, but even if the curl remains, the tip of the sampling / radiating tube can be reliably stopped at a predetermined depth. about.
2) Because of the curl, the sampling / radiating tube is in contact with the inner wall of the casing. When the casing is pulled backward and pulled out, it is rubbed with the inner wall, and the sampling / radiating tube is It may be twisted or behave together. Therefore, the tip of the sampling / radiating tube should not be easily detached from the connection structure.

つまり、採/放熱管の地中埋設には、その先端が係止部材に連結しやすく、しかも外れにくいという二つの相反した機能を持った連結機構が必要となるのである。   In other words, the undergrounding of the sampling / radiating tube requires a connecting mechanism having two contradictory functions that the tip of the sampling / radiating tube is easily connected to the locking member and is difficult to come off.

更に、これら特許文献に開示されている方法に共通する問題点として、採/放熱管挿入後に、孔内間隙にグラウト材や土砂を充填する工程が挙げられる。即ち、ボーリングマシンを用いる方法に比べ、削孔能率は高いものの、間隙充填に要する時間やその為の機材費の上昇の為、削孔能率の経済的効果は、著しく減殺される可能性がある。   Further, as a problem common to the methods disclosed in these patent documents, there is a step of filling the gap in the hole with a grout material or earth and sand after the sampling / radiating tube is inserted. That is, although the drilling efficiency is higher than the method using a boring machine, the economic effect of the drilling efficiency may be significantly reduced due to the increase in the time required for gap filling and the cost of equipment for that purpose. .

又、グラウト材としては、通常セメントミルク又はセメントモルタルが用いられており、特許文献1には、グラウト材として熱伝導性の優れた特殊な材料を用いることも提案されているが、孔内間隙という極限られた範囲に熱伝導性の高い特殊材料を用いても、そのことによるコスト上昇分に見合うだけの効果は、到底期待出来ないはずである。   In addition, cement milk or cement mortar is usually used as the grout material, and Patent Document 1 proposes to use a special material having excellent thermal conductivity as the grout material. Even if a special material with high thermal conductivity is used in such a limited range, an effect sufficient to meet the cost increase due to that should not be expected.

本発明者は、地中熱を冷暖房や融雪などの熱源として利用する為の採/放熱管を地中に埋設する方法における、上記従来の問題点を解決すべく研究を行った結果、採/放熱管先端の所望深度の地盤への確実な固定が可能で、ケーシング引き抜き時に採/放熱管が抜き上がるのを阻止でき、掘削孔と採/放熱管との間に発生する孔内間隙を充填する工程や機材が不要で、安いコストで採/放熱管を所定深度に簡単、確実に埋設できる地中熱利用採/放熱管の設置方法を開発することに成功し、本発明としてここに提案するものである。   The present inventor conducted research to solve the above-mentioned conventional problems in a method of burying a sampling / radiating pipe for using geothermal heat as a heat source for air conditioning and snow melting, etc. It is possible to securely fix the tip of the radiating pipe to the ground at the desired depth, prevent the sampling / radiating pipe from being pulled up when the casing is pulled out, and fill the gap in the hole generated between the excavation hole and the sampling / radiating pipe We have succeeded in developing a method for using underground heat collection / radiation pipes that can embed a heat radiation pipe / radiation pipe at a predetermined depth easily and reliably at a low cost without the need for a process and equipment to be used. To do.

鋼管からなり、先端付近の外周に回転貫入用の螺旋翼が固着されており、先端付近の内周面には回転伝動金具が固着されたケーシング,
前記ケーシングの外径よりわずかに大きい内径を有する短管の下端が円盤状の底板で閉塞されており、該底板の下面には掘削刃が固着されており、その上面には、前記ケーシングの回転伝動金具と結合する回転受動金具及び採/放熱管の下端に取り付けられた連結具と連結する連結具がそれぞれ固着されており、外周面には板状羽根が固着された先端シュー,
U字形に屈曲をした管路を有する接続具によって、長尺状をなした一対のチューブの端末を接続連通せしめた採/放熱管,
を用意し、ケーシングの回転伝動金具と先端シューの回転受動金具とを結合させて、ケーシングの先端に先端シューを装着し、先端シューを下方にして地盤上にケーシングを立設させ、これに回転力を与えて先端シューを地中に向かって、目標深度まで回転貫入させた後、ケーシングの上端開口部から、採/放熱管をケーシング内下方に向かって挿入し、その下端の連結具を先端シューの連結具に連結した後、ケーシングを逆回転させてケーシングを地盤から引き抜き、先端シュー及びこれに連結させた採/放熱管を地盤中に残置させる様にして上記課題を解決した。
A casing made of a steel pipe, with a spiral blade for rotation penetration fixed to the outer periphery near the tip, and a rotation transmission fitting fixed to the inner peripheral surface near the tip,
The lower end of a short pipe having an inner diameter slightly larger than the outer diameter of the casing is closed by a disk-shaped bottom plate, and a drilling blade is fixed to the lower surface of the bottom plate, and the upper surface of the casing rotates. A rotary passive metal fitting to be coupled to the transmission metal fitting and a coupling tool to be connected to a fitting attached to the lower end of the sampling / radiating pipe are fixed, and a tip shoe having a plate-like blade fixed to the outer peripheral surface,
A sampling / radiating pipe in which the ends of a pair of long tubes are connected and connected by a connector having a pipe line bent in a U-shape,
Prepare the casing, connect the rotary transmission bracket of the casing and the passive passive bracket of the tip shoe, attach the tip shoe to the tip of the casing, place the casing on the ground with the tip shoe down, and rotate it After applying force to rotate the tip shoe into the ground to the target depth, insert the sampling / radiating pipe from the upper end opening of the casing toward the lower side of the casing, and connect the connector at the lower end to the tip. After the shoe was connected to the shoe connector, the above problem was solved by rotating the casing in the reverse direction and pulling the casing out of the ground, leaving the tip shoe and the sampling / radiating pipe connected to the shoe in the ground.

1)土砂を地上に排出しないので、残土処理が不要である。
2)先端シューに掘削刃が設けられているので、掘削抵抗が減り、ケーシングの回転貫入が容易である。
3)ケーシング先端に着脱自在な先端シューを装着しているので、ケーシング内に空胴を確保出来、採/放熱管の挿入や結合が容易である。
4)回転伝動金具と回転受動金具をケーシング空胴内に位置させたので、両者の着脱が容易かつ確実に行える。
5)ケーシング引き抜き時に、地中に残置される先端シューの中に土砂が入って重くなり、しかも板状羽根が地盤に喰い込んでいるので、先端シューの引き抜き抵抗が増大し、採/放熱管の共上がり現象を確実に阻止出来る。
6)ケーシング引き抜き後に、採/放熱管の周囲に発生する空隙は、径の小さいケーシングを用いることにより、短期間で消滅し、空隙充填作業が不要である。
等の特徴を有し、高精度、高能率、低コストで地中熱を冷暖房や融雪の熱源として利用する為の採/放熱管を地盤に埋設することが出来る。
1) Since the earth and sand are not discharged to the ground, no residual soil treatment is required.
2) Since the excavating blade is provided on the tip shoe, the excavation resistance is reduced, and the casing can be easily rotated and penetrated.
3) Since a detachable tip shoe is attached to the tip of the casing, a cavity can be secured in the casing, and a sampling / radiating tube can be easily inserted and connected.
4) Since the rotary transmission metal fitting and the rotary passive metal fitting are positioned in the casing cavity, they can be attached and detached easily and reliably.
5) When the casing is pulled out, earth and sand enters the tip shoe that remains in the ground and becomes heavier, and the blades are biting into the ground. Can be prevented reliably.
6) After pulling out the casing, the gap generated around the sampling / radiating tube disappears in a short period of time by using a casing having a small diameter, and the gap filling work is unnecessary.
It is possible to embed a sampling / radiating pipe in the ground to use geothermal heat as a heat source for air conditioning and snow melting with high accuracy, high efficiency and low cost.

この発明に係る地中熱利用採/放熱管の設置方法において用いるケーシングの縦断面図。The longitudinal cross-sectional view of the casing used in the ground-heat utilization collection / radiation pipe installation method which concerns on this invention. この発明に係る地中熱利用採/放熱管の設置方法において用いる先端シューの拡大縦断面図。The expanded longitudinal cross-sectional view of the front-end | tip shoe used in the ground heat utilization sampling / radiation pipe installation method according to the present invention. この発明に係る地中熱利用採/放熱管の設置方法において用いる採/放熱管の正面図。The front view of the sampling / radiating pipe used in the ground heat utilization sampling / radiating pipe installation method according to the present invention. この発明に係る地中熱利用採/放熱管の設置方法において用いるケーシングに固着されている回転伝動金具と先端シューに固着されている回転受動金具の位置を示したケーシングと先端シューの拡大横断面図。Enlarged cross section of the casing and tip shoe showing the position of the rotary transmission fitting fixed to the casing and the rotary passive fitting fixed to the tip shoe used in the ground heat utilization / radiating pipe installation method according to the present invention Figure. 同じく、その拡大縦断面図。Similarly, the enlarged longitudinal sectional view. ケーシングと先端シュー及び採/放熱管の結合状況を説明したケーシングと先端シューの拡大断面図。The expanded sectional view of the casing and front-end | tip shoes explaining the coupling | bonding state of a casing, front-end | tip shoes, and a sampling / radiating pipe. ケーシング及び先端シューに設けられる連結具の取付け位置の他の例を示した先端シューの拡大縦断面図。The expanded longitudinal cross-sectional view of the tip shoe which showed the other example of the attachment position of the coupling tool provided in a casing and a tip shoe. 杭打ち機によるケーシングの回転貫入方法を示した説明図。Explanatory drawing which showed the rotation penetration method of the casing by a pile driver. この発明に係る地中熱利用採/放熱管の設置方法の施工の手順を示した説明図。Explanatory drawing which showed the procedure of construction of the ground heat utilization collection / radiation pipe installation method which concerns on this invention. 本発明の実施例2において用いる回転伝動金具及び回転受動金具を示したケーシングと先端シューの拡大縦断面図。The expanded longitudinal cross-sectional view of the casing and tip shoe which showed the rotation transmission metal fitting and rotation passive metal fitting which are used in Example 2 of this invention. 同じく、回転伝動金具及び回転受動金具の拡大斜視図。Similarly, the expansion perspective view of a rotation transmission metal fitting and a rotation passive metal fitting. 本発明の実施例3において用いる連結具を示した先端シューの拡大断面図。The expanded sectional view of the tip shoe which showed the connector used in Example 3 of the present invention. 本発明の実施例3において用いる連結具を示した先端シューの拡大断面図。The expanded sectional view of the tip shoe which showed the connector used in Example 3 of the present invention.

鋼管からなり、外周に螺旋翼を有するケーシングの先端に掘削刃を有する短管製の先端シューを着脱自在に取付け、所望深度までケーシングを回転貫入させ、ケーシングの内側を通して先端シューに採/放熱管の先端を連結し、先端シュー及び採/放熱管を地盤中に残置させた状態で、ケーシングを引き抜く様にした点に最大の特徴が存する。   A short tube tip shoe made of steel pipe and having a spiral blade on the outer periphery and having a drilling blade attached to the tip of the casing is detachably attached, and the casing is rotated and penetrated to the desired depth. The most significant feature is that the casing is pulled out with the tip ends connected and the tip shoe and the sampling / radiating pipe left in the ground.

まずはじめに、この発明において用いられるケーシング1、先端シュー5,採/放熱管11について説明する。   First, the casing 1, the tip shoe 5, and the sampling / radiating tube 11 used in the present invention will be described.

図1において、1は、ケーシングであり、このケーシング1は採/放熱管11の埋設の用に供する仮設鋼管である。なお、本発明における採/放熱管11の埋設深さは10m〜数十mであるので、ケーシング1は数本の単管を現場において接続して構成する。このケーシング1は、原則として反復使用するものであるので、溶接で単管同士を接続するのではなく、着脱可能な機械式継ぎ手を用いて接続すると良い。機械式継ぎ手は、製作コストは高いが、現場溶接に較べて、短時間で接続できる特徴があり、便利である。この実施例1においては、外径165.2mm、長さ6mの単管を機械式継ぎ手を用いて、3本繋いで用いている。又、ケーシング1の径は出来るだけ小さくするのが望ましい。即ち、ケーシング1の径が小さい程、貫入抵抗を低減出来るとともに、これを引き抜いた後に、採/放熱管11の周囲に発生する空隙を小さくすることが出来るからであり、実用的には採/放熱管11の断面の寸法よりも10〜50mm程度大きくするのが好ましい。   In FIG. 1, reference numeral 1 denotes a casing, and the casing 1 is a temporary steel pipe used for burying a sampling / radiating pipe 11. In addition, since the embedding depth of the sampling / radiating pipe 11 in the present invention is 10 m to several tens of m, the casing 1 is configured by connecting several single pipes in the field. Since this casing 1 is used repeatedly in principle, it is preferable not to connect single pipes by welding but to connect them using a detachable mechanical joint. The mechanical joint is convenient to manufacture because it has a high manufacturing cost but can be connected in a short time compared to field welding. In Example 1, three single pipes having an outer diameter of 165.2 mm and a length of 6 m are connected using a mechanical joint. Moreover, it is desirable to make the diameter of the casing 1 as small as possible. That is, as the diameter of the casing 1 is smaller, the penetration resistance can be reduced, and the gap generated around the sampling / radiating pipe 11 after being pulled out can be reduced. It is preferable to make it about 10 to 50 mm larger than the cross-sectional dimension of the heat radiating tube 11.

そして、このケーシング1の先端付近の外周面には、1個又は複数個の回転貫入用の螺旋翼2が固着されており、先端付近の内周面には、以下に述べる、先端シュー5の回転受動金具3と結合して、これに回転力を伝える回転伝動金具4が固着されている。この回転伝動金具4は、図4に示す様に、ケーシング1の先端付近の内周面の直径方向に、180°変位した箇所に対向して形成された一対の突起からなるものである。   One or more spiral blades 2 for rotational penetration are fixed to the outer peripheral surface near the tip of the casing 1, and the tip shoe 5 described below is attached to the inner peripheral surface near the tip. A rotation transmission metal fitting 4 which is coupled to the rotation passive metal fitting 3 and transmits a rotational force thereto is fixed. As shown in FIG. 4, the rotary transmission metal fitting 4 is composed of a pair of protrusions formed so as to be opposed to a portion displaced by 180 ° in the diameter direction of the inner peripheral surface near the tip of the casing 1.

一方、図中5は前記ケーシング1の先端側に取り付けられ、地盤19の掘削、ケーシング1内への土砂の浸入の阻止、及び採/放熱管11の地盤の固定を行う先端シューであり、ケーシング1の外径よりわずかに小さい内径を有する短管からなり、下端は底板6によって閉塞されている。又、この底板6の下面には三角形状の掘削刃7が固着されている。又、この底板6の上面には前記ケーシング1の回転伝動金具4と係合し、ケーシング1から先端シュー5に回転力を伝えるための回転受動金具3が固着されている。なお、この回転受動金具3は、図4に示す様に、底板6の直径方向に配置され、底板6の直径よりわずかに短い直方体状を呈した部材である。   On the other hand, 5 in the figure is attached to the tip side of the casing 1 and is a tip shoe for excavating the ground 19, preventing infiltration of earth and sand into the casing 1, and fixing the ground of the sampling / radiating pipe 11. It consists of a short tube having an inner diameter slightly smaller than the outer diameter of 1, and the lower end is closed by a bottom plate 6. Further, a triangular excavation blade 7 is fixed to the lower surface of the bottom plate 6. Further, on the upper surface of the bottom plate 6, a rotary passive metal fitting 3 for engaging with the rotation transmission metal fitting 4 of the casing 1 and transmitting a rotational force from the casing 1 to the tip shoe 5 is fixed. As shown in FIG. 4, the rotary passive metal fitting 3 is a member that is disposed in the diameter direction of the bottom plate 6 and has a rectangular parallelepiped shape that is slightly shorter than the diameter of the bottom plate 6.

更に、この回転受動金具3の上面には、以下に述べる採/放熱管11の下端に取付けられている連結具9と係合する連結具10が固着されている。
結合具10は、図2に示す様に、底板6と同心円状に、底板6の上面に固着された円筒状の基部23と、その上縁内側あるいは上部内側に延設された環状突起27とからなるものである。なお、連結具10は、回転受動金具3の上面ではなく、図7に示す様に、底板6の上面に直接固定させても良い。
Further, a connecting tool 10 that engages with a connecting tool 9 attached to the lower end of the sampling / radiating tube 11 described below is fixed to the upper surface of the rotary passive metal fitting 3.
As shown in FIG. 2, the coupler 10 has a cylindrical base portion 23 concentrically attached to the upper surface of the bottom plate 6 and an annular protrusion 27 extending inward or on the upper edge of the bottom plate 6. It consists of The connector 10 may be directly fixed to the upper surface of the bottom plate 6 as shown in FIG. 7 instead of the upper surface of the rotary passive metal fitting 3.

採/放熱管11は、地中熱の採熱及び地中への放熱をする為、不凍液入りの水などの熱交換媒体を循環させる管で、内部にU字形の管路22が形成された熱交換媒体環流用の接続具26のそれぞれの管路開口端に、ポリエチレン等の合成樹脂製の一対の長尺状チューブ35の下端部をそれぞれ接続連通させたものであり、接続具26には、先端シュー5の連結具10に連結される連結具9が取付けられている。   The sampling / radiating pipe 11 is a pipe that circulates a heat exchange medium such as water containing antifreeze liquid in order to collect underground heat and radiate heat into the ground, and has a U-shaped pipe line 22 formed therein. The lower ends of a pair of long tubes 35 made of synthetic resin such as polyethylene are connected to the respective pipe opening ends of the connection tool 26 for circulating the heat exchange medium. A connecting tool 9 connected to the connecting tool 10 of the tip shoe 5 is attached.

この連結具9は、図3に示す様に、左右に張り出したつば部32、このつば部32の中央から下方に垂設された棒状の挿入部24、挿入部24の下端に設けられた略三角形状の係止片25とからなるものであり、つば部32の横幅は、連結具10の環状突起27,27間の間隔より大きく、又、係止片25の横幅は、環状突起27,27間の間隙よりわずかに小さくなる様に設定されている。   As shown in FIG. 3, the connector 9 includes a flange portion 32 that protrudes to the left and right, a rod-shaped insertion portion 24 that hangs downward from the center of the collar portion 32, and a substantially lower end provided at the lower end of the insertion portion 24. It is composed of a triangular locking piece 25, the lateral width of the collar portion 32 is larger than the interval between the annular projections 27, 27 of the connector 10, and the lateral width of the locking piece 25 is the annular projection 27, 27 is set so as to be slightly smaller than the gap between 27.

そして、つば部32の中央は、接続具26にピン30で軸支されており、連結具9は採/放熱管11の下端に揺動自在に取付けられている。   The center of the collar portion 32 is pivotally supported by the connector 26 with a pin 30, and the connector 9 is swingably attached to the lower end of the sampling / radiating pipe 11.

次に、これらケーシング1、先端シュー5、採/放熱管11を用いて、採/放熱管11を地中に埋設する方法を説明する。   Next, a method of burying the sampling / radiating pipe 11 in the ground using the casing 1, the tip shoe 5, and the sampling / radiating pipe 11 will be described.

まず、はじめに、ケーシング1の下端に先端シュー5を装着し、回転伝動金具4と回転受動金具3とを係合させ、図8に示す様に、杭打ち機18を用いて、回転貫入させる。このとき、ケーシング1の回転伝達金具4と先端シュー5の回転受動金具3との係合により、先端シュー5はケーシング1と同じ回転をし、図9(a)に示す様に、地盤19を掘削するが、先端シュー5の下面には掘削刃7が付いているので、これによって掘削抵抗が減り、ケーシング1の回転貫入が容易となる。又、貫入時には、ケージング1の体積分に相当な土砂が圧縮してケージング1の側方に押し付けられ、地上には排出されない。   First, the tip shoe 5 is attached to the lower end of the casing 1, the rotary transmission metal fitting 4 and the rotary passive metal fitting 3 are engaged, and the pile driving machine 18 is used to rotate through as shown in FIG. 8. At this time, due to the engagement between the rotation transmission fitting 4 of the casing 1 and the rotation passive fitting 3 of the tip shoe 5, the tip shoe 5 rotates in the same manner as the casing 1, and as shown in FIG. Although excavation is performed, the excavation blade 7 is attached to the lower surface of the tip shoe 5, so that excavation resistance is reduced and rotation penetration of the casing 1 is facilitated. At the time of penetration, earth and sand corresponding to the volume of the caging 1 are compressed and pressed to the side of the caging 1 and are not discharged to the ground.

なお、この実施例1において、ケーシング1と先端シュー5の隙間は2mm程度であるが、回転貫入時にケーシング1内に土砂が挿入することは全くなく、地下水もほとんど入らず、ケーシング1内は空胴状態が保たれ続ける。   In the first embodiment, the gap between the casing 1 and the tip shoe 5 is about 2 mm, but no earth or sand is inserted into the casing 1 at the time of rotation penetration, almost no groundwater enters, and the casing 1 is empty. The torso state continues to be maintained.

そして、図9(b)に示す様に、目標深度までケーシング1を貫入したら、回転を一旦止めた後、ケーシング1を若干逆回転させて、回転伝動金具4と回転受動金具3とか離隔した状態に保ちながら、ケーシング1に引き抜き力を加えると共に、小さな回転振動で正転と逆転を繰り返しながら、徐々にこれを引き上げ、図9(c)に示す様に、回転伝動金具4の下端が回転受動金具3の上端より上になったら、ケーシング1の引き上げを一旦止め、図9(d)に示す様に、ケーシング1の上端からその内側に採/放熱管11を挿入し、採/放熱管11の下端に取付けられている連結具9を先端シュー5の連結具10に連結する。   Then, as shown in FIG. 9 (b), once the casing 1 has penetrated to the target depth, the rotation is temporarily stopped, and then the casing 1 is slightly rotated in the reverse direction to separate the rotary transmission fitting 4 and the rotary passive fitting 3 from each other. 9A, while applying a pulling force to the casing 1 while repeating forward and reverse rotations with small rotational vibrations, gradually pulling it up, as shown in FIG. When it is above the upper end of the metal fitting 3, the pulling up of the casing 1 is temporarily stopped, and as shown in FIG. 9 (d), the sampling / radiating pipe 11 is inserted from the upper end of the casing 1 to the inside thereof. The connecting tool 9 attached to the lower end of the shoe is connected to the connecting tool 10 of the tip shoe 5.

連結具10は採/放熱管11の接続具26にピン30によって揺動自在に取り付けられているので、その自重によって、連結具10は絶えず鉛直方向を向いており、たとえ、採/放熱管11に曲がり癖が付いていたとしても、三角形状つまり矢印形をなした係止片25は、連結具10の環状突起27,27間の空隙をスムーズに通過し、連結具10の内部に進入する。このようにして、係止片25が、図6に示す様に、一旦環状突起27,27間の空隙を通過してしまえば、係止片25と環状突起27,27間の空隙の軸芯が完全に一致しない限り、連結具9は連結具10から抜けなくなる。   Since the connecting tool 10 is swingably attached to the connecting tool 26 of the sampling / radiating tube 11 by the pin 30, the connecting tool 10 is always directed in the vertical direction by its own weight. Even if there is a curved hook, the locking piece 25 having a triangular shape, that is, an arrow shape, smoothly passes through the gap between the annular protrusions 27 and 27 of the connector 10 and enters the interior of the connector 10. . Thus, once the locking piece 25 passes through the gap between the annular projections 27, 27 as shown in FIG. 6, the axial center of the gap between the locking piece 25 and the annular projections 27, 27. Unless the two completely match, the connector 9 cannot be removed from the connector 10.

なお、上述とは逆に、採/放熱管11の挿入連結作業を行った後に、回転伝動金具4と回転受動金具3の分離作業を行う様にしても良い。   Contrary to the above, after the insertion / connection operation of the sampling / radiating pipe 11 is performed, the rotation transmission metal fitting 4 and the rotation passive metal fitting 3 may be separated.

その後、ケーシング1を逆回転させて、螺旋翼2のねじ作用により、ケーシング1を地盤19から引き抜く。すると、図9(e)に示す様に、先端シュー5とこれに連結された採/放熱管11は、地盤19内に残置され、採/放熱管11の所望深度への埋設作業は完了する。なお、ケーシング1を引き抜いた後は、採/放熱管11の周囲には空隙33が形成されているが、これは短時間のうちに周囲の土砂で満たされるので、そのまま放置しておいて何ら問題ない。   Thereafter, the casing 1 is rotated in the reverse direction, and the casing 1 is pulled out from the ground 19 by the screw action of the spiral blade 2. Then, as shown in FIG. 9 (e), the tip shoe 5 and the sampling / radiating pipe 11 connected thereto are left in the ground 19, and the burying operation to the desired depth of the sampling / radiating pipe 11 is completed. . After the casing 1 is pulled out, a gap 33 is formed around the sampling / radiating pipe 11, but this is filled with the surrounding earth and sand in a short time, so that it is left as it is. no problem.

この実施例1は上記の通りの構成を有するものであり、
1)土砂を地上に排出しないので、残土処理が不要である。
2)先端シューに掘削刃が設けられているので、掘削抵抗が減り、ケーシングの回転貫入が容易である。
3)ケーシング先端に着脱自在な先端シューを装着しているので、ケーシング内に空胴を確保出来、採/放熱管の挿入や結合が容易である。
4)回転伝動金具と回転受動金具をケーシング空胴内に位置させたので、両者の着脱が容易かつ確実に行える。
5)ケーシング引き抜き時に、地中に残置される先端シューの中に土砂が入って重くなり、しかも板状羽根が地盤に喰い込んでいるので、先端シューの引き抜き抵抗が増大し、採/放熱管の共上がり現象を確実に阻止出来る。
6)ケーシング引き抜き後に、採/放熱管の周囲に発生する空隙は、径の小さいケーシングを用いることにより、短期間で消滅し、空隙充填作業が不要である。
等の特徴を有し、高精度、高能率、低コストで地中熱を冷暖房や融雪の熱源として利用する為の採/放熱管を地盤に埋設することが出来る。
This Example 1 has the configuration as described above,
1) Since the earth and sand are not discharged to the ground, no residual soil treatment is required.
2) Since the excavating blade is provided on the tip shoe, the excavation resistance is reduced, and the casing can be easily rotated and penetrated.
3) Since a detachable tip shoe is attached to the tip of the casing, a cavity can be secured in the casing, and a sampling / radiating tube can be easily inserted and connected.
4) Since the rotary transmission metal fitting and the rotary passive metal fitting are positioned in the casing cavity, they can be attached and detached easily and reliably.
5) When the casing is pulled out, earth and sand enter the tip shoe that remains in the ground and becomes heavier, and the blades are biting into the ground. Can be prevented reliably.
6) After pulling out the casing, the gap generated around the sampling / radiating tube disappears in a short period of time by using a casing having a small diameter, and the gap filling work is unnecessary.
It is possible to embed a sampling / radiating pipe in the ground to use geothermal heat as a heat source for air conditioning and snow melting with high accuracy, high efficiency and low cost.

なお、発明者らは、上記実施例1の性能を確認する為、現場試験を実施した。即ち、外径165.2mm、長さ6mの鋼管3本を機械式継手で繋ぎ、下部外周に外径350mmの螺旋翼2を溶接したケーシング1を利用し、外径32mmのポリエチレン製の採/放熱管11を深さ18mまで埋設した。地盤19は上部12mまでは軟弱粘性土、12m以深はN値=10〜40の砂質土で、深度と共に硬くなる地盤であった。   The inventors conducted a field test in order to confirm the performance of Example 1. That is, using a casing 1 in which three steel pipes having an outer diameter of 165.2 mm and a length of 6 m are connected by a mechanical joint, and a spiral blade 2 having an outer diameter of 350 mm is welded to the outer periphery of the lower portion, The heat radiating tube 11 was buried to a depth of 18 m. The ground 19 was soft clay soil up to the upper 12 m, sandy soil with an N value of 10 to 40 below 12 m, and the ground hardened with depth.

試験は4回実施したが、目標深度である18mまで掘削するに要した時間は平均1.5時間であり、従来のボーリングマシンを用いる場合の3〜4時間に比べ、大幅に掘削時間が短縮した。又、先端シュー5の底板6に掘削刃7を設けた場合と、設けない場合の比較試験を行ったが、掘削刃7を設けた場合には、硬い砂層での貫入能率が向上した。一方、目標深度まで掘削した時点で、ケーシング1内には土砂はもちろん地下水も浸入していなかった。これは、ケーシング1と先端シュー5との間の2mm程度の隙間の上部に細かい土粒子が詰まって、水の浸入を阻止した為と考えられている。このため、軽く、曲がり癖の強い採/放熱管11でも、ケーシング1内にスムーズに挿入することが出来た。   The test was conducted four times, but the average time required for excavation to the target depth of 18m was 1.5 hours, which was significantly shorter than the 3-4 hours when using a conventional boring machine. did. In addition, a comparative test was conducted with and without the excavation blade 7 provided on the bottom plate 6 of the tip shoe 5. When the excavation blade 7 was provided, the penetration efficiency in the hard sand layer was improved. On the other hand, at the time of excavation to the target depth, not only earth and sand but also groundwater did not enter the casing 1. This is thought to be because fine soil particles were clogged in the upper part of the gap of about 2 mm between the casing 1 and the tip shoe 5 to prevent water from entering. For this reason, even the sampling / radiating pipe 11 that is light and strong in bending can be smoothly inserted into the casing 1.

又、採/放熱管11の下端と先端シュー5の連結も容易で、採/放熱管11の下端に付けた連結具9を先端シュー5の連結具10に突き当たるまで下降させただけで、両者は容易に連結し、一旦連結した後は、採/放熱管11に左右回転を交えて引き抜き力を加えても、二度と外れなかった。   Also, the lower end of the sampling / radiating tube 11 and the tip shoe 5 can be easily connected. Both the connecting tool 9 attached to the lower end of the sampling / radiating tube 11 is lowered until it contacts the connecting tool 10 of the tip shoe 5. Were connected easily, and once connected, even if the pulling force was applied to the sampling / radiating tube 11 by turning left and right, it never came off.

更に、採/放熱管11を先端シュー5に連結した後、ケーシング1を90°程逆回転させて回転伝動金具4を中立状態にし、杭打ち機18でケーシング1に引き抜き力を加えながら、軽く正逆回転を繰り返して約10cmケーシング1を引き抜いた。この時点で先端シュー5の深度を測定したが、抜き上がりは認めることが出来なかった。これにより、回転伝動金具4が回転受動金具3から完全に外れていることが確認出来たと共に、先端シュー5の側面に取り付けられた板状羽根21が地盤19に喰い込んで先端シュー5の抜き上がりを効果的に阻止していることが確認された。   Further, after connecting the sampling / radiating pipe 11 to the tip shoe 5, the casing 1 is reversely rotated by about 90 ° to make the rotary transmission bracket 4 neutral, and lightly applied to the casing 1 by the pile driver 18 while applying a pulling force. The forward / reverse rotation was repeated and the casing 1 was pulled out about 10 cm. At this time, the depth of the tip shoe 5 was measured, but no pull-up was recognized. As a result, it was confirmed that the rotary transmission metal fitting 4 was completely detached from the rotary passive metal fitting 3, and the plate-like blade 21 attached to the side surface of the tip shoe 5 bites into the ground 19 and the tip shoe 5 is removed. It was confirmed that it effectively prevented the rise.

その後、ケーシング1を逆回転させて地中から完全に引き抜いたが、採/放熱管11は共上がりせず、所定深度に残置されたままであった。ケーシング1を引き抜いた直後に、採/放熱管11の周囲には空隙33が形成されていたが、時間経過と共に、徐々に周囲の土砂が寄ってきて空隙33は狭まり、二ヶ月後には空隙33は確認出来なくなった。   Thereafter, the casing 1 was reversely rotated and completely pulled out from the ground, but the sampling / radiating tube 11 did not rise together and remained at a predetermined depth. Immediately after the casing 1 was pulled out, a gap 33 was formed around the sampling / radiating tube 11, but with the passage of time, the surrounding earth and sand gradually approached and the gap 33 narrowed. Can no longer be confirmed.

ケーシング1の回転貫入作業は、通常正回転で行うが、ケーシング1の先端付近の地盤19が硬い場合には、時折逆回転させて、ケーシング1に作用するトルクを軽減したり、貫入速度を速めたりすることがあり、この際、ケーシング1は抜き上がるが、前述の実施例1に示す回転伝動金具4と回転受動金具3の組み合わせでは、ケーシング1を逆回転させると両者が離脱し、先端シュー5がケーシング1から抜け落ちてしまうおそれがあった。   The rotation penetration operation of the casing 1 is normally performed in a normal rotation. However, when the ground 19 near the tip of the casing 1 is hard, the casing 1 is sometimes rotated in the reverse direction to reduce the torque acting on the casing 1 or increase the penetration speed. In this case, the casing 1 is pulled out. However, in the combination of the rotary transmission metal fitting 4 and the rotary passive metal fitting 3 shown in the first embodiment, when the casing 1 is rotated in the reverse direction, both of them are detached, and the tip shoe There was a risk that 5 would fall out of casing 1.

そこで、実施例2においては、ケーシング1の逆回転時に、回転伝動金具4と回転受動金具3とが離脱しない様に、構造上特に配慮しており、図10及び図11に示す様に、L字形の回転伝動金具4を用いると共に、T字形の回転受動金具3を用い、逆回転時に、回転伝動金具4の側面に形成される切欠き部28の上に、回転受動金具3の両側に形成されている張り出し片29がかぶさる様にして、これにより回転伝動金具4と回転受動金具3の離脱を防いでおり、施工の確実性が高められている。他の構成要素は、実施例1と同じであるので、説明を省略する。   Therefore, in the second embodiment, special consideration is given to the structure so that the rotary transmission metal fitting 4 and the rotary passive metal fitting 3 are not detached when the casing 1 rotates in the reverse direction. As shown in FIGS. In addition to using the T-shaped rotary transmission fitting 4 and the T-shaped rotary passive fitting 3, it is formed on both sides of the rotary passive fitting 3 on the notch portion 28 formed on the side surface of the rotary transmission fitting 4 during reverse rotation. In this manner, the projecting piece 29 is covered, thereby preventing the rotation transmission metal fitting 4 and the rotation passive metal fitting 3 from being detached, and the certainty of construction is improved. Since other components are the same as those in the first embodiment, the description thereof is omitted.

この実施例3は、採/放熱管11と先端シュー5とを連結する連結具9と10に関するものであり、前述の実施例1において用いられている連結具9と10の組み合わせでは、環状突起27と係止片25の軸芯が万が一一致したときには、採/放熱管11の連結具9が先端シュー5の連結具10から抜け出してしまうおそれがあった。そこで、この実施例3においては、図12及び図13に示す様に基部23から垂設されている挿入部24に、端部がピン34によって挿入部24の側部に枢支された一対の棒状の可動腕材31,31を取り付けた連結具9を用いており、挿入部24が環状突起27を通過する際は、可動腕材31は上方に回転してこれを通過するが、一旦通過した後は図13に示す様に、自重によって下方に広がり、その先端が円筒状をなした連結具10の内側壁に接触した位置で止まる様になっている。   The third embodiment relates to the couplers 9 and 10 for coupling the sampling / radiating tube 11 and the tip shoe 5, and in the combination of the couplers 9 and 10 used in the first embodiment, an annular protrusion is used. In the unlikely event that the shaft cores of 27 and the locking pieces 25 coincide with each other, the connector 9 of the sampling / radiating tube 11 may come out of the connector 10 of the tip shoe 5. Therefore, in the third embodiment, as shown in FIG. 12 and FIG. 13, the insertion portion 24 is suspended from the base portion 23, and a pair of ends are pivotally supported on the side portion of the insertion portion 24 by pins 34. The connecting tool 9 to which the rod-shaped movable arm members 31 and 31 are attached is used. When the insertion portion 24 passes through the annular protrusion 27, the movable arm member 31 rotates upward and passes through this, but once passes. After that, as shown in FIG. 13, it spreads downward due to its own weight, and stops at a position where its tip comes into contact with the inner wall of the connector 10 having a cylindrical shape.

この状態においては、連結具10に引き抜き力が作用しても、可動腕材31,31は連結具9の内周壁に突き当たっているので、上方へ移動することは出来ず、連結具9,10の分離は確実に阻止される。   In this state, even if a pulling force is applied to the coupling tool 10, the movable arm members 31, 31 are in contact with the inner peripheral wall of the coupling tool 9, and therefore cannot move upward. Separation is reliably prevented.

従って、この実施例3においては、採/放熱管11の連結具9と先端シュー5の連結具10とは連結しやすく、外れにくいという相反した要求を同時に満足させる事が出来、採/放熱管11をより一層安定的に地盤19中に固定することになる。   Therefore, in the third embodiment, the coupling 9 of the sampling / radiating tube 11 and the coupling 10 of the tip shoe 5 can be easily coupled and can satisfy the conflicting demands of being difficult to come off at the same time. 11 is more stably fixed in the ground 19.

ヒートポンプを用いて地中熱をエネルギー源として利用するあらゆる産業分野において利用可能である。   It can be used in all industrial fields that use geothermal heat as an energy source using a heat pump.

1.ケーシング
2.螺旋翼
3.回転受動金具
4.回転伝動金具
5.先端シュー
6.底板
7.掘削刃
9.連結具
10.連結具
11.採/放熱管
18.杭打ち機
19.地盤
20.モーター
21.板状羽根
22.管路
23.基部
24.挿入部
25.係止片
26.接続具
27.環状突起
30.ピン
31.可動腕材
32.つば部
33.空隙
34.ピン
35.チューブ
1. Casing 2. 3. Spiral wing Rotating passive metal fittings 4. Rotating gear bracket 5. Tip shoe 6. Bottom plate 7. 8. Excavation blade Connecting tool 10. 10. coupling tool Sampling / radiating tube 18. Pile driver 19. Ground 20. Motor 21. Plate-like blade 22. Pipe line 23. Base 24. Insertion section 25. Locking piece 26. Connecting tool 27. Annular protrusion 30. Pin 31. Movable arm member 32. Collar part 33. Air gap 34. Pin 35. tube

Claims (1)

鋼管からなり、先端付近の外周に回転貫入用の螺旋翼が固着されており、先端付近の内周面には回転伝動金具が固着されたケーシング,
前記ケーシングの外径よりわずかに大きい内径を有する短管の下端が円盤状の底板で閉塞されており、該底板の下面には掘削刃が固着されており、その上面には、前記ケーシングの回転伝動金具と結合する回転受動金具及び採/放熱管の下端に取り付けられた連結具と連結する連結具がそれぞれ固着されており、外周面には板状羽根が固着された先端シュー,
U字形に屈曲をした管路を有する接続具によって、長尺状をなした一対のチューブの端末を接続連通せしめた採/放熱管,
を用意し、ケーシングの回転伝動金具と先端シューの回転受動金具とを結合させて、ケーシングの先端に先端シューを装着し、先端シューを下方にして地盤上にケーシングを立設させ、これに回転力を与えて先端シューを地中に向かって目標深度まで回転貫入させた後、ケーシングの上端開口部から、採/放熱管をケーシング内下方に向かって挿入し、その下端の連結具を先端シューの連結具に連結した後、ケーシングを逆回転させてケーシングを地盤から引き抜き、先端シュー及びこれに連結された採/放熱管を地盤中に残置させる様にしたことを特徴とする地中熱利用採/放熱管の設置方法。
A casing made of a steel pipe, with a spiral blade for rotation penetration fixed to the outer periphery near the tip, and a rotation transmission fitting fixed to the inner peripheral surface near the tip,
The lower end of a short pipe having an inner diameter slightly larger than the outer diameter of the casing is closed by a disk-shaped bottom plate, and a drilling blade is fixed to the lower surface of the bottom plate, and the upper surface of the casing rotates. A rotary passive metal fitting to be coupled to the transmission metal fitting and a coupling tool to be connected to a fitting attached to the lower end of the sampling / radiating pipe are fixed, and a tip shoe having a plate-like blade fixed to the outer peripheral surface,
A sampling / radiating pipe in which the ends of a pair of long tubes are connected and connected by a connector having a pipe line bent in a U-shape,
Prepare the casing, connect the rotary transmission bracket of the casing and the passive passive bracket of the tip shoe, attach the tip shoe to the tip of the casing, place the casing on the ground with the tip shoe down, and rotate it After applying the force to rotate the tip shoe into the ground to the target depth, insert the sampling / radiating pipe from the upper end opening of the casing toward the lower side of the casing, and connect the connector at the lower end to the tip shoe. After connecting to the connector, the casing is reversely rotated, the casing is pulled out from the ground, and the tip shoe and the sampling / radiating pipe connected to the tip shoe are left in the ground. How to install sampling / radiating tubes.
JP2009294661A 2009-12-25 2009-12-25 Underground heat collection / radiation pipe installation method Expired - Fee Related JP5442425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294661A JP5442425B2 (en) 2009-12-25 2009-12-25 Underground heat collection / radiation pipe installation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294661A JP5442425B2 (en) 2009-12-25 2009-12-25 Underground heat collection / radiation pipe installation method

Publications (2)

Publication Number Publication Date
JP2011133194A JP2011133194A (en) 2011-07-07
JP5442425B2 true JP5442425B2 (en) 2014-03-12

Family

ID=44346127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294661A Expired - Fee Related JP5442425B2 (en) 2009-12-25 2009-12-25 Underground heat collection / radiation pipe installation method

Country Status (1)

Country Link
JP (1) JP5442425B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885512B2 (en) * 2012-01-13 2016-03-15 旭化成建材株式会社 Construction method of heat collection tube
JP5974251B2 (en) * 2012-08-21 2016-08-23 ジャパンパイル株式会社 Equipment for installing heat exchange tubes using underground heat in ready-made piles
JP5507752B1 (en) * 2013-12-10 2014-05-28 株式会社サムシング Underground material burial method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303088A (en) * 2001-04-06 2002-10-18 Nippon Steel Corp Method of installing heat-exchanger tube for utilizing underground heat
JP2006057404A (en) * 2004-08-23 2006-03-02 Norihiro Watanabe Front-end head and construction tool for foundation pile, and foundation pile
JP2006263523A (en) * 2005-03-22 2006-10-05 Tokyu Construction Co Ltd Stabilizing method and apparatus for waste disposal facility

Also Published As

Publication number Publication date
JP2011133194A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5084761B2 (en) Construction method for underground heat exchanger and hollow tube and casing used in the method
JP5438033B2 (en) Installation method of geothermal exchanger, concrete pile, micropile using sonic drill and removable or recoverable drill bit
JP2002303088A (en) Method of installing heat-exchanger tube for utilizing underground heat
US7938904B1 (en) Cementitious grout and methods of using same
JP2006052588A (en) Pile with underground heat exchanging outer pipe, and method of constructing underground heat exchanger using the pile
JP2004233031A (en) Underground heat exchanger by hollow tubular body embedded by rotating press-fitting method, and highly efficient energy system using the same
JP5442425B2 (en) Underground heat collection / radiation pipe installation method
JP5339962B2 (en) Construction method for underground heat exchanger and hollow tube used in the method
JP2009103441A (en) Underground temperature stratified heat storage water tank
JP2009041894A (en) Underground heat exchange method by pulling out rotary leading steel pipe
JP2013124535A (en) Excavation apparatus and method for forming underground heat exchanger installation hole
JP2007017141A (en) Auxiliary burying material
CN103103985B (en) A kind of ground source heat pump line method of installation based on planting a process
KR20070091487A (en) Heating exchanging system using the ground source
JP4210297B2 (en) Expanded pipe with tip blade and steel pipe pile with tip blade provided with the same
JP2015203234A (en) Snow-melting system and steel pipe part
JP2003172558A (en) Heat exchanging device for underground wall and its constructing method
KR101998637B1 (en) Combined turbulent type ground heat exchange system
JP6796689B1 (en) How to install the heat collection tube
KR101968143B1 (en) A method for protecting geothermal heat exchanging pipe
JP4859871B2 (en) Buried pipe for heat exchange
JP2007262789A (en) Construction method for underground wall
JP4526018B2 (en) Vertical hole drilling device, vertical hole construction method using the same, and lower propelling body
JP6232962B2 (en) How to build pipe members
KR101443197B1 (en) Apparatus for burying water intake tube and method for burying water intake tube consist of synthetic resine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees