JP5440476B2 - Vehicle collision detection device - Google Patents

Vehicle collision detection device Download PDF

Info

Publication number
JP5440476B2
JP5440476B2 JP2010249722A JP2010249722A JP5440476B2 JP 5440476 B2 JP5440476 B2 JP 5440476B2 JP 2010249722 A JP2010249722 A JP 2010249722A JP 2010249722 A JP2010249722 A JP 2010249722A JP 5440476 B2 JP5440476 B2 JP 5440476B2
Authority
JP
Japan
Prior art keywords
collision
damage
effective mass
threshold value
bumper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010249722A
Other languages
Japanese (ja)
Other versions
JP2012101593A (en
Inventor
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010249722A priority Critical patent/JP5440476B2/en
Publication of JP2012101593A publication Critical patent/JP2012101593A/en
Application granted granted Critical
Publication of JP5440476B2 publication Critical patent/JP5440476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、バンパにおける圧力変化に基づいて物体の衝突を検知する車両用衝突検知装置に関する。   The present invention relates to a vehicle collision detection device that detects an object collision based on a pressure change in a bumper.

車両が歩行者と衝突した際、歩行者へのダメージを軽減する歩行者保護装置が実用化されている。この歩行者保護装置は、歩行者がエンジンフードにたたきつけられる衝撃を和らげるために、エンジンフードの後端を衝突検知後瞬時に上昇させ、上昇した分のストロークを緩衝用機構で支えるというもので、ポップアップフード、ポップアップエンジンフード、アクティブボンネット、アクティブフード等の名称で呼ばれている。また、車体外部のエンジンフード上からフロントウインド下部にかけてエアバッグを展開し、直接歩行者の衝撃を緩衝するというものもあり、カウルエアバッグ、フードエアバッグ等の名称で呼ばれている。   Pedestrian protection devices that reduce damage to pedestrians when a vehicle collides with pedestrians have been put into practical use. This pedestrian protection device instantly raises the rear end of the engine hood after collision detection in order to reduce the impact of the pedestrian hitting the engine hood, and supports the increased stroke with a buffer mechanism. It is called by names such as pop-up hood, pop-up engine hood, active bonnet, and active hood. In addition, there is an airbag that is deployed from the engine hood outside the vehicle body to the lower part of the front window to directly buffer the impact of a pedestrian, and is called by a name such as a cowl airbag or a hood airbag.

これらの装置では、バンパ部に衝突検知装置を設け、センサを用いて物体が接触したことを検知し、接触した物体が人体であると判定した場合に装置を作動させる仕組みを持っている。歩行者保護装置が作動すると弊害がある。たとえば、運転者の視界を損なうので速度が高い場合は危険であるし、一度作動した場合は修理が必要となるため修理費が発生する。さらに、エンジンルームが潰れるような深刻な衝突では、装置が作動して後端が上昇したエンジンフードが、フロントガラスを突き破って車室に侵入し乗員に危害を加えるおそれがある。したがって、衝突の対象が人体以外の場合や、また速度が大きすぎたり、小さすぎたりして作動しても効果が望めない場合には、衝突物の種類を正確に判別して装置が作動しないことが望ましい。   In these apparatuses, a collision detection device is provided in the bumper unit, and it is detected that an object has been contacted using a sensor, and the device is operated when it is determined that the contacted object is a human body. It is harmful when the pedestrian protection device is activated. For example, it impairs the driver's field of view, which is dangerous when the speed is high, and once it is activated, repairs are required, and repair costs are incurred. Further, in a serious collision such that the engine compartment is crushed, there is a risk that the engine hood whose rear end is raised by operating the device will break through the windshield and enter the passenger compartment, causing harm to the passengers. Therefore, if the target of collision is something other than a human body, or if the effect is not expected even if the speed is too high or too low, the device will not operate by accurately determining the type of collision object. It is desirable.

従来、バンパ内にチャンバ部材を配設して、衝突時におけるチャンバ内の圧力変化を検出することで衝突物の種類を判別し、さらに装置を構成する各構成品へのダメージ判定を行うよう構成された車両用衝突検知装置が提案されている(例えば、特許文献1)。   Conventionally, a chamber member is provided in a bumper, and the type of collision object is determined by detecting a pressure change in the chamber at the time of collision, and further, damage is determined for each component constituting the apparatus. A vehicle collision detection device has been proposed (for example, Patent Document 1).

特許文献1記載の車両用衝突検知装置では、バンパへ物体が衝突すると、バンパ内でバンパリーンフォースの前面に配設されたチャンバ部材が変形することによってチャンバ内に圧力変化が発生し、その圧力変化が圧力センサによって検出される。衝突検知装置は、圧力センサによる圧力変化の検出結果に基づいて、運動エネルギーから有効質量を算出し、衝突物が歩行者か否か、検知装置の故障か否かを判定する。   In the vehicle collision detection device described in Patent Document 1, when an object collides with the bumper, the chamber member disposed on the front surface of the bumper force is deformed in the bumper, thereby causing a pressure change in the chamber. The change is detected by a pressure sensor. The collision detection device calculates an effective mass from the kinetic energy based on the detection result of the pressure change by the pressure sensor, and determines whether the collision object is a pedestrian or a failure of the detection device.

検知装置の故障判定は、実際に歩行者保護装置が作動した場合の他、歩行者保護装置が作動しない低速で物体に触れ、チャンバ部材の破損が想定されると判断された場合に、故障と判定するように設定しておく。たとえば、駐車場でステアリングを大きく切って低速で移動する際に、最小回転半径を見誤って柵や柱などにバンパの角を軽微に接触させた場合や、縦列駐車からの発車際に、前後の車をバンパで動かしてスペースをつくって駐車列から抜け出すような場合にチャンバが破損する可能性がある。チャンバが破損した状態を知らずに歩行者と衝突すると、歩行者との衝突を想定した圧力が発生せず、歩行者保護装置を起動することができない。このため、運動エネルギーから有効質量を算出し、所定の値と比較することによって、歩行者保護装置を作動すべき速度よりも小さな速度で物体に衝突した場合にチャンバが破損している可能性があるとして、警報装置により運転者へ衝突検知装置の故障を報知するように構成されている。よって、警報装置による報知によって衝突検知装置の故障を認識した運転者は、車両を修理工場等へ移動させて修理を受けることができる。   The failure determination of the detection device is not only when the pedestrian protection device is actually activated, but also when the object is touched at a low speed at which the pedestrian protection device does not operate and it is determined that the chamber member is assumed to be broken. Set to determine. For example, when moving at a low speed with the steering wheel turned off at a parking lot, if the corner of the bumper is slightly touched to the fence or pillar by mistaking the minimum turning radius, or when leaving the parallel parking, If a car is moved with a bumper to make space and get out of the parking line, the chamber may be damaged. When a collision with a pedestrian occurs without knowing the state in which the chamber is damaged, no pressure is generated assuming a collision with the pedestrian, and the pedestrian protection device cannot be activated. Therefore, by calculating the effective mass from the kinetic energy and comparing it with a predetermined value, the chamber may be damaged when it collides with an object at a speed lower than the speed at which the pedestrian protection device should be operated. As there is, it is configured to notify the driver of the failure of the collision detection device by an alarm device. Therefore, the driver who recognizes the failure of the collision detection device by the notification by the alarm device can move the vehicle to a repair shop or the like and receive repair.

特開2010−70129号公報JP 2010-70129 A

しかしながら、衝突検知装置の故障を警報装置による報知によって運転者が認識したとしても、直ちに修理を行うことは現実には不可能な場合があり、例えば、自走して修理工場へ向かう途中で歩行者に衝突することも現実には起こり得ることである。また、故障報知を無視して使用したり、後日に修理を予定して継続使用したりした場合に、歩行者に衝突する可能性もある。   However, even if the driver recognizes the failure of the collision detection device by an alarm device, it may not be possible to repair the vehicle immediately. Colliding with a person can happen in reality. In addition, there is a possibility of colliding with a pedestrian when the device is used ignoring the failure notification or is scheduled to be repaired at a later date and used continuously.

本発明は、上記課題に鑑みてなされたものであり、バンパ内に配設されたチャンバ部材内部の圧力変化を検出する車両用衝突検知装置において、チャンバ部材が所定以上のダメージを受けた後も衝突検知を行うことができる車両用衝突検知装置を提供することを目的とする。   The present invention has been made in view of the above problems, and in a vehicle collision detection device that detects a pressure change inside a chamber member disposed in a bumper, the chamber member is damaged even after a predetermined amount of damage. An object of the present invention is to provide a vehicle collision detection device capable of performing collision detection.

上記目的を達成するためになされた請求項1に記載の発明は、バンパ内に配設され内部にチャンバ空間が形成されるチャンバ部材と、前記チャンバ空間の圧を検出する圧力センサと、圧力センサによる圧力検出結果に基づいてバンパへの物体の衝突を判定する衝突判定手段と、を有して構成された車両用衝突検知装置において、圧力センサによる圧力検出結果に基づいてバンパのダメージを判定するダメージ判定手段と、ダメージ判定手段によってバンパが所定以上のダメージを受けたと判定された場合に、車両用衝突検知装置の故障を報知する故障報知手段と、圧力センサによる圧力検出結果に基づいて衝突物の有効質量を算出する有効質量算出手段と、ダメージ判定手段によってバンパが所定以上のダメージを受けたと判定された場合に衝突判定手段の閾値を変更する閾値変更手段と、を備え、衝突判定手段は、ダメージ判定手段によって前記バンパが所定以上のダメージを受けたと判定された以後も、有効質量算出手段によって算出された有効質量を閾値と比較することによって衝突の判定を行うように構成されたことを特徴とする。 The invention of claim 1 has been made in order to achieve the above object, a pressure sensor for detecting a chamber member internal to the chamber space disposed within the bumper is formed, the pressure of the chamber space, the pressure A collision determination unit configured to determine collision of an object with a bumper based on a pressure detection result by the sensor. In a vehicle collision detection device configured to determine damage to the bumper based on the pressure detection result by the pressure sensor A collision determination unit, a failure notification unit for notifying a failure of the vehicle collision detection device when the damage determination unit determines that the bumper has received a predetermined damage or more, and a collision based on a pressure detection result by the pressure sensor. When the effective mass calculation means for calculating the effective mass of an object and the damage determination means determine that the bumper has received more than a predetermined amount of damage It includes a threshold value changing means for changing the threshold value of collision determination means, a collision determination means, also hereinafter the said bumper by the damage determination means determines that received a predetermined or damage, effective calculated by the effective mass calculation means The collision is determined by comparing the mass with a threshold value .

この構成によれば、ダメージ判定手段によってバンパが所定以上のダメージを受けたと判定された以後も、衝突判定手段により衝突の判定を行うので、車両用衝突検知装置の故障が修理される前に歩行者等との衝突事故が発生した場合にも確実に衝突を検知することが可能となる。   According to this configuration, even after it is determined by the damage determination means that the bumper has received a predetermined damage or more, the collision determination means performs the collision determination, so that the walk before the vehicle collision detection device is repaired is repaired. It is possible to reliably detect a collision even when a collision accident with a person or the like occurs.

すなわち、バンパへの物体の衝突が発生した車両の搭乗者は、故障報知手段による報知を受けることにより、衝突直後の車両用衝突検知装置が異常な場合を認識し、修理工場等へ向かうことができ、万一その道のりにおいて、歩行者と衝突した場合にも車両用衝突検知装置が衝突を検知できるので、歩行者保護装置の作動が必要な衝突があった場合、歩行者を保護することが可能となる。   In other words, a passenger of a vehicle in which a collision of an object with a bumper has received a notification from the failure notification means recognizes that the vehicle collision detection device immediately after the collision is abnormal and goes to a repair factory or the like. In the event of a collision with a pedestrian, the collision detection device for a vehicle can detect a collision, so if there is a collision that requires the activation of the pedestrian protection device, the pedestrian can be protected. It becomes possible.

また、バンパがダメージを受けた後、以後の衝突判定手段の閾値が変更されるので、ダメージによって衝突検知性能が低下していた場合でも、歩行者等の衝突を検知することができる。 Further , since the threshold value of the subsequent collision determination means is changed after the bumper is damaged, it is possible to detect the collision of a pedestrian or the like even when the collision detection performance is reduced due to the damage.

請求項に記載の発明は、閾値変更手段が、ダメージ判定手段によって所定以上のダメージを受けたと判定されたときの有効質量の大きさに応じて、閾値を変更することを特徴とする。 The invention according to claim 2 is characterized in that the threshold value changing means changes the threshold value according to the magnitude of the effective mass when it is determined that the damage determination means has received a predetermined amount or more of damage.

この構成によれば、閾値変更手段が、ダメージ判定手段によって所定以上のダメージを受けたと判定されたときの有効質量の大きさに応じて(換言すれば、チャンバが破損した割合に応じて)、閾値を設定することができる。例えば、軽度なダメージの場合、通常よりやや低い閾値とし、重度なダメージの場合、より低い閾値とすることにより、チャンバ破損後の衝突時に検出される圧力が低いものであったとしても、確実に衝突を検知することができる。また、閾値を下げ過ぎることがないため、軽度な接触によって誤動作が起こることも防ぐことができる。   According to this configuration, according to the magnitude of the effective mass when the threshold value changing means is determined to have received the predetermined damage or more by the damage determination means (in other words, according to the rate at which the chamber is broken), A threshold can be set. For example, if the damage is low, the threshold is slightly lower than normal, and if the damage is severe, the threshold is lower. A collision can be detected. In addition, since the threshold value is not lowered too much, it is possible to prevent malfunction from being caused by slight contact.

請求項に記載の発明は、有効質量算出手段が、圧力センサによる圧力検出結果から運動量と力積との関係を用いて有効質量を求めることを特徴とする。この構成によれば、有効質量を求める際、速度の大きさで除するだけでよいため、衝突判定とダメージ判定の精度が向上する。 The invention described in claim 3 is characterized in that the effective mass calculating means obtains the effective mass from the pressure detection result by the pressure sensor using the relationship between the momentum and the impulse. According to this configuration, when determining the effective mass, it is only necessary to divide by the magnitude of the speed, so that the accuracy of the collision determination and the damage determination is improved.

請求項に記載の発明は、閾値変更手段が、ダメージ判定手段によってバンパが所定以上のダメージを受けたと判定された場合に衝突判定手段の閾値をより小さい値に変更することを特徴とする。この構成によれば、ダメージ判定手段によってバンパが所定以上のダメージを受けたと判定された場合には、衝突判定手段の閾値をより小さい値に変更するので、チャンバ部材の破損により衝突時に検出される圧力が小さいものであったとしても、確実に衝突を検知することができる。 The invention according to claim 4 is characterized in that the threshold value changing means changes the threshold value of the collision determination means to a smaller value when it is determined by the damage determination means that the bumper has received a predetermined damage or more. According to this configuration, when it is determined by the damage determination means that the bumper has received damage greater than or equal to the predetermined value, the threshold value of the collision determination means is changed to a smaller value. Even if the pressure is small, it is possible to reliably detect a collision.

請求項に記載の発明は、閾値変更手段が、ダメージ判定手段によって所定以上のダメージを受けたと判定されたときの有効質量の大きさが大きいほど、閾値をより小さい値に変更することを特徴とする。この構成によれば、ダメージが大きいほどチャンバの破損が大きいおそれがあり、すなわち、穴が大きく開くおそれがあるため、より閾値を低くすることで、確実に衝突の判定を行うことができる。 The invention according to claim 5 is characterized in that the threshold value changing means changes the threshold value to a smaller value as the effective mass is larger when it is determined by the damage determining means that the damage is more than a predetermined amount. And According to this configuration, the greater the damage, the greater the possibility of breakage of the chamber, that is, there is a possibility that the hole will open larger. Therefore, the collision can be reliably determined by lowering the threshold value.

請求項に記載の発明は、衝突判定手段が、有効質量算出手段によって算出された有効質量が歩行者相当である場合に、歩行者保護装置を作動させることを特徴とする。この構成によれば、歩行者と衝突した際に歩行者を保護することができる。 The invention according to claim 6 is characterized in that the collision determination means operates the pedestrian protection device when the effective mass calculated by the effective mass calculation means is equivalent to a pedestrian. According to this structure, a pedestrian can be protected when it collides with a pedestrian.

請求項に記載の発明は、歩行者保護装置が、ポップアップフード、カウルエアバッグのうち少なくとも一方であることを特徴とする。この構成によれば、歩行者と衝突した際に歩行者の頭部への障害を抑制することができる。 The invention described in claim 7 is characterized in that the pedestrian protection device is at least one of a pop-up hood and a cowl airbag. According to this structure, the obstacle to a pedestrian's head can be suppressed when it collides with a pedestrian.

本発明の実施形態に係る車両用衝突検知装置の構成を示す図であり、(a)は各構成要素をバンパの概略縦断面構造と共に示す模式図、(b)はハードウエア構成を示す機能ブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the collision detection apparatus for vehicles which concerns on embodiment of this invention, (a) is a schematic diagram which shows each component with the schematic longitudinal cross-section of a bumper, (b) is a functional block which shows a hardware structure FIG. 本発明の実施形態に係る車両用衝突検知装置の構成を車両上方からの視点で示す図である。It is a figure showing the composition of the collision detection device for vehicles concerning the embodiment of the present invention from the viewpoint from the vehicles upper part. 衝突物からの衝撃を模した概念図である。It is a conceptual diagram imitating the impact from a collision object. 本発明の実施形態に係る車両用衝突検知装置におけるコントローラの処理を示すフローチャートである。It is a flowchart which shows the process of the controller in the collision detection apparatus for vehicles which concerns on embodiment of this invention.

以下、本発明の車両用衝突検知装置の具体的な実施形態について図面を参照しつつ説明
する。
Hereinafter, specific embodiments of the vehicle collision detection device of the present invention will be described with reference to the drawings.

本発明の実施形態に係る車両用衝突検知装置10は、図1(a)、(b)、図2に示すように、車両前方のバンパ1への物体の衝突を検知し、歩行者保護装置21を起動するよう構成された装置であり、バンパ1と、バンパ1内に配設され、チャンバ空間2aが内部に形成されるチャンバ部材2と、チャンバ空間2a内の圧力変化を検出する圧力センサ3と、コントローラ11を備えている。コントローラ11は、各センサ類の検出結果を基に後述する種々の手段として機能する。   As shown in FIGS. 1A, 1B, and 2, the vehicle collision detection device 10 according to the embodiment of the present invention detects a collision of an object with the bumper 1 in front of the vehicle, and a pedestrian protection device. 21 is a device configured to activate 21, a bumper 1, a chamber member 2 disposed in the bumper 1, in which a chamber space 2 a is formed, and a pressure sensor that detects a pressure change in the chamber space 2 a 3 and a controller 11. The controller 11 functions as various means to be described later based on the detection results of the sensors.

バンパ1は、図1(a)、図2に示すように、バンパリーンフォース4、チャンバ部材2、アブソーバ5を主体として構成されている。   As shown in FIGS. 1A and 2, the bumper 1 is mainly composed of a bumper force 4, a chamber member 2, and an absorber 5.

バンパリーンフォース4は既設のものであり、バンパ1内に配設されて車両幅方向に延びる金属製の梁状部材であって、車両側面側に位置して車両前後方向に延びる一対の金属製部材である既設のサイドメンバ6の前端に取り付けられている。   The bumper force 4 is an existing metal beam-like member that is disposed in the bumper 1 and extends in the vehicle width direction, and is a pair of metal members that are positioned on the side surface of the vehicle and extend in the vehicle front-rear direction. It is attached to the front end of the existing side member 6 which is a member.

チャンバ部材2は、バンパ1内でバンパリーンフォース4の前面上部に取り付けられ、車幅方向に延びる、ポリエチレン等の合成樹脂からなる中空の部材で、バンパ1における圧力伝達の作用を持つ部材である。チャンバ部材2の内部にはチャンバ空間2aが形成されている。チャンバ空間2aは閉じた空間であるが、密閉されてはおらず、一部の狭小部分で外気と連通し大気圧になっている。これにより標高差や気温変化などによる気圧の変化の影響を受けない。チャンバ空間2aには不図示の差込口を介して圧力センサ3の受圧部が差し込まれている。チャンバ部材2の下部にはアブソーバ5が配置されている。アブソーバ5は、バンパ1において衝撃吸収の作用を持つ部材である。たとえば発泡樹脂等を用いることができる。また、チャンバ空間2aはチャンバ部材2内に1つ設けられていればよいが、車両幅方向に複数設けられていてもよい。   The chamber member 2 is a hollow member made of a synthetic resin such as polyethylene, which is attached to the upper front surface of the bumper force 4 in the bumper 1 and extends in the vehicle width direction, and has a pressure transmission function in the bumper 1. . A chamber space 2 a is formed inside the chamber member 2. The chamber space 2a is a closed space, but is not hermetically sealed, and is communicated with the outside air in some narrow portions and is at atmospheric pressure. As a result, it is not affected by changes in atmospheric pressure due to altitude differences or temperature changes. A pressure receiving portion of the pressure sensor 3 is inserted into the chamber space 2a through an insertion port (not shown). An absorber 5 is disposed below the chamber member 2. The absorber 5 is a member having an impact absorbing function in the bumper 1. For example, a foamed resin or the like can be used. Further, one chamber space 2a may be provided in the chamber member 2, but a plurality of chamber spaces 2a may be provided in the vehicle width direction.

圧力センサ3は、気体圧力を荷重として検出可能なセンサ装置であり、チャンバ部材2に組み付けられている。具体的には、差込口を介してその受圧部がチャンバ空間2a内に差し込まれ、チャンバ空間2a内の空気の圧力変化を検出可能に構成されている。圧力センサ3は、圧力に比例した信号を出力する。圧力センサ3は、コントローラ11と伝送線を介して電気的に接続されている。チャンバ空間2aがチャンバ内に複数設けられている場合はチャンバ空間2aごとに設けられているものとする。   The pressure sensor 3 is a sensor device that can detect a gas pressure as a load, and is assembled to the chamber member 2. Specifically, the pressure receiving portion is inserted into the chamber space 2a via the insertion port, and the pressure change of the air in the chamber space 2a can be detected. The pressure sensor 3 outputs a signal proportional to the pressure. The pressure sensor 3 is electrically connected to the controller 11 via a transmission line. When a plurality of chamber spaces 2a are provided in the chamber, they are provided for each chamber space 2a.

車速センサ12は、車速パルスにより車両の走行速度の大きさを検出する既設の速度センサであり、コントローラ11と伝送線を介して電気的に接続されている。   The vehicle speed sensor 12 is an existing speed sensor that detects the magnitude of the traveling speed of the vehicle based on vehicle speed pulses, and is electrically connected to the controller 11 via a transmission line.

コントローラ11は、衝突時に圧力センサ3および既設の車速センサ12の検出結果に基づいて衝突物の有効質量を算出する有効質量算出手段、および有効質量算出手段によって算出された有効質量に基づいて衝突物の種類を判別する衝突判定手段として機能する。また、有効質量算出手段によって算出された有効質量と車速センサ12の検出結果に基づいて車両用衝突検知装置10が正常動作するか否かを診断するダメージ判定手段として機能する。さらに、ダメージ判定手段によってバンパ1が所定以上のダメージを受けたと判定された場合には、車両用衝突検知装置10の故障を警報装置22に報知する故障報知手段としての機能も備えている。さらにまた、衝突判定手段は圧力検出結果から求めた有効質量を閾値と比較するものであるので、バンパ1が所定以上のダメージを受けたと判定された後に、ダメージを受けたと判定したときの有効質量の大きさに応じて、閾値を所定の閾値に変更する閾値変更手段としての機能も備えている。   The controller 11 is configured to calculate effective mass of the collision object based on the detection results of the pressure sensor 3 and the existing vehicle speed sensor 12 at the time of collision, and the collision object based on the effective mass calculated by the effective mass calculation means. It functions as a collision determination means for determining the type of the. Moreover, it functions as a damage determination means for diagnosing whether or not the vehicle collision detection device 10 normally operates based on the effective mass calculated by the effective mass calculation means and the detection result of the vehicle speed sensor 12. Furthermore, when it determines with the bumper 1 having received the damage more than predetermined by the damage determination means, it also has a function as a failure notification means for notifying the alarm device 22 of the failure of the vehicle collision detection device 10. Furthermore, since the collision determination means compares the effective mass obtained from the pressure detection result with a threshold value, the effective mass when it is determined that the bumper 1 has received damage after it is determined that the bumper 1 has received damage more than a predetermined amount. It also has a function as a threshold changing means for changing the threshold to a predetermined threshold according to the size of.

なお、ここで「有効質量」とは、衝突時に圧力センサで検知した信号から、運動量と力積の関係を利用して算出する質量をいうものとする。バンパ1ではアブソーバ5やその他の部材で衝撃を吸収する機能があり、衝突する物体も地面で支えられているものである。したがって、圧力センサで検知した荷重から計算できるものは、実際の質量とは異なったものとなるため、誤解を避けるため、上記の意味で「有効質量」という言葉を用いる。   Here, the “effective mass” refers to a mass calculated using a relationship between momentum and impulse from a signal detected by a pressure sensor at the time of collision. The bumper 1 has a function of absorbing an impact by the absorber 5 and other members, and the colliding object is also supported by the ground. Therefore, what can be calculated from the load detected by the pressure sensor is different from the actual mass. Therefore, to avoid misunderstanding, the term “effective mass” is used in the above sense.

コントローラ11は、上述したように、圧力センサ3および車速センサ12の検出結果に基づいて衝突物の有効質量を算出し、衝突物の種類を歩行者と判別し、さらに歩行者保護装置21を作動させるべき速度であると判定した場合には、歩行者保護装置21の駆動装置23を動作させるための信号を出力し、歩行者保護装置21を作動させる。衝突物の種類を歩行者でないと判別した場合や、衝突物が歩行者であっても歩行者保護装置21を作動させるべき速度でないと判定した場合には、バンパ1のダメージを判定するダメージ判定処理を実行し、バンパ1が所定以上のダメージを受けたと判定された場合には、車両用衝突検知装置10の故障を警報装置22に報知する故障報知処理を実行し、故障判定をデータとしてコントローラ11内のRAM24に入力することにより、RAM24は修理のための故障履歴情報としてデータを記憶し、記憶された情報を保守・整備時に別途用意する診断装置で読み出すことにより、交換・修理等の要否を判断する情報として使用する。コントローラ11は、以後も圧力センサ3および車速センサ12の検出結果に基づいて衝突物の有効質量を算出し、衝突物の種類を判別することを続行する。   As described above, the controller 11 calculates the effective mass of the collision object based on the detection results of the pressure sensor 3 and the vehicle speed sensor 12, determines the type of the collision object as a pedestrian, and further activates the pedestrian protection device 21. When it is determined that the speed should be set, a signal for operating the driving device 23 of the pedestrian protection device 21 is output, and the pedestrian protection device 21 is operated. Damage determination for determining damage to the bumper 1 when it is determined that the type of the collision object is not a pedestrian, or when it is determined that the collision object is not a speed at which the pedestrian protection device 21 should be operated even if the collision object is a pedestrian When the process is executed and it is determined that the bumper 1 has been damaged more than a predetermined amount, a failure notification process for notifying the alarm device 22 of a failure of the vehicle collision detection device 10 is executed, and the failure determination is performed as data. 11, the RAM 24 stores data as failure history information for repair, and the stored information is read out by a diagnostic device separately prepared for maintenance and maintenance. It is used as information for determining whether or not. The controller 11 continues to calculate the effective mass of the collision object based on the detection results of the pressure sensor 3 and the vehicle speed sensor 12 and to determine the type of the collision object.

歩行者保護装置21はポップアップフード、ポップアップエンジンフード、アクティブボンネット、アクティブフード、カウルエアバッグ、フードエアバッグ等の名称で呼ばれる公知のものであってよく、エンジンフードの後端を衝突検知後瞬時に上昇させ、上昇した分のストロークを緩衝用機構で支え、歩行者がエンジンフードにたたきつけられる衝撃を和らげ保護するというものか、または、カウルエアバッグ、フードエアバッグ等の名称で呼ばれる、車体外部のエンジンフード上からフロントウインド下部にかけてエアバッグを展開し歩行者の衝撃を緩衝するというもの等である。警報装置22は公知の部品で構成され、コントローラ11からの出力に基づいて、たとえば音声やメータ内の表示により乗員に故障の報知を行う。   The pedestrian protection device 21 may be a known device called by a name such as a pop-up hood, a pop-up engine hood, an active bonnet, an active hood, a cowl airbag, a hood airbag, or the like. It is lifted and the stroke of the raised part is supported by a buffer mechanism, so that the impact that the pedestrian hits the engine hood is softened or protected, or it is called the name of a cowl airbag, hood airbag, etc. An airbag is deployed from the top of the engine hood to the lower part of the front window to cushion the impact of pedestrians. The alarm device 22 is composed of known parts, and notifies the occupant of the failure based on the output from the controller 11, for example, by voice or display in the meter.

次に、図面を参照にしつつ、本実施形態における衝突判定処理について説明する。図3には、衝突物からの衝撃を模した概念図が示されている。図から明らかなように、バンパ1へ物体が衝突すると、チャンバ部材2が変形し、チャンバ空間2aの容積が急激に変化するため、一部の狭小部分で外気と連通していても、内部の気体圧力が上昇する。チャンバ空間2a内の気体圧力の変化は、圧力センサ3によって電気的に検出される。   Next, the collision determination process in this embodiment will be described with reference to the drawings. FIG. 3 is a conceptual diagram simulating an impact from a collision object. As is apparent from the figure, when the object collides with the bumper 1, the chamber member 2 is deformed and the volume of the chamber space 2a changes rapidly. The gas pressure increases. A change in the gas pressure in the chamber space 2 a is electrically detected by the pressure sensor 3.

コントローラ11は、伝送線を介して圧力センサ3から出力される信号を取り込むとともに、車速センサ12からの車速信号を取り込む。さらに、圧力センサ3からの出力と車速に基づいて衝突物の有効質量を算出し、算出した有効質量が所定の閾値より大きいか否かによって、衝突物が歩行者等であるか否かを判定する。   The controller 11 captures a signal output from the pressure sensor 3 via the transmission line and also captures a vehicle speed signal from the vehicle speed sensor 12. Further, the effective mass of the collision object is calculated based on the output from the pressure sensor 3 and the vehicle speed, and it is determined whether the collision object is a pedestrian or the like based on whether the calculated effective mass is larger than a predetermined threshold value. To do.

車両への衝突が発生した場合、歩行者と質量の異なる衝突物では、検知される圧力センサ3の値は異なってくるため、圧力センサ3の検知出力から衝突物の有効質量を算出し、この有効質量について、人体の有効質量と、想定される他の衝突物の質量との間に閾値を設定することにより、衝突物の種類を切り分けることができる。圧力センサ3の検知出力と検知時間の積は、ある有効質量を持った衝突物がある速度で衝突したことによる運動量と等しいため、衝突時の車速から衝突物の有効質量が算出できる。   When a collision with the vehicle occurs, the detected value of the pressure sensor 3 differs for a collision object having a mass different from that of a pedestrian. Therefore, the effective mass of the collision object is calculated from the detection output of the pressure sensor 3, and this About the effective mass, by setting a threshold value between the effective mass of the human body and the mass of another assumed collision object, the type of the collision object can be separated. Since the product of the detection output of the pressure sensor 3 and the detection time is equal to the momentum due to the collision with a certain effective mass colliding at a certain speed, the effective mass of the collision can be calculated from the vehicle speed at the time of the collision.

以下、本実施形態における有効質量の算出方法について説明する。図3を参照すると、車両がある速度の大きさVで、静止した質量Mの物体に衝突したとすると、圧力センサ3から見て、静止した圧力センサ3に向けて質量Mの物体が車両の速度の大きさVで衝突したとみなすことができる。このとき、衝突時の車速検出値をV、衝突の継続時間をΔt、はたらいた荷重をFとすると、よく知られた運動量と力積の関係式
MV=FΔt・・・(1)
から、質量はM=FΔt/Vとして算出できる。
Hereinafter, the calculation method of the effective mass in this embodiment is demonstrated. Referring to FIG. 3, when the vehicle collides with an object of a stationary mass M at a certain speed V, the object of mass M is directed toward the stationary pressure sensor 3 as viewed from the pressure sensor 3. It can be considered that the vehicle collided at a velocity magnitude V. At this time, if the vehicle speed detection value at the time of the collision is V, the duration of the collision is Δt, and the applied load is F, the well-known relational expression of momentum and impulse MV = FΔt (1)
Therefore, the mass can be calculated as M = FΔt / V.

ある質量Mの衝突物がある大きさの衝突速度(車速センサ12による車速検出値)Vでバンパ1に衝突した場合、その衝突荷重Fはチャンバ部材2に伝わりチャンバ空間2aが潰れて容積が変化する。この体積変化によりチャンバ空間2a内の圧力が上昇するため、圧力センサ3が圧力を検出する。圧力センサ3は、実質的には荷重を検出しているものなので、この圧力検出値を荷重と同様に扱うことができる。圧力センサ3の値は、ノイズ等による誤検知を防ぐために数ミリ秒から数十ミリ秒の所定時間での平均値を使うこととし、継続時間Δtを平均をとる積分時間として積分すればよく、(1)式から有効質量を式
M=(∫P(t)dt)/V ・・・(2)
によって求めることができる。なお、係数は無視して示している。また、衝突速度の大きさは車速センサ12による車速検出値として取り込んだ値を使うため、有効質量を算出する際には定数として取り扱うこととする。
When a collision object of a certain mass M collides with the bumper 1 at a certain collision speed (vehicle speed detection value by the vehicle speed sensor 12) V, the collision load F is transmitted to the chamber member 2 and the chamber space 2a is crushed and the volume changes. To do. Since the pressure in the chamber space 2a increases due to this volume change, the pressure sensor 3 detects the pressure. Since the pressure sensor 3 substantially detects the load, the pressure detection value can be handled in the same manner as the load. The value of the pressure sensor 3 may be an average value for a predetermined time of several milliseconds to several tens of milliseconds in order to prevent erroneous detection due to noise or the like, and the duration time Δt may be integrated as an integration time for averaging, The effective mass is calculated from the equation (1). M = (∫P (t) dt) / V (2)
Can be obtained. Note that the coefficients are ignored. Further, since the magnitude of the collision speed uses a value taken in as a vehicle speed detection value by the vehicle speed sensor 12, it is handled as a constant when calculating the effective mass.

なお、有効質量を算出する方法には、他に運動エネルギーの式E=MV/2から、M=2E/Vとして算出方法もある。しかしながら、車速センサによる車速検出値は、車速パルスを用いるため、低速では精度が悪く、精度の悪い車速検出値を2乗するのでさらに精度が悪くなるという問題がある。そこで、ここでは運動量と力積の関係を用いて、単に車速検出値で除するようにし、運動エネルギーを用いる方式より精度を向上させた。 Note that the method of calculating the effective mass, from the equation E = MV 2/2 of the other into kinetic energy, there is also a calculation method as M = 2E / V 2. However, since the vehicle speed detection value by the vehicle speed sensor uses vehicle speed pulses, the accuracy is poor at low speed, and the vehicle speed detection value with poor accuracy is squared. Therefore, here, the relationship between the momentum and impulse is simply divided by the vehicle speed detection value, and the accuracy is improved over the method using kinetic energy.

なお、実際には車両の走行中に物体が衝突するのは圧力センサ3ではなくバンパ1の表面であり、チャンバ部材2やアブソーバ5での衝撃吸収の影響もあるので、十分な実験を行ない補正係数を得るものとする。補正係数はコントローラ11内のROM26またはRAM24に保持するようにする。このようにすることにより正確な判定が可能となる。   Actually, it is not the pressure sensor 3 but the surface of the bumper 1 that the object collides while the vehicle is running, and there is also the influence of the impact absorption by the chamber member 2 and the absorber 5. The coefficient shall be obtained. The correction coefficient is held in the ROM 26 or RAM 24 in the controller 11. In this way, accurate determination can be made.

同様にして、チャンバ部材2が破損する条件を実験により求め、誤差を加味して閾値Mth_dを設定することにより、チャンバ故障を確実に判定することが可能となる。チャンバ故障を判定した後、警報装置22を作動させ、乗員に故障を知らせる。さらにこの後も車両用衝突検知装置10は検知を継続し、新たな衝突に備える。   Similarly, a condition for damaging the chamber member 2 is obtained by an experiment, and a threshold value Mth_d is set in consideration of an error, so that a chamber failure can be reliably determined. After determining the chamber failure, the alarm device 22 is activated to notify the occupant of the failure. Furthermore, after this, the vehicle collision detection device 10 continues detection and prepares for a new collision.

次に、図4に示すフローチャートに基づいて、本実施形態の車両用衝突検知装置10におけるコントローラ11の処理の流れについて説明する。なお、圧力センサ3が複数ある場合は、圧力センサ3ごとに図4のフローを実施するものとする。   Next, based on the flowchart shown in FIG. 4, the flow of the process of the controller 11 in the vehicle collision detection apparatus 10 of this embodiment is demonstrated. When there are a plurality of pressure sensors 3, the flow of FIG. 4 is performed for each pressure sensor 3.

<衝突物の種類の判別手順>
コントローラ11には、衝突検知のプログラムがROM26またはRAM24に格納されており、CPU25がそのプログラムに従って以下に述べる各処理を実行する。図4に示すように、コントローラ11は、イニシャル処理として、演算値を初期化する処理を行う(ステップS−1)。
<Procedure for determining the type of collision object>
The controller 11 stores a collision detection program in the ROM 26 or the RAM 24, and the CPU 25 executes each process described below according to the program. As shown in FIG. 4, the controller 11 performs a process of initializing a calculation value as an initial process (step S-1).

続いてコントローラ11は、車速センサ12が検出した車速検出値Vを読み込み(ステップS−2)、さらに圧力センサ3の出力を所定時間読み込み、有効質量を演算する(ステップS−3、ステップS−4)。圧力センサ3の値は、ノイズ等による誤検知を防ぐために数ミリ秒から数十ミリ秒の所定時間での平均値を使うよう、圧力値を検出している時間で積分する。有効質量を(2)式、M=(∫P(t)dt)/Vによって求める。   Subsequently, the controller 11 reads the vehicle speed detection value V detected by the vehicle speed sensor 12 (step S-2), further reads the output of the pressure sensor 3 for a predetermined time, and calculates the effective mass (step S-3, step S-). 4). The value of the pressure sensor 3 is integrated with the time during which the pressure value is detected so that an average value over a predetermined time of several milliseconds to several tens of milliseconds is used in order to prevent erroneous detection due to noise or the like. The effective mass is obtained by the equation (2), M = (∫P (t) dt) / V.

次のステップS−5で、コントローラ11は算出した有効質量Mが所定の閾値Mth以上であるか否かを判定する。閾値Mth以上である場合(ステップS−5でYes)には、衝突物を歩行者と判定し、次のステップ(ステップS−6)に進む。閾値Mth以上でない場合(ステップS−5でNo)には、衝突物がチャンバ破損をもたらす物体かどうか判別する別のステップ(ステップS−8)に進む。   In the next step S-5, the controller 11 determines whether or not the calculated effective mass M is greater than or equal to a predetermined threshold value Mth. If it is equal to or greater than the threshold value Mth (Yes in step S-5), the collision object is determined to be a pedestrian, and the process proceeds to the next step (step S-6). If it is not equal to or greater than the threshold value Mth (No in step S-5), the process proceeds to another step (step S-8) in which it is determined whether the collision object is an object that causes chamber damage.

ステップS−6において、ステップS−2で読み込んだ車速検出値Vを再び使い、あらかじめ定められたVmax、Vminの範囲と比較する。車速検出値Vがこの範囲にあるとき、コントローラ11は歩行者保護装置21を作動させる信号を出力する(ステップS−7)。車速検出値Vがこの範囲にないとき、衝突物がチャンバ破損をもたらす速度の大きさであったかを判別するため別のステップ(ステップS−9)に進む。   In step S-6, the vehicle speed detection value V read in step S-2 is used again and compared with predetermined ranges of Vmax and Vmin. When the vehicle speed detection value V is within this range, the controller 11 outputs a signal for operating the pedestrian protection device 21 (step S-7). When the vehicle speed detection value V is not within this range, the process proceeds to another step (step S-9) in order to determine whether or not the collision object has a speed that causes the chamber damage.

Vmaxは歩行者保護装置21の効果がある上限の速度として設定される。すなわち、Vmaxを超える大きさの速度では、歩行者はエンジンフードの範囲を超えてはね上げられるので、ポップアップフード等のような歩行者保護装置21を作動させても効果がない。また、歩行者保護装置が作動すると、運転者の視界を妨げるため危険である。さらにまた、引き続き大きな速度のまま他の物体と衝突することも考えられ、エンジンルームが潰れるような深刻な衝突であれば、ポップアップフード等のような歩行者保護装置21が作動して後端が上昇したエンジンフードが、フロントガラスを突き破って車室に侵入し乗員に危害を加えるおそれがある。このためVmaxを超える大きさの速度では、歩行者保護装置21は作動しないようにしている。   Vmax is set as an upper limit speed at which the pedestrian protection device 21 is effective. In other words, at speeds exceeding Vmax, the pedestrian is rebounded beyond the range of the engine hood, so there is no effect even if the pedestrian protection device 21 such as a pop-up hood is operated. In addition, when the pedestrian protection device is activated, it is dangerous because it obstructs the driver's view. Furthermore, it is conceivable that the vehicle will continue to collide with other objects at a high speed, and if the engine room is severely collided, the pedestrian protection device 21 such as a pop-up hood will operate and the rear end will The rising engine hood may break through the windshield and enter the passenger compartment, causing harm to the passengers. For this reason, the pedestrian protection device 21 is not operated at a speed exceeding Vmax.

また、Vminは歩行者保護装置21の効果がある下限の速度として設定される。すなわち、Vminより小さい速度では、歩行者はエンジンフードの上にはね上げられないか、またははね上げられてもエンジンフードに強く打ち付けられないため、歩行者保護装置21を作動させても効果がない。したがって、Vminより小さい速度では、歩行者保護装置21は作動しないようにしている。   Further, Vmin is set as a lower limit speed at which the pedestrian protection device 21 has an effect. That is, at a speed lower than Vmin, the pedestrian cannot be lifted up on the engine hood, or even if the pedestrian is lifted up, the pedestrian protection device 21 is not effective because it is not strongly hit against the engine hood. Therefore, at a speed smaller than Vmin, the pedestrian protection device 21 is not activated.

なお、ステップS−5でYesと判定されるのは、正確にいえば歩行者以上の質量を持った物体であり、たとえば駐車場での接触のような場合にはステップS−5はYesとなる。しかし、そのときの速度の大きさがVminより小さければ、物体がチャンバ破損をもたらす速度の大きさであったか否かを判別するため別のステップ(ステップS−9)に進み、ダメージ判定を受けることになる。   In addition, what is determined as Yes in step S-5 is an object having a mass more than that of a pedestrian. For example, in the case of contact in a parking lot, step S-5 is determined as Yes. Become. However, if the magnitude of the speed at that time is smaller than Vmin, the process proceeds to another step (step S-9) to determine whether or not the object has the magnitude of the speed causing the chamber breakage, and the damage is judged. become.

<ダメージ判定>
ステップS−8ではステップS−4で計算された有効質量Mを、さらにダメージを判定するための閾値Mth_dと比較する。閾値Mth_dは、ステップS−5で使った閾値Mthより小さな値である。有効質量Mが閾値Mth_d以上である場合(ステップS−8でYes)には、歩行者より有効質量Mが小さい何らかの物体、たとえば道路工事現場に置かれた可動式の表示板等に接触したと判定し、次のステップ(ステップS−9)に進む。有効質量Mが閾値Mth_d以上でない場合(ステップS−8でNo)には、チャンバを破損させるようなものとは衝突していないものとみなし、ダメージがないものとして、ステップS−2に戻る。
<Damage judgment>
In step S-8, the effective mass M calculated in step S-4 is compared with a threshold value Mth_d for further determining damage. The threshold value Mth_d is a value smaller than the threshold value Mth used in step S-5. When the effective mass M is greater than or equal to the threshold value Mth_d (Yes in step S-8), it is assumed that an object having an effective mass M smaller than that of a pedestrian, such as a movable display board placed on a road construction site, is touched. Determine and proceed to the next step (step S-9). If the effective mass M is not equal to or greater than the threshold value Mth_d (No in step S-8), it is assumed that the chamber does not collide with anything that damages the chamber, and the process returns to step S-2 assuming that there is no damage.

ステップS−9ではステップS−2で読み込んだ車速検出値Vを再び使い、ダメージを判定するための速度の閾値Vth_dと比較する。閾値Vth_dは閾値Vminより小さな値である。車速検出値Vが閾値Vth_d以上である場合(ステップS−9でYes)には、チャンバ部材2がダメージを受け破損したと判定し、センサ故障を表示するよう警報装置22に信号を送る(ステップS−10)。車速検出値Vが閾値Vth_d以上でない場合(ステップS−9でNo)には、低い速度で接触しているのでダメージがないものとして、ステップ2に戻る。閾値Vth_dは、少なくとも一般に車両が何らかの物体に接触しても機能を損なうことが許されないような値(5km/h程度)より大きなものとする。   In step S-9, the vehicle speed detection value V read in step S-2 is used again and compared with a speed threshold value Vth_d for determining damage. The threshold value Vth_d is a value smaller than the threshold value Vmin. If the vehicle speed detection value V is greater than or equal to the threshold value Vth_d (Yes in step S-9), it is determined that the chamber member 2 has been damaged and broken, and a signal is sent to the alarm device 22 to display a sensor failure (step). S-10). If the vehicle speed detection value V is not equal to or higher than the threshold value Vth_d (No in step S-9), the process returns to step 2 assuming that there is no damage because the contact is made at a low speed. The threshold value Vth_d is assumed to be larger than at least a value (about 5 km / h) that is not allowed to impair the function even when the vehicle is in contact with some object.

ここでチャンバ部材2の破損を判定した場合に、「センサ故障」と表示するのは、別途用意される検知回路で圧力センサ素子や各回路等の故障を検知した場合も一括してセンサ故障として報知し、修理が必要なことを搭乗者に知らせるようにしているためである。閾値Mth_dとしては、実験や市場の情報からチャンバが破損するようなものを見いだし、たとえば、道路工事現場に置かれた可動式の表示板などが判定できるよう設定する。   Here, when it is determined that the chamber member 2 is broken, “sensor failure” is displayed as a sensor failure even when a failure of the pressure sensor element or each circuit is detected by a separately prepared detection circuit. This is because the passenger is notified to inform the passenger that repair is necessary. The threshold value Mth_d is set so that a chamber that breaks the chamber can be found from experiment and market information, and for example, a movable display board placed on a road construction site can be determined.

ステップS−10で、センサ故障を表示するよう警報装置22に信号を送った(ステップS−10)のち、ステップS−11で、閾値Mthにチャンバ部材2が破損したと判定された場合の閾値Mth_chdを代入し、ステップS−2に戻る。この閾値Mth_chdが代入された新たな閾値Mthは、修理が完了するまで保持されるものとする。閾値Mth_chdは直近のステップS−5で用いた閾値Mthよりも小さな値をもつ。以後のステップS−5で使われる閾値Mthは、衝突以前の閾値Mthより値が小さいものとなっているので、より小さな有効質量Mで、歩行者が衝突したと判定するようになる。これはチャンバ部材2が破損して、同じ衝突をしても圧力センサ3で検出される圧力が想定より小さなものとなることを見込んだものである。このようにすることにより、コントローラ11が、チャンバ部材2がダメージを受け破損したと判定し、警報装置22がセンサ故障を表示した後、これを認識した運転者が修理工場へ向かう場合や、無視して使用を継続した場合でも、その途中で歩行者と衝突した場合には車両用衝突検知装置10が機能する。   In step S-10, after sending a signal to the alarm device 22 to display a sensor failure (step S-10), in step S-11, the threshold value when it is determined that the chamber member 2 is damaged at the threshold value Mth. Substitute Mth_chd and return to step S-2. The new threshold value Mth to which this threshold value Mth_chd is substituted is held until the repair is completed. The threshold value Mth_chd has a value smaller than the threshold value Mth used in the most recent step S-5. Since the threshold value Mth used in the subsequent step S-5 is smaller than the threshold value Mth before the collision, it is determined that the pedestrian collides with a smaller effective mass M. This is because the pressure detected by the pressure sensor 3 is expected to be smaller than expected even if the chamber member 2 is damaged and the same collision occurs. By doing so, the controller 11 determines that the chamber member 2 has been damaged and broken, and the alarm device 22 displays a sensor failure, and then the driver who has recognized this heads for a repair shop or ignores it. Even in the case of continued use, the vehicle collision detection device 10 functions when it collides with a pedestrian on the way.

以上、説明したことから明らかなように、本実施形態によれば、バンパ1へ衝突物が衝突すると、バンパ1への物体の衝突を判定する衝突判定手段(S−4〜S−6)と、バンパ1へのダメージを判定するダメージ判定手段(S−8、S−9)と、ダメージ判定手段によってバンパ1が所定以上のダメージを受けたと判定された場合に故障を報知する故障報知手段(S−10、警報装置22)とを備えた車両用衝突検知装置10において、ダメージ判定手段によってバンパ1が所定以上のダメージを受けたと判定された以後も、衝突判定手段により衝突の判定が行われる。   As is apparent from the above description, according to the present embodiment, when a collision object collides with the bumper 1, the collision determination means (S-4 to S-6) for determining the collision of the object with the bumper 1. A damage determination means (S-8, S-9) for determining damage to the bumper 1, and a failure notification means for notifying the failure when the damage determination means determines that the bumper 1 has received a predetermined damage or more ( In the vehicular collision detection device 10 having S-10, the alarm device 22), the collision determination unit performs the collision determination even after the damage determination unit determines that the bumper 1 has received a predetermined damage or more. .

従って、車両用衝突検知装置10の故障が修理される前に歩行者等との衝突事故が発生した場合にも確実に衝突を検知することが可能となる。   Therefore, even when a collision accident with a pedestrian or the like occurs before the failure of the vehicle collision detection device 10 is repaired, it is possible to reliably detect the collision.

すなわち、バンパ1への物体の衝突が発生した車両の搭乗者は、故障報知手段(S−10、警報装置22)による報知を受けることにより、衝突直後の車両用衝突検知装置10が異常な場合を認識し、修理工場等へ向かうことができ、万一その道のりにおいて、歩行者と衝突した場合にも車両用衝突検知装置10が衝突を検知できるので、歩行者保護装置21の作動が必要な衝突があった場合、歩行者を保護することが可能となる。   That is, when a vehicle occupant having a collision of an object with the bumper 1 is notified by the failure notification means (S-10, alarm device 22), the vehicle collision detection device 10 immediately after the collision is abnormal. The vehicle collision detection device 10 can detect a collision even in the event of a collision with a pedestrian on the way, so the pedestrian protection device 21 needs to be activated. In the event of a collision, it is possible to protect pedestrians.

また、本実施形態によれば、圧力センサによる圧力検出結果に基づいて衝突物の有効質量を算出する有効質量算出手段(S−3、S−4)を備え、衝突判定手段は有効質量算出手段によって算出された有効質量を閾値と比較するものであり、ダメージ判定手段によってバンパ1が所定以上のダメージを受けたと判定された以後に衝突判定手段の閾値Mthを変更する閾値変更手段(S−11)を更に備えているので、バンパがダメージを受けた後、衝突検知性能の低下に起因して衝突時に検出される圧力が異なるものであったとしても、歩行者保護装置21を作動させることができる。   Moreover, according to this embodiment, the effective mass calculation means (S-3, S-4) for calculating the effective mass of the collision object based on the pressure detection result by the pressure sensor is provided, and the collision determination means is the effective mass calculation means. The effective mass calculated by the threshold value is compared with a threshold value, and the threshold value changing means (S-11) for changing the threshold value Mth of the collision determining means after it is determined by the damage determining means that the bumper 1 has received a predetermined damage or more. ), After the bumper is damaged, the pedestrian protection device 21 can be operated even if the pressure detected at the time of the collision is different due to the decrease in the collision detection performance. it can.

また、本実施形態によれば、有効質量算出手段(S−3、S−4)は圧力検出結果から運動量と力積の関係を用いて有効質量M(t)を求めるため、特に低速域において運動エネルギーを用いたものよりも正確な衝突判定、ダメージ判定が可能な車両用衝突検知装置10とすることができる。   Further, according to the present embodiment, the effective mass calculation means (S-3, S-4) obtains the effective mass M (t) from the pressure detection result using the relationship between the momentum and the impulse, and therefore, particularly in the low speed range. It can be set as the vehicle collision detection apparatus 10 which can perform more accurate collision determination and damage determination than those using kinetic energy.

また、本実施形態によれば、閾値変更手段(S−11)はバンパが所定以上のダメージを受けたと判定された場合に衝突判定手段(S−5)の閾値Mthをより小さい値Mth_chdに変更するので、チャンバ部材2が破損して衝突時に検出される圧力が小さいものであったとしても、確実に衝突を検知することができる。   In addition, according to the present embodiment, the threshold value changing means (S-11) changes the threshold value Mth of the collision determination means (S-5) to a smaller value Mth_chd when it is determined that the bumper has received a predetermined damage or more. Therefore, even if the chamber member 2 is damaged and the pressure detected at the time of the collision is small, the collision can be reliably detected.

また、本実施形態によれば、閾値変更手段(S−11)が、ダメージ判定手段(S−8、S−9)によって所定以上のダメージを受けたと判定されたときの有効質量Mの大きさが大きいほど、閾値をより小さい値に変更するので、ダメージが大きいほどチャンバの破損が大きいおそれがあり、すなわち、穴が大きく開くおそれがあるため、より閾値を低くすることで、確実に衝突の判定を行うことができる。   Moreover, according to this embodiment, the magnitude | size of the effective mass M when a threshold value change means (S-11) determines with the damage determination means (S-8, S-9) having received the damage more than predetermined. Since the threshold value is changed to a smaller value as the value increases, the damage to the chamber may increase as the damage increases, i.e., the hole may open larger. Judgment can be made.

また、本実施形態によれば、衝突判定手段(S−5)が、有効質量算出手段(S−3、S−4)によって算出された有効質量Mが歩行者相当である場合に、歩行者保護装置21を作動させるので、歩行者と衝突した際に歩行者を保護することができる。   Moreover, according to this embodiment, when the collision determination means (S-5) is equivalent to the pedestrian when the effective mass M calculated by the effective mass calculation means (S-3, S-4) is equivalent to the pedestrian. Since the protective device 21 is operated, the pedestrian can be protected when colliding with the pedestrian.

また、本実施形態によれば、歩行者保護装置21が、ポップアップフード、カウルエアバッグのうち少なくとも一方であるので、歩行者と衝突した際に歩行者の頭部への障害を抑制することができる。   Moreover, according to this embodiment, since the pedestrian protection device 21 is at least one of a pop-up hood and a cowl airbag, it is possible to suppress an obstacle to the pedestrian's head when colliding with the pedestrian. it can.

なお、本発明は上述した実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更を施すことが可能であることは云うまでもない。   Note that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

たとえば、RAM24は、コントローラ11の外部にある、車両の各情報を一元的に記憶するような記憶装置であってもよい。   For example, the RAM 24 may be a storage device that is external to the controller 11 and that centrally stores vehicle information.

また、S−9での閾値Vth_dは単一のものでなくともよい。すなわち、実験により求められたチャンバ部材2が破損する条件から、算出された有効質量Mに関連するものとして、テーブルをRAM24またはROM26に持ち、選択するようにしてもよい。   Further, the threshold value Vth_d in S-9 may not be a single one. That is, the table may be selected in the RAM 24 or the ROM 26 as related to the calculated effective mass M from the condition that the chamber member 2 obtained by the experiment is damaged.

また、上記実施形態では、ステップS−10で警報装置を作動させた後にステップS−11を実行する構成としたが、ステップS−10からステップS−2に戻る構成としてもよい。すなわち、閾値Mth_chdの代入を行わずともよい。なぜなら、このような故障検知の場合、閾値Mth_dは安全サイドに誤差を見込んで設定するからである。すなわち、「チャンバ破損→故障表示する」(チャンバが破損したなら必ず故障表示する)を実現するものであり、これと逆の関係にある「故障表示する→チャンバ破損」(故障表示しているなら必ずチャンバが破損している)は成立しない。故障検知しても実際はチャンバ部材2が破損していない状況があり得る。したがって、ステップS−9でYesと判定されても、チャンバ部材2が破損していない可能性があるからである。この場合、ステップS−2からのフローが続行されるので、歩行者と衝突した場合には車両用衝突検知装置10が機能する。また、チャンバ部材2が破損の度合いが小さければ、計算される有効質量Mが閾値Mth以上となり、歩行者の衝突を検知できる可能性は残されている。   Moreover, in the said embodiment, although it was set as the structure which performs step S-11 after operating an alarm device by step S-10, it is good also as a structure which returns to step S-2 from step S-10. That is, the threshold value Mth_chd need not be substituted. This is because in the case of such failure detection, the threshold value Mth_d is set in consideration of an error on the safe side. In other words, “chamber breakage → failure display” (if the chamber is broken, the failure display is always displayed), and “reverse failure display → chamber breakage” (if the failure is displayed) is in the opposite relation. The chamber is always broken) does not hold. Even if a failure is detected, the chamber member 2 may not actually be damaged. Therefore, even if it is determined Yes in step S-9, the chamber member 2 may not be damaged. In this case, since the flow from step S-2 is continued, the vehicle collision detection device 10 functions when there is a collision with a pedestrian. Further, if the degree of damage of the chamber member 2 is small, the calculated effective mass M becomes equal to or greater than the threshold value Mth, and the possibility that a pedestrian collision can be detected remains.

また、ステップS−11を実行するとき、ステップS−4で計算した有効質量の大きさに応じ、チャンバ部材2がダメージを受けた後の閾値を、たとえば、Mth_chd1、Mth_chd2、……、Mth_chdnのように複数用意したものから選択してMthに代入するようにしてもよい。このようにすることにより、破損の度合いに応じて検出圧力の低下を見込んだ閾値Mthを設定するので、コントローラ11の信号により警報装置22がセンサ故障を表示したにもかかわらず運転者が使用を継続した場合でも、その途中で歩行者と衝突した場合には、車両用衝突検知装置10がより確実に機能する。   Further, when executing step S-11, the threshold value after the chamber member 2 is damaged is set to, for example, Mth_chd1, Mth_chd2,..., Mth_chdn according to the size of the effective mass calculated in step S-4. Thus, a plurality of prepared ones may be selected and substituted for Mth. In this way, since the threshold value Mth that anticipates a decrease in the detected pressure is set according to the degree of breakage, the driver 11 uses it even though the alarm device 22 displays a sensor failure by the signal from the controller 11. Even if it continues, when it collides with the pedestrian on the way, the vehicle collision detection apparatus 10 functions more reliably.

1 バンパ
2 チャンバ部材
2a チャンバ空間
3 圧力センサ
4 バンパリーンフォース
5 アブソーバ
6 サイドメンバ
10 車両用衝突検知装置
11 コントローラ(有効質量算出手段、衝突判定手段、ダメージ判定手段、故障報知手段、閾値変更手段)
12 車速センサ
21 歩行者保護装置
22 警報装置
23 駆動装置
24 RAM
25 CPU
26 ROM
DESCRIPTION OF SYMBOLS 1 Bumper 2 Chamber member 2a Chamber space 3 Pressure sensor 4 Bumper force 5 Absorber 6 Side member 10 Vehicle collision detection apparatus 11 Controller (Effective mass calculation means, collision judgment means, damage judgment means, failure notification means, threshold change means)
12 Vehicle speed sensor 21 Pedestrian protection device 22 Alarm device 23 Drive device 24 RAM
25 CPU
26 ROM

Claims (7)

バンパ内に配設され内部にチャンバ空間が形成されるチャンバ部材と、
前記チャンバ空間の圧力を検出する圧力センサと、
前記圧力センサによる圧力検出結果に基づいて前記バンパへの物体の衝突を判定する衝突判定手段と、
を有して構成された車両用衝突検知装置において、
前記圧力センサによる圧力検出結果に基づいて前記バンパのダメージを判定するダメージ判定手段と、
前記ダメージ判定手段によって前記バンパが所定以上のダメージを受けたと判定された場合に、前記車両用衝突検知装置の故障を報知する故障報知手段と、
前記圧力センサによる圧力検出結果に基づいて衝突物の有効質量を算出する有効質量算出手段と、
前記ダメージ判定手段によって前記バンパが所定以上のダメージを受けたと判定された場合に前記衝突判定手段の閾値を変更する閾値変更手段と、
を備え、
前記衝突判定手段は、前記ダメージ判定手段によって前記バンパが所定以上のダメージを受けたと判定された以後も、前記有効質量算出手段によって算出された前記有効質量を前記閾値と比較することによって衝突の判定を行うように構成されたことを特徴とする車両用衝突検知装置。
A chamber member disposed in the bumper and having a chamber space formed therein;
A pressure sensor for detecting the pressure in the chamber space;
A collision determination means for determining a collision of an object with the bumper based on a pressure detection result by the pressure sensor;
In a vehicle collision detection device configured to include:
Damage determination means for determining damage to the bumper based on a pressure detection result by the pressure sensor;
A failure notifying means for notifying a failure of the vehicle collision detection device when it is determined by the damage determining means that the bumper has received a predetermined damage or more;
Effective mass calculating means for calculating the effective mass of the collision object based on the pressure detection result by the pressure sensor;
A threshold value changing means for changing a threshold value of the collision determination means when it is determined by the damage determination means that the bumper has received a predetermined damage or more;
With
The collision determination unit is configured to determine a collision by comparing the effective mass calculated by the effective mass calculation unit with the threshold value even after the damage determination unit determines that the bumper has received a predetermined damage or more. A vehicle collision detection device configured to perform the above.
前記閾値変更手段は、前記ダメージ判定手段によって所定以上のダメージを受けたと判定されたときの前記有効質量の大きさに応じて、前記閾値を変更することを特徴とする請求項に記載の車両用衝突検知装置。 The threshold value changing means, vehicle according to claim 1, in accordance with the effective mass size when it is determined that received a predetermined or more damaged by the damage determination unit, and changes the threshold value Collision detection device. 前記有効質量算出手段は、前記圧力センサによる圧力検出結果から運動量と力積との関係を用いて有効質量を求めることを特徴とする請求項又はに記載の車両用衝突検知装置。 The effective mass calculation means for a vehicle collision detection apparatus according to claim 1 or 2, characterized in that to determine the effective mass by using the relationship between the momentum and the impulse from the pressure detection result by the pressure sensor. 前記閾値変更手段は、前記ダメージ判定手段によって前記バンパが所定以上のダメージを受けたと判定された場合に前記衝突判定手段の前記閾値をより小さい値に変更することを特徴とする請求項1乃至のいずれか一項に記載の車両用衝突検知装置。 The threshold value changing means, according to claim 1, wherein changing the threshold of the collision determining means to a smaller value when the bumper is determined to have received a predetermined or more damaged by the damage determination means The vehicle collision detection device according to any one of the above. 前記閾値変更手段は、前記ダメージ判定手段によって所定以上のダメージを受けたと判定されたときの前記有効質量の大きさが大きいほど、前記閾値をより小さい値に変更することを特徴とする請求項乃至のいずれか一項に記載の車両用衝突検知装置。 The threshold value changing means, the more the damage determination means is larger the effective mass of the size when it is determined that received a predetermined or damage, claim and changes the threshold value to a smaller value 1 The collision detection apparatus for vehicles as described in any one of thru | or 4 . 前記衝突判定手段は、前記有効質量算出手段によって算出された前記有効質量が歩行者相当である場合に、歩行者保護装置を作動させることを特徴とする請求項乃至のいずれか一項に記載の車両用衝突検知装置。 The collision determination unit, when the said effective mass calculated by the effective mass calculation means is equivalent pedestrian, in any one of claims 1 to 5, characterized in that actuating the pedestrian protection apparatus The vehicle collision detection device as described. 前記歩行者保護装置は、ポップアップフード、カウルエアバッグのうち少なくとも一方であることを特徴とする請求項に記載の車両用衝突検知装置。 The vehicle collision detection device according to claim 6 , wherein the pedestrian protection device is at least one of a pop-up hood and a cowl airbag.
JP2010249722A 2010-11-08 2010-11-08 Vehicle collision detection device Expired - Fee Related JP5440476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010249722A JP5440476B2 (en) 2010-11-08 2010-11-08 Vehicle collision detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249722A JP5440476B2 (en) 2010-11-08 2010-11-08 Vehicle collision detection device

Publications (2)

Publication Number Publication Date
JP2012101593A JP2012101593A (en) 2012-05-31
JP5440476B2 true JP5440476B2 (en) 2014-03-12

Family

ID=46392557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249722A Expired - Fee Related JP5440476B2 (en) 2010-11-08 2010-11-08 Vehicle collision detection device

Country Status (1)

Country Link
JP (1) JP5440476B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015003589A (en) 2013-06-20 2015-01-08 株式会社デンソー Vehicular control system
JP6137051B2 (en) * 2014-05-21 2017-05-31 トヨタ自動車株式会社 Pedestrian protection device for vehicles
JP6406079B2 (en) * 2014-06-04 2018-10-17 株式会社デンソー Vehicle collision detection device
JP6248914B2 (en) * 2014-12-03 2017-12-20 トヨタ自動車株式会社 Vehicle collision detection device and vehicle collision detection method
JP6492963B2 (en) 2015-05-20 2019-04-03 アイシン精機株式会社 Load detection device
KR102070118B1 (en) * 2018-06-11 2020-01-28 숭실대학교산학협력단 Impulse Measuring Apparatus For Passenser and Impulse Measuring Method Using The Same
CN113561929A (en) * 2021-08-20 2021-10-29 中国第一汽车股份有限公司 Active engine hood control method and device, vehicle and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608044B2 (en) * 2000-08-03 2005-01-05 トヨタ自動車株式会社 Start-up control device for airbag device
JP5104689B2 (en) * 2008-09-19 2012-12-19 株式会社デンソー Vehicle collision detection device
JP5104715B2 (en) * 2008-10-21 2012-12-19 株式会社デンソー Vehicle collision detection device

Also Published As

Publication number Publication date
JP2012101593A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5440476B2 (en) Vehicle collision detection device
JP4539281B2 (en) Obstacle discrimination device for vehicle
JP6467355B2 (en) Vehicle collision detection device
KR100760310B1 (en) System and operating method for automotive airbag using the stress waves sensor
JP6098897B2 (en) Vehicle collision detection device
KR101571276B1 (en) Method for determining a criterion of the severity of an accident by means of an acceleration signal and a solid-borne sound signal
JP5447671B2 (en) Collision detection device and occupant protection system
JP2005521584A (en) Collision detector system
JP6308185B2 (en) Pop-up hood device actuator for vehicle and pop-up hood device for vehicle
JP4918503B2 (en) Validity of side impact using lateral velocity
JP4661307B2 (en) Pedestrian detection system
KR101122336B1 (en) Method and apparatus for generating a triggering signal for a device protecting pedestrians
JP5447984B2 (en) Vehicle collision detection device
JP4941773B2 (en) Vehicle collision detection device
US9517739B2 (en) Diagnose arrangement for a vehicle pedestrian impact sensor
JP2006306373A (en) Pedestrian detection system
JP5104689B2 (en) Vehicle collision detection device
JP6481475B2 (en) Vehicle collision detection device
JP2006341843A (en) Classification method for collision incident
JPH06144154A (en) Shock relaxing device
JP2006510549A (en) Device for driving control of pedestrian protection means
WO2016136165A1 (en) Collision detection device for vehicle
WO2016075926A1 (en) Vehicular collision sensing device
WO2016092793A1 (en) Vehicle collision detecting device
JP4941771B2 (en) Vehicle collision detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R151 Written notification of patent or utility model registration

Ref document number: 5440476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees