JP5439289B2 - Thin film manufacturing method - Google Patents

Thin film manufacturing method Download PDF

Info

Publication number
JP5439289B2
JP5439289B2 JP2010138022A JP2010138022A JP5439289B2 JP 5439289 B2 JP5439289 B2 JP 5439289B2 JP 2010138022 A JP2010138022 A JP 2010138022A JP 2010138022 A JP2010138022 A JP 2010138022A JP 5439289 B2 JP5439289 B2 JP 5439289B2
Authority
JP
Japan
Prior art keywords
temperature
evaporation rate
thin film
target
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010138022A
Other languages
Japanese (ja)
Other versions
JP2012001766A (en
Inventor
一新 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2010138022A priority Critical patent/JP5439289B2/en
Publication of JP2012001766A publication Critical patent/JP2012001766A/en
Application granted granted Critical
Publication of JP5439289B2 publication Critical patent/JP5439289B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、薄膜の蒸発(昇華)成膜技術に関し、特に、有機薄膜材料を昇温して成膜を開始するときの技術に関する。   The present invention relates to a thin film evaporation (sublimation) film forming technique, and more particularly to a technique for starting film formation by raising the temperature of an organic thin film material.

有機薄膜は、真空雰囲気中で有機薄膜材料を加熱装置によって昇温させ、有機薄膜材料の蒸気を真空雰囲気中に放出させ、真空雰囲気中に配置された成膜対象物の表面に到着させることで形成している。   The organic thin film is made by raising the temperature of the organic thin film material with a heating device in a vacuum atmosphere, releasing the vapor of the organic thin film material into the vacuum atmosphere, and arriving at the surface of the film formation target placed in the vacuum atmosphere. Forming.

真空雰囲気中に配置された有機薄膜材料は、成膜中は、成膜に必要な成膜速度が得られる一定温度に維持されるが、その量は蒸気の放出に伴って減少するため、成膜を停止し、有機薄膜材料を補充する必要がある。
補充後は、室温の有機薄膜材料を、成膜に必要な成膜速度が得られる温度に昇温させる必要がある。
An organic thin film material placed in a vacuum atmosphere is maintained at a constant temperature during film formation to obtain a film formation speed necessary for film formation, but the amount decreases as the vapor is released. It is necessary to stop the film and replenish the organic thin film material.
After the replenishment, it is necessary to raise the temperature of the organic thin film material at room temperature to a temperature at which the film formation rate necessary for film formation can be obtained.

図3に表示されたグラフは、補充された有機薄膜材料を加熱し、成膜を行うときの、有機薄膜材料の加熱方法を説明するためのグラフであり、横軸が時間、左側の縦軸が温度であり、符号132で示した点線の折線は、有機薄膜材料を昇温させる温度制御工程での、有機薄膜を昇温させて到達させる目標温度を示している。   The graph displayed in FIG. 3 is a graph for explaining the heating method of the organic thin film material when the replenished organic thin film material is heated to form a film, with the horizontal axis representing time and the left vertical axis. The dotted broken line indicated by reference numeral 132 indicates the target temperature to be reached by raising the temperature of the organic thin film in the temperature control step for raising the temperature of the organic thin film material.

温度制御工程では、先ず、室温T0よりも高い脱ガス温度tcが一定時間維持された後、設定温度は脱ガス温度tcよりも高温の目標温度tdに変更されており、加熱装置は、有機薄膜材料が、設定温度になるように発熱が制御されている。
高温の目標温度tdは、真空雰囲気中での有機薄膜材料の蒸発開始温度tsよりも高く、有機薄膜材料が蒸発開始温度ts以上の温度になると蒸気放出を開始し、昇温に連れて蒸発速度を増大させるようになっている。
In the temperature control step, first, after the degassing temperature t c higher than the room temperature T 0 is maintained for a certain time, the set temperature is changed to the target temperature t d higher than the degassing temperature t c , and the heating device The heat generation is controlled so that the organic thin film material has a set temperature.
Target temperature t d of the elevated temperature is higher than the evaporation starting temperature t s of the organic thin film material in a vacuum atmosphere, the organic thin film material is vaporized start temperature t s or more temperature starts vapor release, brought the Atsushi Nobori As a result, the evaporation rate is increased.

有機薄膜材料の蒸発速度は、膜厚センサによって測定されている。図3のグラフの右側の縦軸は、有機薄膜材料の蒸発速度の測定値を示している。
符号137で示した曲線は、蒸発速度の測定値を示しており、温度制御工程から薄膜形成工程に移行し、有機薄膜材料の昇温によって蒸発速度が予め設定された成膜時蒸発速度Rbに達して安定した後、成膜対象物への有機薄膜形成が開始されている。
The evaporation rate of the organic thin film material is measured by a film thickness sensor. The vertical axis on the right side of the graph in FIG. 3 indicates the measured value of the evaporation rate of the organic thin film material.
A curve indicated by reference numeral 137 indicates a measured value of the evaporation rate. The evaporation rate R b during film formation, in which the evaporation rate is set in advance by raising the temperature of the organic thin film material, from the temperature control step to the thin film formation step. After reaching and becoming stable, formation of an organic thin film on the film formation target is started.

特開2000−12218号公報JP 2000-12218 A 特開2006−111965号公報JP 2006-111965 A 特開2009−161842号公報JP 2009-161842 A

しかしながら、上記のような有機薄膜材料の温度制御方法では、温度制御工程で、有機薄膜材料が目標温度よりも高温に過熱し、有機薄膜材料が蒸発を開始してから、蒸発速度が成膜時蒸発速度Rbで安定するまでに、蒸発速度が大きく変動し、蒸発速度が安定するまでに長時間を必要とする。本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、蒸発速度が安定するまでの時間を短くする技術を提供することにある。 However, in the temperature control method of the organic thin film material as described above, the evaporation rate is set at the time of film formation after the organic thin film material is heated to a temperature higher than the target temperature and the organic thin film material starts to evaporate. The evaporation rate fluctuates greatly until it stabilizes at the evaporation rate Rb , and a long time is required until the evaporation rate is stabilized. The present invention has been created to solve the above-described disadvantages of the prior art, and an object thereof is to provide a technique for shortening the time until the evaporation rate is stabilized.

本発明は、通電されると発熱する加熱装置の発熱量を制御し、真空雰囲気中で有機薄膜材料が蒸発を開始する真空中蒸発開始温度よりも低温の有機薄膜材料を真空雰囲気中で加熱して昇温させ、前記有機薄膜材料の蒸発を開始させる温度制御工程と、前記温度制御工程から移行され、前記加熱装置の発熱を制御して蒸発速度を増大させ、前記有機薄膜材料の前記蒸発速度を、予め設定された成膜時蒸発速度にする蒸発速度制御工程と、前記蒸発速度を前記成膜時蒸発速度に維持しながら成膜対象物の表面に蒸気を到達させ、前記成膜対象物の成膜面に薄膜を形成する薄膜形成工程と、を有する有機薄膜形成方法であって、前記成膜時蒸発速度よりも小さい値の閾値蒸発速度と、複数の目標温度と、前記目標温度が対応された温度維持時間と、複数の目標蒸発速度と、前記目標蒸発速度に対応された蒸発速度維持時間と、を予め設定しておき、前記温度制御工程では、前記有機薄膜材料の温度を測定し、前記有機薄膜材料を昇温させて測定で求められた測定温度が前記目標温度に到達すると、到達した前記目標温度に対応付けられた前記温度維持時間の間、前記測定温度が到達した前記目標温度を維持するように前記加熱装置の発熱を制御し、前記温度維持時間の経過後、前記加熱装置の発熱を増大させて前記有機薄膜材料を昇温させ、前記測定温度が到達した前記目標温度よりも高温の他の前記目標温度に到達させることで、前記有機薄膜材料の昇温と、昇温する前記有機薄膜材料の前記目標温度への到達と、到達した前記目標温度に対応する前記温度維持時間の維持とを複数回繰り返し行わせ、前記蒸発速度制御工程では、前記有機薄膜材料の蒸発速度を測定し、前記有機薄膜材料を昇温させて前記蒸発速度を増大させ、測定で求められた測定蒸発速度が前記目標蒸発速度に到達すると、到達した前記目標蒸発速度に対応付けられた前記蒸発速度維持時間の間、前記測定蒸発速度が到達した前記目標蒸発速度を維持するように前記加熱装置の発熱を制御し、前記蒸発速度維持時間の経過後、前記加熱装置の発熱を増大させて前記有機薄膜材料を昇温させ、前記測定蒸発速度を増大させて、前記測定蒸発速度が到達した前記目標蒸発速度よりも大きい他の前記目標蒸発速度に到達させることで、前記有機薄膜材料の前記蒸発速度増大と、蒸発速度が増大する前記有機薄膜材料の前記目標蒸発速度への到達と、到達した前記目標蒸発速度に対応する前記蒸発速度維持時間の維持とを複数回繰り返し行わせ、前記温度制御工程では、前記蒸発速度を測定し、測定した前記測定蒸発速度が前記閾値蒸発速度に到達すると、前記蒸発速度制御工程に移行し、前記蒸発速度制御工程では、前記蒸発速度が前記成膜時蒸発速度に到達すると、前記薄膜形成工程に移行する薄膜製造方法である。
また、本発明は、室温と、前記真空中蒸発開始温度との間の温度範囲中に、前記目標温度が複数個設定された薄膜製造方法である。
また、本発明は 室温と、前記有機薄膜材料の蒸発速度が前記閾値蒸発速度になる温度との間の温度範囲中に、前記目標温度が複数個設定された薄膜製造方法である。
また、本発明は、前記閾値蒸発速度と前記成膜時蒸発速度との間の蒸発速度範囲に、前記目標蒸発速度が複数個設定された薄膜製造方法である。
また、本発明は、一の前記目標温度と、到達すべき次の前記目標温度との間は、設定された温度制御曲線に従って昇温させる薄膜製造方法である。
また、本発明は、一の前記目標蒸発速度と、到達すべき次の前記目標蒸発速度の間では、前記有機薄膜材料の蒸発速度が、設定された蒸発速度制御曲線に従って増加するように、前記有機薄膜材料を昇温させる薄膜製造方法である。
また、本発明は、前記温度範囲の中の少なくとも一つは、前記有機薄膜材料に含有される水分が蒸発する温度であることを特徴とする薄膜製造方法である。
また、本発明は、予め上限温度を設定しておき、前記温度制御工程中の前記測定温度が前記上限温度に到達すると、前記加熱装置の発熱を停止させる薄膜製造方法である。
The present invention controls the heating value of a heating device that generates heat when energized, and heats an organic thin film material in a vacuum atmosphere at a temperature lower than the evaporation start temperature in vacuum at which the organic thin film material starts to evaporate. The temperature control step for starting the evaporation of the organic thin film material, and the temperature control step transferred from the temperature control step to control the heat generation of the heating device to increase the evaporation rate, and the evaporation rate of the organic thin film material Evaporating rate control step of setting the evaporating rate at the time of film formation in advance, and vapor reaching the surface of the film forming object while maintaining the evaporation rate at the evaporating rate at the time of film forming, A thin film forming step of forming a thin film on the film formation surface, wherein a threshold evaporation rate having a value smaller than the evaporation rate during film formation, a plurality of target temperatures, and the target temperature are A corresponding temperature maintenance time, A plurality of target evaporation rates and an evaporation rate maintaining time corresponding to the target evaporation rate are set in advance, and in the temperature control step, the temperature of the organic thin film material is measured to increase the organic thin film material. When the measurement temperature obtained by measurement by heating is reached the target temperature, the target temperature reached by the measurement temperature is maintained during the temperature maintenance time associated with the target temperature reached. Control the heat generation of the heating device, and after the elapse of the temperature maintenance time, the heat generation of the heating device is increased to raise the temperature of the organic thin film material, and the other temperature higher than the target temperature reached by the measurement temperature By reaching the target temperature, the organic thin film material is heated, the organic thin film material to be heated reaches the target temperature, and the temperature maintenance time corresponding to the reached target temperature is maintained. Repetition In the evaporation rate control step, the evaporation rate of the organic thin film material is measured, the organic thin film material is heated to increase the evaporation rate, and the measured evaporation rate obtained by measurement is the target evaporation rate. When the speed is reached, the heating of the heating device is controlled so as to maintain the target evaporation rate at which the measured evaporation rate has reached during the evaporation rate maintenance time associated with the reached target evaporation rate, After elapse of the evaporation rate maintaining time, the heating device is heated to increase the temperature of the organic thin film material, the measured evaporation rate is increased, and the measured evaporation rate is higher than the target evaporation rate reached. Reaching the target evaporation rate, increasing the evaporation rate of the organic thin film material, reaching the target evaporation rate of the organic thin film material whose evaporation rate increases, and reaching the target And maintaining the evaporation rate maintaining time corresponding to the target evaporation rate a plurality of times, and in the temperature control step, measuring the evaporation rate, and when the measured evaporation rate reaches the threshold evaporation rate, The process proceeds to an evaporation rate control step. In the evaporation rate control step, when the evaporation rate reaches the evaporation rate during film formation, the thin film manufacturing method moves to the thin film formation step.
The present invention is also a thin film manufacturing method in which a plurality of the target temperatures are set in a temperature range between room temperature and the evaporation start temperature in vacuum.
The present invention is also a thin film manufacturing method in which a plurality of the target temperatures are set in a temperature range between room temperature and a temperature at which the evaporation rate of the organic thin film material becomes the threshold evaporation rate.
The present invention is also a thin film manufacturing method in which a plurality of the target evaporation rates are set in an evaporation rate range between the threshold evaporation rate and the evaporation rate during film formation.
Further, the present invention is a thin film manufacturing method in which a temperature is raised between one target temperature and the next target temperature to be reached according to a set temperature control curve.
Further, the present invention provides the organic thin film material evaporation rate so as to increase according to a set evaporation rate control curve between one target evaporation rate and the next target evaporation rate to be reached. This is a thin film manufacturing method for raising the temperature of an organic thin film material.
Further, the present invention is the thin film manufacturing method, wherein at least one of the temperature ranges is a temperature at which water contained in the organic thin film material evaporates.
Moreover, this invention is a thin film manufacturing method which presets an upper limit temperature and stops the heat_generation | fever of the said heating apparatus, if the said measured temperature in the said temperature control process reaches the said upper limit temperature.

温度制御工程で有機薄膜材料を昇温させる際、昇温途中に測定温度が複数の目標温度に達したところで目標温度を所定時間維持させているので、有機薄膜材料の実際の温度と測定温度との乖離が少なく、有機薄膜が真空中蒸発開始温度以上に昇温して蒸気を放出するときに、蒸発速度に大きな変動がないようになる。   When the temperature of the organic thin film material is raised in the temperature control process, the target temperature is maintained for a predetermined time when the measured temperature reaches a plurality of target temperatures during the temperature rise. When the organic thin film is heated to a temperature higher than the evaporation start temperature in vacuum and releases the vapor, there is no significant fluctuation in the evaporation rate.

従って、蒸発速度の測定値の変動は小さくなっているため、蒸発速度を増大させる際に、目標蒸発速度に到達したら所定時間目標蒸発速度が維持されるようにすると、有機薄膜材料が均一に昇温するようになり、一定の蒸発速度(成膜時蒸発速度)で安定するまでの時間が短くなり、有機薄膜材料の補充後、有機薄膜形成を開始するまでの時間が短縮される。   Therefore, since the variation in the measured value of the evaporation rate is small, when the evaporation rate is increased, if the target evaporation rate is maintained for a predetermined time when the target evaporation rate is reached, the organic thin film material is uniformly increased. The time until the temperature becomes stable and stabilizes at a constant evaporation rate (evaporation rate during film formation) is shortened, and after the organic thin film material is replenished, the time until the formation of the organic thin film is shortened.

本発明を使用できる蒸着装置の概略構成図Schematic configuration diagram of a vapor deposition apparatus that can use the present invention 本発明の設定温度と設定蒸着速度の推移を示すグラフThe graph which shows transition of preset temperature and preset vapor deposition rate of the present invention 従来技術の制御方法の実施例Examples of prior art control methods

図1の符号1に本発明に用いる蒸着装置の概略構成図を示す。
蒸着装置1は、真空排気系41が接続された真空槽2と、有機薄膜材料が配置された容器3と、発熱して容器3を加熱する加熱装置4と、有機薄膜材料の温度を測定する温度測定装置18と、有機薄膜の成長速度から容器3内の有機薄膜材料の蒸発速度を測定する蒸発速度測定装置19と、加熱装置4に電力を供給して発熱させる電源装置25(この電源装置25は演算装置を含んでいる)と、電源装置25の出力電力を制御する制御装置30とを有している。
Reference numeral 1 in FIG. 1 shows a schematic configuration diagram of a vapor deposition apparatus used in the present invention.
The vapor deposition apparatus 1 measures the temperature of the vacuum chamber 2 to which the vacuum exhaust system 41 is connected, the container 3 in which the organic thin film material is disposed, the heating apparatus 4 that generates heat and heats the container 3, and the temperature of the organic thin film material. A temperature measuring device 18; an evaporation rate measuring device 19 for measuring the evaporation rate of the organic thin film material in the container 3 from the growth rate of the organic thin film; and a power supply device 25 for supplying power to the heating device 4 to generate heat (this power supply device). 25 includes an arithmetic device), and a control device 30 that controls the output power of the power supply device 25.

真空槽2の内部の天井側にはホルダー20が配置されている。容器3は、真空槽2の内部の、ホルダー20の下方位置に配置されている。
容器3の内部には、有機薄膜材料6が配置されており、容器3が加熱されると、容器3内部の有機薄膜材料6が加熱されて昇温する。
A holder 20 is disposed on the ceiling side inside the vacuum chamber 2. The container 3 is disposed at a position below the holder 20 inside the vacuum chamber 2.
An organic thin film material 6 is disposed inside the container 3, and when the container 3 is heated, the organic thin film material 6 inside the container 3 is heated to raise the temperature.

温度測定装置18は、温度センサ5と、温度測定器本体8aとを有しており、他方、蒸発速度測定装置19は、膜厚センサ7と、蒸発速度測定器本体8bとを有している。
温度センサ5は、容器3と接触して配置されており、容器3の温度を検出し、検出結果を温度測定器本体8aに出力する。
温度測定器本体8aは、入力された検出信号を、温度センサ5が検出した測定温度を示す温度信号Stに変換し、制御装置30に出力する。
The temperature measuring device 18 has a temperature sensor 5 and a temperature measuring device main body 8a, while the evaporation rate measuring device 19 has a film thickness sensor 7 and an evaporation rate measuring device main body 8b. .
The temperature sensor 5 is disposed in contact with the container 3, detects the temperature of the container 3, and outputs the detection result to the temperature measuring instrument main body 8 a.
The temperature measuring device main body 8 a converts the input detection signal into a temperature signal St indicating the measurement temperature detected by the temperature sensor 5 and outputs the temperature signal St to the control device 30.

温度センサ5が検出した温度は、容器3の温度であり、有機薄膜材料6の温度は、その内部の位置によって、容器3の温度とは異なりがあるが、ここでは、温度信号Stが示す測定温度は、有機薄膜材料6の温度として取り扱われる。   The temperature detected by the temperature sensor 5 is the temperature of the container 3, and the temperature of the organic thin film material 6 differs from the temperature of the container 3 depending on the position inside it, but here the measurement indicated by the temperature signal St The temperature is handled as the temperature of the organic thin film material 6.

真空槽2の内部は、真空排気系41が動作すると真空排気され、真空雰囲気になる。
有機薄膜材料6が真空雰囲気中で昇温して蒸発すると、容器3の開口から有機薄膜材料6の蒸気が真空槽2の内部に放出されるようになっている。
ホルダー20は、成膜対象物である基板を容器3の上方位置で保持し、基板の成膜面を容器3の開口に向けられるように構成されている。
The inside of the vacuum chamber 2 is evacuated and becomes a vacuum atmosphere when the evacuation system 41 operates.
When the organic thin film material 6 is heated and evaporated in a vacuum atmosphere, the vapor of the organic thin film material 6 is released from the opening of the container 3 into the vacuum chamber 2.
The holder 20 is configured to hold a substrate, which is a film formation target, at a position above the container 3, and to direct the film formation surface of the substrate toward the opening of the container 3.

膜厚センサ7は、膜厚センサ7の検出面を容器3の開口に向けて配置されており、従って、容器3の開口から放出された有機薄膜材料6の蒸気は、基板の成膜面と膜厚センサ7の検出面とに到達する。その結果、成膜面と検出面とに有機薄膜が成長する。   The film thickness sensor 7 is disposed with the detection surface of the film thickness sensor 7 facing the opening of the container 3, and therefore the vapor of the organic thin film material 6 released from the opening of the container 3 is separated from the film formation surface of the substrate. It reaches the detection surface of the film thickness sensor 7. As a result, an organic thin film grows on the film formation surface and the detection surface.

膜厚センサ7は、検出面に成長する有機薄膜の膜厚を検出し、検出結果を蒸発速度測定器本体8bに出力しており、蒸発速度測定器本体8bは、入力されて求められる膜厚から、膜厚の増加量を求め、その値と時間とから、膜厚センサ7の検出面上の有機薄膜の成長速度を算出する。   The film thickness sensor 7 detects the film thickness of the organic thin film that grows on the detection surface, and outputs the detection result to the evaporation rate measuring device main body 8b. The evaporation rate measuring device main body 8b receives the obtained film thickness. Thus, the increase amount of the film thickness is obtained, and the growth rate of the organic thin film on the detection surface of the film thickness sensor 7 is calculated from the value and time.

ホルダー20に基板が保持されていると、有機薄膜の、成膜面上の成長速度と検出面上の成長速度との間には比例関係があり、検出面上の有機薄膜の成長速度を蒸発速度と呼ぶと、蒸発速度測定装置19によって蒸発速度を測定することで、成膜面上の有機薄膜の成長速度を求めることができる。   When the substrate is held by the holder 20, there is a proportional relationship between the growth rate of the organic thin film on the film formation surface and the growth rate on the detection surface, and the growth rate of the organic thin film on the detection surface is evaporated. When referred to as speed, the growth rate of the organic thin film on the film formation surface can be obtained by measuring the evaporation rate with the evaporation rate measuring device 19.

蒸発速度測定器本体8bは、求めた蒸発速度を、蒸発速度信号Ssとして制御装置30に出力する。
従って、温度測定装置18と蒸発速度測定装置19とは、温度信号Stと蒸発速度信号Ssとを、制御装置30にそれぞれ出力しており、制御装置30は、入力された温度信号Stと蒸発速度信号Ssのいずれか一方を、電源装置25の読み取りに適した値に変換して電源装置25に出力している。
The evaporation rate measuring device main body 8b outputs the obtained evaporation rate to the control device 30 as an evaporation rate signal Ss.
Accordingly, the temperature measuring device 18 and the evaporation rate measuring device 19 output the temperature signal St and the evaporation rate signal Ss to the control device 30, respectively. The control device 30 receives the input temperature signal St and the evaporation rate. One of the signals Ss is converted into a value suitable for reading by the power supply device 25 and output to the power supply device 25.

電源装置25は、入力された温度信号St又は蒸発速度信号Ssと、設定された温度又は蒸発速度とを比較しながら加熱装置4に出力する電力を制御すように構成されている。   The power supply device 25 is configured to control the power output to the heating device 4 while comparing the input temperature signal St or evaporation rate signal Ss with the set temperature or evaporation rate.

ここでは、制御装置30が変換した温度信号Stの電圧値Vt或いは電流値Itと、変換した蒸発速度信号Ssの電圧値Vs或いは電流値Isとは電圧或いは電流範囲が異なるようにされており、電源装置25は、温度信号Stと蒸発速度信号Ssとの区別ができるようになっている。   Here, the voltage value Vt or current value It of the temperature signal St converted by the control device 30 and the voltage value Vs or current value Is of the converted evaporation rate signal Ss are set to have different voltage or current ranges. The power supply device 25 can distinguish between the temperature signal St and the evaporation rate signal Ss.

次に、制御装置30の内部構造を説明すると、制御装置30は、切替装置17と、切替制御装置9と、切替用記憶装置31とを有している。
温度信号Stと蒸発速度信号Ssとは、切替装置17に入力され、切替装置17の内部接続の状態によって、いずれか一方の信号が、上述したように、電源装置25の読み取りに適した値に変換された後、電源装置25に出力される。
Next, the internal structure of the control device 30 will be described. The control device 30 includes a switching device 17, a switching control device 9, and a switching storage device 31.
The temperature signal St and the evaporation rate signal Ss are input to the switching device 17, and depending on the internal connection state of the switching device 17, one of the signals becomes a value suitable for reading by the power supply device 25 as described above. After the conversion, it is output to the power supply device 25.

切替装置17の内部接続は、切替制御装置9によって切換えられるように構成されている。
切替制御装置9には、切替用記憶装置31が接続されている。切替用記憶装置31には、蒸発速度を示し、切替装置17の内部状態を決める基準となる閾値蒸発速度Raが記憶されている。
The internal connection of the switching device 17 is configured to be switched by the switching control device 9.
A switching storage device 31 is connected to the switching control device 9. The switching memory device 31, illustrates the evaporation rate, the threshold evaporation rate R a as a reference for determining the internal state of the switching device 17 is stored.

切替制御装置9は、切替用記憶装置31の記憶内容を読み取っている。また、切替制御装置9には、蒸発速度測定装置19から蒸発速度信号Ssが入力されており、切替制御装置9は、入力された蒸発速度信号Ssが示す測定蒸発速度の値と、閾値蒸発速度Raとを比較し、測定蒸発速度が閾値蒸発速度Ra以上になると、切替装置17の内部接続を、切替装置17から電源装置25に蒸発速度信号Ssが出力されるようにする。 The switching control device 9 reads the stored contents of the switching storage device 31. Further, the switching control device 9 receives the evaporation rate signal Ss from the evaporation rate measuring device 19, and the switching control device 9 receives the value of the measured evaporation rate indicated by the input evaporation rate signal Ss and the threshold evaporation rate. comparing the R a, measured rate of evaporation becomes more than the threshold evaporation rate R a, the internal connection of the switching device 17, so that the evaporation rate signal Ss to the power supply 25 from the switching device 17 is outputted.

蒸発速度信号Ssが示す測定蒸発速度が閾値蒸発速度Raよりも小さいときには、切替装置17の内部接続は、切替装置17から電源装置25に温度信号Stが出力されるようになっている。 When measuring evaporation rate indicated by the evaporation rate signal Ss is smaller than the threshold evaporation rate R a is an internal connection of the switching device 17 is adapted to the temperature signal St is output from the switching device 17 to the power supply 25.

したがって、有機薄膜材料6が昇温して測定蒸発速度が増大して閾値蒸発速度Ra以上になったときに、切替装置17の内部接続は、制御装置30が、測定温度の値を出力する状態から、測定蒸発速度を出力する状態に切換えられることになる。 Therefore, when the organic thin film material 6 is equal to or greater than the threshold evaporation rate R a measured rate of evaporation was heated is increased, the internal connection of the switching device 17, the controller 30 outputs the value of the measured temperature The state is switched to a state in which the measured evaporation rate is output.

なお、ここでは、切替装置17内部には、二個のスイッチ10、12と、温度信号変換器11aと蒸発速度信号変換器11bとが設けられており、二個のスイッチ10、12の動作は切替制御装置9によって制御され、温度測定装置18が温度信号変換器11aを介して電源装置25に接続されるか、又は、蒸発速度測定装置19が蒸発速度信号変換器11bを介して電源装置25に接続されるか、のいずれかの状態になるようになっている。   Here, two switches 10 and 12, a temperature signal converter 11 a and an evaporation rate signal converter 11 b are provided in the switching device 17, and the operations of the two switches 10 and 12 are as follows. Controlled by the switching control device 9, the temperature measuring device 18 is connected to the power supply device 25 via the temperature signal converter 11a, or the evaporation rate measuring device 19 is connected to the power supply device 25 via the evaporation rate signal converter 11b. Or connected to either state.

次に、電源装置25は、制御電源13と、制御用記憶装置32とを有しており、制御電源13には演算制御装置が内蔵されており、制御装置30が出力する、変換された温度信号St又は変換された蒸発速度信号Ssのうちのいずれか一方が入力されて信号の比較が行われる。   Next, the power supply device 25 includes a control power supply 13 and a control storage device 32. The control power supply 13 includes a calculation control device, and the converted temperature output from the control device 30. Either the signal St or the converted evaporation rate signal Ss is input and the signals are compared.

制御用記憶装置32には、有機薄膜材料6が昇温する際に、到達したことを検出される複数の目標温度と、各目標温度が対応付けられ、目標温度を維持する時間である温度維持時間とが記憶され、また、有機薄膜材料6が昇温して蒸発速度が増大する際に、到達したことを検出される複数の目標蒸発速度と、各目標蒸発速度が対応付けられ、目標蒸発速度を維持する時間である温度維持時間とが記憶されている。   When the temperature of the organic thin film material 6 rises, the control storage device 32 is associated with a plurality of target temperatures that are detected to have reached each target temperature, and temperature maintenance is a time for maintaining the target temperature. Time is stored, and when the organic thin film material 6 is heated to increase the evaporation rate, a plurality of target evaporation rates detected to be reached are associated with each target evaporation rate, and target evaporation is performed. The temperature maintenance time, which is the time for maintaining the speed, is stored.

また、閾値蒸発速度Raよりも大きく、有機薄膜を成膜する際の望ましい蒸発速度を示す成膜時蒸発速度Rbが記憶されている。
制御電源13は、制御用記憶装置32の記憶内容を読み取って、制御装置30から入力された温度信号Stが示す測定温度を、目標温度と比較し、また、入力された蒸発速度信号Ssが示す測定蒸発速度を、目標蒸発速度又は成膜時蒸発速度Rbと比較し、加熱装置4へ出力する電力の大きさを制御する。
なお、制御用記憶装置32には、上限温度も記憶されている。
In addition, a deposition evaporation rate R b that is larger than the threshold evaporation rate R a and indicates a desired evaporation rate when forming the organic thin film is stored.
The control power supply 13 reads the stored contents of the control storage device 32, compares the measured temperature indicated by the temperature signal St input from the control device 30 with the target temperature, and indicates the input evaporation rate signal Ss. The measured evaporation rate is compared with the target evaporation rate or the film formation evaporation rate R b, and the magnitude of the electric power output to the heating device 4 is controlled.
The control storage device 32 also stores an upper limit temperature.

制御電源13には、制御装置30が温度信号Stを出力している状態でも、蒸発速度信号Ssが蒸発速度測定装置19から入力されており、制御電源13は、上限温度と蒸発速度信号Ssが示す測定温度とを比較し、測定温度が上限温度以上になった時には加熱装置4への電力出力を停止し、容器3が上限温度よりも高温に過熱しないようにしている。   Even when the control device 30 is outputting the temperature signal St, the control power supply 13 receives the evaporation rate signal Ss from the evaporation rate measuring device 19, and the control power supply 13 has the upper limit temperature and the evaporation rate signal Ss. The measured temperature is compared, and when the measured temperature becomes equal to or higher than the upper limit temperature, power output to the heating device 4 is stopped so that the container 3 does not overheat to a temperature higher than the upper limit temperature.

次に、本発明の成膜方法について説明する。
ここでは、容器3に新しい有機薄膜材料6を配置した状態であり、その有機薄膜材料6の温度は室温(ここでは30℃を指す)以下であるものとする。
先ず、真空排気系41を動作させ、真空槽2の内部を真空排気し、真空槽2内を真空雰囲気にした状態で、有機薄膜材料6を昇温させる温度制御工程を開始する。
Next, the film forming method of the present invention will be described.
Here, it is assumed that a new organic thin film material 6 is disposed in the container 3, and the temperature of the organic thin film material 6 is not higher than room temperature (in this case, 30 ° C.).
First, the temperature evacuation system 41 is operated, the inside of the vacuum chamber 2 is evacuated, and the temperature control process of raising the temperature of the organic thin film material 6 is started in a state where the inside of the vacuum chamber 2 is in a vacuum atmosphere.

制御電源13には、曲線生成装置37が接続されている。該曲線生成装置37には、有機薄膜材料6を一の目標温度から次の目標温度に昇温させる際の、昇温状態を決定する温度制御曲線が記憶されており、制御電源13からの要求に従った温度制御曲線を制御電源13に出力する。   A curve generating device 37 is connected to the control power source 13. The curve generating device 37 stores a temperature control curve for determining a temperature rising state when the organic thin film material 6 is heated from one target temperature to the next target temperature. Is output to the control power supply 13.

図2のグラフは、横軸が時間、左側の縦軸が設定する温度であり、符号L1で示す実線の折線は、曲線生成装置37から制御電源13に出力される温度制御曲線であり、目標温度と目標温度の間の、時間と設定温度の関係を示している。 In the graph of FIG. 2, the horizontal axis is time, and the left vertical axis is the temperature set, and the solid broken line indicated by the symbol L 1 is a temperature control curve output from the curve generation device 37 to the control power supply 13. The relationship between time and set temperature between the target temperature and the target temperature is shown.

制御電源13は、目標温度と目標温度の間の範囲内では、有機薄膜材料6が温度制御曲線通りに昇温するように電力を出力する。本発明では、有機薄膜材料6は設定温度を示す折線通りに昇温するようにされている。   The control power supply 13 outputs electric power so that the organic thin film material 6 is heated according to the temperature control curve within the range between the target temperature and the target temperature. In the present invention, the organic thin film material 6 is heated according to a broken line indicating a set temperature.

温度制御工程を開始する時には、切替装置17の内部は、電源装置25に温度信号Stを出力する状態にされており、制御電源13は、入力される温度信号Stが、曲線生成装置37から入力される温度制御曲線に従って昇温するように、加熱装置4を制御しながら電力を供給する。   When starting the temperature control process, the inside of the switching device 17 is in a state of outputting the temperature signal St to the power supply device 25, and the control power supply 13 receives the input temperature signal St from the curve generation device 37. Electric power is supplied while controlling the heating device 4 so as to increase the temperature according to the temperature control curve.

有機薄膜材料6が昇温すると、温度信号Stが示す測定温度も昇温し、設定された複数の目標温度t1〜t5のうち、先ず、温度信号Stが、室温より高く、室温に最も近い最初の目標温度t1以上の値になり、電源装置25(制御電源13)がそれを検出すると、有機薄膜材料6がその目標温度t1に到達したと判断して、測定温度がその目標温度t1を維持するように、加熱装置4への供給電力を制御し、温度信号Stが示す測定温度が目標温度t1である状態を、その目標温度t1に対応付けられた温度維持時間M1の間維持させる。 When the temperature of the organic thin film material 6 rises, the measurement temperature indicated by the temperature signal St also rises, and among the set target temperatures t 1 to t 5 , first, the temperature signal St is higher than room temperature and is the highest at room temperature. When the power supply device 25 (control power supply 13) detects the value near the first target temperature t 1 , the organic thin film material 6 is judged to have reached the target temperature t 1 , and the measured temperature is the target temperature t 1. so as to maintain the temperature t 1, controls the power supplied to the heating device 4, the state measurement temperature indicated by the temperature signal St is the target temperature t 1, the temperature holding time associated with that target temperature t 1 Maintain for M 1 .

最初の目標温度t1に到達してから対応する温度維持時間M1が経過した後、加熱装置4に出力する電力を制御しながら増大させ、測定温度を記憶された昇温曲線に沿って上昇させ、有機薄膜材料6を昇温させる。 After the temperature holding time M 1 corresponding after reaching the first target temperature t 1 has elapsed, increased while controlling the power output to the heating device 4, rises along the stored heating curve measured temperature The organic thin film material 6 is heated.

測定温度が、最初の目標温度t1より高く、最初の目標温度t1に最も近い次の目標温度t2以上になると、電源装置25は、有機薄膜材料6がその目標温度t2に到達したとして、測定温度がその目標温度t2を維持するように、加熱装置4への供給電力を制御し、その目標温度に対応した温度維持時間M2の間、測定温度が目標温度t2である状態を維持させる。対応する温度維持時間M2の経過後、加熱装置4に供給する電力を増大させ、昇温を再開させる。 The measured temperature is higher than the first target temperature t 1, when the first becomes the next target temperature t 2 than the closest to the target temperature t 1, power supply 25, an organic thin film material 6 has reached its target temperature t 2 as, as the measured temperature to maintain the desired temperature t 2, to control the power supplied to the heating device 4, between the target temperature the temperature maintaining time corresponding to M 2, the measurement temperature is the target temperature t 2 Maintain state. After the corresponding temperature maintenance time M 2 has elapsed, the power supplied to the heating device 4 is increased and the temperature rise is resumed.

このように、電源装置25は、加熱装置4へ投入する電力を制御し、入力される温度信号Stが目標温度t1〜t5に到達すると、その測定温度t1〜t5に対応する温度維持時間M1〜M5の間、温度信号Stが示す測定温度が目標温度t1〜t5である状態を維持させ、温度維持時間M1〜M5の経過後、昇温を再開して、維持した目標温度t1〜t4よりも高温で、直前に維持した目標温度t1〜t4に最も近い次の目標温度t2〜t5に到達して、その目標温度t2〜t5を温度維持時間M2〜M5維持させるようにしており、従って、温度センサ5が検出して温度測定装置18が測定する測定温度が、低温の目標温度t1〜t4からそれよりも高温の目標温度t2〜t5に順番に到達して温度維持時間M1〜M5維持され、有機薄膜材料6の温度が階段状に変化するようにされている。 Thus, the power supply 25 controls the power applied to the heating device 4, the temperature signal St inputted reaches the target temperature t 1 ~t 5, the temperature corresponding to the measured temperature t 1 ~t 5 During the maintenance time M 1 to M 5, the measurement temperature indicated by the temperature signal St is maintained at the target temperature t 1 to t 5 , and after the temperature maintenance time M 1 to M 5 has elapsed, the temperature increase is resumed. , high temperature than the target temperature t 1 ~t 4 maintained, to reach the next target temperature t 2 ~t 5 closest to the target temperature t 1 ~t 4 maintained immediately before the target temperature t 2 ~t 5 is maintained for the temperature maintaining time M 2 to M 5 , and therefore the measured temperature detected by the temperature sensor 5 and measured by the temperature measuring device 18 is lower than the target temperature t 1 to t 4 at a low temperature. It reaches the turn is a temperature maintenance time M 1 ~M 5 maintained at the target temperature t 2 ~t 5 hot, the organic thin film material 6 Temperature is to vary in a stepwise manner.

有機薄膜材料6が昇温する際には、真空槽2の内部は大気圧よりも低圧の真空雰囲気に維持されており、一般に、有機化合物の周囲の圧力が分子流圧力よりも高いときには、有機化合物の蒸気放出が開始される蒸発開始温度は、圧力によって変化し、分子流圧力になると、蒸発開始温度は一定値になることが知られており、大気中では蒸発しない温度であっても、真空雰囲気中では蒸発する。   When the temperature of the organic thin film material 6 is raised, the inside of the vacuum chamber 2 is maintained in a vacuum atmosphere at a pressure lower than the atmospheric pressure. Generally, when the pressure around the organic compound is higher than the molecular flow pressure, The evaporation start temperature at which the vapor release of the compound is started varies depending on the pressure, and when the molecular flow pressure is reached, it is known that the evaporation start temperature becomes a constant value. Evaporates in a vacuum atmosphere.

ここでは、真空槽2内部の真空雰囲気中で有機薄膜材料6が蒸発を開始する温度を真空中蒸発開始温度とすると、有機薄膜材料6は、真空槽2の内部で真空中蒸発開始温度以上の温度に昇温した後に蒸発が開始され、温度上昇に伴って蒸発速度は増加する。   Here, when the temperature at which the organic thin film material 6 starts to evaporate in the vacuum atmosphere inside the vacuum chamber 2 is the evaporation start temperature in vacuum, the organic thin film material 6 has a temperature equal to or higher than the evaporation start temperature in vacuum inside the vacuum chamber 2. Evaporation is started after the temperature is raised, and the evaporation rate increases as the temperature rises.

温度制御工程においては、蒸発速度測定装置19が求めた測定蒸発速度が蒸発速度信号Ssとして切替制御装置9に入力されており、上述したように、切替制御装置9は、切替用記憶装置31に記憶された閾値蒸発速度Raと、測定蒸発速度とを比較して、大小関係を判断し、蒸発速度信号Ssが示す測定蒸発速度が閾値蒸発速度Ra以上になったことを検出すると、切替装置17の内部接続を切り替え、切替装置17に入力され、変換された蒸発速度信号Ssを電源装置25に出力する。 In the temperature control step, the measured evaporation rate obtained by the evaporation rate measuring device 19 is input to the switching control device 9 as the evaporation rate signal Ss, and the switching control device 9 is stored in the switching storage device 31 as described above. the stored threshold evaporation rate R a, by comparing the measured evaporation rates and to determine the magnitude relation, detects that the measured evaporation rate indicated by the evaporation rate signal Ss is equal to or higher than the threshold evaporation rate R a, switching The internal connection of the device 17 is switched and input to the switching device 17, and the converted evaporation rate signal Ss is output to the power supply device 25.

本発明では、有機薄膜材料6の真空中蒸発開始温度は予め測定されており、制御用記憶装置32には、目標温度が、室温と真空中蒸発開始温度の間の温度範囲に複数個設定されている。
また、有機薄膜材料6が、真空槽2の真空雰囲気中で、閾値蒸発速度Raの蒸発速度になる閾値温度も予め測定されており、室温と閾値温度の間に、複数の目標温度を設定してもよい。
In the present invention, the vacuum evaporation start temperature of the organic thin film material 6 is measured in advance, and a plurality of target temperatures are set in the temperature range between the room temperature and the vacuum evaporation start temperature in the control storage device 32. ing.
The setting organic thin film material 6, in a vacuum atmosphere of the vacuum chamber 2, the threshold temperature at which evaporation rate threshold evaporation rate R a have also been measured in advance, between room temperature and the threshold temperature, a plurality of target temperatures May be.

いずれにしろ、ここで用いる有機薄膜材料6は、室温では蒸気が放出されないため、測定蒸発速度がゼロの状態から閾値蒸発速度Ra以上になるまでに、測定温度が複数の目標温度t1〜t5に到達し、到達する度に対応する温度維持時間M1〜M5目標温度t1〜t5が維持されるようにされている。 In any case, the organic thin film material 6, as used herein, because they are not released vapor at room temperature, measured from the evaporation rate is zero state until a threshold or more evaporation rate R a, measured temperature is more target temperatures t 1 ~ reached t 5, it is so that the temperature holding time M 1 ~M 5 target temperature t 1 ~t 5 corresponding to the time it reaches maintained.

隣接する二個の目標温度間t1〜t5の温度差は、室温と真空中蒸発開始温度との間の温度差よりも小さく、また、各目標温度t1〜t5は、温度維持時間M1〜M5維持されるから、昇温する有機薄膜材料6の実際の温度と、測定温度とは一致するようになっており、従って、有機薄膜材料6の、場所毎の温度差や、昇温の際の温度変動の大きさは小さくなり、有機薄膜材料6の温度は、予め制御用記憶装置32に記憶された昇温曲線と一致する。 Temperature difference between adjacent two of the target temperature between t 1 ~t 5, the room temperature and less than the temperature difference between the vacuum in the evaporation initiation temperature, and each target temperature t 1 ~t 5, the temperature holding time Since M 1 to M 5 are maintained, the actual temperature of the organic thin film material 6 to be heated coincides with the measured temperature. Therefore, the temperature difference of the organic thin film material 6 from place to place, The magnitude of the temperature fluctuation at the time of temperature increase becomes small, and the temperature of the organic thin film material 6 matches the temperature increase curve stored in the control storage device 32 in advance.

そして、この図2のグラフが示す例では、グラフ中、最も高い温度の目標温度t5が維持されている間に、蒸発速度信号Ssが示す測定蒸発速度の値が閾値蒸発速度Ra以上になり、そのとき、切替制御装置9によって、切替装置17の内部接続が切り換えられ、切替装置17の内部で変換された蒸発速度信号Ssが電源装置25に出力されて蒸発速度制御工程に移行する。 In the example shown in the graph of FIG. 2, the graph, while the target temperature t 5 of the highest temperature is maintained, the evaporation rate signal Ss is the value of the measured evaporation rates indicated above threshold evaporation rate R a At that time, the internal connection of the switching device 17 is switched by the switching control device 9, the evaporation rate signal Ss converted inside the switching device 17 is output to the power supply device 25, and the process proceeds to the evaporation rate control step.

蒸発速度制御工程では、電源装置25は、加熱装置4への投入電力を増加させ、入力される蒸発速度信号Ssが示す測定蒸発速度が大きくなるようにする。
図2のグラフの右側が設定する蒸発速度であり、符号S1は、蒸発速度制御工程の開始時刻を示している。この開始時刻S1よりも右側の縦軸は蒸発速度を示している。
閾値蒸発速度Raと成膜時蒸発速度Rbとの間の蒸発速度範囲には、複数個の目標蒸発速度r1〜r4が設定設定されている。
In the evaporation rate control step, the power supply device 25 increases the input power to the heating device 4 so that the measured evaporation rate indicated by the input evaporation rate signal Ss increases.
The right side of the graph of FIG. 2 is the evaporation rate that is set, and symbol S 1 indicates the start time of the evaporation rate control step. The vertical axis on the right side of the start time S 1 indicates the evaporation rate.
A plurality of target evaporation rates r 1 to r 4 are set and set in the evaporation rate range between the threshold evaporation rate Ra and the deposition evaporation rate R b .

曲線生成装置37には、有機薄膜材料6を一の目標蒸発速度から次の目標蒸発速度に昇温させる際の蒸発速度を決定する蒸発速度制御曲線が記憶されており、制御電源13からの要求に従った蒸発速度制御曲線を制御電源13に出力する。   The curve generation device 37 stores an evaporation rate control curve for determining an evaporation rate for raising the temperature of the organic thin film material 6 from one target evaporation rate to the next target evaporation rate. The evaporation rate control curve according to the above is output to the control power source 13.

図2の符号L2の実線折線は、曲線生成装置37から制御電源13に出力される蒸発速度制御曲線であり、目標蒸発速度と目標蒸発速度の間の、時間と設定蒸発速度の関係を示している。
この実線折線L2により、目標蒸発速度r1〜r4と、目標蒸発速度r1〜r4の間を結ぶ蒸発制御曲線とからなる設定蒸発速度の設定の時間変化が示されている。
Solid polygonal line of code L 2 in FIG. 2 is a vaporization rate control curve outputted from the curve generator 37 to control power supply 13, between the target evaporation speed and the target evaporation rate, it shows the relationship between time and setting the evaporation rate ing.
By this solid polygonal line L 2, the target evaporation rate r 1 ~r 4, the time change of the desired evaporation rate r 1 made of an evaporation control curve connecting between ~r 4 Setting evaporation rate settings are shown.

制御電源13は、目標蒸発速度と目標蒸発速度の間の範囲内では、有機薄膜材料6が蒸発速度制御曲線通りに昇温するように電力を出力する。本発明では、有機薄膜材料6は設定蒸発速度を示す実線折線L2の通りに蒸発速度が変化するように昇温される。
本発明では、有機薄膜材料6は、この設定蒸発速度の通り蒸発するようになっている。
In the range between the target evaporation rate and the target evaporation rate, the control power supply 13 outputs electric power so that the organic thin film material 6 is heated according to the evaporation rate control curve. In the present invention, the organic thin film material 6 is heated so as to change the evaporation rate as a solid line polygonal line L 2 showing the setting rate of evaporation.
In the present invention, the organic thin film material 6 evaporates according to this set evaporation rate.

目標蒸発速度r1〜r4のうち、先ず、電源装置25に入力される蒸発速度信号Ssが示す測定蒸発速度が、閾値蒸発速度Raよりも大きく、閾値蒸発速度Raに最も近い目標蒸発速度r1以上になって、測定蒸発速度がその目標蒸発速度r1に到達したと判断すると、その目標蒸発速度r1を、その目標蒸発速度r1に対応した蒸発速度維持時間N1の間維持するように、加熱装置4への投入電力を制御する。
蒸発速度維持時間N1の維持後、投入電力を増加させ、有機薄膜材料6を昇温させて測定蒸発速度の増大を再開する。
Of the target evaporation rate r 1 ~r 4, first, measuring the evaporation rate indicated by the evaporation rate signal Ss is input to the power supply unit 25 is larger than the threshold evaporation rate R a, closest target evaporation threshold evaporation rate R a If it is determined that the measured evaporation rate has reached the target evaporation rate r 1 after reaching the rate r 1 or more, the target evaporation rate r 1 is set to the evaporation rate maintaining time N 1 corresponding to the target evaporation rate r 1. The input power to the heating device 4 is controlled so as to be maintained.
After maintaining the evaporation speed maintenance time N 1, increasing the input power resumes increased measurement evaporation rate by raising the temperature of the organic thin film material 6.

そして、蒸発速度信号Ssが示す測定蒸発速度が増大し、維持した目標蒸発速度r1よりも大きく、最も近い次の目標蒸発速度r2に到達すると、電源装置25は、その目標蒸発速度r2に対応した蒸発速度維持時間N2の間、目標蒸発速度r2を維持した後、昇温を再開させる。このようなことを繰り返し行っている間に、蒸発速度信号Ssが示す測定蒸発速度が成膜時蒸発速度Rb以上になったところで、蒸発速度信号Ssが成膜時蒸発速度Rbを維持するように、加熱装置4への投入電力を制御する。 Then, when the measured evaporation rate indicated by the evaporation rate signal Ss increases and reaches the next target evaporation rate r 2 that is greater than the maintained target evaporation rate r 1 and is closest, the power supply device 25 sets the target evaporation rate r 2. After maintaining the target evaporation rate r 2 for the evaporation rate maintaining time N 2 corresponding to the above, the temperature rise is resumed. While the above process is repeated, when the measured evaporation rate indicated by the evaporation rate signal Ss becomes equal to or higher than the deposition rate R b , the evaporation rate signal Ss maintains the deposition rate R b . Thus, the input electric power to the heating device 4 is controlled.

ここでは、制御用記憶装置32には、閾値蒸発速度Raと成膜時蒸発速度Rbとの間に設定された複数の目標蒸発速度r1〜r4と、目標蒸発速度r1〜r4にそれぞれ対応付けられた蒸発速度維持時間N1〜N4が記憶されている。 Here, the control storage device 32 includes a plurality of target evaporation rates r 1 to r 4 set between the threshold evaporation rate Ra and the film formation evaporation rate R b , and the target evaporation rates r 1 to r. The evaporation rate maintaining times N 1 to N 4 respectively associated with 4 are stored.

電源装置25は、閾値蒸発速度Raから成膜時蒸発速度Rbに達するまでの間に、測定蒸発速度の増大と到達した目標蒸発速度r1〜r4の蒸発速度維持時間N1〜N4の間の維持とを複数回繰り返すようになっている。 The power supply device 25 increases the measured evaporation rate and reaches the evaporation rate maintaining time N 1 to N 4 of the target evaporation rate r 1 to r 4 during the period from the threshold evaporation rate Ra to the deposition evaporation rate R b. The maintenance between 4 is repeated several times.

また、閾値蒸発速度Raと成膜時蒸発速度Rbとの間に複数の目標蒸発速度r1〜r4と蒸発速度維持時間N1〜N4が設定されていれば、複数の目標蒸発速度r1〜r4のうち、一つの目標蒸発速度r4を成膜時蒸発速度Rbの値にしても良い。但し、成膜時蒸発速度Rbに到達する前に、複数の目標蒸発速度r1〜r3に到達して蒸発速度維持時間N1〜N3維持される必要がある。 Further, if a plurality of target evaporation rates r 1 to r 4 and evaporation rate maintaining times N 1 to N 4 are set between the threshold evaporation rate Ra and the deposition evaporation rate R b , a plurality of target evaporations are set. of speed r 1 ~r 4, it may be one of the target evaporation rate r 4 to the value of the film forming upon evaporation rate R b. However, before reaching the evaporation rate R b during film formation, it is necessary to reach a plurality of target evaporation rates r 1 to r 3 and maintain the evaporation rate maintaining time N 1 to N 3 .

蒸発速度信号Ssが示す測定蒸発速度が、成膜時蒸発速度Rbに維持されるようになると薄膜形成工程が開始され(時刻S2)、複数の基板が、有機材料蒸気が放出されている真空槽2の内部に順番に搬入され、ホルダー20に保持されて成膜面に有機薄膜が形成される。 When the measured evaporation rate indicated by the evaporation rate signal Ss is maintained at the evaporation rate Rb during film formation, the thin film forming process is started (time S 2 ), and the organic material vapor is released from the plurality of substrates. It is sequentially carried into the vacuum chamber 2 and is held by the holder 20 so that an organic thin film is formed on the film formation surface.

なお、上記例において、複数の目標温度を設定する際に、100℃より高温の目標温度を設定して温度維持時間を長くし、昇温させる有機薄膜材料の脱ガスを行うようにしてもよい。この場合、脱ガスに用いる有機薄膜材料の目標温度と、真空槽内の真空雰囲気中で閾値蒸発速度の蒸気が放出される温度との間に、複数の他の目標温度及び温度維持時間とが設定されていればよい。   In the above example, when setting a plurality of target temperatures, a target temperature higher than 100 ° C. may be set to lengthen the temperature maintenance time, and the organic thin film material to be heated may be degassed. . In this case, there are a plurality of other target temperatures and temperature maintenance times between the target temperature of the organic thin film material used for degassing and the temperature at which the vapor having the threshold evaporation rate is released in the vacuum atmosphere in the vacuum chamber. It only has to be set.

上記は、有機薄膜成膜について説明したが、本発明は、有機薄膜に限定されるものではなく、例えば、有機EL素子を作製する場合のLiF(EIL)やAl金属の電極膜の形成も含まれる。   Although the above has described the organic thin film formation, the present invention is not limited to the organic thin film, and includes, for example, the formation of an LiF (EIL) or Al metal electrode film in the case of manufacturing an organic EL element. It is.

1……蒸着装置
2……真空槽
3……容器
4……加熱装置
5……温度センサ
6……有機薄膜材料
7……膜厚センサ
9……切替制御装置
17……切替装置
18……温度測定装置
19……蒸発速度測定装置
25……電源装置
30……制御装置
DESCRIPTION OF SYMBOLS 1 ... Deposition apparatus 2 ... Vacuum chamber 3 ... Container 4 ... Heating apparatus 5 ... Temperature sensor 6 ... Organic thin film material 7 ... Film thickness sensor 9 ... Switching control apparatus
17 ... Switching device 18 ... Temperature measuring device 19 ... Evaporation rate measuring device 25 ... Power supply device 30 ... Control device

Claims (8)

通電されると発熱する加熱装置の発熱量を制御し、真空雰囲気中で有機薄膜材料が蒸発を開始する真空中蒸発開始温度よりも低温の有機薄膜材料を真空雰囲気中で加熱して昇温させ、前記有機薄膜材料の蒸発を開始させる温度制御工程と、
前記温度制御工程から移行され、前記加熱装置の発熱を制御して蒸発速度を増大させ、前記有機薄膜材料の前記蒸発速度を、予め設定された成膜時蒸発速度にする蒸発速度制御工程と、
前記蒸発速度を前記成膜時蒸発速度に維持しながら成膜対象物の表面に蒸気を到達させ、前記成膜対象物の成膜面に薄膜を形成する薄膜形成工程と、
を有する有機薄膜形成方法であって、
前記成膜時蒸発速度よりも小さい値の閾値蒸発速度と、
複数の目標温度と、前記目標温度が対応された温度維持時間と、複数の目標蒸発速度と、前記目標蒸発速度に対応された蒸発速度維持時間と、を予め設定しておき、
前記温度制御工程では、前記有機薄膜材料の温度を測定し、前記有機薄膜材料を昇温させて測定で求められた測定温度が前記目標温度に到達すると、到達した前記目標温度に対応付けられた前記温度維持時間の間、前記測定温度が到達した前記目標温度を維持するように前記加熱装置の発熱を制御し、前記温度維持時間の経過後、前記加熱装置の発熱を増大させて前記有機薄膜材料を昇温させ、前記測定温度が到達した前記目標温度よりも高温の他の前記目標温度に到達させることで、前記有機薄膜材料の昇温と、昇温する前記有機薄膜材料の前記目標温度への到達と、到達した前記目標温度に対応する前記温度維持時間の維持とを複数回繰り返し行わせ、
前記蒸発速度制御工程では、前記有機薄膜材料の蒸発速度を測定し、前記有機薄膜材料を昇温させて前記蒸発速度を増大させ、測定で求められた測定蒸発速度が前記目標蒸発速度に到達すると、到達した前記目標蒸発速度に対応付けられた前記蒸発速度維持時間の間、前記測定蒸発速度が到達した前記目標蒸発速度を維持するように前記加熱装置の発熱を制御し、前記蒸発速度維持時間の経過後、前記加熱装置の発熱を増大させて前記有機薄膜材料を昇温させ、前記測定蒸発速度を増大させて、前記測定蒸発速度が到達した前記目標蒸発速度よりも大きい他の前記目標蒸発速度に到達させることで、前記有機薄膜材料の前記蒸発速度増大と、蒸発速度が増大する前記有機薄膜材料の前記目標蒸発速度への到達と、到達した前記目標蒸発速度に対応する前記蒸発速度維持時間の維持とを複数回繰り返し行わせ、
前記温度制御工程では、前記蒸発速度を測定し、測定した前記測定蒸発速度が前記閾値蒸発速度に到達すると、前記蒸発速度制御工程に移行し、
前記蒸発速度制御工程では、前記蒸発速度が前記成膜時蒸発速度に到達すると、前記薄膜形成工程に移行する薄膜製造方法。
Controls the amount of heat generated by the heating device that generates heat when energized, and heats the organic thin film material at a temperature lower than the evaporation start temperature in the vacuum atmosphere. A temperature control step for starting evaporation of the organic thin film material;
Transition from the temperature control step, the heat generation of the heating device is controlled to increase the evaporation rate, and the evaporation rate of the organic thin film material is set to a preset evaporation rate at the time of film formation,
A thin film forming step of forming a thin film on the film formation surface of the film formation object by allowing vapor to reach the surface of the film formation object while maintaining the evaporation rate at the film formation evaporation rate,
An organic thin film forming method comprising:
A threshold evaporation rate of a value smaller than the evaporation rate during film formation;
Presetting a plurality of target temperatures, a temperature maintaining time corresponding to the target temperature, a plurality of target evaporation rates, and an evaporation rate maintaining time corresponding to the target evaporation rate;
In the temperature control step, the temperature of the organic thin film material is measured, the temperature of the organic thin film material is increased, and when the measurement temperature obtained by measurement reaches the target temperature, the temperature is associated with the reached target temperature. During the temperature maintaining time, the heating of the heating device is controlled so as to maintain the target temperature at which the measured temperature has reached, and after the temperature maintaining time has elapsed, the heating of the heating device is increased to increase the organic thin film. The temperature of the organic thin film material is raised by raising the temperature of the material and reaching the other target temperature higher than the target temperature at which the measurement temperature has reached, and the target temperature of the organic thin film material to be heated up And the maintenance of the temperature maintenance time corresponding to the reached target temperature is repeated a plurality of times,
In the evaporation rate control step, the evaporation rate of the organic thin film material is measured, the organic thin film material is heated to increase the evaporation rate, and the measured evaporation rate obtained by measurement reaches the target evaporation rate. And controlling the heat generation of the heating device so as to maintain the target evaporation rate reached by the measured evaporation rate during the evaporation rate maintaining time associated with the reached target evaporation rate, and the evaporation rate maintaining time. After the elapse of time, the organic thin film material is heated by increasing the heat generation of the heating device, the measured evaporation rate is increased, and the other target evaporation that is larger than the target evaporation rate reached by the measured evaporation rate By reaching the speed, the increase in the evaporation rate of the organic thin film material, the arrival of the organic thin film material at which the evaporation rate increases, the arrival of the target evaporation rate, Said the maintenance of the evaporation speed maintenance time to respond was repeated a plurality of times,
In the temperature control step, the evaporation rate is measured, and when the measured evaporation rate reaches the threshold evaporation rate, the process proceeds to the evaporation rate control step,
In the evaporation rate control step, when the evaporation rate reaches the evaporation rate during film formation, the thin film manufacturing method moves to the thin film formation step.
室温と、前記真空中蒸発開始温度との間の温度範囲中に、前記目標温度が複数個設定された請求項1記載の薄膜製造方法。   The thin film manufacturing method according to claim 1, wherein a plurality of the target temperatures are set in a temperature range between room temperature and the evaporation start temperature in vacuum. 室温と、前記有機薄膜材料の蒸発速度が前記閾値蒸発速度になる温度との間の温度範囲中に、前記目標温度が複数個設定された請求項1記載の薄膜製造方法。   The thin film manufacturing method according to claim 1, wherein a plurality of the target temperatures are set in a temperature range between room temperature and a temperature at which an evaporation rate of the organic thin film material becomes the threshold evaporation rate. 前記閾値蒸発速度と前記成膜時蒸発速度との間の蒸発速度範囲に、前記目標蒸発速度が複数個設定された請求項1乃至請求項3のいずれか1項記載の薄膜製造方法。   4. The thin film manufacturing method according to claim 1, wherein a plurality of target evaporation rates are set in an evaporation rate range between the threshold evaporation rate and the deposition evaporation rate. 一の前記目標温度と、到達すべき次の前記目標温度との間は、設定された温度制御曲線に従って昇温させる請求項1乃至請求項4のいずれか1項記載の薄膜製造方法。   The thin film manufacturing method according to any one of claims 1 to 4, wherein a temperature is raised between the one target temperature and the next target temperature to be reached according to a set temperature control curve. 一の前記目標蒸発速度と、到達すべき次の前記目標蒸発速度の間では、前記有機薄膜材料の蒸発速度が、設定された蒸発速度制御曲線に従って増加するように、前記有機薄膜材料を昇温させる請求項1乃至請求項5のいずれか1項記載の薄膜製造方法。   The temperature of the organic thin film material is increased so that the evaporation rate of the organic thin film material increases according to a set evaporation rate control curve between one target evaporation rate and the next target evaporation rate to be reached. The thin film manufacturing method according to any one of claims 1 to 5, wherein: 前記温度範囲の中の少なくとも一つは、前記有機薄膜材料に含有される水分が蒸発する温度であることを特徴とする請求項1乃至請求項6のいずれか1項記載の薄膜製造方法。   The thin film manufacturing method according to claim 1, wherein at least one of the temperature ranges is a temperature at which moisture contained in the organic thin film material evaporates. 予め上限温度を設定しておき、
前記温度制御工程中の前記測定温度が前記上限温度に到達すると、前記加熱装置の発熱を停止させる請求項1乃至請求項7のいずれか1項記載の薄膜製造方法。
Set the upper limit temperature in advance,
The thin film manufacturing method according to claim 1, wherein when the measured temperature in the temperature control step reaches the upper limit temperature, heat generation of the heating device is stopped.
JP2010138022A 2010-06-17 2010-06-17 Thin film manufacturing method Expired - Fee Related JP5439289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138022A JP5439289B2 (en) 2010-06-17 2010-06-17 Thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138022A JP5439289B2 (en) 2010-06-17 2010-06-17 Thin film manufacturing method

Publications (2)

Publication Number Publication Date
JP2012001766A JP2012001766A (en) 2012-01-05
JP5439289B2 true JP5439289B2 (en) 2014-03-12

Family

ID=45534084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138022A Expired - Fee Related JP5439289B2 (en) 2010-06-17 2010-06-17 Thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP5439289B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840055B2 (en) * 2012-03-29 2016-01-06 日立造船株式会社 Vapor deposition equipment
JP6617198B2 (en) * 2016-05-13 2019-12-11 株式会社アルバック Organic thin film manufacturing apparatus, organic thin film manufacturing method

Also Published As

Publication number Publication date
JP2012001766A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
US20160298227A1 (en) A crucible device used in coating system
JP5840055B2 (en) Vapor deposition equipment
TW201546319A (en) Gas supply device, film forming apparatus, gas supply method, and storage medium
CN101647100A (en) Plasma processor
JP5439289B2 (en) Thin film manufacturing method
JP2006188762A (en) Method for measuring deposition thickness and deposition system
KR101284394B1 (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
JP2011162846A (en) Vacuum evaporation source
CN106967951A (en) A kind of film formation device, film build method and film deposition source
JP5180469B2 (en) Vacuum deposition equipment
JP6617198B2 (en) Organic thin film manufacturing apparatus, organic thin film manufacturing method
WO2004038776A1 (en) Heat treatment system and heat treatment method
JP4830847B2 (en) Vacuum deposition equipment
CN206599607U (en) A kind of film formation device and film deposition source
JP2012251224A (en) Apparatus for controlling evaporation quantity of monomer, vapor deposition polymerizer, and method for controlling evaporation quantity of monomer
KR20090109375A (en) Method for controling thin film forming velocity, thin film forming method having the method and thin film forming system for performing the thin film forming method
KR100849012B1 (en) Heat treatment system and heat treatment method
JP2015209559A (en) Vapor deposition apparatus
JP5828353B2 (en) Nitride crystal manufacturing method and nitride crystal manufacturing apparatus
JP2010175294A (en) Pressure sensor
JP2018150581A (en) Vapor deposition apparatus
JP2005082833A (en) Molecular beam source cell for depositing thin film
Panda et al. Fabrication and characterization of substrate heater for universal vacuum coating systems
JP2003303784A5 (en)
KR20130142847A (en) Thin film deposition apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5439289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees