JP5438781B2 - Joining device - Google Patents

Joining device Download PDF

Info

Publication number
JP5438781B2
JP5438781B2 JP2012007066A JP2012007066A JP5438781B2 JP 5438781 B2 JP5438781 B2 JP 5438781B2 JP 2012007066 A JP2012007066 A JP 2012007066A JP 2012007066 A JP2012007066 A JP 2012007066A JP 5438781 B2 JP5438781 B2 JP 5438781B2
Authority
JP
Japan
Prior art keywords
joined
stud
joining
bonded
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012007066A
Other languages
Japanese (ja)
Other versions
JP2012101283A (en
Inventor
田 慎太郎 深
田 英 人 西
賀 信 次 古
山 五 郎 西
林 研 一 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2012007066A priority Critical patent/JP5438781B2/en
Publication of JP2012101283A publication Critical patent/JP2012101283A/en
Application granted granted Critical
Publication of JP5438781B2 publication Critical patent/JP5438781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/20Stud welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • B23K20/1295Welding studs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/20Stud welding
    • B23K9/207Features related to studs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、接合物を被接合物に接合する接合方法および接合装置に関する。本発明による接合方法及び接合装置の具体的な利用分野としては、例えば、LNGタンク等の大型アルミ構造物への小物部材の取り付け、鉄道車両、自動車等のアルミ部材への小物部材の取り付け、船舶、橋梁等の鉄鋼部材への小物部材の取り付け等がある。   The present invention relates to a bonding method and a bonding apparatus for bonding a bonded object to an object to be bonded. Specific application fields of the joining method and joining apparatus according to the present invention include, for example, attachment of small members to large aluminum structures such as LNG tanks, attachment of small members to aluminum members of railway vehicles, automobiles, etc. There are also attachments of small parts to steel members such as bridges.

接合物を被接合物に接合する従来の方法としてアークスタッド法がある。アークスタッド法では、まず接合物と被接合物との間にアーク放電を発生させ、このアーク放電によって接合物と被接合物とを溶融させて、接合物と被接合物との間に溶融物から成る溶融池を形成する。次に溶融池を形成した状態で接合物を被接合物に押圧し、接合物を被接合物に接合している。   There is an arc stud method as a conventional method for joining a joined object to an object to be joined. In the arc stud method, first, an arc discharge is generated between a joined article and a workpiece, and the joined article and the article to be joined are melted by the arc discharge, and a molten product is formed between the joined article and the article to be joined. A molten pool is formed. Next, in a state where the molten pool is formed, the bonded object is pressed against the object to be bonded, and the bonded object is bonded to the object to be bonded.

接合物を被接合物に接合する他の従来の方法として摩擦圧接法がある。摩擦圧接法では、接合物を被接合物に押付けた状態で接合物を回転させ、接合物と被接合物との間に摩擦熱を生じさせ、接合物と被接合物との接合部に塑性変形を生じさせることによって接合物と被接合物とを接合している(たとえば特許文献1参照)。   There is a friction welding method as another conventional method for joining a joined object to an object to be joined. In the friction welding method, the bonded object is rotated while the bonded object is pressed against the object to be bonded, and frictional heat is generated between the bonded object and the object to be bonded, and the joint between the bonded object and the object to be bonded is plastic. The joined object and the article to be joined are joined by causing deformation (see, for example, Patent Document 1).

接合物を被接合物に接合するさらに他の従来の方法として、ろう接がある。ろう接では、接合物と被接合物との間に、接合物および被接合物よりも融点の低いろう材を配置し、このろう材を溶融させて接合物と被接合物とを接合している(たとえば特許文献2参照)。   There is brazing as another conventional method for joining a joined object to an object to be joined. In brazing, a brazing material having a melting point lower than that of the joined article and the article to be joined is disposed between the joined article and the article to be joined, and the brazing material is melted to join the joined article and the article to be joined. (For example, refer to Patent Document 2).

ところが、アークスタッド法では、溶融池が凝固する課程において割れおよびブローホールなどの欠陥が生じ、溶接部の品質および接合強度のばらつきが大きくなり易く、接合の信頼性が低いという問題がある。また、アークスタッド法を行うには、溶接を行なうためのガン、電圧を印加するための溶接電源および酸化などを防ぐためのシールドガスを供給する装置などの付帯機器と、これらの付帯機器の配線および配管などが必要となる。また、接合前の酸化被膜除去工程・スタッド接合工程・フェルール除去工程が必要であり、工程数が多い。   However, the arc stud method has a problem that defects such as cracks and blowholes occur in the course of solidification of the molten pool, the quality of the welded portion and the variation in bonding strength tend to increase, and the bonding reliability is low. In addition, in order to perform the arc stud method, an auxiliary device such as a gun for performing welding, a welding power source for applying voltage and a device for supplying a shielding gas for preventing oxidation, etc., and wiring of these auxiliary devices And piping is necessary. In addition, an oxide film removal process, a stud bonding process, and a ferrule removal process before bonding are necessary, and the number of processes is large.

摩擦圧接法は、姿勢変化の影響を受けない安定した工法であるが、塑性変形を生じさせるために、数百kgからトンオーダの押圧力で接合物を被接合物に押圧する必要がある。したがって、このような押圧力に耐えることができる接合物および被接合物の接合にのみ摩擦圧接法を適用することができるが、たとえば押圧力で座屈するような強度の小さい接合物を摩擦圧接法では接合することができないという問題がある。また、接合装置が大形化し、既設構造物に装置を運び入れて施工することは困難である。また、発生する摩擦熱は相対速度と押圧力の積に比例する。接合物が小径の場合は相対速度が低くなるため、特に大きな押圧力もしくは超高速回転が必要となる。   The friction welding method is a stable method that is not affected by a change in posture, but in order to cause plastic deformation, it is necessary to press the bonded product against the workpiece with a pressing force of several hundred kg to ton order. Therefore, the friction welding method can be applied only to the joint that can withstand such a pressing force and the joint to be joined. For example, a joint having a small strength that buckles due to the pressing force can be applied to the friction welding method. Then, there is a problem that it cannot be joined. In addition, since the joining apparatus becomes large, it is difficult to carry the apparatus into an existing structure for construction. The generated frictional heat is proportional to the product of the relative speed and the pressing force. When the joint has a small diameter, the relative speed is low, and thus a particularly large pressing force or ultra-high speed rotation is required.

アルミニウムのろう接では、接合物および被接合物のうちのろう材が付着する部分の酸化皮膜を除去する工程が必要となる。酸化皮膜の除去には強活性フラックスが多く用いられる。この強活性フラックスは、残留すると接合部分の腐食の原因となるので、ろう接では、強活性フラックスを除去する工程がさらに必要となり、工程数が増加するという問題がある。またろう材と母材とは、融点の差が小さいので、±5℃程度の温度範囲内でろう付けを行う必要がある。したがってろう接は、溶融温度範囲が狭く、ろう材との融点の差が比較的大きいアルミニウム合金に一般的に適用され、溶融温度範囲が広く、ろう材との融点の差が比較的小さいCu,Mg,Zn,Siなどの含有量の多い高力アルミニウム合金などに適用することが困難である。   In the brazing of aluminum, a step of removing the oxide film on the part to which the brazing material of the joined article and the article to be joined adheres is required. A strong active flux is often used to remove the oxide film. If this strong active flux remains, it causes corrosion of the joint portion. Therefore, in brazing, there is a problem that a step of removing the strong active flux is further required and the number of steps is increased. Further, since the difference in melting point between the brazing material and the base material is small, it is necessary to braze within a temperature range of about ± 5 ° C. Therefore, brazing is generally applied to aluminum alloys that have a narrow melting temperature range and a relatively large melting point difference with the brazing material, and have a wide melting temperature range and a relatively small melting point difference with the brazing material. It is difficult to apply to a high-strength aluminum alloy having a high content of Mg, Zn, Si and the like.

特開2002−153979号公報Japanese Patent Laid-Open No. 2002-153979 特開2002−290068号公報JP 2002-290068 A

したがって本発明の目的は、小さな押圧力で、信頼性が高く、かつ作業環境を悪化させることなく接合物を被接合物に接合することができる接合方法および接合装置を提供することである。   Therefore, an object of the present invention is to provide a bonding method and a bonding apparatus that can bond a bonded object to an object to be bonded with a small pressing force, high reliability, and without deteriorating the working environment.

上記課題を解決するために、本発明による接合方法は、
それぞれが金属材料によって形成される接合物および被接合物の間に、前記接合物および前記被接合物のうちの少なくともいずれか一方の融点低下部材を配置し、
前記融点低下部材を介して前記接合物を前記被接合物に押圧した状態で、前記接合物と前記被接合物との間に相対運動を与えることによって摩擦熱を生じさせ、前記接合物および前記被接合物のうちの少なくともいずれか一方の融点未満の温度で、前記接合物および前記被接合物のうちの少なくともいずれか一方と前記融点低下部材との接続部位を溶融させ、
前記接合物と前記被接合物との間の相対運動を停止して、前記接合物を前記被接合物に接合することを特徴とする。
In order to solve the above problems, the bonding method according to the present invention is:
Between each of the bonded object and the bonded object each formed of a metal material, the melting point lowering member of at least one of the bonded object and the bonded object is disposed,
Friction heat is generated by giving a relative motion between the bonded object and the bonded object in a state where the bonded object is pressed against the bonded object via the melting point lowering member, Melting at least one of the bonding object and the bonded object and the melting point reducing member at a temperature lower than the melting point of at least one of the bonded objects;
Relative motion between the bonded object and the object to be bonded is stopped, and the bonded object is bonded to the object to be bonded.

好ましくは、本発明は、前記接合物および前記被接合物は、同じ種類の金属材料によって形成されることを特徴とする。   Preferably, the present invention is characterized in that the bonded object and the bonded object are formed of the same type of metal material.

好ましくは、本発明は、前記金属材料は、アルミニウムであることを特徴とする。   Preferably, the present invention is characterized in that the metal material is aluminum.

好ましくは、本発明は、前記接合物を回転させることによって、前記接合物と前記被接合物との間に相対運動を与えることを特徴とする。   Preferably, the present invention is characterized in that a relative motion is given between the bonded object and the bonded object by rotating the bonded object.

好ましくは、本発明は、前記接合物は、円柱状であって、前記被接合物に押圧される先端部が、先細状に形成されることを特徴とする。   Preferably, the present invention is characterized in that the bonded article has a columnar shape, and a tip portion pressed against the bonded article is formed in a tapered shape.

好ましくは、本発明は、前記接合物と前記被接合物との相対運動を生じさせるときの負荷を検出し、
検出した負荷に基づいて、前記接合物と前記被接合物との相対運動を停止することを特徴とする。
Preferably, the present invention detects a load when causing relative movement between the bonded object and the bonded object,
Based on the detected load, the relative movement between the bonded object and the bonded object is stopped.

上記課題を解決するために、本発明による接合装置は、
金属材料によって形成される接合物を把持する把持手段と、
前記接合物を把持した状態で、前記把持手段を回転駆動する回転駆動手段と、
前記接合物を把持した状態で、前記把持手段を変位駆動する変位駆動手段と、
前記回転駆動手段および前記変位駆動手段の駆動を制御する制御手段と、を含み、
前記制御手段は、
前記接合物および金属材料によって形成される被接合物の間に、前記接合物および前記被接合物のうちの少なくともいずれか一方の融点低下部材が配置された状態で、前記回転駆動手段を制御して前記把持手段を回転させながら前記把持手段が前記接合物を前記被接合物に押圧させるように前記変位駆動手段を制御して両者の間に摩擦熱を生じさせ、前記接合物および前記被接合物のうちの少なくともいずれか一方の融点未満の温度で、前記接合物および前記被接合物のうちの少なくともいずれか一方と、前記融点低下部材との接続部位とを溶融させ、前記回転駆動手段を制御して回転駆動を停止して、前記接合物を前記被接合物に接合することを特徴とする。
In order to solve the above-described problems, a bonding apparatus according to the present invention includes:
A gripping means for gripping a joint formed of a metal material;
A rotation driving means for rotating the gripping means in a state of gripping the bonded article;
A displacement driving means for displacing and driving the gripping means in a state of gripping the bonded article;
Control means for controlling the drive of the rotation drive means and the displacement drive means,
The control means includes
The rotational driving means is controlled with a melting point lowering member of at least one of the bonded object and the bonded object disposed between the bonded object and the bonded object formed of the metal material. Then, while the gripping means is rotated, the displacement driving means is controlled so that the gripping means presses the joined object against the joined object to generate frictional heat between them, and the joined article and the joined article Melting at least one of the joined article and the article to be joined and the melting point lowering member at a temperature lower than the melting point of at least one of the articles, The rotational drive is controlled to stop, and the joined article is joined to the article to be joined.

好ましくは、本発明は、前記回転駆動手段が前記把持手段を回転駆動するときの負荷を検出する負荷検出手段をさらに含み、
前記制御手段は、前記負荷検出手段が検出した負荷に基づいて、前記回転駆動手段を制御して回転駆動を停止させることを特徴とする。
Preferably, the present invention further includes load detection means for detecting a load when the rotation driving means rotationally drives the gripping means,
The control means controls the rotation drive means based on the load detected by the load detection means to stop the rotation drive.

好ましくは、本発明は、前記融点低下部材を前記接合物と前記被接合物との間に配置する供給手段をさらに含むことを特徴とする。   Preferably, the present invention further includes supply means for disposing the melting point lowering member between the bonded object and the bonded object.

好ましくは、本発明は、鉛直方向に対する傾きを検出する姿勢検出手段をさらに含み、
前記制御手段は、前記姿勢検出手段の検出結果に基づいて、重力と前記変位駆動手段によって加わる力との合力が予め定める力となるように前記変位駆動手段を制御することを特徴とする。
Preferably, the present invention further includes posture detection means for detecting an inclination with respect to the vertical direction,
The control means controls the displacement driving means based on a detection result of the posture detecting means so that a resultant force of gravity and a force applied by the displacement driving means becomes a predetermined force.

上述した本発明の接合方法及び接合装置によれば、まず金属によって形成される接合物と、金属によって形成される被接合物との間に、前記接合物および前記被接合物のうちの少なくともいずれか一方の融点低下部材が配置される。この融点低下部材は、接合物と被接合物の少なくとも一方と共晶反応する金属材料によって形成される。次に融点低下部材が介在した状態で、接合物を被接合物に押圧しつつ、接合物と被接合物との間に相対運動を与える。これにより、接合物と被接合物が突き合わされた部分に摩擦熱が生じる。この摩擦熱によって摩擦面の温度が上昇し、接合物および被接合物のうちの少なくともいずれか一方と融点低下部材との接する部位のみが共晶反応によって液相を生じる。接合物と被接合物の間に十分液相が生じた後、相対運動を停止させる。また、任意の工程として、変位駆動手段を制御してアップセット加圧を行うこともできる。これにより、摩擦面の液相が排出され、接合物と被接合物との活性な新生面同士が突き合わされることで両者を接合することができる。   According to the bonding method and the bonding apparatus of the present invention described above, at least one of the bonded object and the bonded object is first formed between the bonded object formed of metal and the bonded object formed of metal. One melting point lowering member is arranged. The melting point lowering member is formed of a metal material that undergoes a eutectic reaction with at least one of the bonded object and the bonded object. Next, in a state where the melting point lowering member is interposed, a relative motion is given between the bonded object and the bonded object while pressing the bonded object against the bonded object. As a result, frictional heat is generated in the portion where the bonded object and the bonded object are abutted. This frictional heat raises the temperature of the friction surface, and a liquid phase is generated by the eutectic reaction only at the site where at least one of the bonded object and the bonded object contacts the melting point reducing member. The relative movement is stopped after a sufficient liquid phase has been formed between the bonded object and the bonded object. Further, as an optional step, upset pressurization can be performed by controlling the displacement driving means. Thereby, the liquid phase of a friction surface is discharged | emitted, and both can be joined because the active new surfaces of a to-be-joined object and a to-be-joined object are faced | matched.

本発明では、摩擦が生じる部位を局所的に加熱し、溶融する範囲を局所的に限定することができるので、従来の技術のアークスタッド法のように形成した溶融池が凝固するときに、割れおよびブローホールなどの欠陥の発生することを抑制することができ、信頼性の高い接合を実現することができる。またアークスタッド法のようにアーク放電を生じさせるための電源およびシールドガスを供給する装置などを必要としないので、接合方法を実現するための装置のコストを大幅に節減することができる。さらに、アークスタッド法に比べると、アーク放電を発生させることなく接合することができるので、省エネルギーで接合を行うことができる。さらに、アーク放電によって生じる有害な紫外線および、ヒュームなどが発生しないので、作業環境の悪化を防ぐことができ、清浄な環境で接合作業を行うことができる。   In the present invention, since the region where friction occurs can be locally heated and the melting range can be locally limited, when the molten pool formed like the arc stud method of the prior art solidifies, cracking occurs. In addition, the occurrence of defects such as blow holes can be suppressed, and highly reliable bonding can be realized. Further, since a power source for generating arc discharge and a device for supplying shield gas are not required unlike the arc stud method, the cost of the device for realizing the joining method can be greatly reduced. Furthermore, compared with the arc stud method, since it can join without generating an arc discharge, it can join by energy saving. Furthermore, since harmful ultraviolet rays and fumes generated by arc discharge are not generated, the work environment can be prevented from deteriorating, and the joining work can be performed in a clean environment.

また従来の技術の摩擦圧接法では、塑性変形を生じさせるために大きな押圧力を必要とするが、本発明では融点を低下させて、接合物を形成する金属材料の融点および被接合物を形成する金属材料の融点のうちの少なくともいずれか一方の融点未満の温度で接合物と被接合物とを溶融させることができるので、摩擦圧接法に比べて、(i)回転速度を低くすること、(ii)押圧力を小さくすること、或いは、(iii)回転速度を低くし且つ押圧力を小さくすることを実現する上で有利であり、大きな押圧力を発生するための大掛かりな装置を必要としない。さらに本発明では摩擦圧接法に比べると小さな押圧力で接合を実現することができるので、摩擦圧接法では、押圧力に耐えることができず、摩擦圧接法を適用することができないような小さな接合物であっても、被接合物に接合することができる。さらに摩擦が生じる部位を局所的に加熱し、溶融する範囲を局所的に限定することができるので、接合物と被接合物との接合面の形状が異なる場合であっても、接合物を被接合物に接合することができる。   Further, in the conventional friction welding method, a large pressing force is required to cause plastic deformation, but in the present invention, the melting point of the metal material forming the joined object and the object to be joined are formed by lowering the melting point. Since the object to be bonded and the object to be bonded can be melted at a temperature lower than the melting point of at least one of the melting points of the metal material to be compared, (i) lowering the rotational speed compared to the friction welding method, (ii) It is advantageous in reducing the pressing force, or (iii) reducing the rotational speed and reducing the pressing force, and requires a large-scale device for generating a large pressing force. do not do. Furthermore, in the present invention, since the welding can be realized with a small pressing force compared to the friction welding method, the friction welding method cannot withstand the pressing force, and the bonding is small so that the friction welding method cannot be applied. Even an object can be bonded to an object to be bonded. Further, since the region where friction occurs can be locally heated and the melting range can be limited locally, even when the shape of the joint surface between the joint and the joint is different, the joint is covered. Can be joined to a joint.

また本発明によれば、例えば、同じ種類の金属材料によって形成される接合物と被接合物との接合を、前述したように装置のコストを大幅に節減しつつ、省エネルギーで行うことができ、また摩擦圧接を行う装置のように装置の構成が大掛かりにならずに、摩擦圧接法では接合できないような小さい接合物を接合することができ、また接合物と被接合物との形状が異なる場合であっても、接合物を被接合物に接合することができ、作業環境の悪化を防いで、清浄な環境で信頼性の高い接合を行うことができる。   Further, according to the present invention, for example, the bonding of the bonded object formed by the same type of metal material and the object to be bonded can be performed with energy saving while greatly reducing the cost of the apparatus as described above. In addition, when the structure of the device does not become large like a device that performs friction welding, a small object that cannot be bonded by the friction welding method can be bonded, and the shape of the bonded object and the object to be bonded are different. Even so, the bonded object can be bonded to the object to be bonded, the work environment can be prevented from deteriorating, and highly reliable bonding can be performed in a clean environment.

また本発明によれば、例えば、アルミニウムによって形成される接合物と被接合物との接合を、前述したように装置のコストを大幅に節減しつつ、省エネルギーで行うことができ、また摩擦圧接を行う装置のように装置の構成が大掛かりにならずに、摩擦圧接法では接合できないような小さい接合物を接合することができ、また接合物と被接合物との形状が異なる場合であっても、接合物を被接合物に接合することができ、作業環境の悪化を防いで、清浄な環境で信頼性の高い接合を行うことができる。   Further, according to the present invention, for example, the joining of the joined object formed of aluminum and the object to be joined can be performed with energy saving while greatly reducing the cost of the apparatus as described above, and the friction welding can be performed. It is possible to join a small joint that cannot be joined by the friction welding method, and the shape of the joint and the object to be joined are different. The bonded object can be bonded to the object to be bonded, the work environment can be prevented from deteriorating, and highly reliable bonding can be performed in a clean environment.

また本発明によれば、例えば、接合物を回転させることによって相対運動を与えるので、被接合物の摩擦熱が生じる領域を可能な限り狭くすることができ、接合の影響が生じる領域を可能な限り狭くすることができる。たとえば接合物を被接合物に押圧した状態でスライドさせ、往復運動をする場合に比べて、摩擦熱が発生する領域を狭くすることができる。これによって接合の影響が生じる領域を可能な限り小さくすることができる。   Further, according to the present invention, for example, since the relative motion is given by rotating the joined object, the region where the frictional heat of the object to be joined can be made as narrow as possible, and the region where the influence of joining is possible is possible. It can be as narrow as possible. For example, the region where the frictional heat is generated can be narrowed as compared with the case where the joined object is slid while being pressed against the article to be joined and reciprocated. This makes it possible to make the region where the influence of the joining occurs as small as possible.

さらに本発明によれば、例えば、接合物は、円柱状であって、被接合物に押圧される先端部が先細状に形成される。これは、摩擦面に生ずる摩擦熱を均一にするためである。仮に接合物が完全に円柱形状であって、先端が平面に形成されている場合、接合物を回転させたときに、半径方向の内方と外方とでは、回転速度が外方の方が高くなる。摩擦熱は押圧される圧力、相対速度、摩擦時間の積で表されるので、回転速度の高い半径方向の外方の方が回転速度の低い内方よりも加熱され、接合するときの温度にばらつきが生じ、接合の信頼性が低下する。先細状の接合物では、まず先端が加熱されて溶融し、順次半径外方の領域が被接合物に押圧されて摩擦熱によって溶融し、溶融すべき部位の全てを溶融させることができる。すなわち、回転速度の低い半径方向の内方は高圧力かつ長時間摩擦され、回転速度の高い半径方向の外方は低圧力かつ短時間摩擦される。これによって接合時の温度のばらつきを抑えることができ、信頼性の高い接合を実現することができる。   Furthermore, according to the present invention, for example, the joined object is a columnar shape, and the tip portion pressed against the object to be joined is formed in a tapered shape. This is to make the frictional heat generated on the friction surface uniform. If the joint is completely cylindrical and the tip is formed in a flat surface, when the joint is rotated, the rotational speed is more outward when the joint is rotated radially inward and outward. Get higher. Friction heat is expressed as the product of pressure, relative speed, and friction time, so the outer side in the radial direction with a higher rotational speed is heated than the inner side with a lower rotational speed, and the temperature at the time of joining is higher. Variations occur and bonding reliability decreases. In a tapered joint, the tip is first heated and melted, and the region radially outward is sequentially pressed against the work piece and melted by frictional heat, so that all the parts to be melted can be melted. That is, the radially inward direction where the rotational speed is low is rubbed at a high pressure for a long time, and the radially outward direction where the rotational speed is high is rubbed at a low pressure for a short time. As a result, variations in temperature during bonding can be suppressed, and highly reliable bonding can be realized.

さらに本発明によれば、例えば、まず接合物と被接合物と間に相対運動を与えるときの負荷を検出し、次にこの検出した負荷に基づいて接合物と被接合物との間の相対運動を停止させる。接合物と被接合物との間の相対運動を与えるときの負荷は、接合物と被接合物との溶融状態に依存する。本発明では、負荷を検出するだけで間接的に溶融状態を確認することができるので、温度および溶融部位などの溶融状態を直接的に検出することなく、相対運動を停止するタイミングを決定することができる。   Further, according to the present invention, for example, a load when a relative motion is given between the joined object and the object to be joined is first detected, and then a relative between the joined object and the object to be joined is based on the detected load. Stop exercise. The load when the relative motion between the bonded object and the object to be bonded is given depends on the molten state of the bonded object and the object to be bonded. In the present invention, since the melt state can be indirectly confirmed simply by detecting the load, the timing for stopping the relative motion is determined without directly detecting the melt state such as the temperature and the melted part. Can do.

さらに本発明によれば、例えば、接合物は、把持手段に把持され、制御手段によって駆動が制御される回転駆動手段および変位駆動手段が把持手段を駆動することによって、前述した接合方法を実行する接合装置が実現される。この接合装置は、前述した本発明の接合方法を実行するので、前述したように装置のコストを大幅に節減しつつ、省エネルギーで接合を行い、摩擦圧接を行う装置のように装置の構成が大掛かりにならずに、摩擦圧接法では接合できないような小さい接合物を接合することができ、また接合物と被接合物との形状が異なる場合であっても、接合物を被接合物に接合することができ、作業環境の悪化を防いで、清浄な環境で信頼性の高い接合を行うことができる。   Further, according to the present invention, for example, the above-described joining method is executed by the joint being gripped by the gripping means, and the rotation driving means and the displacement driving means whose drive is controlled by the control means driving the gripping means. A joining device is realized. Since this joining apparatus executes the joining method of the present invention described above, the construction of the apparatus is large as in the case of joining by energy saving and friction welding as described above while greatly reducing the cost of the apparatus. Therefore, it is possible to join small joints that cannot be joined by the friction welding method, and join the joints to the joints even if the joints and the joints have different shapes. It is possible to prevent deterioration of the working environment and perform highly reliable joining in a clean environment.

さらに本発明によれば、例えば、負荷検出手段によって、変位駆動手段が把持手段を回転駆動するときの負荷を検出する。制御部は、負荷検出手段が検出した負荷に基づいて、回転駆動手段を制御して回転駆動を停止させる。接合物と被接合物との間の相対運動を与えるときの負荷は、接合物と被接合物との溶融状態に依存する。本発明では、負荷を検出するだけで間接的に溶融状態を確認することができるので、温度および溶融部位などの溶融状態を直接的に検出する検出手段を備えることなく、相対運動を停止するタイミングを決定することができ、装置が複雑化することを防ぐことができる。   Furthermore, according to the present invention, for example, the load when the displacement driving means rotationally drives the gripping means is detected by the load detecting means. The control unit controls the rotation drive unit based on the load detected by the load detection unit to stop the rotation drive. The load when the relative motion between the bonded object and the object to be bonded is given depends on the molten state of the bonded object and the object to be bonded. In the present invention, since the melting state can be indirectly confirmed only by detecting the load, the timing for stopping the relative motion without providing a detection means for directly detecting the melting state such as the temperature and the melting site. Can be determined, and the apparatus can be prevented from becoming complicated.

さらに本発明によれば、例えば、供給手段が、融点低下部材を接合物と被接合物との間に配置することによって、作業者が融点低下部材を配置することなく、本発明の接合方法を実行する接合装置を実現することができる。   Further, according to the present invention, for example, the supply means arranges the melting point lowering member between the joined object and the article to be joined, so that the operator can arrange the joining method of the present invention without arranging the melting point lowering member. The joining apparatus to be executed can be realized.

さらに本発明によれば、例えば、鉛直方向に対する傾きを検出する姿勢検出手段を含み、制御手段は、姿勢検出手段の検出結果に基づいて、重力と変位駆動手段とによって接合物に加わる力が予め定める力となるように変位駆動手段を制御する。これによって、接合装置が鉛直方向に対してどのような姿勢であっても、接合物を被接合物に押圧することができ、ほぼ同じ接合強度で接合物を被接合物に接合することができる。   Further, according to the present invention, for example, the control means includes posture detecting means for detecting an inclination with respect to the vertical direction, and the control means applies in advance the force applied to the joint by gravity and the displacement driving means based on the detection result of the posture detecting means. The displacement driving means is controlled so as to have a predetermined force. Accordingly, the bonded object can be pressed against the object to be bonded regardless of the posture of the bonding apparatus with respect to the vertical direction, and the bonded object can be bonded to the object to be bonded with substantially the same bonding strength. .

上記課題を解決するために、本発明による接合装置は、接合物を把持する把持手段と、
前記接合物を把持した状態にある前記把持手段を回転駆動する回転駆動手段と、
前記接合物を把持した状態にある把持手段を変位駆動して前記接合物を被接合物に押圧する変位駆動手段と、
前記回転駆動手段および前記変位駆動手段の駆動を制御する制御手段と、
前記回転駆動手段が前記把持手段を回転駆動するときに前記回転駆動手段の回転軸に加えられる負荷を検出する負荷検出手段と、を備え、
前記制御手段は、前記負荷検出手段の検出結果に基づいて前記回転駆動手段による前記接合物の回転を停止するように構成されている、ことを特徴とする。
In order to solve the above problems, a joining apparatus according to the present invention comprises a gripping means for gripping a joined article,
Rotation drive means for rotationally driving the gripping means in a state of gripping the joined product,
Displacement driving means for driving the gripping means in a state of gripping the joined article to press the joined article against the article to be joined,
Control means for controlling the driving of the rotation driving means and the displacement driving means;
Load detecting means for detecting a load applied to a rotation shaft of the rotation driving means when the rotation driving means rotates the gripping means; and
The control means is configured to stop the rotation of the joint by the rotation driving means based on the detection result of the load detection means.

好ましくは、前記回転駆動手段とは別に前記接合物の回転を停止する回転停止手段を更に備える。   Preferably, a rotation stopping means for stopping the rotation of the joined article is further provided separately from the rotation driving means.

好ましくは、前記被接合物と前記接合装置とを相対的に固定する固定手段を更に備える。   Preferably, the apparatus further includes fixing means for relatively fixing the object to be bonded and the bonding apparatus.

好ましくは、前記接合物と前記被接合物との間に融点低下物質を供給する供給手段をさらに含む。   Preferably, the apparatus further includes supply means for supplying a melting point lowering substance between the bonded object and the bonded object.

好ましくは、前記回転停止手段が、前記回転駆動手段と前記把持手段とを切り離すためのクラッチ及び前記把持手段を制動するブレーキの少なくともいずれか一方を備えている。   Preferably, the rotation stopping means includes at least one of a clutch for separating the rotation driving means and the gripping means and a brake for braking the gripping means.

好ましくは、前記固定手段が、前記被接合物の形状に沿った形状を備えており、及び/又は、前記被接合物と接触する部分が弾性材料により形成されている。   Preferably, the fixing means has a shape along the shape of the object to be joined, and / or a portion in contact with the object to be joined is formed of an elastic material.

好ましくは、前記固定手段が、高真空吸着パッド又は磁石を含む。   Preferably, the fixing means includes a high vacuum suction pad or a magnet.

好ましくは、前記供給手段が、前記接合物及び前記被接合物のうちの少なくともいずれか一方の接合面に対して、前記融点低下物質を霧状に噴射する噴霧器を含む。   Preferably, the supply unit includes a sprayer that injects the melting point lowering substance in a mist form on at least one of the joining surfaces of the joined article and the article to be joined.

好ましくは、前記供給手段が、薄板状の前記融点低下物質を前記接合物及び前記被接合物のうちの少なくともいずれか一方の接合面に固定するクランプもしくはホルダを含む。   Preferably, the supply means includes a clamp or a holder for fixing the thin plate-shaped melting point lowering substance to at least one of the joining surface and the joining object.

好ましくは、前記回転駆動手段が、電動機を含む。   Preferably, the rotation driving means includes an electric motor.

好ましくは、前記変位駆動手段が、空気シリンダを含む。   Preferably, the displacement driving means includes an air cylinder.

本発明による接合装置によれば、従来のアークスタッド溶接装置と比較して、接合に伴う溶融域が必要最小限であるので、溶融に伴って発生する割れやブローホール等の欠陥が起こりにくい。また、大きな電力を必要としない省エネルギー型の装置である。また、アークを生じないため事前の酸化被膜除去も必要なく、有害紫外線やヒュームも発生しない。また、施工姿勢の変化による継手性能への影響が少なく、作業者の技量への依存度が小さい。   According to the joining apparatus according to the present invention, as compared with the conventional arc stud welding apparatus, since the melting region associated with joining is the minimum necessary, defects such as cracks and blowholes that occur with melting are less likely to occur. Moreover, it is an energy-saving device that does not require large electric power. In addition, since no arc is generated, there is no need for prior oxide film removal, and no harmful ultraviolet rays or fumes are generated. Moreover, there is little influence on the joint performance by the change in construction posture, and the dependence on the skill of the operator is small.

また、従来の摩擦圧接装置と比較すると、金属間化学反応を利用して接合界面を溶融するので、溶融に必要なエネルギーが低く、摩擦圧接法に比べて、(i)回転速度を低くすること、(ii)押圧力を小さくすること、或いは、(iii)回転速度を低くし且つ押圧力を小さくすることを実現する上で有利である。このため、接合物が小径の場合でも比較的低い回転数と比較的小さな押圧力で接合を行うことができる。また、被接合物(ワーク)にボルト穴等の加工を施すことなく、吸着パッド等の固定手段によって接合装置を被接合物に対して確実に固定することができる。接合装置を被接合物に固定した状態においては、任意の姿勢で接合を行うことができる。また、装置を大幅に小型化できるので、既設構造物に接合装置を持ち運んで容易に施工を行うことができる。また、簡単な補助器具のみで任意にハンドリングすることができる。   In addition, compared to conventional friction welding equipment, the bonding interface is melted using a metal-metal chemical reaction, so the energy required for melting is low, and (i) the rotational speed is low compared to the friction welding method. (Ii) It is advantageous to reduce the pressing force, or (iii) reduce the rotational speed and reduce the pressing force. For this reason, even when the joined product has a small diameter, joining can be performed with a relatively low rotational speed and a relatively small pressing force. Further, the joining device can be reliably fixed to the object to be joined by a fixing means such as a suction pad without subjecting the object to be joined (work) to processing such as a bolt hole. In a state where the joining device is fixed to the object to be joined, joining can be performed in an arbitrary posture. Moreover, since the apparatus can be greatly reduced in size, it is possible to carry out the construction easily by carrying the joining apparatus to the existing structure. Moreover, it can be arbitrarily handled with only a simple auxiliary device.

本発明の実施の一形態の接合装置1を示す正面図である。It is a front view which shows the joining apparatus 1 of one Embodiment of this invention. 接合装置1を図1の右側から見た側面図である。It is the side view which looked at the joining apparatus 1 from the right side of FIG. 接合装置1を図2のIII−IIIから見た断面図である。It is sectional drawing which looked at the joining apparatus 1 from III-III of FIG. 図1の切断面線IV−IVから見た断面図である。It is sectional drawing seen from the cut surface line IV-IV of FIG. 融点低下部材54をスタッド2の表面上に形成する工程を示す図である。FIG. 5 is a diagram showing a step of forming a melting point lowering member 54 on the surface of the stud 2. 融点低下部材54を固定具55Aによって所定位置に固定する工程を示す図である。It is a figure which shows the process of fixing melting | fusing point lowering member 54 to a predetermined position with the fixing tool 55A. スタッド2とワーク3とを接合するときの制御手段8の接合処理を示すフローチャートである。It is a flowchart which shows the joining process of the control means 8 when joining the stud 2 and the workpiece | work 3. FIG. スタッド2とワーク3とを接合する接合過程を模式的に示す図である。It is a figure which shows typically the joining process which joins the stud 2 and the workpiece | work 3. FIG. サーボモータ23に流れる電流の時間変化を模式的に示す図である。It is a figure which shows typically the time change of the electric current which flows into the servomotor. 第1〜第4スタッド61〜64をそれぞれアルミ基板に接合させた接合体の引張強度を表す図である。It is a figure showing the tensile strength of the joined body which joined the 1st-4th studs 61-64 to the aluminum substrate, respectively. 第4スタッド64をアップセット加圧時の押圧力を変化させてアルミ基板に接合させた接合体のそれぞれの引張強度を表す図である。It is a figure showing each tensile strength of the joined object which changed the pressing force at the time of upset pressurization with the 4th stud 64, and joined to the aluminum substrate. 第4スタッド64をワーク3に接合した接合体の断面図である。FIG. 4 is a cross-sectional view of a joined body in which a fourth stud 64 is joined to a work 3. 上段は、ワーク3と第4スタッド64との破断面において、第4スタッド64側の状態を走査型電子顕微鏡(SEM)で観察した結果であり、比較例として、融点低下部材(Zn)を使用せずに接合した場合の観察結果を下段に示している。The upper row is the result of observing the state of the fourth stud 64 side with a scanning electron microscope (SEM) on the fracture surface of the workpiece 3 and the fourth stud 64, and a melting point lowering member (Zn) is used as a comparative example. The observation results in the case of joining without performing are shown below. 図11Aの上段(実施例)の拡大図2を更に拡大した図である。It is the figure which expanded further the enlarged drawing 2 of the upper stage (Example) of FIG. 11A. 図11Aの下段(比較例)の拡大図2を更に拡大した図である。It is the figure which expanded further FIG. 11A lower stage (comparative example) enlarged drawing 2. FIG. 曲げ試験を行った後の第4スタッド64をワーク3に接合した接合体の平面図である。It is a top view of the joined body which joined the 4th stud 64 after performing a bending test to work 3. FIG. 施工姿勢の変化による継手引張強度への影響を示す図である。It is a figure which shows the influence on the joint tensile strength by the change of a construction posture.

本発明の実施の一形態としての接合装置1及び同装置を用いた接合方法について以下で説明する。   The joining apparatus 1 as one embodiment of the present invention and a joining method using the apparatus will be described below.

なお、本実施の形態においては、図1の紙面に垂直な方向を第1方向X1,X2(「X1,X2」を総括してXと記載する)とし、図1の左右方向を第2方向Y1,Y2(「Y1,Y2」を総括してYと記載する)とし、図1の上下方向を第3方向Z1,Z2(「Z1,Z2」を総括してZと記載する)とする。また第3方向一方Z1を上方Z1といい、第3方向他方Z2を下方Z2という場合がある。第1〜第3方向X,Y,Zは、相互に直交する。   In the present embodiment, the direction perpendicular to the paper surface of FIG. 1 is defined as the first direction X1, X2 (“X1, X2” is collectively described as X), and the left-right direction in FIG. 1 is defined as the second direction. Y1 and Y2 ("Y1, Y2" are collectively described as Y), and the vertical direction in FIG. 1 is defined as the third direction Z1, Z2 ("Z1, Z2" is collectively described as Z). Further, the third direction one Z1 may be referred to as an upper Z1, and the third direction other Z2 may be referred to as a lower Z2. The first to third directions X, Y, and Z are orthogonal to each other.

図1乃至図4に示したように接合装置1は、金属材料によって形成される接合物に相当するスタッド2を、金属材料によって形成される被接合物に相当するワーク3に接合する。具体的には、スタッド2をワーク3に押圧するとともに、スタッド2を回転させて摩擦熱によってスタッド2およびワーク3を溶接する。ワーク3は、たとえば液化天然ガス(Liquefied Natural Gas:略称LNG)を収容するLNGタンクの一部を構成し、球形である。接合装置1は、球形のワーク3の外表面に対してスタッド2の軸線が垂直となるようにスタッド2を接合する。接合装置1は、支持台4と、スタッド2を把持し、第3方向Zに延びる把持手段5と、把持手段5を第3方向Zに変位駆動する変位駆動手段6と、把持手段5を第3方向Zに延びる基準軸線Lまわりに回転駆動する回転駆動手段7と、変位駆動手段6および回転駆動手段7の駆動を制御する制御手段8とを含み、本発明の接合方法を用いてスタッド2をワーク3に接合した接合体を製造する。   As shown in FIGS. 1 to 4, the joining apparatus 1 joins a stud 2 corresponding to a joined object formed of a metal material to a workpiece 3 corresponding to an object to be joined formed of a metal material. Specifically, the stud 2 is pressed against the work 3 and the stud 2 is rotated to weld the stud 2 and the work 3 by frictional heat. The work 3 constitutes a part of an LNG tank that houses, for example, liquefied natural gas (abbreviated as LNG) and has a spherical shape. The joining device 1 joins the stud 2 so that the axis of the stud 2 is perpendicular to the outer surface of the spherical workpiece 3. The joining apparatus 1 includes a support base 4, a gripping means 5 that grips the stud 2 and extends in the third direction Z, a displacement driving means 6 that drives the gripping means 5 in the third direction Z, and a gripping means 5 that It includes a rotation drive means 7 that rotates around a reference axis L extending in three directions Z, and a displacement drive means 6 and a control means 8 that controls the drive of the rotation drive means 7, and the stud 2 using the joining method of the present invention. A joined body in which is bonded to the work 3 is manufactured.

回転駆動手段7は、把持手段5を保持し、かつ把持手段5を回転駆動する。この回転駆動手段7は、変位駆動手段6に保持される。変位駆動手段6は、回転駆動手段7を第3方向Zに変位駆動する。変位駆動手段6が、回転駆動手段7を第3方向Zに変位駆動することによって、回転駆動手段7に保持された把持手段5と、把持手段5に把持されたスタッド2とが第3方向Zに変位する。変位駆動手段6は、ワーク3に貼りついて固定される支持台4に連結される。このような接合装置1では、把持手段5がスタッド2を把持し、かつ変位駆動手段6が回転駆動手段7を下方Z2に変位駆動してスタッド2をワーク3に押圧した状態で、回転駆動手段7が把持手段5を回転駆動することによって、スタッド2をワーク3に押圧しつつ、回転運動を生じさせて、当接部分に摩擦熱を発生させることができる。   The rotation driving means 7 holds the gripping means 5 and rotationally drives the gripping means 5. The rotation driving means 7 is held by the displacement driving means 6. The displacement driving means 6 drives the rotation driving means 7 in the third direction Z. The displacement driving means 6 displaces and drives the rotation driving means 7 in the third direction Z, whereby the holding means 5 held by the rotation driving means 7 and the stud 2 held by the holding means 5 are moved in the third direction Z. It is displaced to. The displacement driving means 6 is connected to a support base 4 that is fixed to the work 3 by being attached thereto. In such a joining apparatus 1, the rotation driving means is in a state where the gripping means 5 holds the stud 2 and the displacement driving means 6 presses the stud 2 against the workpiece 3 by driving the rotation driving means 7 downward Z2. By rotating the gripping means 5 by 7, the stud 2 is pressed against the work 3, and a rotational motion can be generated to generate frictional heat at the contact portion.

支持台4は、ボルト部材、接着剤、磁石、および真空吸着などによってワーク3に貼付いて固定され、本実施の形態では、真空吸着によってワーク3に貼付く。支持台4は、弾性部材から成る高真空吸着パッド4aと排気管4bとを含む固定手段を有し、別途備える排気手段による排気によって吸着パッド4aがワーク3に吸着して固定される。排気手段はエジェクタ、真空ポンプなどによって実現される。吸着パッド4aの弾性により、ワーク3の表面3aが平坦、平滑でない場合でも、接合装置1を確実にワーク3に固定することができる。本実施の形態では、排気手段を真空ポンプで実現し、ワーク3の表面3aの基準軸線L上での法線の延びる方向が、第3方向Zに一致する。   The support base 4 is affixed and fixed to the work 3 by a bolt member, an adhesive, a magnet, vacuum suction, or the like. In this embodiment, the support base 4 is affixed to the work 3 by vacuum suction. The support 4 has a fixing means including a high vacuum suction pad 4a made of an elastic member and an exhaust pipe 4b, and the suction pad 4a is sucked and fixed to the work 3 by exhausting by a separately provided exhaust means. The exhaust means is realized by an ejector, a vacuum pump or the like. Due to the elasticity of the suction pad 4a, the joining device 1 can be reliably fixed to the work 3 even when the surface 3a of the work 3 is not flat or smooth. In the present embodiment, the evacuation means is realized by a vacuum pump, and the direction in which the normal line on the reference axis L of the surface 3a of the workpiece 3 extends coincides with the third direction Z.

変位駆動手段6は、電動機、油圧装置および空圧装置などによって実現され、本実施の形態では空圧装置によって実現される。変位駆動手段6は、2つの複動空気シリンダ15a、15bを含む。複動空気シリンダ15a,15bの各ロッド16a,16bは、各シリンダチューブ17a,17bからそれぞれ下方Z2に延び、下方Z2の端部が支持台4にそれぞれ連結される。変位駆動手段6は、2つのシリンダチューブ17a,17bに挟まれて設けられ、把持手段5が第3方向Zに貫通して案内される第1案内部18をさらに含む。第1案内部18には、第3方向Zに貫通する貫通孔が形成され、この貫通孔に把持手段5が第3方向Zに案内される。変位駆動手段6は、圧縮空気供給源、電磁切替弁および圧縮空気を通す流路をさらに含む。   The displacement driving means 6 is realized by an electric motor, a hydraulic device, a pneumatic device or the like, and is realized by a pneumatic device in the present embodiment. The displacement driving means 6 includes two double-action air cylinders 15a and 15b. The rods 16a and 16b of the double-acting air cylinders 15a and 15b extend downward from the cylinder tubes 17a and 17b to the lower Z2, respectively, and the ends of the lower Z2 are connected to the support 4 respectively. The displacement driving means 6 further includes a first guide portion 18 provided to be sandwiched between the two cylinder tubes 17a and 17b and guided through the gripping means 5 in the third direction Z. A through hole penetrating in the third direction Z is formed in the first guide portion 18, and the gripping means 5 is guided in the third direction Z through the through hole. The displacement driving means 6 further includes a compressed air supply source, an electromagnetic switching valve, and a flow path through which the compressed air is passed.

回転駆動手段7は、電動機によって実現され、本実施の形態ではサーボモータ23によって実現される。サーボモータ23は、基準軸線Lと共通な軸線を有する駆動出力軸24を含む。回転駆動手段7は、駆動出力軸24に連結される連結軸25と、把持手段5の軸21の上方Z1の端部を連結軸25に連結するクラッチ26とをさらに含む。このクラッチ26は、本実施の形態では乾式単板電磁クラッチによって実現される。クラッチ26は、連結軸25と把持手段5とを連結するか、切離すかを、コイルに流れる電流によって切替え、サーボモータ23の回転動力が、駆動出力軸24および連結軸25を介して把持手段5に伝達されるか否かを切替える。接合装置1は、把持手段5の回転方向とは逆の方向に力を加える制動機34をさらに含む。本実施の形態では、制動機34は、乾式単板電磁ブレーキによって実現される。この制動機34は、第1案内部18の下方Z2の端部にボルト部材35によって固定され、中心を把持手段5が通る。   The rotation driving means 7 is realized by an electric motor, and is realized by a servo motor 23 in the present embodiment. The servo motor 23 includes a drive output shaft 24 having an axis common to the reference axis L. The rotation driving means 7 further includes a connecting shaft 25 connected to the drive output shaft 24, and a clutch 26 that connects the upper Z1 end of the shaft 21 of the gripping means 5 to the connecting shaft 25. The clutch 26 is realized by a dry single-plate electromagnetic clutch in the present embodiment. The clutch 26 switches between connecting and disconnecting the connecting shaft 25 and the gripping means 5 according to the current flowing in the coil, and the rotational power of the servo motor 23 is gripped by the drive output shaft 24 and the connecting shaft 25. 5 is switched. The joining apparatus 1 further includes a brake 34 that applies a force in a direction opposite to the rotation direction of the gripping means 5. In the present embodiment, the brake 34 is realized by a dry single plate electromagnetic brake. The brake 34 is fixed to the end of the lower Z2 of the first guide portion 18 by a bolt member 35, and the gripping means 5 passes through the center.

なお、変形例としては、モータをブレーキ機能付きのものとすることにより、電磁クラッチおよび電磁ブレーキを不要として、装置の小型化を図ることもできる。   As a modified example, by using a motor with a brake function, the electromagnetic clutch and the electromagnetic brake are not required, and the apparatus can be downsized.

回転駆動手段7は、変位駆動手段6の上方Z1に複数のボルト部材27で固定される第2案内部28をさらに含む。この第2案内部28には、基準軸線Lを中心にして第3方向Zに貫通する貫通孔31が形成され、この貫通孔31に把持手段5の上方Z1の端部および連結軸25が案内され、基準軸線Lまわりに回転可能に支持される。   The rotation driving means 7 further includes a second guide portion 28 fixed to the upper Z1 of the displacement driving means 6 with a plurality of bolt members 27. The second guide portion 28 is formed with a through hole 31 penetrating in the third direction Z around the reference axis L, and the end portion of the upper Z1 of the gripping means 5 and the connecting shaft 25 are guided to the through hole 31. And is supported rotatably around the reference axis L.

接合装置1は、接合中の接合対象物の界面の溶融状態を把握する溶融状態把握手段43をさらに含む。溶融状態把握手段43は、回転駆動手段7が把持手段5を回転駆動するときの負荷を検出する負荷検出手段、接合中のスタッド2とワーク3との界面近傍の温度を計測する温度計、および接合中のスタッド2とワーク3との変形量を計測する変形量検出手段などによって実現される。変形量検出手段は、たとえばスタッド2を把持する把持手段の変位量に基づいて変形量を算出する。本実施の形態における溶融状態把握手段43は、負荷検出手段として回転駆動手段7に流れる電流を検出する検流計によって実現され、回転駆動手段7に設けられて、回転駆動手段7の一部を構成する。溶融状態把握手段43は、回転駆動手段7に流れる電流を検出して、検出した電流を表す情報を制御手段8に与える。溶融状態把握手段43から制御手段8に与えられる情報は、回転駆動手段7を実現するサーボモータ23に流れる電流を表す情報であって、把持手段5を回転させるときのトルクの大きさに対応する情報、すなわち回転駆動手段7が把持手段5を回転駆動するときの負荷を表す。   The joining apparatus 1 further includes a melt state grasping means 43 for grasping the melt state of the interface of the joining objects being joined. The molten state grasping means 43 includes a load detecting means for detecting a load when the rotation driving means 7 rotationally drives the gripping means 5, a thermometer for measuring the temperature in the vicinity of the interface between the stud 2 being joined and the workpiece 3, and This is realized by a deformation amount detecting means for measuring the deformation amount of the stud 2 and the workpiece 3 being joined. The deformation amount detection means calculates the deformation amount based on, for example, the displacement amount of the gripping means that grips the stud 2. The melt state grasping means 43 in the present embodiment is realized by a galvanometer that detects a current flowing through the rotation drive means 7 as a load detection means, and is provided in the rotation drive means 7 so that a part of the rotation drive means 7 is provided. Configure. The molten state grasping means 43 detects the current flowing through the rotation driving means 7 and gives information representing the detected current to the control means 8. Information given from the molten state grasping means 43 to the control means 8 is information representing the current flowing through the servo motor 23 that realizes the rotation driving means 7 and corresponds to the magnitude of torque when the grasping means 5 is rotated. Information, that is, a load when the rotation driving means 7 drives the gripping means 5 to rotate.

接合装置1は、鉛直方向に対する傾きを検出し、自身の姿勢を検出する姿勢検出手段44をさらに含む。姿勢検出手段44は、第2案内部28に第2方向他方Y2から取付けられる。姿勢検出手段44は、円板形状の分度器45と、角度を指示する指示部46と、指示部46を回転自在に支持する中心軸47とを含む。   The joining apparatus 1 further includes posture detection means 44 that detects an inclination with respect to the vertical direction and detects its own posture. The posture detection means 44 is attached to the second guide portion 28 from the other side Y2 in the second direction. The posture detection means 44 includes a disc-shaped protractor 45, an instruction unit 46 that indicates an angle, and a central shaft 47 that rotatably supports the instruction unit 46.

接合装置1は、円環状の吊輪48をさらに含む。この吊輪48は、第2案内部28の第1方向一方X1に取付けられる。この吊輪48は、たとえば接合装置1の重心を通り、かつ第1方向Xに平行に延びる直線上に配置される。これによって吊輪48を支持した場合には、基準軸線Lが水平方向に平行になる。   The joining apparatus 1 further includes an annular suspension ring 48. The suspension ring 48 is attached to one side X1 of the second guide portion 28 in the first direction. The suspension ring 48 is disposed on a straight line that passes through the center of gravity of the joining device 1 and extends in parallel with the first direction X, for example. Thus, when the suspension ring 48 is supported, the reference axis L is parallel to the horizontal direction.

接合装置1は、円環状の吊輪48、および1または複数の取手をさらに含み、本実施の形態では2本の第1取手51と、第2取手52とを含む。作業者は、この第1取手51と第2取手52とを把持することによって、接合装置1を変位自在に支持することができる。   The joining device 1 further includes an annular suspension ring 48 and one or a plurality of handles, and in the present embodiment, includes two first handles 51 and a second handle 52. The operator can support the joining device 1 so as to be displaceable by gripping the first handle 51 and the second handle 52.

制御手段8は、変位駆動手段6および回転駆動手段7の駆動を制御する。制御手段8は、たとえばマイクロコンピュータおよびPLC(Programmable Logic Controller)などによって実現される。あらかじめ記憶された制御プログラムによって、制御手段8が変位駆動手段6および回転駆動手段7の駆動を制御する。接合装置1は、テンキーなどを含む入力手段をさらに含む。作業者が入力手段を操作することによって、この操作に対応する指令が制御手段8に与えられ、制御手段8は、与えられた指令に基づいた制御を行う。たとえば入力手段の操作に応じて制御プログラムを変更する。このように作業者が入力手段を操作して制御プログラムを変更することによって、回転駆動手段7が回転駆動するときの回転速度、および変位駆動手段6が変位駆動するときの第3方向Zの駆動力を設定することができる。   The control unit 8 controls the driving of the displacement driving unit 6 and the rotation driving unit 7. The control means 8 is realized by, for example, a microcomputer and a PLC (Programmable Logic Controller). The control means 8 controls the drive of the displacement drive means 6 and the rotation drive means 7 according to a control program stored in advance. The joining apparatus 1 further includes input means including a numeric keypad. When the operator operates the input unit, a command corresponding to this operation is given to the control unit 8, and the control unit 8 performs control based on the given command. For example, the control program is changed according to the operation of the input means. Thus, the operator operates the input means to change the control program, so that the rotation speed when the rotation driving means 7 is driven to rotate, and the driving in the third direction Z when the displacement driving means 6 is driven to displace. You can set the force.

制御手段8は、スタッド2が予め定める力でワーク3を押圧するように変位駆動手段6を制御する。スタッド2がワーク3を押圧する力は、変位駆動手段6によって第3方向Zに印加される力と、2つのシリンダチューブ17a,17bおよび変位駆動手段6が支持する部材(把持手段5、回転駆動手段7、姿勢検出手段44、吊輪48、第1取手51および第2取手52)に加わる重力の第3方向Zの成分との合力である。本実施の形態における制御手段8は、接合装置1の自重によってスタッド2に加わる力と、変位駆動手段6によってスタッド2に加わる力との合力が、予め定める力となるように変位駆動手段6の圧縮空気供給源を制御する。本実施の形態において2つのシリンダチューブ17a,17bおよび変位駆動手段6が支持する部材の合計の質量をMとし、重力加速度をgとする。接合装置1の自重によってスタッド2に加わる力は、第3方向Zと鉛直方向との成す角度の余弦と、Mと、gとを積算した値である。たとえば分度器45の厚み方向の一表面が鉛直方向に平行になるように接合装置1が配置された場合に、接合装置1の自重によってスタッド2に加わる力は、指示部46が指し示す角度の余弦と、Mと、gとを積算した値である。本実施の形態における接合装置1は、分度器45の厚み方向の一表面が鉛直方向に平行になるように接合装置1が配置された状態で使用されると仮定して説明する。   The control means 8 controls the displacement driving means 6 so that the stud 2 presses the workpiece 3 with a predetermined force. The force by which the stud 2 presses the workpiece 3 includes the force applied in the third direction Z by the displacement driving means 6 and the members supported by the two cylinder tubes 17a and 17b and the displacement driving means 6 (gripping means 5, rotational drive). The resultant force with the component in the third direction Z of gravity applied to the means 7, the posture detecting means 44, the suspension ring 48, the first handle 51 and the second handle 52). The control means 8 in this embodiment is configured so that the resultant force of the force applied to the stud 2 by the weight of the joining device 1 and the force applied to the stud 2 by the displacement driving means 6 becomes a predetermined force. Control the compressed air supply. In the present embodiment, the total mass of the members supported by the two cylinder tubes 17a and 17b and the displacement driving means 6 is M, and the gravitational acceleration is g. The force applied to the stud 2 by the weight of the joining device 1 is a value obtained by integrating the cosine of the angle formed by the third direction Z and the vertical direction, M, and g. For example, when the joining device 1 is arranged so that one surface in the thickness direction of the protractor 45 is parallel to the vertical direction, the force applied to the stud 2 by the weight of the joining device 1 is the cosine of the angle indicated by the indicating unit 46. , M and g are integrated values. The joining apparatus 1 in the present embodiment will be described on the assumption that the joining apparatus 1 is used in a state where one surface in the thickness direction of the protractor 45 is parallel to the vertical direction.

作業者は、指示部46が指す角度を読取り、入力手段を操作することによって読取った角度を制御手段8に与える。なお指示部46が指す角度は、作業者を介さずに姿勢検出手段44から制御手段8に与えられてもよい。制御手段8は、変位駆動手段6によって第3方向Zに印加される力と、入力された角度の余弦、Mおよびgの積算値との合計が、予め定める力になるように、変位駆動手段6の圧縮空気供給源を制御する。これによって、接合装置1が鉛直方向に対してどのような姿勢であっても、スタッド2をワーク3に押圧することができる。この予め定める力は、作業者が入力手段を操作することによって設定可能である。   The operator reads the angle indicated by the instruction section 46 and gives the read angle to the control means 8 by operating the input means. Note that the angle indicated by the instruction unit 46 may be given from the posture detection unit 44 to the control unit 8 without an operator. The control means 8 is a displacement drive means so that the sum of the force applied in the third direction Z by the displacement drive means 6 and the integrated value of the cosine and M and g of the input angle becomes a predetermined force. 6 Compressed air supply source is controlled. Accordingly, the stud 2 can be pressed against the workpiece 3 regardless of the posture of the joining device 1 with respect to the vertical direction. This predetermined force can be set by the operator operating the input means.

図5は、融点低下部材54をスタッド2の表面上に形成する工程を示す図である。スタッド2は、円柱状の軸部2aと、軸部2aの軸線方向の端部から周方向に突出する円柱状の円柱部2bと、この円柱部2bから先細状に延びる先端部2cとを含む。本実施の形態における融点低下部材54は、円錐形状の先端部2cの側面上に積層して形成される。本実施の形態では、例えば支持台4に配置された噴霧装置55からZnの含有量が95パーセントの霧状の融点低下部材54aを先端部2cに向けて噴霧することによって、融点低下部材54がスタッド2の表面に積層される。   FIG. 5 is a diagram illustrating a process of forming the melting point lowering member 54 on the surface of the stud 2. The stud 2 includes a columnar shaft portion 2a, a columnar columnar portion 2b protruding in the circumferential direction from an end portion in the axial direction of the shaft portion 2a, and a tip portion 2c extending from the columnar portion 2b in a tapered shape. . The melting point lowering member 54 in the present embodiment is formed by being laminated on the side surface of the conical tip portion 2c. In the present embodiment, for example, by spraying the mist-like melting point lowering member 54a having a Zn content of 95% from the spraying device 55 disposed on the support base 4 toward the tip 2c, the melting point lowering member 54 is Laminated on the surface of the stud 2.

融点低下部材54は、スタッド2とワーク3とを接合するときに、スタッド2とワーク3との間に配置される。本実施の形態ではスタッド2の表面に融点低下部材54を配置することによって、スタッド2とワーク3との間に融点低下部材54を配置しているが、他の実施の形態では、ワーク3の表面上に融点低下部材54を積層して形成してもよく、さらに他の実施の形態ではスタッド2およびワーク3の表面に積層して配置することなく、スタッド2とワーク3との間に薄板状の融点低下部材54を配置して、スタッド2とワーク3とで融点低下部材54を挟むようにしてもよい(図5A参照)。   The melting point lowering member 54 is disposed between the stud 2 and the work 3 when the stud 2 and the work 3 are joined. In the present embodiment, the melting point lowering member 54 is arranged between the stud 2 and the work 3 by arranging the melting point lowering member 54 on the surface of the stud 2. The melting point lowering member 54 may be formed by being laminated on the surface. In still another embodiment, the thin plate is placed between the stud 2 and the work 3 without being laminated on the surface of the stud 2 and the work 3. The melting point lowering member 54 may be arranged so that the stud 2 and the workpiece 3 sandwich the melting point lowering member 54 (see FIG. 5A).

融点低下部材54は、スタッド2およびワーク3を形成する金属材料との共晶反応によって、スタッド2およびワーク3を形成する金属材料の融点よりも低い温度で液相を生じスタッド2およびワーク3を形成する金属材料と溶け合う。本実施の形態におけるスタッド2およびワーク3は、同じ種類の金属材料によって形成され、アルミニウムによって形成される。スタッド2には、たとえばJIS規格のA5356、A5052、またはA5056を用い、ワーク3には、JIS規格のA5083を用いることができる。融点低下部材54は、アルミニウムと共晶反応することによってアルミニウムの融点よりも低い温度で液相を生じるZn、Cu、SiおよびMgなどの金属材料から成り、本実施の形態ではZnから成る。   The melting point lowering member 54 generates a liquid phase at a temperature lower than the melting point of the metal material forming the stud 2 and the work 3 by the eutectic reaction with the metal material forming the stud 2 and the work 3. It melts with the metal material to be formed. The stud 2 and the workpiece 3 in the present embodiment are made of the same type of metal material and are made of aluminum. For example, JIS standard A5356, A5052, or A5056 can be used for the stud 2, and JIS standard A5083 can be used for the work 3. The melting point lowering member 54 is made of a metal material such as Zn, Cu, Si, and Mg that generates a liquid phase at a temperature lower than the melting point of aluminum by eutectic reaction with aluminum. In this embodiment, the melting point lowering member 54 is made of Zn.

次に、図6乃至図8を参照して、接合装置1を用いてスタッド2とワーク3とを接合する方法について説明する。   Next, with reference to FIG. 6 thru | or FIG. 8, the method of joining the stud 2 and the workpiece | work 3 using the joining apparatus 1 is demonstrated.

制御手段8は、スタッド2とワーク3との間に、融点低下部材54が配置されると、その状態で回転駆動手段7を制御して把持手段5を回転させ、把持手段5がスタッド2をワーク3に押圧させるように変位駆動手段6を制御し、摩擦熱を生じさせ、スタッド2を形成する金属材料の融点およびワーク3を形成する金属材料の融点のうちの少なくともいずれか一方の融点未満の温度で、スタッド2およびワーク3と、融点低下部材54との接続部位56に共晶反応による液相を生じ、回転駆動手段7を制御して回転駆動を停止するとともにアップセット加圧を行い、スタッド2をワーク3に接合する。なお、アップセット加圧は必ずしも必須の工程ではなく、接合条件に応じて適宜実施するものである。   When the melting point lowering member 54 is disposed between the stud 2 and the work 3, the control means 8 controls the rotation driving means 7 to rotate the gripping means 5 in that state, and the gripping means 5 causes the stud 2 to move. The displacement driving means 6 is controlled so as to be pressed against the work 3, and frictional heat is generated, which is less than the melting point of at least one of the melting point of the metal material forming the stud 2 and the melting point of the metal material forming the work 3. The liquid phase by the eutectic reaction is generated in the connection portion 56 between the stud 2 and the work 3 and the melting point lowering member 54 at the temperature of 5 to control the rotation driving means 7 to stop the rotation driving and perform the upset pressurization. The stud 2 is joined to the work 3. Note that the upset pressurization is not necessarily an essential process, and is appropriately performed according to the joining conditions.

スタッド2が把持手段5に取付けられた状態で、接合装置1をワーク3に対して固定し、作業者が入力手段を操作し、スタッド2とワーク3との接合を開始する指令を制御手段8に入力すると、ステップs0からステップs1に移行する。   With the stud 2 attached to the gripping means 5, the joining device 1 is fixed to the work 3, and the operator operates the input means to give a command to start joining the stud 2 and the work 3 to the control means 8. , The process proceeds from step s0 to step s1.

ステップs1では、制御手段8は、回転駆動手段7を制御して把持手段5の回転駆動を開始させる。本実施の形態では、たとえば6000rpmで把持手段5を基準軸線Lまわりに回転させる。次にステップs2において制御手段8は、変位駆動手段6を制御して下方Z2への変位駆動を開始させる。これによって図7(1)に示すように、把持手段5に把持されたスタッド2が基準軸線Lまわりに回転しながら、下方Z2に下降する。スタッド2が基準軸線Lまわりに回転しつつ、ワーク3に押圧されることによって、摩擦熱が生じ、スタッド2の先端部と、ワーク3のスタッド2と付き合わされた部分とが溶融する。   In step s1, the control unit 8 controls the rotation driving unit 7 to start the rotation driving of the gripping unit 5. In the present embodiment, for example, the gripping means 5 is rotated around the reference axis L at 6000 rpm. Next, in step s2, the control means 8 controls the displacement drive means 6 to start the displacement drive to the lower Z2. As a result, as shown in FIG. 7A, the stud 2 gripped by the gripping means 5 descends downward Z2 while rotating around the reference axis L. When the stud 2 rotates around the reference axis L and is pressed against the work 3, frictional heat is generated, and the tip of the stud 2 and the part of the work 3 attached to the stud 2 are melted.

次にステップs3において制御手段8は、回転駆動手段7が把持手段5を回転駆動するときの負荷が予め定める負荷以上か否かを判定し、予め定める負荷以上であればステップs4に移行し、予め定める負荷未満であれば、ステップs3の処理を繰り返す。   Next, in step s3, the control means 8 determines whether or not the load when the rotation driving means 7 rotationally drives the gripping means 5 is greater than or equal to a predetermined load. If it is greater than or equal to the predetermined load, the control means 8 proceeds to step s4. If it is less than the predetermined load, the process of step s3 is repeated.

スタッド2とワーク3との溶融状態に応じて一定の回転速度で把持手段5を回転させるときのサーボモータ23に流れる電流が変化する。サーボモータ23に流れる電流が、予め設定した接合終了電流になると、予め定める負荷以上になったと判断し、ステップs4に移行する。この予め設定した接合終了電流は、接合を終了したときに、最も接合強度が高くなるように実験的に設定される。   The current flowing through the servomotor 23 when the gripping means 5 is rotated at a constant rotational speed changes according to the melting state of the stud 2 and the workpiece 3. When the current flowing through the servomotor 23 reaches a preset joining end current, it is determined that the load is equal to or greater than a predetermined load, and the process proceeds to step s4. The preset joining end current is experimentally set so that the joining strength becomes the highest when the joining is finished.

次にステップs4では、制御手段8は、回転駆動手段7のクラッチ26と制動機34を制御して回転駆動を急停止させる。これにより、接合物と被接合物とが接合される。図8には、回転駆動手段7の回転駆動を停止しなかった場合のサーボモータ23に流れる電流を破線で示している。   Next, in step s4, the control means 8 controls the clutch 26 and the brake 34 of the rotation drive means 7 to suddenly stop the rotation drive. Thereby, a to-be-joined object and a to-be-joined object are joined. In FIG. 8, the current flowing through the servomotor 23 when the rotation drive of the rotation drive means 7 is not stopped is indicated by a broken line.

次にステップs5において制御手段8は、変位駆動手段6を制御して上方Z1への変位駆動を開始させ、把持手段5を上方Z1に変位させ、スタッド2を把持手段5から開放させる。次にステップs6に移行して、接合処理を終了する。   Next, in step s5, the control means 8 controls the displacement driving means 6 to start the displacement driving to the upper Z1, displace the gripping means 5 to the upper Z1, and release the stud 2 from the gripping means 5. Next, it transfers to step s6 and a joining process is complete | finished.

なお、ステップs4の次に実施する任意の工程として、制御手段8が変位駆動手段6を制御して、回転駆動停止より1〜3秒程度把持手段5に下方Z2に加える力を5%〜150%増加させて、スタッド2にアップセット加圧を加えるようにしても良い。このように回転駆動停止より1〜3秒程度アップセット加圧を行うことより、接合界面の共晶液相が排出され、接合物と被接合物との活性な新生面同士が突き合わされることによって、スタッド2がワーク3に接合される。   As an optional step to be performed after step s4, the control means 8 controls the displacement driving means 6 so that the force applied to the lower Z2 to the gripping means 5 for about 1 to 3 seconds from the stop of the rotation driving is 5% to 150%. %, And an upset pressure may be applied to the stud 2. Thus, by performing upset pressurization for about 1 to 3 seconds after stopping the rotation drive, the eutectic liquid phase at the bonding interface is discharged, and the active new surfaces of the bonded object and the bonded object are brought into contact with each other. The stud 2 is joined to the work 3.

以上説明した本実施の形態の接合装置1によれば、融点低下部材54がスタッド2とワーク3との間に介在した状態で、スタッド2をワーク3に押圧しつつ、スタッド2とワーク3との間の相対運動を与える。これによってスタッド2およびワーク3の融点よりも低い温度で、共晶反応によりスタッド2およびワーク3の接続部位56が溶融する。スタッド2とワーク3とが溶融した後に、相対運動を停止させることで、互いに同じ種類の金属材料によって形成されるスタッド2をワーク3に接合することができる。   According to the joining device 1 of the present embodiment described above, the stud 2 and the workpiece 3 are pressed while pressing the stud 2 against the workpiece 3 with the melting point lowering member 54 interposed between the stud 2 and the workpiece 3. Give relative motion between. As a result, the connecting portion 56 of the stud 2 and the workpiece 3 is melted by the eutectic reaction at a temperature lower than the melting point of the stud 2 and the workpiece 3. After the stud 2 and the work 3 are melted, the relative movement is stopped, so that the stud 2 formed of the same kind of metal material can be joined to the work 3.

本実施の形態では、摩擦が生じる部位を局所的に加熱し、溶融する範囲を局所的に限定することができるので、従来の技術のアークスタッド法のように形成した溶融池が凝固するときに、割れおよびブローホールなどの欠陥の発生することを抑制することができ、信頼性の高い接合を実現することができる。またアークスタッド法のようにアーク放電を生じさせるための電源およびシールドガスを供給する装置などを必要としないので、接合方法を実現するための接合装置1のコストを大幅に節減することができる。さらに、アークスタッド法に比べると、アーク放電を発生させることなく接合することができるので、省エネルギーで接合を行うことができる。さらに、アーク放電によって生じる有害な紫外線および、ヒュームなどが発生しないので、作業環境の悪化を防ぐことができ、清浄な環境で接合作業を行うことができる。   In the present embodiment, since the region where friction occurs is locally heated and the melting range can be limited locally, when the molten pool formed like the arc stud method of the prior art solidifies. The occurrence of defects such as cracks and blow holes can be suppressed, and highly reliable bonding can be realized. Moreover, since the power supply for generating arc discharge and the apparatus which supplies shield gas etc. are not required like the arc stud method, the cost of the joining apparatus 1 for implement | achieving a joining method can be reduced significantly. Furthermore, compared with the arc stud method, since it can join without generating an arc discharge, it can join by energy saving. Furthermore, since harmful ultraviolet rays and fumes generated by arc discharge are not generated, the work environment can be prevented from deteriorating, and the joining work can be performed in a clean environment.

また従来の技術の摩擦圧接法では、塑性変形を生じさせるために大きな押圧力を必要とするが、本発明では共晶反応を利用して、スタッド2およびワーク3を形成する金属材料の融点のうちの少なくともいずれか一方の融点未満の温度でスタッド2とワーク3とを溶融させることができるので、摩擦圧接法に比べて小さな押圧力で接合を実現することができ、大きな押圧力を発生するための大掛かりな装置を必要としない。さらに摩擦圧接法に比べると、(i)回転速度を低くすること、(ii)押圧力を小さくすること、或いは、(iii)回転速度を低くし且つ押圧力を小さくすることを実現する上で有利なので、摩擦圧接法を適用することができないような小さなスタッド2であっても、ワーク3に接合することができる。さらに摩擦が生じる部位を局所的に加熱し、溶融する範囲を局所的に限定することができるので、スタッド2とワーク3との接合面の形状が異なる場合であっても、スタッド2をワーク3に接合することができる。   Further, in the conventional friction welding method, a large pressing force is required to cause plastic deformation. However, in the present invention, the melting point of the metal material forming the stud 2 and the workpiece 3 is utilized by utilizing a eutectic reaction. Since the stud 2 and the work 3 can be melted at a temperature lower than the melting point of at least one of them, the joining can be realized with a smaller pressing force than the friction welding method, and a large pressing force is generated. Does not require large-scale equipment. Furthermore, compared with the friction welding method, (i) to reduce the rotational speed, (ii) to reduce the pressing force, or (iii) to reduce the rotational speed and reduce the pressing force. Since it is advantageous, even a small stud 2 to which the friction welding method cannot be applied can be joined to the workpiece 3. Furthermore, since the region where friction occurs can be locally heated and the melting range can be locally limited, the stud 2 is attached to the workpiece 3 even when the shape of the joint surface between the stud 2 and the workpiece 3 is different. Can be joined.

また本実施の形態の接合装置1によれば、ろう付けを行わないので、ろう付けの適用が困難な、溶融温度範囲が広く、ろう材との融点の差が比較的小さいCu,Mg,Zn,Siなどの含有量の多い高力アルミニウム合金などの接合を行うことができる。   Moreover, according to the joining apparatus 1 of this embodiment, since brazing is not performed, it is difficult to apply brazing, the melting temperature range is wide, and the difference in melting point from the brazing material is relatively small. Cu, Mg, Zn , High strength aluminum alloy having a high content of Si, etc. can be joined.

また本実施の形態の接合装置1によれば、スタッド2を回転させることによって相対運動を与えるので、摩擦熱が生じる領域を可能な限り狭くすることができ、接合の影響が生じる領域を可能な限り狭くすることができる。たとえばスタッド2をワーク3に押圧した状態でスライドさせ、往復運動をする場合に比べて、摩擦熱が発生する領域を狭くすることができる。これによって接合の影響が生じる領域を可能な限り小さくすることができる。   Moreover, according to the joining apparatus 1 of this Embodiment, since the relative motion is given by rotating the stud 2, the region where the frictional heat is generated can be made as narrow as possible, and the region where the influence of the joining is possible is possible. It can be as narrow as possible. For example, compared with the case where the stud 2 is slid while being pressed against the workpiece 3 and reciprocates, the region where the frictional heat is generated can be narrowed. This makes it possible to make the region where the influence of the joining occurs as small as possible.

さらに本実施の形態の接合装置1によれば、スタッド2は円柱状であって、ワーク3に押圧される先端部2cが先細状に形成される。仮にスタッド2が完全に円柱形状であって、先端が平面に形成されている場合、接合物を回転させたときに半径方向の内方と外方とでは、相対速度が外方の方が高くなる。摩擦熱は押圧される圧力、相対速度、摩擦時間の積で表されるので、回転速度の高い半径方向の外方の方が回転速度の低い内方よりも加熱され、接合するときの温度にばらつきが生じ、接合の信頼性が低下する。先細状のスタッド2では、まず先端が加熱されて溶融し、順次半径外方の領域が被接合物に押圧されて摩擦熱によって溶融し、溶融すべき部位の全てを溶融させることができる。すなわち、回転速度の低い半径方向の内方は高圧力かつ長時間摩擦され、回転速度の高い半径方向の外方は低圧力かつ短時間摩擦される。これによって接合時の温度のばらつきを抑えることができ、信頼性の高い接合を実現することができる。   Furthermore, according to the joining apparatus 1 of the present embodiment, the stud 2 has a cylindrical shape, and the tip portion 2c pressed against the work 3 is formed in a tapered shape. If the stud 2 has a completely cylindrical shape and the tip is formed in a flat surface, the relative speed is higher at the outer side and the outer side when the joint is rotated. Become. Friction heat is expressed as the product of pressure, relative speed, and friction time, so the outer side in the radial direction with a higher rotational speed is heated than the inner side with a lower rotational speed, and the temperature at the time of joining is higher. Variations occur and bonding reliability decreases. In the tapered stud 2, the tip is first heated and melted, and the region radially outward is sequentially pressed against the object to be welded and melted by frictional heat, so that all the parts to be melted can be melted. That is, the radially inward direction where the rotational speed is low is rubbed at a high pressure for a long time, and the radially outward direction where the rotational speed is high is rubbed at a low pressure for a short time. As a result, variations in temperature during bonding can be suppressed, and highly reliable bonding can be realized.

さらに本実施の形態におけるスタッド2は、円柱部2bが、軸部2aに対して半径方向に突出して形成される。たとえば円柱部2bが軸部2aに対して半径方向に突出せずに、軸部2aの先端から先細状に形成されている場合と比べると、円柱部2bが軸部2aに対して半径方向に突出して形成されることによって、スタッド2をワーク3に接合したときに、接合部位での軸線方向に垂直な断面が大きくなり、接合強度が大きくなる。なお、本発明が適用可能なスタッドの形状は、この例に限定されるものではない。   Furthermore, the stud 2 in the present embodiment is formed such that the cylindrical portion 2b protrudes in the radial direction with respect to the shaft portion 2a. For example, as compared with the case where the cylindrical portion 2b is formed in a tapered shape from the tip of the shaft portion 2a without protruding in the radial direction with respect to the shaft portion 2a, the cylindrical portion 2b is formed in the radial direction with respect to the shaft portion 2a. By projecting and forming, when the stud 2 is joined to the workpiece 3, a cross section perpendicular to the axial direction at the joining portion is increased, and the joining strength is increased. The stud shape to which the present invention can be applied is not limited to this example.

さらに本実施の形態の接合装置1によれば、スタッド2とワーク3との間に相対運動を与えるときの回転駆動手段7の負荷を溶融状態把握手段43が検出し、検出した負荷に基づいてスタッド2とワーク3との間の相対運動を停止させる。スタッド2とワーク3との間に相対運動を与えるときの負荷は、スタッド2とワーク3との溶融状態に依存する。本発明では、負荷を検出するだけで間接的に溶融状態を確認することができるので、温度および溶融部位などの溶融状態を直接的に検出する検出手段を備えることなく、相対運動を停止するタイミングを決定することができ、装置が複雑化することを防ぐことができる。   Furthermore, according to the joining apparatus 1 of the present embodiment, the molten state grasping means 43 detects the load of the rotation driving means 7 when a relative motion is given between the stud 2 and the work 3, and based on the detected load. The relative movement between the stud 2 and the workpiece 3 is stopped. The load when the relative motion is applied between the stud 2 and the work 3 depends on the molten state of the stud 2 and the work 3. In the present invention, since the melting state can be indirectly confirmed only by detecting the load, the timing for stopping the relative motion without providing a detection means for directly detecting the melting state such as the temperature and the melting site. Can be determined, and the apparatus can be prevented from becoming complicated.

さらに本実施の形態の接合装置1によれば、制御手段8は、変位駆動手段6によって第3方向Zに印加される力と、入力された角度の余弦、Mおよびgの積算値との合計が、予め定める力になるように、変位駆動手段6の圧縮空気供給源を制御する。これによって、接合装置1が鉛直方向に対してどのような姿勢であっても、スタッド2をワーク3に押圧することができる。たとえばLNGタンクの一部を構成する球状のワーク3にスタッド2を接合する場合には、鉛直方向の上方に向けてスタッド2をワーク3に押圧したり、水平方向にスタッド2をワーク3に押圧したりする。このような場合であっても、接合装置1の鉛直方向に対する姿勢にかかわらずに予め定める力でスタッド2をワーク3に押圧することができるので、スタッド2を接合するワーク3上の位置にかかわらず、ほぼ同じ接合強度でスタッド2をワーク3に接合することができる。   Furthermore, according to the joining apparatus 1 of the present embodiment, the control means 8 is the sum of the force applied in the third direction Z by the displacement driving means 6 and the integrated value of the cosine of the input angle, M and g. However, the compressed air supply source of the displacement driving means 6 is controlled so as to have a predetermined force. Accordingly, the stud 2 can be pressed against the workpiece 3 regardless of the posture of the joining device 1 with respect to the vertical direction. For example, when the stud 2 is joined to the spherical workpiece 3 constituting a part of the LNG tank, the stud 2 is pressed against the workpiece 3 upward in the vertical direction, or the stud 2 is pressed against the workpiece 3 in the horizontal direction. To do. Even in such a case, the stud 2 can be pressed against the work 3 with a predetermined force regardless of the posture of the joining device 1 with respect to the vertical direction. Instead, the stud 2 can be joined to the workpiece 3 with substantially the same joining strength.

本実施の形態の接合装置1では、融点低下部材54をスタッド2とワーク3との間に供給する供給手段として、支持台4に噴霧装置55が配置されており、この噴霧装置55からスタッド2またはワーク3に向けて霧状の融点低下部材54aが噴出される。噴霧装置55以外にも、図5Aに示したように、薄板状の融点低下部材54をスタッド2とワーク3との間に固定するクランプもしくはホルダから成る固定具55Aで供給手段を構成しても良い。これによって作業者が融点低下部材54を配置することなく、本発明の接合方法を実行する接合装置1を実現することができる。   In the joining device 1 of the present embodiment, a spray device 55 is disposed on the support 4 as a supply means for supplying the melting point lowering member 54 between the stud 2 and the workpiece 3. Alternatively, the mist-like melting point lowering member 54 a is ejected toward the work 3. In addition to the spraying device 55, as shown in FIG. 5A, the supply means may be constituted by a fixture 55A composed of a clamp or a holder for fixing the thin plate-shaped melting point reducing member 54 between the stud 2 and the workpiece 3. good. Accordingly, it is possible to realize the joining apparatus 1 that executes the joining method of the present invention without disposing the melting point lowering member 54 by the operator.

本実施の形態におけるスタッド2の先端部2cは、円錐形状としたけれども、先細状であればよく、たとえば半球状のような円錐形状に対して側面が突出した形状、または円錐形状に対して側面が内側に退避した形状であってもよい。またスタッド2は、ほぼ円柱形状であるとしたけれども、三角柱および五角柱などの多角柱形状でもよい。   The tip 2c of the stud 2 in the present embodiment has a conical shape, but may have a tapered shape. For example, a shape in which a side surface protrudes from a conical shape such as a hemisphere, or a side surface with respect to a conical shape. The shape may be retracted inward. Further, although the stud 2 is assumed to have a substantially cylindrical shape, the stud 2 may have a polygonal prism shape such as a triangular prism and a pentagonal prism.

また本実施の形態の接合装置1は、スタッド2を基準軸線Lまわりに回転させるとしたけれども、回転に限らずにスタッド2の先端をワーク3に押圧した状態でたとえばスライド運動をして、接合物と被接合物との間の相対運動を与えて摩擦熱を生じさせてもよい。   Moreover, although the joining apparatus 1 of this Embodiment was made to rotate the stud 2 to the surroundings of the reference axis line L, it is not restricted to rotation, for example, performs a sliding motion in the state which pressed the front-end | tip of the stud 2 against the workpiece | work 3, and joined. Frictional heat may be generated by giving a relative motion between the object and the object to be joined.

また本実施の形態の接合装置1は、姿勢検出手段44を1つ含むとしたけれども、他の実施の形態において2つの姿勢検出手段を含み、接合装置1がどのような姿勢であったとしても鉛直方向と基準軸線Lとの成す角度を検出することができるようにしてもよい。たとえば厚み方向の一表面が第1方向Xに垂直な分度器と、厚み方向の一表面が第2方向Yに垂直な分度器を備え、2つの分度器に設けられる各指示部の各角度に基づいて、鉛直方向と基準軸線Lとの成す角度を検出してもよい。これによって接合装置1がどのような姿勢であっても、基準軸線Lと鉛直方向との成す角度の余弦、M、およびgを積算して、接合装置1の自重によってスタッド2に加わる力を算出することができ、前述したようにスタッド2が予め定める力でワーク3を押圧するように変位駆動手段6を制御することができる。   Further, although the joining apparatus 1 of the present embodiment includes one posture detecting means 44, it includes two posture detecting means in other embodiments, and no matter what posture the joining apparatus 1 is in. An angle formed by the vertical direction and the reference axis L may be detected. For example, a protractor whose one surface in the thickness direction is perpendicular to the first direction X, and a protractor whose one surface in the thickness direction is perpendicular to the second direction Y, based on each angle of each indicator provided in the two protractors, The angle formed between the vertical direction and the reference axis L may be detected. As a result, the force applied to the stud 2 by the weight of the joining device 1 is calculated by integrating the cosines, M, and g of the angle formed by the reference axis L and the vertical direction, regardless of the posture of the joining device 1. As described above, the displacement driving means 6 can be controlled so that the stud 2 presses the workpiece 3 with a predetermined force.

また本実施の形態の接合装置1は、作業者が第1および第2取手51,52を把持して運搬可能であるとしたけれども、第1および第2取手51,52ならびに吊輪48などを設けることなく、予め定める作業位置に固定されていてもよい。   In addition, although the joining apparatus 1 according to the present embodiment can be carried by the operator by gripping the first and second handles 51 and 52, the first and second handles 51 and 52, the suspension ring 48, and the like can be used. You may fix to the predetermined work position, without providing.

また本実施の形態におけるスタッド2およびワーク3は、同じ種類の金属材料のアルミニウムによって形成され、融点低下部材54は、Znによって形成されるとしたけれども、これらには限られない。スタッド2およびワーク3を鉄で形成した場合は、融点低下部材54をMn、Siによって形成されてもよい。またスタッド2とワーク3とは異なる金属材料によって形成されてもよく、たとえばスタッド2およびワーク3のいずれか一方を鉄によって形成し、他方をアルミニウムによって形成し、融点低下部材54をSiによって形成してもよい。   Moreover, although the stud 2 and the workpiece | work 3 in this Embodiment are formed with aluminum of the same kind of metal material and the melting point lowering member 54 is formed with Zn, it is not limited to these. When the stud 2 and the work 3 are made of iron, the melting point lowering member 54 may be made of Mn and Si. The stud 2 and the work 3 may be formed of different metal materials. For example, one of the stud 2 and the work 3 is formed of iron, the other is formed of aluminum, and the melting point lowering member 54 is formed of Si. May be.

[実施例]
実施例として、前述の実施の形態の接合装置1を用いて、図9に示した4本の第1〜第4スタッド61〜64をそれぞれ同一の条件でワーク3に接合させた。また、第4スタッド64をアップセット加圧時の押圧力が異なる2つの条件でそれぞれワーク3に接合させた。
[Example]
As an example, the four first to fourth studs 61 to 64 shown in FIG. 9 were joined to the workpiece 3 under the same conditions using the joining device 1 of the above-described embodiment. Moreover, the 4th stud 64 was joined to the workpiece | work 3 on two conditions from which the pressing force at the time of an upset press differs.

図9は、第1〜第4スタッド61〜64のそれぞれの引張強度を表す図である。図9では、第1〜第4スタッド61〜64についてそれぞれ6回の引張試験を行い、引張強度の平均値を棒グラフで表した。また各引張試験での引張強度の最大値と最小値とを記号(◆)で印し、この最大値と最小値との間を実線で結んだ。   FIG. 9 is a diagram illustrating the tensile strengths of the first to fourth studs 61 to 64. In FIG. 9, each of the first to fourth studs 61 to 64 was subjected to a tensile test six times, and the average value of the tensile strength was represented by a bar graph. In addition, the maximum value and the minimum value of the tensile strength in each tensile test are marked with a symbol (♦), and the maximum value and the minimum value are connected with a solid line.

第1スタッド61は、直径が6mmの円柱形状である。第2および第3スタッド62,63は、同一形状であって、直径が6mmの円柱形状の軸部62a,63aと、軸部62a,63aの先端から円錐形状に延びる先端部62b,63bとを有する。この先端部62b,63bの高さは、2mmである。第4スタッド64は、前述の実施の形態のスタッド2と同じであって、軸部64aの直径が6mm、円柱部64bの直径が8mm、円柱形状の先端部64cの高さが2mmである。第1および第2スタッド61,62には、融点低下部材54を形成しておらず、第3および第4スタッド63,64の端部の表面には融点低下部材54を形成している。すなわち本発明の接合方法を用いずに第1および第2スタッド61,62をワーク3に接合し、本発明の接合方法を用いて第3および第4スタッド63,64をワーク3に接合した。ワーク3は、アルミニウムから成り、JIS規格のA5083を用いた。また第1〜第4スタッド61〜64は、アルミニウムから成り、JIS規格のA5356を用いた。また融点低下部材54は、Znの含有量が95パーセントのスプレーを噴霧して形成した。第1〜第4スタッド61〜64をワーク3に押圧する力は、摩擦時の押圧力を1000ニュートン(N)、アップセット加圧時の押圧力を1900Nとした。第1および第2スタッド61,62の接合方法は、従来の技術の摩擦圧接法と同じであるが、通常Φ6mm程度の円柱形のスタッドに摩擦圧接法を適用する場合、摩擦時の押圧力は4000N程度、アップセット加圧時の押圧力を5500N程度であるのに対して、押圧する力が小さい。   The first stud 61 has a cylindrical shape with a diameter of 6 mm. The second and third studs 62 and 63 have the same shape, and cylindrical shaft portions 62a and 63a having a diameter of 6 mm, and distal end portions 62b and 63b extending in a conical shape from the distal ends of the shaft portions 62a and 63a. Have. The heights of the tip portions 62b and 63b are 2 mm. The fourth stud 64 is the same as the stud 2 of the above-described embodiment, and the diameter of the shaft portion 64a is 6 mm, the diameter of the cylindrical portion 64b is 8 mm, and the height of the cylindrical tip portion 64c is 2 mm. The first and second studs 61 and 62 are not formed with the melting point lowering member 54, and the melting point lowering member 54 is formed on the surfaces of the end portions of the third and fourth studs 63 and 64. That is, the first and second studs 61 and 62 were joined to the work 3 without using the joining method of the present invention, and the third and fourth studs 63 and 64 were joined to the work 3 using the joining method of the present invention. The work 3 is made of aluminum, and JIS standard A5083 was used. The first to fourth studs 61 to 64 are made of aluminum, and JIS standard A5356 is used. The melting point lowering member 54 was formed by spraying a spray having a Zn content of 95%. The force that presses the first to fourth studs 61 to 64 against the workpiece 3 was set to 1000 Newton (N) as the pressing force during friction and 1900 N as the pressing force during upset pressurization. The joining method of the first and second studs 61 and 62 is the same as the friction welding method of the prior art. However, when the friction welding method is applied to a cylindrical stud having a diameter of about 6 mm, the pressing force during friction is usually The pressing force at the time of upset pressurization is about 5500 N, while the pressing force is small.

図9に示すように、引張強度は、第1、第2、第3および第4スタッド61,62,63,64の順に大きい。このように本発明の接合方法を用いて接合した第3および第4スタッド63,64の方が、第1および第2スタッド61,62よりも引張強度が大きくなることが示された。また第1スタッド61よりも第2スタッド62の引張強度が大きくなったことから、端部を先細状にすることによって引張強度が大きくなることが示された。また第2スタッド62よりも第3スタッド63の引張強度が大きくなったことから、融点低下部材54を配置することによって、すなわち本発明の接合方法を用いることによって引張強度が大きくなることが示された。さらに、第3スタッド63よりも第4スタッド64の引張強度が大きくなったことから、先端部63b,64cの底辺の直径が大きく、接合する領域の断面積が大きいほど引張強度が大きくなることが示された。   As shown in FIG. 9, the tensile strength increases in the order of the first, second, third and fourth studs 61, 62, 63 and 64. Thus, it was shown that the 3rd and 4th studs 63 and 64 joined using the joining method of the present invention have higher tensile strength than the first and second studs 61 and 62. Moreover, since the tensile strength of the 2nd stud 62 became larger than the 1st stud 61, it was shown that a tensile strength becomes large by making an edge part tapered. In addition, since the tensile strength of the third stud 63 is larger than that of the second stud 62, it is shown that the tensile strength is increased by arranging the melting point lowering member 54, that is, by using the joining method of the present invention. It was. Further, since the tensile strength of the fourth stud 64 is larger than that of the third stud 63, the diameters of the bottom sides of the tip portions 63b and 64c are large, and the tensile strength increases as the cross-sectional area of the joining region increases. Indicated.

図10は、第4スタッド64をアップセット加圧時の押圧力が異なる2つの条件でそれぞれワーク3に接合させた場合の、それぞれの引張強度を表す図である。図10では摩擦時の押圧力を1000Nとし、摩擦時とアップセット加圧時の押圧力が等しく1000Nの場合と、アップセット加圧時に摩擦時より90%増加させた1900Nを負荷している場合についてそれぞれ6回の引張試験を行い、引張強度の平均値を棒グラフで表した。また各引張試験での引張強度の最大値と最小値とを記号(◆)で印し、この最大値と最小値との間を実線で結んだ。   FIG. 10 is a diagram illustrating the respective tensile strengths when the fourth stud 64 is joined to the workpiece 3 under two conditions with different pressing forces during upset pressurization. In FIG. 10, the pressing force at the time of friction is 1000 N, the pressing force at the time of friction and upset pressurization is equal to 1000 N, and the case where 1900 N increased by 90% from the friction at the time of upset pressurization is loaded. Each was subjected to six tensile tests, and the average value of the tensile strength was represented by a bar graph. In addition, the maximum value and the minimum value of the tensile strength in each tensile test are marked with a symbol (♦), and the maximum value and the minimum value are connected with a solid line.

図10に示すように、アップセット時の押圧力が摩擦時と等しい場合に比べ、アップセット加圧時に摩擦時より90%増加させた1900Nを負荷した場合のほうが引張強度が大きくなることが分かる。   As shown in FIG. 10, it can be seen that the tensile strength is greater when 1900N increased by 90% than when friction is applied during upset pressurization, compared to when the pressing force during upset is equal to that during friction. .

図11は、第4スタッド64をワーク3に接合した接合体の断面図である。図11に示すように、本発明の接合方法を用いることによって、接合過程において第4スタッド64の先端部64cの大部分および円柱部64bの一部、およびワーク3の表面部が塑性流動していることが分かる。   FIG. 11 is a cross-sectional view of a joined body in which the fourth stud 64 is joined to the workpiece 3. As shown in FIG. 11, by using the joining method of the present invention, most of the tip 64c and part of the cylindrical part 64b of the fourth stud 64 and the surface part of the workpiece 3 are plastically flowed in the joining process. I understand that.

図11Aの上段は、ワーク3と第4スタッド64との接合面の破断面において、第4スタッド64側の状態を走査型電子顕微鏡(SEM)で観察したものである。接合面中心部の領域では凝固した液滴が観察されなかったが、接合面外周部の領域(図11においてXで示した部分)では図11Aの上段にSEM写真で示すように凝固した液滴が観察された(拡大図2を更に拡大した図11B参照)。したがって、接合時に材料が溶融し、塑性流動により外周部へ排出されていることが分かる。   In the upper part of FIG. 11A, the state on the fourth stud 64 side is observed with a scanning electron microscope (SEM) in the fracture surface of the joint surface between the workpiece 3 and the fourth stud 64. No solidified droplets were observed in the central area of the joint surface, but in the peripheral area of the joint surface (the portion indicated by X in FIG. 11), the solidified liquid droplets as shown in the SEM photograph at the top of FIG. 11A. Was observed (see FIG. 11B in which the enlarged view 2 is further enlarged). Therefore, it can be seen that the material is melted at the time of joining and discharged to the outer peripheral portion by plastic flow.

図11Aの下段は、比較例として、融点低下部材(Zn)を使用しなかった場合の観察結果を示しており、この比較例においては凝固した液滴が観察されなかった(拡大図2を更に拡大した図11C参照)。   The lower part of FIG. 11A shows an observation result when a melting point lowering member (Zn) is not used as a comparative example, and solidified droplets were not observed in this comparative example (see FIG. (See enlarged FIG. 11C).

図12は、曲げ試験を行った後の第4スタッド64をワーク3に接合した接合体の平面図である。図12に示すように、本発明の接合方法を用いて第4スタッド64を接合すると、曲げ試験によってワーク3の表面の法線と第4スタッド64との成す角度が90°以上になっても、第4スタッド64がワーク3から剥がれないことが示された。たとえば規格MIL−S−24149Bには、曲げ試験においてスタッドが剥がれることなく15°以上曲がることが基準として規定されている。本発明の接合方法を用いると、従来の技術の摩擦圧接法を適用する場合の通常の押圧力よりも小さい押圧力にもかかわらず、規格MIL−S−24149Bに規定される基準を満たすことが確認された。   FIG. 12 is a plan view of a joined body obtained by joining the fourth stud 64 to the work 3 after performing a bending test. As shown in FIG. 12, when the fourth stud 64 is joined using the joining method of the present invention, even if the angle formed between the normal of the surface of the workpiece 3 and the fourth stud 64 is 90 ° or more by a bending test. It has been shown that the fourth stud 64 does not peel from the workpiece 3. For example, the standard MIL-S-24149B stipulates that the stud bends 15 ° or more without being peeled off in a bending test. When the joining method of the present invention is used, the standard defined in the standard MIL-S-24149B can be satisfied despite the pressing force smaller than the normal pressing force when applying the friction welding method of the prior art. confirmed.

図13は、施工姿勢の変化による継手引張強度への影響を示した図であり、鉛直下向き方向で接合した場合と、水平横向き方向で接合した場合とで、継手引張強度に大きな変化はないことが分かる。   FIG. 13 is a diagram showing the influence on the joint tensile strength due to the change in the construction posture, and there is no significant change in the joint tensile strength between the case of joining in the vertically downward direction and the case of joining in the horizontal lateral direction. I understand.

以上、本発明の好ましい例についてある程度特定的に説明したが、それらについて種々の変更をなし得ることはあきらかである。従って、本発明の範囲及び精神から逸脱することなく、本明細書中で特定的に記載された態様とは異なる態様で本発明を実施できることが理解されるべきである。   Although the preferred examples of the present invention have been described above in a specific manner, it is obvious that various modifications can be made. Accordingly, it is to be understood that the invention can be practiced otherwise than as specifically described herein without departing from the scope and spirit of the invention.

Claims (10)

接合物を把持する把持手段と、
前記接合物を把持した状態で、前記把持手段を回転駆動する回転駆動手段と、
前記接合物を把持した状態で、前記把持手段を変位駆動して前記接合物を被接合物に押圧する変位駆動手段と、
前記接合物と前記被接合物との間に融点低下物質を供給する供給手段と、
前記回転駆動手段および前記変位駆動手段の駆動を制御する制御手段と、
前記回転駆動手段が前記把持手段を回転駆動するときに前記回転駆動手段の回転軸に加えられる負荷を検出する負荷検出手段と、
を備え、
前記制御手段は、前記負荷検出手段の検出結果に基づいて前記回転駆動手段による前記接合物の回転を停止するように構成されている、ことを特徴とする接合装置。
A gripping means for gripping the joined article;
A rotation driving means for rotating the gripping means in a state of gripping the bonded article;
Displacement driving means for driving the gripping means to displace and pressing the joined article against the article to be joined in a state where the joined article is grasped.
Supply means for supplying a melting point lowering substance between the bonded object and the bonded object;
Control means for controlling the driving of the rotation driving means and the displacement driving means;
Load detecting means for detecting a load applied to a rotation shaft of the rotation driving means when the rotation driving means rotates the gripping means;
With
The said control means is comprised so that rotation of the said joining thing by the said rotation drive means may be stopped based on the detection result of the said load detection means, The joining apparatus characterized by the above-mentioned.
前記回転駆動手段とは別に前記接合物の回転を停止する回転停止手段を更に備えることを特徴とする請求項1記載の接合装置。   The joining apparatus according to claim 1, further comprising a rotation stopping unit that stops the rotation of the joined object separately from the rotation driving unit. 前記被接合物と前記接合装置とを相対的に固定する固定手段を更に備えることを特徴とする請求項1又は2に記載に接合装置。   The bonding apparatus according to claim 1, further comprising a fixing unit that relatively fixes the object to be bonded and the bonding apparatus. 前記回転停止手段が、前記回転駆動手段と前記把持手段とを切り離すためのクラッチ及び前記把持手段を制動するブレーキの少なくともいずれか一方を備えていることを特徴とする請求項2記載の接合装置。   3. The joining apparatus according to claim 2, wherein the rotation stopping means includes at least one of a clutch for separating the rotation driving means and the gripping means and a brake for braking the gripping means. 前記固定手段が、前記被接合物の形状に沿った形状を備えており、及び/又は、前記被接合物と接触する部分が弾性材料により形成されている、ことを特徴とする請求項3記載の接合装置。   The said fixing means is provided with the shape along the shape of the said to-be-joined object, and / or the part which contacts the said to-be-joined object is formed with the elastic material. Welding equipment. 前記固定手段が、真空吸着パッド又は磁石を含むことを特徴とする請求項3記載の接合装置。 The joining apparatus according to claim 3, wherein the fixing means includes a vacuum suction pad or a magnet. 前記供給手段が、前記接合物及び前記被接合物のうちの少なくともいずれか一方の接合面に対して、前記融点低下物質を霧状に噴射する噴霧器を含むことを特徴とする請求項1乃至6のいずれか一項に記載の接合装置。 It said supply means, to at least one of the bonding surfaces of the bonding material and the object to be bonded, to claim 1, characterized in that it comprises a sprayer which injects the melting point lowering agent in a mist form 6 The joining apparatus as described in any one of these . 前記供給手段が、薄板状の前記融点低下物質を前記接合物と前記被接合物との間に固定する固定具を含むことを特徴とする請求項1乃至7のいずれか一項に記載の接合装置。 The joining according to any one of claims 1 to 7, wherein the supply means includes a fixture that fixes the thin plate-shaped melting point lowering substance between the joined article and the joined article. apparatus. 前記回転駆動手段が、電動機を含むことを特徴とする請求項1乃至のいずれか一項に記載の接合装置。 The rotation driving means, the bonding device according to any one of claims 1 to 8, characterized in that it comprises an electric motor. 前記変位駆動手段が、空気シリンダを含むことを特徴とする請求項1乃至のいずれか一項に記載の接合装置。 The displacement drive means, the bonding apparatus according to any one of claims 1 to 9, characterized in that it comprises an air cylinder.
JP2012007066A 2007-03-29 2012-01-17 Joining device Active JP5438781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007066A JP5438781B2 (en) 2007-03-29 2012-01-17 Joining device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007089735 2007-03-29
JP2007089735 2007-03-29
JP2012007066A JP5438781B2 (en) 2007-03-29 2012-01-17 Joining device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009507397A Division JP5002005B2 (en) 2007-03-29 2007-12-28 Joining method and joining apparatus

Publications (2)

Publication Number Publication Date
JP2012101283A JP2012101283A (en) 2012-05-31
JP5438781B2 true JP5438781B2 (en) 2014-03-12

Family

ID=39808016

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009507397A Active JP5002005B2 (en) 2007-03-29 2007-12-28 Joining method and joining apparatus
JP2012007066A Active JP5438781B2 (en) 2007-03-29 2012-01-17 Joining device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009507397A Active JP5002005B2 (en) 2007-03-29 2007-12-28 Joining method and joining apparatus

Country Status (4)

Country Link
JP (2) JP5002005B2 (en)
KR (1) KR101153531B1 (en)
CN (1) CN101678498B (en)
WO (1) WO2008120428A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003108B2 (en) 2011-09-22 2016-10-05 日産自動車株式会社 Joining method and joining part manufacturing method
MX2016000760A (en) * 2013-08-01 2016-04-27 Nippon Steel & Sumitomo Metal Corp Friction welding method.
JP2017003115A (en) * 2015-06-12 2017-01-05 株式会社シグマベース Stud bolt and manufacturing method
US11858062B2 (en) * 2019-07-31 2024-01-02 Fusematic Corporation Multi-position clamp for friction welding operations
US11698097B2 (en) * 2020-01-07 2023-07-11 Dtech Precision Industries Co., Ltd. Method of fitting fastener to object
CN111098018B (en) * 2020-02-11 2021-07-23 重庆理工大学 High-frequency-assistance-based semisolid friction brazing method for dissimilar metals
JP7475571B2 (en) * 2020-03-18 2024-04-30 富山県 Bonding device and bonding method
WO2022064980A1 (en) * 2020-09-25 2022-03-31 国立大学法人大阪大学 Friction pressure welding method
JP7462314B2 (en) * 2020-11-04 2024-04-05 エードス株式会社 Rotary pressure device for rotary friction welding

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030772A (en) * 1973-07-20 1975-03-27
JPS5271359A (en) * 1975-12-11 1977-06-14 Kogyo Gijutsuin Portable frctional welder
JPS5935719B2 (en) * 1980-01-21 1984-08-30 株式会社豊田自動織機製作所 Portable friction welding machine
GB8513240D0 (en) * 1985-05-24 1985-06-26 Metal Box Plc Spin welding machine
GB8601083D0 (en) * 1986-01-17 1986-02-19 Welding Inst Friction welding
US4850772A (en) * 1988-04-15 1989-07-25 Trw Inc. Friction-weldable stud
JPH05208281A (en) * 1992-01-31 1993-08-20 Nippon Steel Corp Detection of abnormality at the time of friction-press-joining steel pipe
JP3587550B2 (en) * 1994-04-22 2004-11-10 株式会社ダイヘン Contact tip for arc welding and method for manufacturing the same
JP3437005B2 (en) * 1995-04-07 2003-08-18 昭和電工株式会社 Friction welding method for dissimilar metal materials and dissimilar metal joining material
JP3491661B2 (en) * 1996-08-22 2004-01-26 トヨタ自動車株式会社 Friction welding method
JPH10180468A (en) * 1996-12-19 1998-07-07 Mitsubishi Heavy Ind Ltd Friction joining method
JPH11129080A (en) 1997-10-28 1999-05-18 Nippon Stad Welding Kk Friction welding machine
JP3435345B2 (en) * 1998-05-29 2003-08-11 株式会社豊田自動織機 Friction welding device
JP4294164B2 (en) 1999-05-24 2009-07-08 昭和電工株式会社 Member joining method by friction welding
JP2001182611A (en) * 1999-12-27 2001-07-06 Isuzu Motors Ltd Cylinder head and method of manufacturing it
JP2001287049A (en) * 2000-04-07 2001-10-16 Asahi Tec Corp Method of friction pressure joining for joining members of spheroidal graphite cast iron
JP4178758B2 (en) * 2001-02-08 2008-11-12 株式会社豊田自動織機 Joint structure of valve seat
JP2002290068A (en) * 2001-03-27 2002-10-04 Furukawa Electric Co Ltd:The Method for manufacturing aluminum case for electronic device
JP4240441B2 (en) * 2001-08-27 2009-03-18 健二 瀬尾 Friction welding method and apparatus
JP2004001087A (en) * 2002-04-09 2004-01-08 Asahi Tec Corp Method for friction pressure welding of wheel carriage member and wheel carriage member using the same
JP2005040805A (en) * 2003-07-24 2005-02-17 Hitachi Ltd Method for sealing working part of heat-resistant member
JP4601052B2 (en) * 2004-12-24 2010-12-22 日産自動車株式会社 Dissimilar metal joining method
JP4656495B2 (en) * 2005-02-22 2011-03-23 日産自動車株式会社 Joining method and joining structure of oxide film forming material

Also Published As

Publication number Publication date
JP2012101283A (en) 2012-05-31
JP5002005B2 (en) 2012-08-15
KR20090123902A (en) 2009-12-02
JPWO2008120428A1 (en) 2010-07-15
CN101678498A (en) 2010-03-24
CN101678498B (en) 2012-05-30
KR101153531B1 (en) 2012-06-11
WO2008120428A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5438781B2 (en) Joining device
JP4770661B2 (en) Friction spot welding method
CA2514913C (en) Out-of-position friction stir welding of high melting temperature alloys
US20090291322A1 (en) Joined body and process for manufacturing the same
US9364917B2 (en) Friction stir processing tool with different shoulder regions
JP7181113B2 (en) Dissimilar metal joining method
JP2007160342A (en) Friction spot welding method and friction spot welding structure
EP3960357A1 (en) Friction stir spot welding device and method for operating same
WO2023166871A1 (en) Linear friction welding method, linear friction weld joint, and welded structure
WO2021002211A1 (en) Joining system, and method for operating same
JP4331038B2 (en) Friction stir spot welding device
JP2002096182A (en) Bonding method, revolving tool and joining body by friction heating
Arun et al. To design and construct a friction welding attachment on lathe, conduct experiment and to study about mechanical behavior of friction welded joints of aluminum rods
Jagadeesha et al. Advancements in Welding Techniques: Surface and Mechanical Property Insights
Ma'arif et al. Performance of Non-rotating Shoulder Tool in Weld Joint and Forces of Friction Stir Welding
CN205437483U (en) A centering instrument for friction stir welding connects
JP4496942B2 (en) Friction spot welding method
Zrak et al. Impact of Technological Parameters of CO2 Laser Cutting on oxide adhesion forces on the Base Material
Baboi et al. Effect of buffer sheets on the shear strength of ultrasonic welded aluminum joints
Watanabe et al. Effect of material flow on joint strength in activation spot joining of Al alloy and steel sheets
Su et al. Application of Automatic Welding System on Aluminum Alloy Corbel
Yang et al. Method for repairing of adhesive-bonded steel
Reisgen et al. Welding or Adhesive Bonding—is this a question for the future?
Bîrdeanu et al. Technological system for studying the pulsed LASER-microTIG hybrid welding process dynamics
JP2006159275A (en) Method and apparatus for friction welding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131213

R150 Certificate of patent or registration of utility model

Ref document number: 5438781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250