JP5438543B2 - Dephosphorization method - Google Patents

Dephosphorization method Download PDF

Info

Publication number
JP5438543B2
JP5438543B2 JP2010033916A JP2010033916A JP5438543B2 JP 5438543 B2 JP5438543 B2 JP 5438543B2 JP 2010033916 A JP2010033916 A JP 2010033916A JP 2010033916 A JP2010033916 A JP 2010033916A JP 5438543 B2 JP5438543 B2 JP 5438543B2
Authority
JP
Japan
Prior art keywords
oxygen
dephosphorization
amount
molten metal
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010033916A
Other languages
Japanese (ja)
Other versions
JP2011168841A (en
Inventor
卓 對馬
裕基 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010033916A priority Critical patent/JP5438543B2/en
Publication of JP2011168841A publication Critical patent/JP2011168841A/en
Application granted granted Critical
Publication of JP5438543B2 publication Critical patent/JP5438543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、脱炭工程に先だって上底吹き転炉型精錬容器にて気体酸素及び固体酸素源を供給して溶銑の脱りん処理を行う脱りん方法に関する。   The present invention relates to a dephosphorization method in which gaseous oxygen and a solid oxygen source are supplied in a top bottom blowing converter type refining vessel prior to the decarburization step to perform dephosphorization of hot metal.

従来より、上底吹き転炉型精錬容器にて溶銑の脱りん処理を行う技術として、例えば、特許文献1〜特許文献3のものがある。
特許文献1では、Siを含有する溶銑を、塩基度(CaO/SiO2 ;重量比)の値が1.5〜3.0の範囲であるスラグを用いて、上底吹き転炉で脱りん精錬するにあたり、底吹き攪拌力ΣεBottomの値を1.5〜3.4(kw/ton)の範囲とし、且つ、上吹き送酸速度QO2 gas と鉄鉱石供給による酸素分換算送酸速度QO2 ore の総和ΣQO2 (Nm3 /min/ton)の値を攪拌力の値に応じて、上吹き送酸形態によって決まる、吹錬期間中の(L/L0 )の平均値(L/L0 )の値を0.25以下にしている。
Conventionally, as a technique for performing dephosphorization processing of hot metal in an upper bottom blown converter type refining vessel, for example, there are those of Patent Documents 1 to 3.
In Patent Document 1, hot metal containing Si is dephosphorized in a top-blown converter using slag having a basicity (CaO / SiO 2 ; weight ratio) in the range of 1.5 to 3.0. In refining, the value of bottom blowing stirring force ΣεBottom is set in the range of 1.5 to 3.4 (kw / ton), and the oxygen blowing rate QO2 ore by the top blowing acid rate QO2 gas and iron ore supply. sum of ΣQO2 the value of (Nm 3 / min / ton), depending on the value of the stirring force, determined by the top-blown oxygen-flow form, the average value of (L / L 0) in blowing period (L / L 0) Is set to 0.25 or less.

特許文献2では、ガスの上底吹き機能を備えた転炉に保持した溶銑に精錬剤を添加し、酸素ガスを上吹きしつつ炉底羽口から吹込むガスで該溶銑を撹拌して脱燐する溶銑の予備処理方法において、前記精錬剤の一部に粒度が2〜5mmの焼結鉱を20kg/t以上用い、且つ該焼結鉱が溶銑中へ持ち込む酸素量が、Aを焼結鉱の酸素含有量とし、Bを溶銑に吹き込む酸素ガス量としたとき、30%≦A/(A+B)×100≦60%を満足するようにしている。   In Patent Document 2, a refining agent is added to hot metal held in a converter equipped with a gas top-bottom blowing function, and the hot metal is stirred and degassed with a gas blown from the furnace bottom tuyere while topping up oxygen gas. In the hot metal pretreatment method for phosphorous, 20 kg / t or more of sintered ore having a particle size of 2 to 5 mm is used as a part of the refining agent, and the amount of oxygen brought into the hot metal by sintering ore sinters A. When the oxygen content of the ore is used and B is the amount of oxygen gas blown into the hot metal, 30% ≦ A / (A + B) × 100 ≦ 60% is satisfied.

特許文献3では、Si含有量が0.3質量%以上の溶銑を転炉形式の炉においてCaOを主成分とする造滓剤と酸素を用いて脱りんする方法であって、造滓剤の平均粒径を10mm以下とし、脱りん後のスラグの塩基度を質量%比で2.0以下としている。   Patent Document 3 discloses a method of dephosphorizing hot metal having a Si content of 0.3 mass% or more using a iron making agent mainly composed of CaO and oxygen in a converter type furnace, The average particle size is set to 10 mm or less, and the basicity of the slag after dephosphorization is set to 2.0 or less in terms of mass%.

特開2002−322506号公報JP 2002-322506 A 特許3705170号公報Japanese Patent No. 3705170 特開2004−190114号公報JP 2004-190114 A

特許文献1では、脱りん処理を行うに際して、底吹き攪拌力密度やL/L0について開示されているものの、脱珪外酸素量、生石灰の粒径は全く考慮されていない。また、特許文献2及び特許文献3では、脱りん処理を行うに際して、生石灰の粒径については開示されているものの、脱珪外酸素量、底吹き攪拌力密度は全く考慮されていない。
即ち、特許文献1〜特許文献3の技術を用いたとしても、脱りんに影響を与える攪拌動力密度、固体酸素比率、脱珪外酸素量、生石灰の粒径、L/L0、溶銑温度を考慮していないため、溶銑のりん濃度[P]を所望とする値以下に確実にすることが難しいのが実情である。
In Patent Document 1, when performing the dephosphorization treatment, although the bottom blowing stirring power density and L / L 0 are disclosed, the amount of oxygen outside desiliconization and the particle size of quicklime are not considered at all. Moreover, in patent document 2 and patent document 3, when performing the dephosphorization process, although the particle size of quicklime is disclosed, the amount of oxygen outside desiliconization and the bottom blowing stirring power density are not considered at all.
That is, even if the techniques of Patent Documents 1 to 3 are used, the stirring power density, the solid oxygen ratio, the amount of oxygen outside desiliconized, the particle size of quicklime, L / L 0 , and hot metal temperature that affect dephosphorization are determined. Since this is not taken into consideration, it is actually difficult to ensure that the phosphorus concentration [P] of hot metal is not more than a desired value.

そこで、本発明は、上記問題点に鑑み、攪拌動力密度と固体酸素比率とを掛け合わせたパラメータZと、脱珪外酸素量との関係、生石灰の粒径、L/L0、溶銑温度を適正範囲にすることにより、脱りん効率を向上させることができる脱りん方法を提供することを目的とする。 Therefore, in view of the above-mentioned problems, the present invention sets the relationship between the parameter Z obtained by multiplying the stirring power density and the solid oxygen ratio, and the amount of oxygen outside desiliconized, the particle size of quicklime, L / L 0 , and hot metal temperature. It aims at providing the dephosphorization method which can improve dephosphorization efficiency by setting it as an appropriate range.

前記目的を達成するために、本発明は、次の手段を講じた。
即ち、本発明における課題解決のための技術的手段は、脱炭工程に先だって上底吹き転炉型精錬容器にて気体酸素及び固体酸素源を供給して溶銑の脱りん処理を行うに際し、処理中の底吹き攪拌動力密度をX[kw/t]と固体酸素比率Y[%]との積をパラメータZと定義して、処理中に供給する酸素量であって脱珪反応に使用される酸素以外の酸素量GO2とパラメータZとの関係を0.00065×Z2−0.12×Z+12.5≦GO2とし、投入する生石灰の粒径を5〜40mmとし、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20にすると共に、脱りん処理後の溶銑温度を1280〜1340℃として脱りん処理を行う点にある。
In order to achieve the above object, the present invention has taken the following measures.
That is, the technical means for solving the problems in the present invention is that when performing dephosphorization of hot metal by supplying gaseous oxygen and a solid oxygen source in an upper bottom blown converter type refining vessel prior to the decarburization step. The product of X [kw / t] and the solid oxygen ratio Y [%] is defined as parameter Z, and the amount of oxygen supplied during the process is used for the desiliconization reaction. The relationship between the oxygen amount G O2 other than oxygen and the parameter Z is 0.00065 × Z 2 −0.12 × Z + 12.5 ≦ G O2 , the particle size of the quick lime to be charged is 5 to 40 mm, and gaseous oxygen is blown The ratio of the depth L 0 of the molten metal to the depth L 0 of the bath is set to 0.01 to 0.20, and the hot metal temperature after the dephosphorization treatment is set to 1280 to 1340 ° C. is there.

本発明によれば、攪拌動力密度と固体酸素比率とを掛け合わせたパラメータZと、脱珪外酸素量との関係、生石灰の粒径、L/L0、溶銑温度を適正範囲にすることにより、脱りん効率を向上させることができる。 According to the present invention, the relationship between the parameter Z obtained by multiplying the stirring power density and the solid oxygen ratio and the amount of oxygen outside desiliconization, the particle size of quick lime, L / L 0 , and the hot metal temperature are within appropriate ranges. The dephosphorization efficiency can be improved.

脱りん方法(脱りん工程)を含む製鋼工程を示した図である。It is the figure which showed the steelmaking process including the dephosphorization method (dephosphorization process). 攪拌動力密度と固体酸素比率とを掛け合わせたパラメータZと、脱珪外酸素量との関係図である。It is a relationship figure of the parameter Z which multiplied the stirring power density and the solid oxygen ratio, and the amount of oxygen outside desiliconization.

以下、本発明の実施の形態を、図面に基づき説明する。
図1は、本発明の脱りん方法(脱りん工程)を含む製鋼工程を示したものである。なお、以下の説明では、溶銑や溶鋼のことを溶湯として説明する。
図1に示すように、一般的に、製鋼工程においては、まず、高炉1から溶湯2を出湯した後、溶湯2を鍋10等にて脱硫処理(脱硫工程)を行う。その後、溶湯2を転炉型精錬容器3に装入して溶湯2に対して脱りん処理(脱りん工程)を行い、その溶湯2を転炉4に装入して脱炭処理(脱炭工程)行うか、あるいは、脱りん終了後の溶湯2をスラグ排滓後に再び転炉型精錬容器3に装入して脱炭処理を行う。脱炭処理を行った溶湯2に対しては、脱ガスや成分調整を行う。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a steel making process including the dephosphorization method (dephosphorization process) of the present invention. In the following description, hot metal or molten steel will be described as molten metal.
As shown in FIG. 1, in general, in the steelmaking process, first, the molten metal 2 is discharged from the blast furnace 1, and then the molten metal 2 is subjected to a desulfurization process (desulfurization process) in a pan 10 or the like. Thereafter, the molten metal 2 is charged into the converter-type smelting vessel 3 and the molten metal 2 is dephosphorized (dephosphorization process). The molten metal 2 is charged into the converter 4 and decarburized (decarburized). Step), or the molten metal 2 after dephosphorization is charged into the converter-type smelting vessel 3 again after the slag is discharged and decarburized. Degassing and component adjustment are performed on the molten metal 2 that has been decarburized.

このように、本発明の脱りん方法は、転炉4にて脱炭処理(脱炭工程)を行う前に、脱炭処理を行う転炉4とは別あるいは同一の転炉型精錬容器3によって、主に、溶湯2に対して[P]を下げる脱りん処理を行うものである。
脱炭処理を行う転炉4は、上吹きランス5から気体酸素を溶湯2等に吹き込む上吹転炉であってもよいし、炉底の羽口6から気体酸素を吹き込む底吹転炉であってもいし、上吹きランス5から気体酸素、羽口6から気体酸素又は不活性ガスを吹き込む上底吹き転炉であってもよい。
Thus, in the dephosphorization method of the present invention, before the decarburization process (decarburization step) is performed in the converter 4, the converter type refining vessel 3 that is different from or the same as the converter 4 that performs the decarburization process. Thus, the dephosphorization process for lowering [P] is mainly performed on the molten metal 2.
The converter 4 that performs the decarburization treatment may be an upper blowing converter that blows gaseous oxygen from the upper blowing lance 5 into the molten metal 2 or the like, or a bottom blowing converter that blows gaseous oxygen from the tuyere 6 at the bottom of the furnace. Alternatively, it may be an upper bottom blowing converter in which gaseous oxygen is blown from the top blowing lance 5 and gaseous oxygen or inert gas is blown from the tuyere 6.

脱りん処理を行う転炉型精錬容器3は、気体酸素を溶銑2に吹き込む上吹きランス7と炉底から酸素又は不活性ガスを溶銑2に吹き込むの羽口8を備えた上底吹き型であって、上吹きランス7からの気体酸素により酸素を供給し、羽口6からの酸素又は不活性ガスにより溶湯2を攪拌するものである。また、転炉型精錬容器3は、供給装置9を備えている。この供給装置9は、副原料[生石灰、固体酸素源(例えば、鉄鉱石・焼結鉱・ミルスケール)を供給するものであって、例えば、ホッパーやシュート等である。   The converter-type smelting vessel 3 for performing the dephosphorization process is an upper bottom blowing type provided with an upper blowing lance 7 for blowing gaseous oxygen into the molten iron 2 and a tuyere 8 for blowing oxygen or inert gas into the molten iron 2 from the furnace bottom. Then, oxygen is supplied by gaseous oxygen from the top blowing lance 7, and the molten metal 2 is stirred by oxygen from the tuyere 6 or inert gas. The converter type refining vessel 3 includes a supply device 9. The supply device 9 supplies auxiliary raw materials [quick lime, a solid oxygen source (for example, iron ore, sintered ore, mill scale), such as a hopper or a chute.

なお、溶湯2の脱りん処理を行うにあたって、混銑車や取鍋を使用することも考えられるが、混銑車や取鍋ではフリーボードが小さいために、スロッピングが発生しやすくなる。このような場合は、スロッピング防止のために、気体酸素や固体酸素源(例えば、酸化鉄)の供給速度を転炉型精錬容器3に比べて遅くする必要があり、処理時間が長くなる。そのため、本発明では、混銑車や取鍋を用いずに、転炉型精錬容器3によって脱りん処理を行うものを対象としている。   In addition, in performing the dephosphorization process of the molten metal 2, it is possible to use a kneading car and a ladle, but since a free board is small in a kneading car and a ladle, slopping tends to occur. In such a case, it is necessary to slow the supply rate of gaseous oxygen or a solid oxygen source (for example, iron oxide) as compared with the converter-type refining vessel 3 in order to prevent slipping, and the processing time becomes longer. Therefore, in this invention, it does not use a kneading car and a ladle, but targets what performs the dephosphorization process with the converter-type refining vessel 3.

以下、本発明の脱りん処理について詳しく説明する。
[処理中に投入する酸素量について]
さて、脱りん処理の際に酸素を供給すると、脱りん反応の前に優先的に脱珪反応が起こる。そこで、本発明では、脱りん処理において脱りん反応よりも優先して脱珪反応が起こり当該脱珪反応により酸素が使用されるため、このような脱珪反応(脱珪処理)にて使用される酸素を除いた量を考慮することにしている。即ち、本発明では、まず、処理中の底吹き攪拌動力密度をX[kw/t]と固体酸素比率Y[%]との積をパラメータZ(Z=XY)と定義している。そして定義したパラメータZと、処理中に供給する酸素量であって脱珪反応に使用される酸素以外の酸素量GO2(以降、説明の便宜上、脱Si外酸素量又は脱珪外酸素量ということがある)との関係が0.00065×Z2−0.12×Z+12.5≦GO2を満たすように、底吹き攪拌動力密度X、固体酸素比率Y、脱珪外酸素量GO2を調整している。
Hereinafter, the dephosphorization process of the present invention will be described in detail.
[Amount of oxygen input during processing]
Now, when oxygen is supplied during the dephosphorization process, the desiliconization reaction occurs preferentially before the dephosphorization reaction. Therefore, in the present invention, desiliconization reaction takes precedence over dephosphorization reaction and oxygen is used in the dephosphorization reaction. Therefore, it is used in such desiliconization reaction (desiliconization treatment). The amount excluding oxygen is taken into consideration. In other words, in the present invention, first, the product of the bottom blowing stirring power density during processing X [kw / t] and the solid oxygen ratio Y [%] is defined as a parameter Z (Z = XY). The defined parameter Z and the amount of oxygen to be supplied during the processing, and the amount of oxygen G O2 other than oxygen used for the desiliconization reaction (hereinafter referred to as the amount of oxygen outside Si or the amount of oxygen outside Si for descriptive convenience The bottom blowing stirring power density X, the solid oxygen ratio Y, and the desiliconized oxygen amount G O2 are set so that the relationship with the following relationship is 0.00065 × Z 2 −0.12 × Z + 12.5 ≦ G O2 It is adjusted.

脱りん反応(脱りん処理)を考えたとき、底吹き攪拌動力密度Xは重要な要素である。例えば、底吹き攪拌動力密度Xが小さ過ぎると、スラグ−溶銑浴面への燐の物質移動が遅れと共に、スラグ中での生石灰の拡散速度が遅くなるため、生石灰の滓化が遅れて脱りん反応に支障を来すことがある。
一方で、底吹き攪拌動力密度Xが大き過ぎると、スラグと溶銑中の炭素との反応が進み過ぎ、スラグ中のFeO(酸化度)が低下してりん濃度[P]を低下させるための酸化源が不足すると共に、生石灰の滓化が遅れて底吹き攪拌動力密度Xが低すぎる場合と同様に脱りん反応に支障を来すことがある。
When considering the dephosphorization reaction (dephosphorization process), the bottom blowing stirring power density X is an important factor. For example, if the bottom blowing stirring power density X is too small, the mass transfer of phosphorus to the slag-hot metal bath surface is delayed and the diffusion rate of quick lime in the slag is slow, so that the quick lime hatching is delayed and dephosphorization is performed. May interfere with the reaction.
On the other hand, if the bottom blowing agitation power density X is too large, the reaction between the slag and carbon in the hot metal proceeds too much, and the FeO (oxidation degree) in the slag is lowered to reduce the phosphorus concentration [P]. In addition to the shortage of sources, the dephosphorization reaction may be hindered as in the case where the bottom blown stirring power density X is too low due to the delayed hatching of quicklime.

このように、底吹き攪拌動力密度Xは、脱りん反応に様々な影響を及ぼすことから、発明者は、脱Si外酸素量GO2を求めるにあたっては重要なパラメータとして用いた。
また、脱りん処理を考えたとき、底吹き動力攪拌動力密度Xの他に固体酸素比率Yも重要な要素である。脱りん処理のために固体酸素源ではなく気体酸素を吹き込んだ場合、例えば、一部の気体酸素は転炉型精錬容器3のCOガスと反応してCO2ガスとなり脱りん反応に寄与しない場合もある。また、気体酸素が溶銑浴面に衝突する部分では、酸素ジェットの強力な衝突圧のため酸素ジェットと溶銑とが直接接触する高温領域(点火領域)が形成されて、その点火領域では脱りん反応が起こらない。ここで、点火領域を作らない方法として特開2004−115910号公報に記載されているような遮断吹錬法があるが、このような方法では上吹きランスの高さと酸素流量とを厳密に制御する必要があり、1ヒート毎に溶銑の装入量や転炉型精錬容器3内に付着した地金等の付着状況が変化する操業では、上吹きランスの高さと酸素流量とを厳密に制御することは難しいことがある。
Thus, bottom-blown agitation power density X, since various affecting dephosphorization reaction, the inventors, the In obtaining the de-Si outside oxygen amount G O2 was used as an important parameter.
In addition, when considering the dephosphorization treatment, the solid oxygen ratio Y in addition to the bottom blowing power agitation power density X is also an important factor. When gaseous oxygen is blown instead of a solid oxygen source for dephosphorization, for example, when some gaseous oxygen reacts with the CO gas in the converter type refining vessel 3 to become CO 2 gas and does not contribute to the dephosphorization reaction There is also. Also, at the part where gaseous oxygen collides with the hot metal bath surface, a high temperature region (ignition region) where the oxygen jet and hot metal are in direct contact is formed due to the strong impinging pressure of the oxygen jet. Does not happen. Here, there is a shut-off blowing method as described in Japanese Patent Application Laid-Open No. 2004-115910 as a method that does not create an ignition region. In such a method, the height of the top blowing lance and the oxygen flow rate are strictly controlled. In operation where the amount of hot metal charged and the adhesion state of metal in the converter smelting vessel 3 change every heat, the height of the top lance and the oxygen flow rate are strictly controlled. It can be difficult to do.

上述した理由から溶銑に酸素を供給するに際しては、気体酸素の代わりに固体酸素源を供給することが好ましいと考えられるが、気体酸素は吹き込むことによりスラグの巻き込みを発生させて脱りん反応を促進させることも期待できる。そのため、脱りん処理においては、固体酸素源と気体酸素との両方を供給することが好ましく、脱りん反応を促進させる気体酸素の作用を考慮すると、固体酸素源と気体酸素とのバランス、即ち、固体酸素比率Yも重要である。   For the reasons described above, when supplying oxygen to the hot metal, it is considered preferable to supply a solid oxygen source instead of gaseous oxygen. However, gaseous oxygen is blown to generate slag entrainment and promote dephosphorization reaction. You can also expect Therefore, in the dephosphorization treatment, it is preferable to supply both a solid oxygen source and gaseous oxygen. In consideration of the action of gaseous oxygen that promotes the dephosphorization reaction, the balance between the solid oxygen source and gaseous oxygen, that is, The solid oxygen ratio Y is also important.

このように、気体酸素と固体酸素源とは、脱りん反応に様々な影響を及ぼすことから、発明者は、気体酸素と固体酸素源の供給比率を示す固体酸素比率Yを、脱Si外酸素量GO2を求めるにあたっては重要なパラメータとして用いた。
そして、発明者は、脱りん反応に様々な影響を及ぼす底吹き攪拌動力密度Xと固体酸素比率Yとの両者の積(XY)をパラメータZとした。底吹き攪拌動力密度Xと固体酸素比率Yとも、その値を変化させるとスラグの酸化度合いが変化するため、このパラメータZは、「スラグの酸化度合いを表すパラメータ」とも言える。
Thus, since the gaseous oxygen and the solid oxygen source have various effects on the dephosphorization reaction, the inventor has determined the solid oxygen ratio Y indicating the supply ratio of the gaseous oxygen and the solid oxygen source as the deoxygenated oxygen. In determining the amount G O2 , it was used as an important parameter.
The inventor determined the parameter Z to be the product (XY) of both the bottom blowing stirring power density X and the solid oxygen ratio Y that have various effects on the dephosphorization reaction. Since both the bottom blowing stirring power density X and the solid oxygen ratio Y change their values, the degree of slag oxidation changes. Therefore, this parameter Z can also be said to be a “parameter representing the degree of slag oxidation”.

即ち、同一の脱Si外酸素量GO2でもスラグの酸化度合い(Z)によって脱りん能が変化するため、脱りん処理後のりん濃度[P]が変化する。このため、スラグの酸化度合いを示すパラメータZに応じて必要な酸素量(脱珪外酸素量)を規定することは非常に有意義なことである。
そこで、発明者は、スラグの酸化度とも言えるパラメータZを様々な実験等によって整理し、脱りん処理後の溶銑のりん濃度[P]を0.025質量%以下にするためには、脱Si外酸素量GO2とZとの関係を0.00065×Z2−0.12×Z+12.5≦GO2とすれば良いことを見出した。
That is, even with the same amount of deoxygenated oxygen O 2 , the dephosphorization ability changes depending on the oxidation degree (Z) of the slag, so that the phosphorus concentration [P] after the dephosphorization treatment changes. For this reason, it is very meaningful to define the necessary oxygen amount (the amount of oxygen outside desiliconization) according to the parameter Z indicating the degree of oxidation of slag.
Therefore, the inventor arranges the parameter Z, which can be said to be the degree of oxidation of slag, by various experiments and the like, and in order to reduce the phosphorus concentration [P] of the hot metal after the dephosphorization process to 0.025% by mass or less, It has been found that the relationship between the external oxygen amount G O2 and Z may be 0.00065 × Z 2 −0.12 × Z + 12.5 ≦ G O2 .

ここで、脱Si外酸素量の上限値は規定していないが、あまりにも酸素量(脱Si外酸素量)が多過ぎる場合には、脱りん処理後の[C]が下がり過ぎ、脱炭処理における熱尤度が無くなる恐れがある。脱炭処理における熱尤度が無くなると、脱炭処理において炭素やFeSi等の昇熱材を投入しなければならずコストが増大する。また、あまりにも酸素量(脱Si外酸素量)が多過ぎる場合には、脱りん処理においてスロッピングが生じやすくなり、歩留まり低下の要因になる。具体的には、本発明が対象としているような、処理後りん目標が低くない一般的な鋼種では、脱Si外酸素量GO2が13Nm3/t以下で充分である。これ以上の酸素量となると脱りんの観点からは問題ないが、熱尤度の問題や、酸素量アップによる処理時間の増大等の不具合が多くなり、もはや効率的な脱りんとは言えなくなる。 Here, although the upper limit value of the oxygen amount outside de-Si is not stipulated, if the amount of oxygen (the amount of oxygen outside de-Si) is too large, [C] after dephosphorization is too low, and decarburization is performed. There is a risk that the heat likelihood in the process is lost. When the heat likelihood in the decarburization process is lost, a heat-up material such as carbon or FeSi must be input in the decarburization process, and the cost increases. Further, when the amount of oxygen (the amount of oxygen outside Si removal) is too large, slopping is likely to occur in the dephosphorization process, which causes a decrease in yield. Specifically, in a general steel type in which the post-treatment phosphorus target is not low, which is the subject of the present invention, an oxygen removal amount of oxygen G O2 of 13 Nm 3 / t or less is sufficient. If the amount of oxygen exceeds this value, there is no problem from the viewpoint of dephosphorization, but problems such as a problem of thermal likelihood and an increase in processing time due to an increase in the amount of oxygen increase, and it can no longer be said that dephosphorization is efficient.

そのため、この実施形態では、脱珪外酸素量GO2の上限を13Nm3/tとして実験を実施した。
脱Si外酸素量GO2は、式(1)により求めることができる。式(1)に示される固体酸素源量(V02(i))は、全ての副原料に含まれる固体酸素源量(V02(S))、即ち、脱りん処理で供給する固体酸素源の総量を示したものであり、式(2)により求めることができる。また、固体酸素源には、2価の酸化鉄(FeO)及び3価の酸化鉄(Fe23)が含まれるために、式(3)により、全酸化鉄中の3価の酸化鉄の濃度を求め、その値を、式(2)に代入することにより、固体酸素源の総量を求めることとしている。
Therefore, in this embodiment, the experiment was conducted with the upper limit of the desiliconized oxygen amount G O2 set to 13 Nm 3 / t.
The amount of oxygen- excluded oxygen G O2 can be obtained from equation (1). The solid oxygen source amount (V 02 (i) ) shown in the formula (1) is the solid oxygen source amount (V 02 (S) ) contained in all the auxiliary materials, that is, the solid oxygen source supplied by the dephosphorization process. The total amount is shown, and can be obtained by equation (2). Further, since the solid oxygen source includes divalent iron oxide (FeO) and trivalent iron oxide (Fe 2 O 3 ), the trivalent iron oxide in the total iron oxide is expressed by the formula (3). The total amount of the solid oxygen source is determined by substituting the value into the equation (2).

なお、FeOとFe23との分析方法、即ち、求め方は、まず、ICP発光分析法において、全鉄濃度(%T.Fe)を求め、臭素メタノール法により、金属鉄濃度(%M.Fe)をJISM8713の方法により求める。また、臭素メタノール法の残査より、EDTA2Na溶液により、(%FeO)をJISM8712の方法により求めた。ここで、FeOとFe23の求め方を説明しているが、この方法は、当業者常法通りである。 In addition, the analysis method of FeO and Fe 2 O 3 , that is, how to obtain it, first, in the ICP emission analysis method, the total iron concentration (% T. Fe) was obtained, and the metal iron concentration (% M .Fe) is obtained by the method of JISM8713. Moreover, (% FeO) was calculated | required by the method of JISM8712 by the EDTA2Na solution from the residue of the bromine methanol method. Here, the method for obtaining FeO and Fe 2 O 3 is described, but this method is in accordance with ordinary methods of those skilled in the art.

上述した固体酸素比率Yは、式(4)で示される固体酸素源の総量(固体酸素量V02(s))と、上吹きランス7により供給した気体酸素量とを合わせた合計酸素供給量のうち、固体酸素源量の割合を示したもので、例えば、式(5)により求めることができる。 The solid oxygen ratio Y described above is the total oxygen supply amount obtained by combining the total amount of solid oxygen source (solid oxygen amount V 02 (s) ) represented by the formula (4) and the amount of gaseous oxygen supplied by the top blowing lance 7. Of these, the ratio of the amount of solid oxygen source is shown, and can be obtained by, for example, the equation (5).

また、上述した底吹き攪拌動力密度Xを求めるにあたっては、森ら(鉄と鋼67(1981),672頁)によって提唱された式、中西ら(鉄と鋼68(1982),A14頁)、によって提唱された式があるが、本発明では、式(6)に示すように、森の式を用いた。   Further, in determining the above-described bottom blowing stirring power density X, the formula proposed by Mori et al. (Iron and Steel 67 (1981), page 672), Nakanishi et al. (Iron and Steel 68 (1982), page A14), In the present invention, the forest formula is used as shown in formula (6).

式(6)において、鋼浴深さh0は、浴の深さL0と同じである(h0=L0)。また、式(6)の溶銑温度は、脱りん処理前と脱りん処理後とを測定して、その平均とした。式(6)のηは、0.06とした(η=0.06)。
[生石灰の粒径について]
さて、脱りん反応は、便宜上、2[P]+5(FeO)+3(CaO)→3(CaO・P25)+5Feと示されるように、酸素とCaOが必要である。このCaOが脱りん反応に寄与するためには、スラグ中に溶融する必要があるが、CaOの融点は文献によって異なるが、2600℃程度であり処理温度よりも非常に高い。このCaOの供給源としては生石灰が一般的であるが、生石灰は大部分CaOからなるため、溶融し難い。従来の技術では、例えば、特開平03−122209号公報や特開2003-12912号公報などに示されるように、蛍石やアルカリ金属酸化物等の融点降下剤を使用することにより、生石灰の融点を下げて溶融し易いようにしていた。このように蛍石等を使用した場合、脱りん処理にて生成したスラグ中には、環境上基準が制限されているフッ素が多く含まれることになり、当該スラグを精錬以外のもの(舗装材や建材等)に使用する際には、スラグの再利用先が制限されるという問題が生じる。
In equation (6), the steel bath depth h 0 is the same as the bath depth L 0 (h 0 = L 0 ). Moreover, the hot metal temperature of the formula (6) was measured before and after dephosphorization treatment, and was averaged. In the equation (6), η was set to 0.06 (η = 0.06).
[About the particle size of quicklime]
For the dephosphorization reaction, oxygen and CaO are necessary for the sake of convenience, as indicated by 2 [P] +5 (FeO) +3 (CaO) → 3 (CaO.P 2 O 5 ) + 5Fe. In order for this CaO to contribute to the dephosphorylation reaction, it must be melted in the slag, but the melting point of CaO varies depending on the literature, but is about 2600 ° C., which is much higher than the processing temperature. As a supply source of CaO, quick lime is generally used. However, quick lime is mostly made of CaO, so it is difficult to melt. In the prior art, for example, as shown in JP-A-03-122209 and JP-A-2003-12912, the melting point of quick lime is obtained by using a melting point depressant such as fluorite or alkali metal oxide. To make it easy to melt. When fluorite is used in this way, the slag produced by the dephosphorization process contains a lot of fluorine, which is restricted by environmental standards. When used for building materials, etc., there is a problem that the reuse destination of slag is limited.

そのため、本発明によれば、従来のように、環境上基準が制限されているフッ素が含まれる融点降下剤を使用しなくても、生石灰が溶融し易いように、生石灰の粒径を小さくしている。具体的には、生石灰の粒径を5mm以上40mm以下としている。なお、生石灰の粒径は、JISZ8801に準拠している篩を用いて判別した。
生石灰の粒径が5mm未満であり小さいと、生石灰を投入した際に、転炉型精錬容器からの上昇気流により飛散したり、炉体の上に設けたガス回収のための集塵機に吸い込まれることがある。即ち、生石灰の粒径が5mm未満であり小さいと、溶湯2の浴面に到達する生石灰の量が少なくなり、生石灰の歩留が低下する。
Therefore, according to the present invention, the particle size of quick lime is reduced so that quick lime can be easily melted without using a melting point depressant containing fluorine, which is restricted by environmental standards. ing. Specifically, the particle size of quicklime is 5 mm or more and 40 mm or less. In addition, the particle size of quicklime was discriminate | determined using the sieve based on JISZ8801.
When the lime particle size is less than 5 mm, when quick lime is charged, it is scattered by the rising air flow from the converter-type refining vessel or sucked into the dust collector for gas recovery provided on the furnace body. There is. That is, if the particle size of quicklime is less than 5 mm, the amount of quicklime reaching the bath surface of the molten metal 2 is reduced, and the yield of quicklime is reduced.

生石灰の粒径が40mmを超えてしまうと、生石灰が溶け難くなってしまうことから、生石灰の粒径は、40mm以下としている。
なお、生石灰を溶湯2に供給する方法として、特開昭63−199815号公報や特開2005−272883号公報に示されているように、インジェクションやブラスティングを用いることによって集塵機に吸い込まれることなく粒径の小さい生石灰を投入することができるが、これらの設備を用いると大掛かりなものとなり、大規模な設備投資が必要となることから、本発明では、生石灰の供給は、炉体の上方から供給装置9等によるものを対象としている。
When the particle size of quick lime exceeds 40 mm, quick lime becomes difficult to melt, so the particle size of quick lime is set to 40 mm or less.
As a method of supplying quick lime to the molten metal 2, as shown in Japanese Patent Laid-Open No. 63-199815 and Japanese Patent Laid-Open No. 2005-272883, it is not sucked into the dust collector by using injection or blasting. Although quick lime with a small particle size can be introduced, if these facilities are used, it becomes a large-scale and a large-scale capital investment is required. Therefore, in the present invention, quick lime is supplied from above the furnace body. It is intended for the supply device 9 or the like.

[溶湯の凹み深さLと浴の深さL0との比について]
溶湯の凹み深さLと浴の深さL0との比は、気体酸素の強さを示す指標であり、脱りん処理などでは吹錬状況の指標として良く用いられる。言い換えれば、Lは、吹錬時、即ち、上吹きランス4から溶銑2に向けて酸素を吹き込んだ際の溶湯の凹み深さであり、L0は、非吹錬時、即ち、上吹きランス4から溶湯に向けて酸素を吹き込んでない状態での浴深さである。溶湯の凹み深さLと、上吹きランス4から酸素を吹き込んだ際の酸素流量との関係は、式(7)で求められる。この式(7)は、「鉄冶金反応工学」[改訂新版]2版 瀬川清著 日刊工業新聞刊94頁(5.5)に記載されている一般的な式である。
[Ratio between the depth L of the molten metal and the depth L 0 of the bath]
The ratio between the depth L 0 of the molten metal and the depth L 0 of the bath is an index indicating the strength of gaseous oxygen, and is often used as an index of the blowing condition in dephosphorization treatment and the like. In other words, L is the depth of the dent of the molten metal when blowing, that is, when oxygen is blown from the top blowing lance 4 toward the molten metal 2, and L 0 is during non-blowing, that is, the top blowing lance. This is the bath depth when oxygen is not blown from 4 toward the molten metal. The relationship between the depth L of the molten metal and the oxygen flow rate when oxygen is blown from the upper blowing lance 4 can be obtained by the equation (7). This formula (7) is a general formula described in “Iron Metallurgical Reaction Engineering” [Revised New Edition] 2nd edition, Kiyoshi Segawa, Nikkan Kogyo Shimbun, page 94 (5.5).

なお、式(7)で示されるノズル係数kは、特許第2736555号公報の図10を用いて上吹きランス4のノズル孔角度と、ノズル孔数との関係から求めた。この実施形態では、6孔の15°の上吹きランス7であり、ノズル係数kは、1.31とした。L0は、特公平4−81734公報等に開示されたマイクロ波レベル計を用いて、空炉での炉底高さ及び溶湯2装入後の湯面高さを測定して、その差で浴深さを求めた。 In addition, the nozzle coefficient k shown by Formula (7) was calculated | required from the relationship between the nozzle hole angle of the top blowing lance 4 and the number of nozzle holes using FIG. 10 of patent 2736555. In this embodiment, the upper blow lance 7 has 6 holes and 15 °, and the nozzle coefficient k is 1.31. L 0 is measured using the microwave level meter disclosed in Japanese Examined Patent Publication No. 4-81734, etc., by measuring the height of the bottom of the furnace in the empty furnace and the level of the molten metal after charging the molten metal 2. The bath depth was determined.

L/L0が大きく、溶湯2に対する気体酸素の衝突圧が強すぎると、脱りん反応が起こりにくい火点領域が大きくなるために、脱りん効率が低下する。また、気体酸素の衝突圧が強すぎると、[C]+1/2O2→COに示される反応が優勢となり、脱りん効率が低下する。
そのため、本発明では、気体酸素を供給するにあたっては、脱りん効率が低下しないように、気体酸素の衝突圧が小さいソフトブローにて気体酸素を吹き込むこととしている。具体的には、L/L0が0.01以上0.20以下となる範囲にて、気体酸素を供給することにより上述したソフトブローを行っている。ここで、L/L0が0.20よりも大きくなると、もはやソフトブローとは言えず、気体酸素の衝突圧が強くなるため、上述した理由により脱りん効率は低下する。
If L / L 0 is large and the collision pressure of gaseous oxygen against the molten metal 2 is too strong, the hot spot region where the dephosphorization reaction is unlikely to occur becomes large, and the dephosphorization efficiency decreases. Moreover, when the collision pressure of gaseous oxygen is too strong, the reaction shown by [C] + 1 / 2O 2 → CO becomes dominant and the dephosphorization efficiency is lowered.
Therefore, in the present invention, when supplying gaseous oxygen, gaseous oxygen is blown by soft blow with a small collision pressure of gaseous oxygen so that dephosphorization efficiency does not decrease. Specifically, the soft blow described above is performed by supplying gaseous oxygen in a range where L / L 0 is 0.01 or more and 0.20 or less. Here, when L / L 0 is larger than 0.20, it cannot be said that soft blow is any longer, and the collision pressure of gaseous oxygen becomes strong, so that the dephosphorization efficiency is lowered for the reason described above.

L/L0が0.01未満であると、気体酸素の吹き込みが弱すぎるため、例えば、多くの気体酸素が溶湯2の浴面に達する前に、炉内のCOガスと反応し(所謂2次燃焼)、スラグ中の酸化鉄量が少なくなり、脱りん効率が低下する。また、L/L0が0.01未満であると、気体酸素の吹き込みが弱すぎるため、気体酸素の衝突圧によるスラグと溶湯の混合が少なくなるため、反応界面積が小さくなり、結果として脱りん効率が低下する。 When L / L 0 is less than 0.01, the blowing of gaseous oxygen is too weak. For example, a large amount of gaseous oxygen reacts with the CO gas in the furnace before reaching the bath surface of the molten metal 2 (so-called 2 Secondary combustion), the amount of iron oxide in the slag decreases, and the dephosphorization efficiency decreases. Further, if L / L 0 is less than 0.01, the blowing of gaseous oxygen is too weak, so that the mixing of slag and molten metal due to the collision pressure of gaseous oxygen is reduced, and the reaction interface area is reduced, resulting in desorption. Phosphorus efficiency decreases.

[溶湯(溶銑)の温度について]
脱りん反応は、同一のスラグ組成である場合には、低温である方が平衡りん濃度が低くなり、反応が進行し易いという特徴があり、脱りん処理終了後の溶銑温度が高い場合には脱りん効率の低下に繋がることから、本発明では、脱りん処理終了後における溶銑温度の上限値を1340℃としている。一方で、脱りん処理において、溶銑温度があまりにも低く低温である場合、スラグ中の石灰(CaO)の飽和溶解度が低下し、その結果、石灰の滓化が遅れることになる。このような場合も脱りん効率の低下を招くことから、本発明では、脱りん処理終了後における溶銑温度の下限値を1280℃としている。
[About the temperature of molten metal]
When the dephosphorization reaction has the same slag composition, the lower the temperature, the lower the equilibrium phosphorus concentration, and the easier the reaction proceeds. When the hot metal temperature after the dephosphorization process is high, In this invention, since it leads to the fall of dephosphorization efficiency, the upper limit of the hot metal temperature after completion | finish of a dephosphorization process is 1340 degreeC. On the other hand, in the dephosphorization process, when the hot metal temperature is too low and the temperature is low, the saturation solubility of lime (CaO) in the slag is lowered, and as a result, the lime hatching is delayed. In such a case, since the dephosphorization efficiency is lowered, the present invention sets the lower limit of the hot metal temperature after the dephosphorization process to 1280 ° C.

表1は、実施条件を示したものである。   Table 1 shows the implementation conditions.

表1に示すように、脱りん処理は、250tonクラスの上底吹き型の転炉型精錬容器にて行った。上吹きにおいては、孔数が6個、孔直径55mm、孔角度15°の上吹きランスを用いた。底吹きガスはN2ガスとした。N2ガスを吹き込む羽口8は、一層環状管(ガスが吹き出す箇所が環型となっているもの)とし、その個数は4個とした。
転炉型精錬炉に装入した溶湯(溶銑)において、[C]=4.2〜4.6質量%、[Si]=0.2〜0.4質量%、[Mn]=0.2〜0.4質量%、[P]=0.100〜0.130質量%とした。HMR(溶銑比)は、当業者常法の配合計算により決定した。
As shown in Table 1, the dephosphorization treatment was performed in a 250-ton class top-bottom blowing type converter-type refining vessel. In top blowing, an upper blowing lance having 6 holes, a hole diameter of 55 mm, and a hole angle of 15 ° was used. The bottom blowing gas was N 2 gas. The tuyere 8 into which N 2 gas is blown is a single-layer tube (where the gas is blown out in a ring shape), and the number thereof is four.
In the molten metal (molten metal) charged into the converter type refining furnace, [C] = 4.2 to 4.6% by mass, [Si] = 0.2 to 0.4% by mass, [Mn] = 0.2 -0.4 mass%, [P] = 0.100-0.130 mass%. The HMR (hot metal ratio) was determined by a formula calculation according to a conventional method of those skilled in the art.

副原料は、転炉型精錬容器内に溶銑、スクラップを投入した後に、供給装置9により全量投入した。脱りん処理に必要なCaO量は、当業者常法の副原料制御により決定し、塩基度は1.5〜2.5に設定した。脱りん処理において、吹錬後の[P]の規格上限値を0.010質量%とした。副原料は、鉄鉱石(0.191Nm3−O2/kg)、焼結鉱(0.177Nm3−O2/kg)、ミルスケール(0.145Nm3−O2/kg)を使用し、当業者常法通りに投入した。 The auxiliary material was charged in its entirety by the supply device 9 after hot metal and scrap were charged into the converter-type refining vessel. The amount of CaO required for the dephosphorization treatment was determined by the auxiliary raw material control of those skilled in the art, and the basicity was set to 1.5 to 2.5. In the dephosphorization treatment, the standard upper limit of [P] after blowing was set to 0.010% by mass. The auxiliary raw materials are iron ore (0.191 Nm 3 —O 2 / kg), sintered ore (0.177 Nm 3 —O 2 / kg), mill scale (0.145 Nm 3 —O 2 / kg), It was input as usual by those skilled in the art.

表2、表3は、表1の実施条件に基づいて脱りん処理を行った実施例及び比較例とをまとめたものである。表2〜表4は、本発明の脱りん方法にて処理を行った実施例と、本発明の脱りん方法とは異なる方法にて処理を行った比較例とをまとめたものである。   Tables 2 and 3 summarize examples and comparative examples in which dephosphorization treatment was performed based on the implementation conditions of Table 1. Tables 2 to 4 summarize the examples treated by the dephosphorization method of the present invention and comparative examples treated by a method different from the dephosphorization method of the present invention.

生石灰の粒径において、最大粒径40mm、最小粒径5mmである場合は、すべての粒子が呼び寸法が40mmより下で40mmにもっとも近い37.5mmのふるい下(すべての粒子が通過する)となり、且つ、呼び寸法が5mmより上で5mmにもっとも近い5.6mmのふるい上(すべての粒子が通過しない)になる。つまり、実施例及び比較例において、5.6mm篩下比率の欄には残ってしまった粒子を%で示し、37.5mm篩上比率の欄にも残ってしまった粒子を%で示した。実施例及び比較例では、気体酸素の量を気酸量として示し、固体酸素源の量を固酸量として示した。表中の下限酸素量は、0.00065×Z2−0.12×Z+12.5の値を示している。 When the maximum particle size is 40 mm and the minimum particle size is 5 mm, the particle size of the quicklime is 37.5 mm below the nominal size of 40 mm and close to 40 mm (all particles pass through). And a nominal size above 5 mm and on a 5.6 mm sieve closest to 5 mm (all particles do not pass). That is, in Examples and Comparative Examples, the particles remaining in the column of 5.6 mm sieving ratio were expressed in%, and the particles remaining in the column of 37.5 mm sieving ratio were expressed in%. In Examples and Comparative Examples, the amount of gaseous oxygen was shown as the amount of gaseous acid, and the amount of solid oxygen source was shown as the amount of solid acid. The lower limit oxygen amount in the table indicates a value of 0.00065 × Z 2 −0.12 × Z + 12.5.

実施例1〜実施例18では、脱珪外酸素量(脱Si外酸素)が下限酸素量を上回っていて、脱珪外酸素量GO2とZとの関係が0.00065×Z2−0.12×Z+12.5≦GO2を満足するものとなっている。即ち、図2に示すように、実施例1〜18では、脱Si外酸素量GO2とZとを示すプロット点が、0.00065×Z2−0.12×Z+12.5≦GO2を満たすエリアAにあるものとなっている。 In Examples 1 to 18, the amount of oxygen outside desiliconization (oxygen outside Si) exceeds the lower limit oxygen amount, and the relationship between the amount of oxygen outside desiliconization G O2 and Z is 0.00065 × Z 2 −0. .12 × Z + 12.5 ≦ G O2 is satisfied. That is, as shown in FIG. 2, in Examples 1 to 18, the plot points indicating the oxygen removal-outside oxygen amounts G O2 and Z are 0.00065 × Z 2 −0.12 × Z + 12.5 ≦ G O2 . It is in the area A to be filled.

また、実施例では、投入する生石灰の粒径を5〜40mmとし(生石灰の欄)、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20とし(L/L0の欄)、脱りん処理後の溶銑温度を1280〜1340℃として(処理後温度の欄)としている。そのため、脱りん処理後に汎用鋼で必要とされる[P]を0.025質量%以下にすることができた(実験結果の欄、評価「○」)。なお、汎用鋼において、吹錬後の[P]の規格上限値が0.025質量%であるということは、特開2001−98314号公報等に記載されているように極めて一般的なことである。 Further, in the examples, the particle size of the quick lime to be charged is 5 to 40 mm (the quick lime column), and the ratio between the depth L 0 of the molten metal and the bath depth L 0 when blowing gaseous oxygen is 0.01. ˜0.20 (L / L0 column), and the hot metal temperature after dephosphorization treatment is 1280 to 1340 ° C. (post-treatment temperature column). Therefore, [P] required for general-purpose steel after dephosphorization treatment could be reduced to 0.025% by mass or less (Experimental result column, evaluation “◯”). In general-purpose steel, the standard upper limit of [P] after blowing is 0.025 mass%, which is very common as described in JP-A-2001-98314 and the like. is there.

一方、比較例19〜比較例29では、脱珪外酸素量(脱Si外酸素)が下限酸素量を下回っていて、脱珪外酸素量GO2とZとの関係が0.00065×Z2−0.12×Z+12.5≦GO2を満たさないするものとなっている。即ち、図2に示すように、比較例19〜比較例29では、脱Si外酸素量GO2とZとを示すプロット点が、0.00065×Z2−0.12×Z+12.5≦GO2を満たさないエリアBにあるものとなっている。 On the other hand, in Comparative Examples 19 to 29, the amount of oxygen outside desiliconization (oxygen outside Si) is below the lower limit oxygen amount, and the relationship between the amount of oxygen outside desiliconization G O2 and Z is 0.00065 × Z 2. −0.12 × Z + 12.5 ≦ G O2 is not satisfied. That is, as shown in FIG. 2, in Comparative Examples 19 to 29, the plot points indicating the oxygen amounts outside of Si removal G O2 and Z are 0.00065 × Z 2 −0.12 × Z + 12.5 ≦ G It is in area B that does not satisfy O2 .

そのため、この比較例では、脱りん効率が低下し、脱りん処理後の[P]を規格値以下にすることができなかった(実験結果の欄、評価「×」)。
比較例30〜比較例32では、生石灰の粒径が5mm未満であり小さいために、溶湯2の浴面に到達する生石灰の量が少ないために脱りん効率が低下し、脱りん処理後の[P]を規格値以下にすることができなかった(実験結果の欄、評価「×」)。比較例33〜比較例34では、生石灰の粒径が40mmを超えて大きいために、生石灰が溶け難くスラグの滓化性が低下するため脱りん効率が低下し、脱りん処理後の[P]を規格値以下にすることができなかった(実験結果の欄、評価「×」)。また、比較例35では、粒径が5mm未満の生石灰や粒径が40mmを超える生石灰を用いたため、脱りん処理後の[P]を規格値以下にすることができなかった(実験結果の欄、評価「×」)。
For this reason, in this comparative example, the dephosphorization efficiency was lowered, and [P] after the dephosphorization treatment could not be reduced to the standard value or less (experimental result column, evaluation “×”).
In Comparative Examples 30 to 32, the particle size of quick lime is less than 5 mm, so that the amount of quick lime reaching the bath surface of the molten metal 2 is small, so that the dephosphorization efficiency is reduced. P] could not be reduced to the standard value or less (Experimental result column, evaluation “×”). In Comparative Example 33 to Comparative Example 34, the particle size of quick lime is larger than 40 mm, so that quick lime is difficult to dissolve and the slag hatchability is lowered, so that the dephosphorization efficiency is reduced, and [P] after the dephosphorization treatment. Could not be less than the standard value (Experimental result column, evaluation “×”). In Comparative Example 35, quick lime having a particle size of less than 5 mm or quick lime having a particle size of more than 40 mm was used, and thus [P] after the dephosphorization treatment could not be reduced to a standard value or less (Experimental result column) , Rating "x").

比較例36〜比較例38では、溶湯の凹み深さLと浴の深さL0との比が0.01未満で小さく気体酸素の吹き込みが弱すぎるため脱りん効率が低下し、脱りん処理後の[P]を規格値以下にすることができなかった(実験結果の欄、評価「×」)。比較例39〜比較例41では、溶湯の凹み深さLと浴の深さL0との比が0.2よりも大きく気体酸素の吹き込みが強すぎるため、もはやソフトブローとは言えない状況下である。そのため、脱りん効率が低下し、脱りん処理後の[P]を規格値以下にすることができなかった(実験結果の欄、評価「×」)。 In Comparative Examples 36 to 38, the ratio of the dent depth L of the molten metal to the bath depth L 0 is less than 0.01, and the blowing of gaseous oxygen is too weak, so the dephosphorization efficiency is lowered and the dephosphorization treatment is performed. Later [P] could not be made to be below the standard value (experimental result column, evaluation “×”). In Comparative Examples 39 to 41, the ratio of the dent depth L of the molten metal to the bath depth L 0 is larger than 0.2 and the blowing of gaseous oxygen is too strong. It is. For this reason, the dephosphorization efficiency was lowered, and [P] after the dephosphorization treatment could not be reduced to the standard value or less (experimental result column, evaluation “×”).

比較例42〜比較例43では、脱りん処理後の溶銑温度が1280℃未満であって当該溶銑温度が低すぎるために生石灰の滓化性が悪くなり、スラグの塩基度が低下してスラグの脱りん能が低下してしまうため、脱りん処理後の[P]を規格値以下にすることができなかった(実験結果の欄、評価「×」)。
比較例44〜比較例47では、脱りん処理後の溶銑温度が1340℃よりも高いため、脱りん処理での温度が高すぎるため脱りん効率が低下し、脱りん処理後の[P]を規格値以下にすることができなかった(実験結果の欄、評価「×」)。
In Comparative Example 42 to Comparative Example 43, the hot metal temperature after dephosphorization is less than 1280 ° C., and the hot metal temperature is too low, so that quick lime hatchability deteriorates, and the basicity of slag decreases and slag is reduced. Since the dephosphorization ability was lowered, [P] after the dephosphorization process could not be made to be equal to or less than the standard value (Experimental result column, evaluation “×”).
In Comparative Examples 44 to 47, the hot metal temperature after the dephosphorization treatment is higher than 1340 ° C., so the temperature in the dephosphorization treatment is too high, so the dephosphorization efficiency is lowered, and [P] after the dephosphorization treatment is reduced. It could not be less than the standard value (experimental result column, evaluation “×”).

以上のように、本発明では、攪拌動力密度と固体酸素比率とを掛け合わせたパラメータZと、脱珪外酸素量GO2との関係を0.00065×Z2−0.12×Z+12.5≦GO2とし、生石灰の粒径、L/L0、溶銑温度を適正範囲にすることにより、脱りん効率を向上させることができる。
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
As described above, in the present invention, the relationship between the parameter Z obtained by multiplying the stirring power density and the solid oxygen ratio and the amount of oxygen outside desiliconized G O2 is 0.00065 × Z 2 −0.12 × Z + 12.5. Dephosphorization efficiency can be improved by setting ≦ G O2 and setting the quick lime particle size, L / L 0 , and hot metal temperature within appropriate ranges.
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 高炉
2 溶湯(溶銑、溶鋼)
3 転炉型精錬容器
4 転炉
5 上吹きランス
6 羽口
7 上吹きランス
8 羽口
9 供給装置
1 Blast furnace 2 Molten metal (molten metal, molten steel)
3 Converter type refining vessel 4 Converter 5 Upper blowing lance 6 Tuyere 7 Upper blowing lance 8 Feather 9 Feeding device

Claims (1)

脱炭工程に先だって上底吹き転炉型精錬容器にて気体酸素及び固体酸素源を供給して溶銑の脱りん処理を行うに際し、
処理中の底吹き攪拌動力密度をX[kw/t]と固体酸素比率Y[%]との積をパラメータZと定義して、処理中に供給する酸素量であって脱珪反応に使用される酸素以外の酸素量GO2とパラメータZとの関係を0.00065×Z2−0.12×Z+12.5≦GO2とし、
投入する生石灰の粒径を5〜40mmとし、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20にすると共に、脱りん処理後の溶銑温度を1280〜1340℃として脱りん処理を行うことを特徴とする脱りん方法。
Prior to the decarburization process, when supplying the gaseous oxygen and solid oxygen source in the top bottom blowing converter type refining vessel,
The product of the bottom blowing stirring power density during processing X [kw / t] and the solid oxygen ratio Y [%] is defined as parameter Z, and is the amount of oxygen supplied during processing and used for desiliconization reaction. The relationship between the oxygen amount G O2 other than oxygen and the parameter Z is 0.00065 × Z 2 −0.12 × Z + 12.5 ≦ G O2
The particle size of the quicklime to be added is 5 to 40 mm, and the ratio of the depth L 0 of the molten metal and the depth L 0 of the bath when gaseous oxygen is blown is 0.01 to 0.20, and dephosphorization treatment is performed. A dephosphorization method characterized by performing a dephosphorization treatment at a subsequent hot metal temperature of 1280 to 1340 ° C.
JP2010033916A 2010-02-18 2010-02-18 Dephosphorization method Expired - Fee Related JP5438543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033916A JP5438543B2 (en) 2010-02-18 2010-02-18 Dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033916A JP5438543B2 (en) 2010-02-18 2010-02-18 Dephosphorization method

Publications (2)

Publication Number Publication Date
JP2011168841A JP2011168841A (en) 2011-09-01
JP5438543B2 true JP5438543B2 (en) 2014-03-12

Family

ID=44683253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033916A Expired - Fee Related JP5438543B2 (en) 2010-02-18 2010-02-18 Dephosphorization method

Country Status (1)

Country Link
JP (1) JP5438543B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171776B2 (en) * 2013-09-18 2017-08-02 新日鐵住金株式会社 Hot metal refining method
JP2016180142A (en) * 2015-03-23 2016-10-13 株式会社神戸製鋼所 Molten iron preliminary treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147506A (en) * 1982-02-27 1983-09-02 Kawasaki Steel Corp Preliminary treatment of molten iron
JP3940280B2 (en) * 2001-09-27 2007-07-04 新日本製鐵株式会社 How to remove hot metal
JP5233378B2 (en) * 2008-04-10 2013-07-10 新日鐵住金株式会社 Hot phosphorus dephosphorization method

Also Published As

Publication number Publication date
JP2011168841A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP6743915B2 (en) Method for desulfurizing molten steel and desulfurizing agent
JP5438527B2 (en) Dephosphorization method for producing ultra-low phosphorus steel
JP2021511436A (en) Method of waste in the production process of ultra-low phosphorus steel and method of production of ultra-low phosphorus steel Alternate citation of related applications The application number of this application submitted to the Priority Bureau of China on December 3, 2018 is 2018114635554. Priority is claimed based on a Chinese application whose name is "Method of Elimination in the Production Process of Ultra-Low Phosphate Steel and Method of Production of Ultra-Low Phosphate Steel", the entire contents of which are incorporated herein by reference. Is done.
JP6028755B2 (en) Method for melting low-sulfur steel
JP5438543B2 (en) Dephosphorization method
JP5233378B2 (en) Hot phosphorus dephosphorization method
TWI685577B (en) Smelting method of high manganese steel
KR102260155B1 (en) How to dephosphorize a chartered boat
JP6037933B2 (en) Hot metal dephosphorization method with high iron yield
JP5888194B2 (en) Desulfurization method for molten steel
JP5404269B2 (en) Dephosphorization method
JP6806288B2 (en) Steel manufacturing method
JP5506515B2 (en) Dephosphorization method
JP6038012B2 (en) Hot metal dephosphorization method with excellent dephosphorization efficiency and iron yield
JP5388805B2 (en) Dephosphorization method using decarburized slag
JP5404268B2 (en) Dephosphorization method
KR101660774B1 (en) The converter operation method
JP4183524B2 (en) Manufacturing method of high cleanliness steel
WO2022259805A1 (en) Molten steel denitrification method and steel production method
JP6743713B2 (en) Hot metal decarburization blowing method
JP2011190532A (en) Dephosphorization treatment method of molten iron in mixer car
JP5460436B2 (en) Dephosphorization method
JP2022105879A (en) Refining method
JP2022105886A (en) Refining method
JP2018059161A (en) Dephosphorization method of molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131213

R150 Certificate of patent or registration of utility model

Ref document number: 5438543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees