JP5436542B2 - How to prevent damage to carbon reaction vessels - Google Patents

How to prevent damage to carbon reaction vessels Download PDF

Info

Publication number
JP5436542B2
JP5436542B2 JP2011506946A JP2011506946A JP5436542B2 JP 5436542 B2 JP5436542 B2 JP 5436542B2 JP 2011506946 A JP2011506946 A JP 2011506946A JP 2011506946 A JP2011506946 A JP 2011506946A JP 5436542 B2 JP5436542 B2 JP 5436542B2
Authority
JP
Japan
Prior art keywords
substantially cylindrical
cylindrical body
thermal expansion
ring
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011506946A
Other languages
Japanese (ja)
Other versions
JPWO2010113323A1 (en
Inventor
靖史 松尾
誠 松倉
裕介 和久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Publication of JPWO2010113323A1 publication Critical patent/JPWO2010113323A1/en
Application granted granted Critical
Publication of JP5436542B2 publication Critical patent/JP5436542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0272Graphite

Description

本発明は、カーボンからなる複数の略円筒体を連結したカーボン製反応容器を熱衝撃による破損から防止する方法であって、特にテトラクロロシランと水素とを反応させてトリクロロシランに転換するための反応炉に使用されるカーボン製反応容器の破損防止方法に関する。   The present invention is a method for preventing a carbon reaction vessel in which a plurality of substantially cylindrical bodies made of carbon are connected from being damaged by thermal shock, and particularly a reaction for reacting tetrachlorosilane with hydrogen to convert it to trichlorosilane. The present invention relates to a method for preventing damage to a carbon reaction vessel used in a furnace.

トリクロロシラン(SiHCl)は、半導体、液晶パネル、太陽電池等の製造に用いられる特殊材料ガスである。近年、需要は順調に拡大し、エレクトロニクス分野で広く使用されるCVD材料として、今後も伸びが期待されている。Trichlorosilane (SiHCl 3 ) is a special material gas used for manufacturing semiconductors, liquid crystal panels, solar cells, and the like. In recent years, demand has been steadily expanding, and growth is expected as a CVD material widely used in the electronics field.

トリクロロシランは、テトラクロロシラン(SiCl)と水素(H)とを接触させ、以下の熱平衡状態を達成することによって生成される。
SiCl+H⇔SiHCl+HCl (1)
この反応は、ガス化したテトラクロロシランと水素とからなる原料ガスを反応炉に収容されたカーボン製反応容器内おいて700〜1400℃に加熱することによって行われる。
Trichlorosilane is produced by contacting tetrachlorosilane (SiCl 4 ) and hydrogen (H 2 ) to achieve the following thermal equilibrium state.
SiCl 4 + H 2 ⇔SiHCl 3 + HCl (1)
This reaction is performed by heating a source gas composed of gasified tetrachlorosilane and hydrogen to 700 to 1400 ° C. in a carbon reaction vessel accommodated in a reaction furnace.

上記反応によりトリクロロシランを製造するための従来のカーボン製反応容器としては、例えば特許文献1に記載されたものがある。この文献には、炭化珪素被膜処理された数個の略円筒体(略円筒状物)を積み重ねて形成されたカーボン製反応容器が提案されている。   As a conventional carbon reaction vessel for producing trichlorosilane by the above reaction, for example, there is one described in Patent Document 1. This document proposes a carbon reaction vessel formed by stacking several substantially cylindrical bodies (substantially cylindrical objects) treated with a silicon carbide coating.

特許第3529070号公報Japanese Patent No. 3529070

テトラクロロシランと水素とを反応させるためのカーボン製反応容器は、優れた耐久性や伝熱効率を実現するために本来は一体成型されていることが好ましいが、製造プラントで使用される場合には規模が大きくなるため、特許文献1に提案されているように、カーボン製の複数の略円筒体を連結一体化させたものが用いられる。   The carbon reaction vessel for reacting tetrachlorosilane with hydrogen is preferably integrally molded to achieve excellent durability and heat transfer efficiency, but it is not suitable for use in production plants. Therefore, as proposed in Patent Document 1, a plurality of carbon substantially cylindrical bodies connected and integrated are used.

このようなカーボン製反応容器は、例えば図1に示すように、カーボン製の略円筒体101同士を安定に連結させるために、略円筒体101の上端の内径が胴体部104の内径よりも拡大され、上端と胴体部104との内径差により生じた段差により肩部102が形成され、その一方、略円筒体101の下端の外径が胴体部104の外径より縮小され、下端と胴体部104との外径差により生じた段差により突出部103が形成されている。肩部102と突出部103は、略円筒体101同士を連結する際に、一方の略円筒体101の突出部103が、他方の略円筒体101の肩部102に嵌合するように、肩部102の深さと突出部103の長さとが略同一となるように設計されている。また、略円筒体101同士を螺合締結すべく、肩部102の内周面と突出部103の外周面には、対応するネジ山またはネジ溝(不図示)が設けられている場合もある。   In such a carbon reaction container, for example, as shown in FIG. 1, the inner diameter of the upper end of the substantially cylindrical body 101 is larger than the inner diameter of the body portion 104 in order to stably connect the substantially cylindrical bodies 101 made of carbon. The shoulder 102 is formed by the step generated by the difference in inner diameter between the upper end and the body portion 104. On the other hand, the outer diameter of the lower end of the substantially cylindrical body 101 is reduced from the outer diameter of the body portion 104. The protrusion 103 is formed by a step generated due to a difference in outer diameter with respect to 104. The shoulder 102 and the protrusion 103 are arranged so that when the substantially cylindrical bodies 101 are connected to each other, the protrusion 103 of one of the substantially cylindrical bodies 101 is fitted to the shoulder 102 of the other substantially cylindrical body 101. The depth of the portion 102 and the length of the protruding portion 103 are designed to be substantially the same. Further, in order to screw and fasten the substantially cylindrical bodies 101 to each other, a corresponding screw thread or screw groove (not shown) may be provided on the inner peripheral surface of the shoulder portion 102 and the outer peripheral surface of the protruding portion 103. .

しかしながら、上記構造の略円筒体101は、その上端および下端に肩部102および突出部103を有するため、両端の肉厚が胴体部104のほぼ半分近くにまで薄くなってしまう。その結果、略円筒体101の上下端部が構造上脆くなってしまう。
その上、複数の略円筒体101を連結一体化して使用するため、急激な温度変化を加えると、連結部における一方の略円筒体の突出部103と他方の略円筒体の肩部102との熱膨張量または熱収縮量の相違により、両者間にかかる径方向の応力が変化する。この応力が顕著に増大すると、肉厚の薄い肩部102や突出部103が負荷に耐えきれず割れやひび割れを生じ、カーボン製反応容器100を破損する場合がある。
However, since the substantially cylindrical body 101 having the above structure has the shoulder portion 102 and the protruding portion 103 at the upper end and the lower end thereof, the thickness at both ends is reduced to almost half of the body portion 104. As a result, the upper and lower end portions of the substantially cylindrical body 101 become structurally fragile.
In addition, since a plurality of substantially cylindrical bodies 101 are connected and integrated for use, if a sudden temperature change is applied, the protrusion 103 of one of the substantially cylindrical bodies and the shoulder 102 of the other substantially cylindrical body at the connecting portion. Due to the difference in thermal expansion or thermal shrinkage, the radial stress applied between the two changes. When this stress is remarkably increased, the thin shoulder portion 102 and the protruding portion 103 cannot withstand the load, causing cracks and cracks, which may damage the carbon reaction vessel 100.

本発明は上記事情に鑑みてなされたものであり、カーボンからなる複数の略円筒体を連結したカーボン製反応容器を熱衝撃による破損から防止する方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for preventing a carbon reaction vessel in which a plurality of substantially cylindrical bodies made of carbon are connected from being damaged by thermal shock.

本発明者等は、前記課題を解決する方法を鋭意検討した結果、肩部や突出部を有しない複数の直円筒状の略円筒体を用い、これらの略円筒体同士の連結部を外周側からカーボン製のリングを用いて締結することにより、高熱環境下でカーボン製反応容器を使用しても連結部における割れの発生を抑制できることを見出した。
しかしこの場合であっても、同一の材質を用いて、同一の形状および寸法となるように製造された一見同一に見える略円筒体であっても、略円筒体毎に熱膨張係数が異なり、連結の組み合わせ順によってはカーボン製反応容器の割れや気密性に影響を与えることを見出した。また、カーボン製のリングも略円筒体と同様に熱膨張するため、締結する略円筒体との熱膨張係数の相違によっては、連結部に割れを発生したり気密性に影響を与えたりすることを見出した。
As a result of earnestly examining the method for solving the above problems, the present inventors have used a plurality of straight cylindrical substantially cylindrical bodies that do not have shoulders or protrusions, and the connecting parts between these substantially cylindrical bodies are on the outer peripheral side. From the above, it was found that by using a carbon ring, it is possible to suppress the occurrence of cracks in the connecting portion even when a carbon reaction vessel is used in a high heat environment.
However, even in this case, using the same material, even if it is a substantially cylindrical body that appears to be the same shape and size, the thermal expansion coefficient differs for each substantially cylindrical body, It has been found that depending on the combination order of the coupling, it may affect the cracking and airtightness of the carbon reaction vessel. In addition, since the carbon ring also thermally expands in the same manner as the substantially cylindrical body, depending on the difference in thermal expansion coefficient from the substantially cylindrical body to be fastened, cracks may occur in the connecting part or the airtightness may be affected. I found.

そこで、本発明者等は、各略円筒体およびリングの熱膨張係数を予め測定しておき、連結する一方の略円筒体の上端と他方の略円筒体の下端との熱膨張係数の差が小さくなるような順序で略円筒体を配置し、略円筒体同士を略円筒体との熱膨張係数の差が小さいリングを用いて締結することにより、カーボン製反応容器を熱衝撃による破損から防止できることを見出し、本発明に至った。   Therefore, the present inventors have previously measured the thermal expansion coefficient of each substantially cylindrical body and ring, and the difference in thermal expansion coefficient between the upper end of one of the substantially cylindrical bodies and the lower end of the other substantially cylindrical body is determined. Arrange the cylinders in order of decreasing size, and fasten the cylinders with a ring that has a small difference in thermal expansion coefficient from the cylinders to prevent the carbon reaction vessel from being damaged by thermal shock. As a result, the inventors have found out that the present invention can be achieved.

すなわち、本発明のカーボン製反応容器の破損防止方法は、カーボン製の複数の略円筒体を、互いに連結される一方の略円筒体の連結上端部における熱膨張係数と他方の略円筒体の連結下端部における熱膨張係数との差が小さくなるような順序で端部同士を突き合わせて略同軸に配置し、突き合わせ端部を略円筒体の熱膨張係数との差が小さいカーボン製のリングで締結することを特徴とする。   That is, the method for preventing breakage of a carbon reaction vessel according to the present invention comprises connecting a plurality of carbon substantially cylindrical bodies to a coefficient of thermal expansion at the upper end of one of the substantially cylindrical bodies connected to each other and the other substantially cylindrical body. The ends are butted together in an order that reduces the difference from the coefficient of thermal expansion at the lower end, and is arranged approximately coaxially. The butted ends are fastened with a carbon ring that has a small difference from the coefficient of thermal expansion of the cylindrical body. It is characterized by doing.

このような構成とすることにより、各連結部において、一方の略円筒体の熱膨張量と他方の略円筒体の熱膨張量との差を低減することができ、しかも、いずれの略円筒体の熱膨張量とリングの熱膨張量との差をも低減することができるため、連結部にかかる応力の増大を抑制でき、カーボン製反応容器の破損を防止することができる。   By adopting such a configuration, the difference between the thermal expansion amount of one substantially cylindrical body and the thermal expansion amount of the other substantially cylindrical body can be reduced in each connecting portion, and any of the substantially cylindrical bodies can be reduced. Since the difference between the amount of thermal expansion and the amount of thermal expansion of the ring can also be reduced, an increase in stress applied to the connecting portion can be suppressed, and damage to the carbon reaction vessel can be prevented.

従来のカーボン製反応容器を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the conventional carbon reaction container. 本発明において取り扱うカーボン製反応容器の一形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows one form of the carbon-made reaction containers handled in this invention. 本発明において取り扱う略円筒体の一形態を示す概略斜視図である。It is a schematic perspective view which shows one form of the substantially cylindrical body handled in this invention. 本発明において取り扱うリングの一形態を示す概略斜視図である。It is a schematic perspective view which shows one form of the ring handled in this invention.

1: カーボン製反応容器
2: 略円筒体
3: リング
4: 天蓋
5: 底板
6: 導入口
7: 抜出口
8: 連結上端部
9: 連結下端部
100:カーボン製反応容器
101:略円筒体
102:肩部
103:突出部
104:胴体部
1: carbon reaction vessel 2: substantially cylindrical body 3: ring 4: canopy 5: bottom plate 6: inlet port 7: outlet 8: connection upper end portion 9: connection lower end portion 100: carbon reaction vessel 101: substantially cylindrical body 102 : Shoulder part 103: Protruding part 104: Body part

以下、本発明の一実施形態について、図面を用いて説明する。本実施形態では、特に、テトラクロロシランと水素とを含む原料ガスからトリクロロシランと塩化水素とを含む反応生成ガスを生成するために用いられるカーボン製反応容器の破損防止方法について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, a method for preventing damage to a carbon reaction vessel used to generate a reaction product gas containing trichlorosilane and hydrogen chloride from a raw material gas containing tetrachlorosilane and hydrogen will be described.

本実施形態で扱うカーボン製反応容器1は、図2に示すように、複数のカーボン製の直円筒形状の略円筒体2を、端部同士を突き合わせて略同軸に上下に配し、突き合わせ端部を外側からカーボン製のリング3で螺合締結することにより構成されている。
最上段に配される略円筒体は、上端側が閉塞されていてカーボン製反応容器1の天蓋4を構成し、最下段に配される略円筒体は、下端側が閉塞されていてカーボン製反応容器1の底板5を構成している。また、底板5の略中央には原料ガスをカーボン製反応容器1の内部に取り込むための導入口6が形成され、天蓋4の近傍に位置する略円筒体の側壁には反応生成ガスをカーボン製反応容器1の外部へ導出するための抜出口7が形成されている。
As shown in FIG. 2, the carbon reaction vessel 1 handled in the present embodiment has a plurality of carbon-made substantially cylindrical bodies 2 that are arranged substantially vertically coaxially with their ends abutted to each other. It is configured by screwing and fastening the part with a carbon ring 3 from the outside.
The substantially cylindrical body arranged at the uppermost stage is closed at the upper end side to form the canopy 4 of the carbon reaction container 1, and the substantially cylindrical body arranged at the lowermost stage is closed at the lower end side to form a carbon reaction container. 1 bottom plate 5 is formed. In addition, an introduction port 6 for taking the source gas into the carbon reaction vessel 1 is formed in the approximate center of the bottom plate 5, and the reaction product gas is made of carbon on the side wall of the substantially cylindrical body located near the canopy 4. An outlet 7 for leading out of the reaction vessel 1 is formed.

テトラクロロシランと水素とを含む原料ガスからトリクロロシランと塩化水素とを含む反応生成ガスを生成するには、このカーボン製反応容器1を外側からヒータ(図示せず)で加熱してカーボン製反応容器1の内部温度を700〜1400℃に保ち、導入口6から供給される原料ガスをカーボン製反応容器1の内部で反応させ、生成された反応生成ガスを抜出口7から取り出す。   In order to generate a reaction product gas containing trichlorosilane and hydrogen chloride from a raw material gas containing tetrachlorosilane and hydrogen, the carbon reaction vessel 1 is heated from the outside with a heater (not shown) and a carbon reaction vessel is produced. 1 is maintained at 700 to 1400 ° C., the raw material gas supplied from the inlet 6 is reacted inside the carbon reaction vessel 1, and the generated reaction product gas is taken out from the outlet 7.

<略円筒体>
略円筒体2は、図3に示すように、リング3による締結に関与する上下の端部、すなわち連結上端部8および連結下端部9の外周に雄ネジが形成されただけの直円筒形状であり、従来のカーボン製反応容器に用いられていた略円筒体のように上端もしくは下端に肩部や突出部が形成されていない。そのため、大きな凹凸のない極めて単純な形状であるとともに、肉厚をその高さ方向全体にわたってほぼ均一とすることができることから、物理的衝撃や熱的衝撃に対して優れた耐性を有する。
<Substantially cylindrical body>
As shown in FIG. 3, the substantially cylindrical body 2 has a right cylindrical shape in which male screws are formed on the upper and lower ends involved in the fastening by the ring 3, that is, the outer periphery of the connection upper end portion 8 and the connection lower end portion 9. There are no shoulders or protrusions at the upper end or the lower end like the substantially cylindrical body used in conventional carbon reaction vessels. Therefore, it has an extremely simple shape without large unevenness, and the thickness can be made almost uniform over the entire height direction, so that it has excellent resistance to physical shock and thermal shock.

略円筒体2の厚みは、強度を保持するため、並びに、その表面に施す後記の炭化ケイ素被膜の剥離を避けるために、典型的には、0.5〜20cmとするのが好ましく、1.5cm〜15cmとするのがさらに好ましい。   The thickness of the substantially cylindrical body 2 is typically preferably 0.5 to 20 cm in order to maintain the strength and to avoid peeling of the silicon carbide coating described later on the surface thereof. More preferably, it is 5 cm to 15 cm.

略円筒体2の連結上端部8および連結下端部9の外周には、それぞれ略円筒体2をカーボン製のリング3に螺合させるための雄ネジが形成されている。雄ネジの形成幅は、特に限定されるものではないが、リング3との螺合締結を確実なものとするために、略円筒体2の円筒高さの8/100以上、さらには9/100以上とするのが好ましい。雄ネジの巻きの方向、条数、ネジ山の形状、径およびピッチは、特に限定されるものではない。   Male screws for screwing the substantially cylindrical body 2 to the carbon ring 3 are formed on the outer circumferences of the upper and lower connecting ends 8 and 9 of the substantially cylindrical body 2. The formation width of the male screw is not particularly limited, but is 8/100 or more of the cylindrical height of the substantially cylindrical body 2 in order to ensure the threaded fastening with the ring 3, and further 9 / 100 or more is preferable. The direction of winding of the external thread, the number of threads, the shape of the thread, the diameter and the pitch are not particularly limited.

また、略円筒体2を構成する材質としては、気密性に優れた黒鉛材が好ましく、特に、微粒子構造のため強度が高く、熱膨張等の特性がどの方向に対しても同一であることから耐熱性および耐食性にも優れている等方性高純度黒鉛を用いることが好ましい。   The material constituting the substantially cylindrical body 2 is preferably a graphite material having excellent airtightness, and particularly has a high strength due to the fine particle structure, and the characteristics such as thermal expansion are the same in any direction. It is preferable to use isotropic high-purity graphite that is also excellent in heat resistance and corrosion resistance.

<リング>
リング3は、図4に示すように、内周面に雌ネジが形成されただけの略円環状のリングである。略円筒体2と同様に、大きな凹凸のない極めて単純な形状であるとともに、肉厚もほぼ均一であることから、物理的衝撃や熱衝撃に対して優れた耐性を有する。
<Ring>
As shown in FIG. 4, the ring 3 is a substantially annular ring in which an internal thread is formed on the inner peripheral surface. Similar to the substantially cylindrical body 2, it has an extremely simple shape without large unevenness and has a substantially uniform thickness, and therefore has excellent resistance to physical and thermal shocks.

リング3は、その内周面に形成した雌ネジによって、略円筒体2の連結上端部8および連結下端部9の外周に設けた雄ネジに螺合する必要性から、その内径は略円筒体2の外径とほぼ同一とされる。   The inner diameter of the ring 3 is substantially cylindrical because it is necessary to be screwed to the external threads provided on the outer periphery of the connecting upper end 8 and the connecting lower end 9 of the cylindrical body 2 by a female screw formed on the inner peripheral surface thereof. 2 is almost the same as the outer diameter.

リング3の径方向の幅(厚み)は、強度を保持するため、並びに、その表面に施す後記の炭化ケイ素被膜の剥離を避けるために、典型的には、0.5〜20cm、好ましくは1.5cm〜15cmとするのが好ましい。   The radial width (thickness) of the ring 3 is typically 0.5 to 20 cm, preferably 1 in order to maintain strength and to avoid peeling of the silicon carbide coating described later on the surface. It is preferable to set it as 5 cm-15 cm.

リング3の回転軸方向の幅(高さ)は、連結される一方の略円筒体2の連結上端部8および他方の略円筒体2の連結下端部9に確実に螺合するものでなければならない。典型的には、略円筒体2とリング3とを螺合させた場合に、一方の略円筒体2がリング3の高さの半分までしか螺入できないことを考慮して、リング3の高さは、略円筒体2の円筒高さの10/100以上かつ1/2以下、さらには12/100以上かつ1/2以下とすることが好ましい。   The width (height) of the ring 3 in the direction of the rotation axis is not to be surely screwed to the connection upper end 8 of the one substantially cylindrical body 2 and the connection lower end 9 of the other substantially cylindrical body 2. Don't be. Typically, when the substantially cylindrical body 2 and the ring 3 are screwed together, considering that one of the substantially cylindrical bodies 2 can be screwed only up to half the height of the ring 3, the height of the ring 3 is increased. The height is preferably 10/100 or more and 1/2 or less, more preferably 12/100 or more and 1/2 or less, of the cylindrical height of the cylindrical body 2.

リング3の内周面に形成される雌ネジの巻きの方向、条数、ネジ溝の形状、径およびピッチは、連結される略円筒体2の連結上端部8および連結下端部9の外周面に形成された雄ネジに対応するものでなければならない。   The winding direction, the number of threads, the shape of the thread groove, the diameter, and the pitch of the female screw formed on the inner peripheral surface of the ring 3 are the outer peripheral surfaces of the connected upper end 8 and the connected lower end 9 of the substantially cylindrical body 2 to be connected. It must correspond to the male screw formed on.

また、リング3を構成する材質は、熱膨張係数において略円筒体2と極端に相違しないよう、略円筒体2を構成する材質と同一であることが好ましい。   Moreover, it is preferable that the material which comprises the ring 3 is the same as the material which comprises the substantially cylindrical body 2 so that it may not differ from the substantially cylindrical body 2 extremely in a thermal expansion coefficient.

<表面処理>
略円筒体2およびリング3は、カーボンを主材料とするため、カーボン製反応容器1内に供給される水素や、水素の燃焼により生成する水によって、以下に示すように、組織の減肉または脆化を受けてしまう。
C+2H→CH
C+HO→H+CO
C+2HO→2H+CO
炭化ケイ素被膜はこれらの化学的分解に対して極めて耐性が高いため、カーボン製の略円筒体2およびリング3の表面に炭化ケイ素被膜を形成することが好ましい。
<Surface treatment>
Since the substantially cylindrical body 2 and the ring 3 are mainly made of carbon, as shown below, the thickness of the tissue is reduced or reduced by hydrogen supplied into the carbon reaction vessel 1 or water generated by hydrogen combustion. It will be embrittled.
C + 2H 2 → CH 4
C + H 2 O → H 2 + CO
C + 2H 2 O → 2H 2 + CO 2
Since the silicon carbide coating is extremely resistant to such chemical decomposition, it is preferable to form the silicon carbide coating on the surfaces of the substantially cylindrical body 2 and the ring 3 made of carbon.

炭化ケイ素被膜は、特に制限はないが、典型的にはCVD法により蒸着させて形成することができる。
CVD法によりカーボン製の略円筒体2およびリング3の表面に炭化ケイ素被膜を形成するには、例えば、テトラクロロシラン又はトリクロロシランのようなハロゲン化珪素化合物とメタンやプロパンなどの炭化水素化合物との混合ガスを用いる方法、またはメチルトリクロロシラン、トリフェニルクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシランのような炭化水素基を有するハロゲン化珪素化合物を水素で熱分解しながら、加熱された略円筒体2およびリング3の表面に炭化ケイ素を堆積させる方法を用いることができる。
The silicon carbide film is not particularly limited, but typically can be formed by vapor deposition by a CVD method.
In order to form a silicon carbide coating on the surfaces of the substantially cylindrical body 2 and the ring 3 made of CVD, for example, a silicon halide compound such as tetrachlorosilane or trichlorosilane and a hydrocarbon compound such as methane or propane are used. A method using a mixed gas, or a substantially cylinder heated while thermally decomposing a halogenated silicon compound having a hydrocarbon group such as methyltrichlorosilane, triphenylchlorosilane, methyldichlorosilane, dimethyldichlorosilane, and trimethylchlorosilane with hydrogen. A method of depositing silicon carbide on the surfaces of the body 2 and the ring 3 can be used.

炭化ケイ素被膜の厚みは、10〜500μmとすることが好ましく、30〜300μmであればさらに好ましい。炭化ケイ素被膜の厚みが10μm以上であれば、カーボン製反応容器1内に存在する水素、水、メタン等による略円筒体2およびリング3の腐食を十分に抑制でき、また、500μm以下であれば、炭化ケイ素被膜のひび割れや略円筒体2およびリング3の組織の割れが助長されることもない。   The thickness of the silicon carbide coating is preferably 10 to 500 μm, more preferably 30 to 300 μm. If the thickness of the silicon carbide coating is 10 μm or more, corrosion of the substantially cylindrical body 2 and the ring 3 caused by hydrogen, water, methane, etc. existing in the carbon reaction vessel 1 can be sufficiently suppressed, and if the thickness is 500 μm or less. Further, cracks in the silicon carbide film and cracks in the structure of the substantially cylindrical body 2 and the ring 3 are not promoted.

形成された炭化ケイ素被膜は、緻密均質なピンホールのない被膜であり、化学安定性に優れているため、炭化ケイ素被膜を施した略円筒体2およびリング3により構成されたカーボン製反応容器1中でクロロシランと水素との反応を行えば、設備の修繕頻度を低減でき、作業能率をさらに向上させることができる。   The formed silicon carbide coating is a dense and uniform pinhole-free coating and is excellent in chemical stability. Therefore, the carbon reaction vessel 1 constituted by the substantially cylindrical body 2 and the ring 3 coated with the silicon carbide coating. If the reaction between chlorosilane and hydrogen is carried out, the frequency of repairing the equipment can be reduced, and the work efficiency can be further improved.

<熱膨張係数>
本明細書において、「熱膨張係数」とは、温度t℃における略円筒体2の連結上端部8の厚み、連結下端部9の厚みまたはリング3の厚みをa、温度t℃における略円筒体2の連結上端部8の厚み、連結下端部9の厚みまたはリング3の厚みをaとした場合に、それぞれ以下の式(1)によって求められる。
熱膨張係数=[(a−a)/a]/(t−t) (1)
熱膨張係数を求めるには、カーボン製反応容器1の運転条件に近い条件下で熱膨張量の測定を行うことが好ましいが、カーボンからなる略円筒体2およびリング3はカーボン製反応容器1の通常運転条件である1400℃以下のいずれの温度帯域であっても、温度変化量に対する膨張率は一定であるため、必ずしも運転温度まで加熱して測定を行う必要はない。テトラクロロシランと水素とを含む原料ガスからトリクロロシランと塩化水素とを含む反応生成ガスを生成するためのカーボン製反応容器として使用する場合、具体的には、tを0〜500℃、tを400〜1000℃とする条件で、示差走査熱量計を用いて雰囲気温度を一定速度で上昇させながら測定することが好ましい。また、測定は窒素ガス雰囲気中で行うことが好ましい。
<Coefficient of thermal expansion>
In this specification, the “thermal expansion coefficient” means the thickness of the upper connecting end 8 of the substantially cylindrical body 2 at the temperature t 0 ° C, the thickness of the lower connecting end 9 or the thickness of the ring 3 at a 0 and the temperature t 1 ° C. the thickness of the connecting upper end portions 8 of the substantially cylindrical body 2, a thickness or thickness of the ring 3 of the connecting bottom portion 9 in the case of the a 1, obtained by the respective following equations (1).
Thermal expansion coefficient = [(a 1 −a 0 ) / a 0 ] / (t 1 −t 0 ) (1)
In order to obtain the coefficient of thermal expansion, it is preferable to measure the amount of thermal expansion under conditions close to the operating conditions of the carbon reaction vessel 1, but the substantially cylindrical body 2 and the ring 3 made of carbon are the same as those of the carbon reaction vessel 1. In any temperature range of 1400 ° C. or less, which is a normal operating condition, the expansion rate with respect to the amount of change in temperature is constant, and thus it is not always necessary to perform measurement by heating to the operating temperature. When used as a carbon reaction vessel for producing a reaction product gas containing trichlorosilane and hydrogen chloride from a raw material gas containing tetrachlorosilane and hydrogen, specifically, t 0 is set to 0 to 500 ° C., t 1. It is preferable to measure while raising the ambient temperature at a constant rate using a differential scanning calorimeter under the condition of 400 to 1000 ° C. The measurement is preferably performed in a nitrogen gas atmosphere.

熱膨張係数は、同一の略円筒体2およびリング3であっても、局所的な組成の相違や寸法の誤差によって変化するため、測定する位置によって相違する場合がある。特に略円筒体2およびリング3はカーボンを焼成することによって製造されるため、その組成や寸法を完全に均一にすることは難しい。
そこで、1つの略円筒体2の連結上端部8について複数点で測定を行い、これらの平均値を求め、この平均値をその略円筒体2における連結上端部8の熱膨張係数とすることが好ましい。同様に、連結下端部9およびリング3の熱膨張係数についても平均値を求めることが好ましい。連結上端部8、連結下端部9またはリング3の熱膨張係数として、それぞれの平均値を用いることにより、このような測定位置による熱膨張係数のバラツキの影響を低減することができる。
The coefficient of thermal expansion changes depending on the local compositional difference and dimensional error even in the same substantially cylindrical body 2 and ring 3, and may differ depending on the measurement position. In particular, since the substantially cylindrical body 2 and the ring 3 are manufactured by firing carbon, it is difficult to make the composition and dimensions completely uniform.
Accordingly, measurement is performed at a plurality of points on the connection upper end portion 8 of one substantially cylindrical body 2 to obtain an average value thereof, and this average value is set as a thermal expansion coefficient of the connection upper end portion 8 in the approximately cylindrical body 2. preferable. Similarly, it is preferable to obtain an average value for the thermal expansion coefficients of the connecting lower end portion 9 and the ring 3. By using the respective average values as the thermal expansion coefficients of the connection upper end portion 8, the connection lower end portion 9, or the ring 3, it is possible to reduce the influence of such variation in the thermal expansion coefficient depending on the measurement position.

<カーボン製反応容器の組み立ておよび破損防止方法>
予め熱膨張係数を求めた複数の略円筒体2について、一方の略円筒体の連結上端部8における熱膨張係数と、他方の略円筒体の連結下端部9における熱膨張係数との差が小さくなるような順序を決定し、これらの端部同士を突き合わせて略同軸に配置し、さらに、連結するいずれの略円筒体2と比べても熱膨張係数の差が小さいカーボン製のリング3を用いて略円筒体の突き合わせ端部を締結する。
<Assembly of carbon reaction vessel and damage prevention method>
For a plurality of substantially cylindrical bodies 2 for which the thermal expansion coefficients have been obtained in advance, the difference between the thermal expansion coefficient at the connection upper end portion 8 of one of the substantially cylindrical bodies and the thermal expansion coefficient at the connection lower end portion 9 of the other substantially cylindrical body is small. The carbon ring 3 having a smaller difference in thermal expansion coefficient than any of the substantially cylindrical bodies 2 to be connected is used. Fasten the butt end of the substantially cylindrical body.

一般に、略円筒体2およびリング3が熱膨張すると、その外径および内径が増加する。その結果、リング3の膨張量が略円筒体2の膨張量を過度に上回ると連結部に隙間が生じて気密性が悪くなる場合がある。一方、略円筒体2の膨張量がリング3の膨張量を過度に上回ると連結部の径方向に作用する応力が増大して割れを発生する場合がある。また、互いに連結する略円筒体2間の熱膨張係数の差が大きいと、連結部においてリング3との間に隙間を生じることになり、原料ガスや反応生成ガスがカーボン製反応容器の外に漏れるおそれがある。   Generally, when the substantially cylindrical body 2 and the ring 3 are thermally expanded, their outer diameter and inner diameter increase. As a result, if the expansion amount of the ring 3 exceeds the expansion amount of the substantially cylindrical body 2, a gap may be generated in the connecting portion, resulting in poor airtightness. On the other hand, if the expansion amount of the substantially cylindrical body 2 exceeds the expansion amount of the ring 3 excessively, the stress acting in the radial direction of the connecting portion may increase and cracks may occur. In addition, if the difference in thermal expansion coefficient between the substantially cylindrical bodies 2 connected to each other is large, a gap is formed between the connecting portion and the ring 3, and the source gas and the reaction product gas are outside the carbon reaction vessel. There is a risk of leakage.

そこで、このように、互いに連結する略円筒体2同士の熱膨張係数の差が小さくなるような順序に配置して、連結するいずれの略円筒体2と比べても熱膨張係数の差が小さいリング3を用いて締結することにより、連結部に作用する応力の増大を許容限界以下に抑制することができるとともに、連結部の気密性を向上させることができる。   Therefore, the difference in thermal expansion coefficient between the substantially cylindrical bodies 2 connected to each other is arranged in such an order that the difference in thermal expansion coefficient between the cylindrical bodies 2 is reduced. By fastening using the ring 3, it is possible to suppress an increase in stress acting on the connecting portion below an allowable limit, and to improve the airtightness of the connecting portion.

具体的には、連結部の気密性を十分に維持するために、互いに連結される一方の略円筒体の連結上端部8における熱膨張係数と他方の略円筒体の連結下端部9における熱膨張係数との差を0.6x10−6(1/K)以下、さらに好ましくは0.5x10−6(1/K)以下、さらに好ましくは0.4x10−6(1/K)以下、さらに好ましくは0.3x10−6(1/K)以下、さらに好ましくは0.1x10−6(1/K)以下とすることが好ましい。Specifically, in order to sufficiently maintain the airtightness of the connecting portion, the thermal expansion coefficient at the connecting upper end portion 8 of one of the substantially cylindrical bodies connected to each other and the thermal expansion at the connecting lower end portion 9 of the other substantially cylindrical body. The difference from the coefficient is 0.6 × 10 −6 (1 / K) or less, more preferably 0.5 × 10 −6 (1 / K) or less, more preferably 0.4 × 10 −6 (1 / K) or less, more preferably 0.3 × 10 −6 (1 / K) or less, more preferably 0.1 × 10 −6 (1 / K) or less.

また、連結部に作用する応力の増大を許容限界以下に抑制するために、リング3の厚み:略円筒体2の厚みの比が30:70〜70:30、さらに好ましくは35:65〜65:35、さらに好ましくは40:60〜60:40、さらに好ましくは45:55〜55:45の範囲である場合に、リング3の熱膨張係数と略円筒体2の連結上端部8および連結下端部9の熱膨張係数との差を0.4x10−6(1/K)以下、さらに好ましくは0.3x10−6(1/K)以下、さらに好ましくは0.2x10−6(1/K)以下、さらに好ましくは0.1x10−6(1/K)以下とすることが好ましい。
とりわけ、連結部において、略円筒体2の連結上端部8および連結下端部9における熱膨張係数が、リング3の熱膨張係数より小さいことが好ましい。この場合には、連結上端部8および連結下端部9に水平方向から過度の応力がかかることによる略円筒体2の破損を防止することができる。
Further, in order to suppress an increase in stress acting on the connecting portion below an allowable limit, the ratio of the thickness of the ring 3 to the thickness of the substantially cylindrical body 2 is 30:70 to 70:30, more preferably 35:65 to 65. : 35, more preferably 40:60 to 60:40, more preferably 45:55 to 55:45, the coefficient of thermal expansion of the ring 3 and the connection upper end 8 and the connection lower end of the substantially cylindrical body 2. The difference from the coefficient of thermal expansion of the portion 9 is 0.4 × 10 −6 (1 / K) or less, more preferably 0.3 × 10 −6 (1 / K) or less, and further preferably 0.2 × 10 −6 (1 / K). Hereinafter, it is more preferable to set it to 0.1 × 10 −6 (1 / K) or less.
In particular, it is preferable that the coefficient of thermal expansion at the connection upper end portion 8 and the connection lower end portion 9 of the substantially cylindrical body 2 is smaller than the thermal expansion coefficient of the ring 3 in the connection portion. In this case, it is possible to prevent the substantially cylindrical body 2 from being damaged due to excessive stress applied from the horizontal direction to the connecting upper end 8 and the connecting lower end 9.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these.

25℃(t)において外径15cm、高さ10cm、厚さ3cmの等方性黒鉛からなる直円筒状の略円筒体であって、上端から3.5cmにわたる連結上端部の外周面および下端から3.5cmにわたる連結下端部の外周面に雄ネジが設けられた略円筒体を複数準備した。また、カーボン製反応容器の天蓋を構成する最上段の略円筒体、並びにカーボン製反応容器の底板を構成する最下段の略円筒体についても同様に、連結端部外周面に雄ネジを設けた。一方、略円筒体の加工を行う前に、略円筒体の上端および下端の一部を予め採取しておき、当該部位からその略円筒体の連結上端部および連結下端部に対応する熱膨張係数を測定するための試験片を切り出した。試験片は、上端および下端のそれぞれについて、縦5mm、幅5mm、高さ15mmの大きさで4点ずつ準備した。A substantially cylindrical body made of isotropic graphite having an outer diameter of 15 cm, a height of 10 cm, and a thickness of 3 cm at 25 ° C. (t 0 ), the outer peripheral surface and the lower end of the upper end of the connection extending 3.5 cm from the upper end A plurality of substantially cylindrical bodies provided with external threads on the outer peripheral surface of the connecting lower end extending from 3.5 cm to 3.5 cm were prepared. Similarly, the uppermost substantially cylindrical body constituting the canopy of the carbon reaction vessel and the lowermost substantially cylindrical body constituting the bottom plate of the carbon reaction vessel are provided with external threads on the outer peripheral surface of the connection end. . On the other hand, before processing the substantially cylindrical body, a part of the upper end and lower end of the substantially cylindrical body is collected in advance, and the thermal expansion coefficient corresponding to the connected upper end portion and the connected lower end portion of the substantially cylindrical body from the portion. A test piece for measuring was cut out. Four test pieces were prepared for each of the upper end and the lower end in a size of 5 mm in length, 5 mm in width, and 15 mm in height.

次いで、これらの略円筒体の内周面および外周面に炭化ケイ素被膜を形成するために、略円筒体をCVD反応装置内に設置し、装置内部をアルゴンガスで置換したのち、1200℃に加熱した。CVD反応装置内にトリクロロメチルシランと水素の混合ガス(モル比1:5)を導入し、CVD法により、略円筒体の全表面に200μmの厚みの炭化ケイ素被膜を形成した。   Next, in order to form a silicon carbide coating on the inner and outer peripheral surfaces of these approximately cylindrical bodies, the approximately cylindrical body is placed in a CVD reactor, and the interior of the apparatus is replaced with argon gas, and then heated to 1200 ° C. did. A mixed gas of trichloromethylsilane and hydrogen (molar ratio 1: 5) was introduced into the CVD reactor, and a silicon carbide film having a thickness of 200 μm was formed on the entire surface of the substantially cylindrical body by the CVD method.

次に、25℃(t)において内径15cm、上下方向の幅7.5cm、径方向の厚み3.6cmの等方性黒鉛からなるリングであって、内周面に前記略円筒体に形成された雄ネジと螺合する雌ネジが形成されたリングを複数準備し、上記と同様にその全表面に炭化ケイ素被膜を施した。また、リングの加工を行う前に、リングの上端もしくは下端の一部を予め採取しておき、当該部位からそのリングに対応する熱膨張係数を測定するための試験片を切り出した。試験片は、縦5mm、幅5mm、高さ15mmの大きさで4点ずつ準備した。Next, a ring made of isotropic graphite having an inner diameter of 15 cm, an up-and-down width of 7.5 cm, and a radial thickness of 3.6 cm at 25 ° C. (t 0 ) is formed on the inner peripheral surface of the substantially cylindrical body. A plurality of rings formed with female threads to be engaged with the formed male threads were prepared, and a silicon carbide coating was applied to the entire surface in the same manner as described above. Before processing the ring, a part of the upper end or the lower end of the ring was collected in advance, and a test piece for measuring the thermal expansion coefficient corresponding to the ring was cut out from the portion. The test piece was prepared in a size of 5 mm in length, 5 mm in width, and 15 mm in height, 4 points at a time.

各略円筒体の連結上端部および連結下端部に対応する試験片について、窒素ガス雰囲気下で、示差走査熱量計を用いて雰囲気温度を25℃(t)〜1100℃(t)まで一定速度で上昇させながら熱膨張係数を求め、これらを各略円筒体の連結上端部および連結下端部の熱膨張係数とした。同様に、各リングから採取した試験片について熱膨張係数を求め、これを各リングの熱膨張係数とした。About the test piece corresponding to the connection upper end part and connection lower end part of each substantially cylindrical body, the atmospheric temperature is constant from 25 ° C. (t 0 ) to 1100 ° C. (t 1 ) using a differential scanning calorimeter in a nitrogen gas atmosphere. The coefficient of thermal expansion was determined while increasing at a speed, and these were used as the coefficient of thermal expansion of the upper and lower ends of each substantially cylindrical body. Similarly, the coefficient of thermal expansion was determined for the test piece collected from each ring, and this was used as the coefficient of thermal expansion of each ring.

得られた略円筒体およびリングを、互いに連結する一方の略円筒体の連結上端部の平均熱膨張係数と他方の略円筒体の連結下端部の平均熱膨張係数との差、並びに、連結部において下側に位置する略円筒体の連結上端部の平均熱膨張係数とリングの平均熱膨張係数との差が表1および2に示す一定の範囲となるように略円筒体をリングで締結し、カーボン製反応容器を製造した。   The difference between the average thermal expansion coefficient of the connection upper end portion of one of the substantially cylindrical bodies and the average thermal expansion coefficient of the connection lower end portion of the other substantially cylindrical body, and the connection portion. The cylindrical body is fastened with a ring so that the difference between the average thermal expansion coefficient of the upper end of the connection of the substantially cylindrical body located on the lower side and the average thermal expansion coefficient of the ring is within a certain range shown in Tables 1 and 2. A carbon reaction vessel was produced.

製造したカーボン製反応容器に配管及び加熱装置等をセットして反応炉として整えた。
この反応炉にテトラクロロシランと水素(モル=1:1)の混合ガスを供給し、常圧、反応温度1100℃で反応を行い、トリクロロシランを生成した。
反応炉を連続的に2000時間運転した後、カーボン製反応容器から反応炉内に漏れ出した原料ガスおよび反応生成ガスの量を測定して気密性を評価した後、カーボン製反応容器を解体して略円筒体の連結部における割れの発生を観察した。結果を表1および2に示す。
Piping and a heating device were set in the produced carbon reaction vessel to prepare a reaction furnace.
A mixed gas of tetrachlorosilane and hydrogen (mole = 1: 1) was supplied to the reactor, and the reaction was performed at normal pressure and a reaction temperature of 1100 ° C. to produce trichlorosilane.
After the reactor was continuously operated for 2000 hours, the amount of the raw material gas and the reaction product gas leaked from the carbon reactor into the reactor was measured to evaluate the airtightness, and then the carbon reactor was disassembled. The occurrence of cracks in the connecting part of the substantially cylindrical body was observed. The results are shown in Tables 1 and 2.

Figure 0005436542
Figure 0005436542

Figure 0005436542

*1略円筒体間の熱膨張係数差=[連結部において上側に位置する略円筒体の連結下端部の熱膨張係数]−[連結部において下側に位置する略円筒体の連結上端部の熱膨張係数]
*2リングとの熱膨張係数差=[リングの熱膨張係数]−[連結部において下側に位置する略円筒体の連結上端部の熱膨張係数]
Figure 0005436542

* 1 Difference in thermal expansion coefficient between substantially cylindrical bodies = [thermal expansion coefficient of a connecting lower end portion of a substantially cylindrical body located on the upper side in the connecting portion]-[of connecting upper end portion of a substantially cylindrical body located on the lower side in the connecting portion. Thermal expansion coefficient]
* 2 Difference in thermal expansion coefficient from the ring = [thermal expansion coefficient of the ring] − [thermal expansion coefficient of the connection upper end portion of the substantially cylindrical body located on the lower side in the connection portion]

<実験の考察>
以上の結果から、互いに連結される一方の略円筒体の連結上端部における熱膨張係数と他方の略円筒体の連結下端部における熱膨張係数との差を0.1x10−6(1/K)以下とすることによって、気密性が向上することが確認された。
<Experimental considerations>
From the above results, the difference between the thermal expansion coefficient at the connection upper end of one of the substantially cylindrical bodies and the thermal expansion coefficient at the connection lower end of the other substantially cylindrical body is 0.1 × 10 −6 (1 / K). It was confirmed that the airtightness was improved by the following.

また、連結部における略円筒体の連結上端部および連結下端部の熱膨張係数をリングの熱膨張係数より小さくして、しかも、リングの熱膨張係数と略円筒体の連結上端部および連結下端部の熱膨張係数との差を0.3x10−6(1/K)以下とすることにより、連結部に作用する応力の増大を許容限界以下に抑制でき、気密性も保持できることが確認された。In addition, the thermal expansion coefficient of the connection upper end portion and the connection lower end portion of the substantially cylindrical body in the connection portion is made smaller than the thermal expansion coefficient of the ring, and the thermal expansion coefficient of the ring and the connection upper end portion and connection lower end portion of the substantially cylindrical body. It was confirmed that when the difference from the coefficient of thermal expansion is 0.3 × 10 −6 (1 / K) or less, an increase in stress acting on the connecting portion can be suppressed to an allowable limit or less and airtightness can be maintained.

以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   In the above, this invention was demonstrated based on the Example. It is to be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.

Claims (5)

カーボン製の複数の略円筒体を、互いに連結される一方の略円筒体の連結上端部における熱膨張係数と他方の略円筒体の連結下端部における熱膨張係数との差が小さくなるような順序で端部同士を突き合わせて略同軸に配置し、突き合わせ端部を略円筒体の熱膨張係数との差が小さいカーボン製のリングで締結する、カーボン製反応容器の破損防止方法。   A plurality of substantially cylindrical bodies made of carbon are arranged in such an order that the difference between the thermal expansion coefficient at the upper end of the connection of one of the substantially cylindrical bodies and the thermal expansion coefficient at the lower end of the connection of the other substantially cylindrical body is reduced. A method for preventing damage to a carbon reaction vessel, wherein the ends are butted substantially coaxially, and the butted ends are fastened with a carbon ring having a small difference from the thermal expansion coefficient of the substantially cylindrical body. 略円筒体が黒鉛製である、請求項1記載のカーボン製反応容器の破損防止方法。   The method for preventing damage to a carbon reaction vessel according to claim 1, wherein the substantially cylindrical body is made of graphite. 略円筒体の内周面および/または外周面が炭化ケイ素被膜処理されている、請求項1記載のカーボン製反応容器の破損防止方法。   The method for preventing damage to a carbon reaction vessel according to claim 1, wherein the inner peripheral surface and / or the outer peripheral surface of the substantially cylindrical body is treated with a silicon carbide coating. 互いに連結される一方の略円筒体の連結上端部における熱膨張係数と他方の略円筒体の連結下端部における熱膨張係数との差が0.1x10−6(1/K)以下である、請求項1記載のカーボン製反応容器の破損防止方法。The difference between the coefficient of thermal expansion at the connection upper end of one of the substantially cylindrical bodies connected to each other and the coefficient of thermal expansion at the connection lower end of the other substantially cylindrical body is 0.1 × 10 −6 (1 / K) or less. Item 2. A method for preventing damage to a carbon reaction vessel according to Item 1. リングの厚み:略円筒体の厚みが30:70〜70:30の範囲である場合に、リングの熱膨張係数よりも略円筒体の連結上端部および連結下端部の熱膨張係数の方が小さく、かつ、リングの熱膨張係数と略円筒体の連結上端部および連結下端部の熱膨張係数との差が0.3x10−6(1/K)以下である、請求項1記載のカーボン製反応容器の破損防止方法。Ring thickness: When the thickness of the substantially cylindrical body is in the range of 30:70 to 70:30, the thermal expansion coefficients of the connection upper end and the connection lower end of the cylinder are smaller than the thermal expansion coefficient of the ring. The carbon reaction according to claim 1, wherein the difference between the thermal expansion coefficient of the ring and the thermal expansion coefficients of the upper and lower ends of the substantially cylindrical body is 0.3 × 10 −6 (1 / K) or less. Container breakage prevention method.
JP2011506946A 2009-04-03 2009-04-03 How to prevent damage to carbon reaction vessels Active JP5436542B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056984 WO2010113323A1 (en) 2009-04-03 2009-04-03 Method of preventing breakage of carbon-made reaction container

Publications (2)

Publication Number Publication Date
JPWO2010113323A1 JPWO2010113323A1 (en) 2012-10-04
JP5436542B2 true JP5436542B2 (en) 2014-03-05

Family

ID=42827651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011506946A Active JP5436542B2 (en) 2009-04-03 2009-04-03 How to prevent damage to carbon reaction vessels

Country Status (3)

Country Link
JP (1) JP5436542B2 (en)
TW (1) TW201036914A (en)
WO (1) WO2010113323A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113322A1 (en) * 2009-04-03 2010-10-07 電気化学工業株式会社 Method of preventing breakage of reaction container consisting of carbon
JP7093264B2 (en) * 2018-08-10 2022-06-29 イビデン株式会社 Reactor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282687A (en) * 1989-04-21 1990-11-20 Nippon Steel Corp Method for supporting muffle of vertical muffle heat treating furnace
JP3529070B2 (en) * 1995-12-01 2004-05-24 電気化学工業株式会社 Carbon reaction vessel
JP2003327437A (en) * 2002-05-13 2003-11-19 Sumitomo Electric Ind Ltd Heating furnace
JP5601438B2 (en) * 2006-11-07 2014-10-08 三菱マテリアル株式会社 Trichlorosilane production method and trichlorosilane production apparatus

Also Published As

Publication number Publication date
WO2010113323A1 (en) 2010-10-07
JPWO2010113323A1 (en) 2012-10-04
TW201036914A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
CA2104411C (en) Chemical vapor deposition-production silicon carbide having improved properties
RU2499081C2 (en) Systems and methods to distribute gas in reactor for chemical deposition from steam phase
JP3529070B2 (en) Carbon reaction vessel
JP5436542B2 (en) How to prevent damage to carbon reaction vessels
TW200530424A (en) Articles formed by chemical vapor deposition and methods for their manufacture
JP5374581B2 (en) How to prevent damage to carbon reaction vessels
WO2002060834A1 (en) Joining methode for high-purity ceramic parts
KR101601282B1 (en) Furnace for manufacturing silicon carbide and silicon carbide manufacturing method using same
WO2012086238A1 (en) Seed material for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide
WO2012086239A1 (en) Feed material for epitaxial growth of monocrystalline silicon carbide, and method for epitaxial growth of monocrystalline silicon carbide
WO2005056872A1 (en) Method of making chemical vapor composites
KR20180011253A (en) Fluidized bed reactor and method for the production of polycrystalline silicon granules
WO2012086237A1 (en) Unit for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide
US3961003A (en) Method and apparatus for making elongated Si and SiC structures
JP5553754B2 (en) Carbon reaction vessel
JP5319681B2 (en) Carbon reactor
US9662628B2 (en) Non-contaminating bonding material for segmented silicon carbide liner in a fluidized bed reactor
AU2005257313B2 (en) Tubular container made of carbon
US9238211B1 (en) Segmented silicon carbide liner
JPWO2010087001A1 (en) Reactor provided with reaction vessel made of carbon-containing material, corrosion prevention method for the reactor, and method for producing chlorosilanes using the reactor
US8440566B2 (en) Method for forming an aluminum nitride thin film
JP5436454B2 (en) Heating device
CN110527983A (en) Chemical vapor-phase growing apparatus and film formation method
Danielsson et al. Reducing stress in silicon carbide epitaxial layers
US20160045881A1 (en) High-purity silicon to form silicon carbide for use in a fluidized bed reactor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250