JP5435576B2 - Inertial product measuring device and inertial product measuring method - Google Patents

Inertial product measuring device and inertial product measuring method Download PDF

Info

Publication number
JP5435576B2
JP5435576B2 JP2010089139A JP2010089139A JP5435576B2 JP 5435576 B2 JP5435576 B2 JP 5435576B2 JP 2010089139 A JP2010089139 A JP 2010089139A JP 2010089139 A JP2010089139 A JP 2010089139A JP 5435576 B2 JP5435576 B2 JP 5435576B2
Authority
JP
Japan
Prior art keywords
measured
mounting table
horizontal angle
swinging
inertial product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010089139A
Other languages
Japanese (ja)
Other versions
JP2011220785A (en
Inventor
直人 枌原
辻本  勝
克治 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2010089139A priority Critical patent/JP5435576B2/en
Publication of JP2011220785A publication Critical patent/JP2011220785A/en
Application granted granted Critical
Publication of JP5435576B2 publication Critical patent/JP5435576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、模型船等の被計測体について慣性乗積の計測を行う慣性乗積計測装置及び慣性乗積計測方法に関する。   The present invention relates to an inertial product measuring device and an inertial product measuring method for measuring an inertial product for a measured object such as a model ship.

船舶や車両等の物体の運動特性を把握するために、物体の重心位置、慣性モーメント、慣性乗積等のパラメータを正確に計測することが重要である。そこで、船舶や車両等の模型を被計測体として重心位置、慣性モーメント及び慣性乗積を計測できる装置及び方法が必要とされている。   In order to grasp the motion characteristics of an object such as a ship or a vehicle, it is important to accurately measure parameters such as the position of the center of gravity, moment of inertia, and product of inertia. Therefore, there is a need for an apparatus and method that can measure the position of the center of gravity, the moment of inertia, and the product of inertia using a model such as a ship or a vehicle as a measurement object.

例えば、特許文献1には、四輪車の車軸の4端部を同一水平面となるように配置し、4端部と基準点との距離及び4端部にかかる車体の荷重を計測すると共に、車体の対角線を軸として車体を傾斜させた際の傾斜角と4端部にかかる車体の荷重を計測し、これらの計測データに基づいて車体の重心位置、慣性モーメント及び慣性乗積を演算する技術が開示されている。   For example, in Patent Document 1, the four end portions of the axle of a four-wheel vehicle are arranged so as to be on the same horizontal plane, and the distance between the four end portions and the reference point and the load of the vehicle body applied to the four end portions are measured. Technology that measures the tilt angle when the vehicle body is tilted about the diagonal line of the vehicle body and the load of the vehicle body applied to the four ends, and calculates the center of gravity position, inertia moment, and inertial product of the vehicle body based on these measurement data Is disclosed.

また、特許文献2には、支持軸体を介して両端部が揺動自在となるように架台を支持し、その架台上に被計測体を載せ置いて、架台の傾斜角度及び揺動周期を計測し、その計測値から慣動半径を求める技術が開示されている。   Further, in Patent Document 2, a gantry is supported via a support shaft so that both ends thereof are freely swingable, and a measured object is placed on the gantry, and the tilt angle and oscillating cycle of the gantry are set. A technique for measuring and obtaining an inertial radius from the measured value is disclosed.

また、特許文献3には、模型船等の被計測体について慣動半径を測定する際に、台座上の被計測体の向きを固定して測定を行うことを可能とした転動子を用いた慣動半径測定装置に関する技術が開示されている。   Further, Patent Document 3 uses a rolling element that can perform measurement while fixing the direction of the measured object on the pedestal when measuring the inertial radius of the measured object such as a model ship. A technique relating to a conventional inertial radius measuring apparatus is disclosed.

特開平6−265433号公報JP-A-6-265433 特開平10−132699号公報JP-A-10-132699 特開2008−58192号公報JP 2008-58192 A

しかしながら、上記特許文献1では、慣性乗積を求めるために四輪車の車軸の4端部を支持する大掛かりな計測装置が必要であり、より簡易な装置構成で慣性乗積を求めることができる計測装置が望まれている。また、車軸を持たない被計測体についてはどのように慣性乗積を求めるのか開示されていない。また、上記特許文献2及び3では、慣性乗積を求める手段自体が開示されていない。   However, in Patent Document 1, a large-scale measuring device that supports the four ends of the axle of a four-wheel vehicle is required to obtain the inertial product, and the inertial product can be obtained with a simpler device configuration. A measuring device is desired. Further, it is not disclosed how to obtain the inertial product for the measurement object having no axle. In Patent Documents 2 and 3, means for obtaining the inertial product itself is not disclosed.

本発明は、上記の課題を鑑み、簡易な装置構成により慣性乗積を求めることを可能とした慣性乗積計測装置及び慣性乗積計測方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an inertial product measuring device and an inertial product measuring method capable of obtaining an inertial product with a simple device configuration.

請求項1に対応した慣性乗積計測装置は、架台と、前記架台を水平角0°方向に沿って揺動させる揺動手段と、前記架台上に前記架台に対して回動可能に設けられ、被計測体を載せ置く載置台と、前記載置台を回転させ、水平角0°とは異なる第1水平角αと第2水平角(90°−α)に前記被計測体を設定する水平角設定手段と、を備え、前記被計測体を前記第1水平角αの方向に設定した状態で前記架台を揺動させて得られる第1揺動周期と、前記被計測体を前記第2水平角(90°−α)の方向に設定した状態で前記架台を揺動させて得られる第2揺動周期と、を計測し、前記第1揺動周期及び前記第2揺動周期から前記被計測体の慣性乗積を導出可能としたことを特徴とする。これにより、簡易な装置構成によって、被計測体の慣性乗積を正確に求めることができる。   An inertial product measuring device corresponding to claim 1 is provided with a gantry, rocking means for oscillating the gantry along a horizontal angle of 0 °, and on the gantry so as to be rotatable with respect to the gantry. Rotating the mounting table on which the object to be measured is placed and the above-described mounting table are rotated to set the object to be measured to the first horizontal angle α and the second horizontal angle (90 ° −α) different from the horizontal angle 0 ° Angle setting means, a first swing period obtained by swinging the gantry in a state in which the measured object is set in the direction of the first horizontal angle α, and the measured object is the second A second swing period obtained by swinging the gantry in a state set in the direction of a horizontal angle (90 ° -α), and measuring the first swing period and the second swing period from the second swing period It is possible to derive the product of inertia of the measured object. Thereby, the inertial product of the measured object can be accurately obtained with a simple device configuration.

請求項2に対応した慣性乗積計測装置は、前記載置台を前記架台に対して回転揺動させる回動手段をさらに備え、前記被計測体を前記水平角0°かつ前記被計測体を前記水平角0°方向からみて仰角β、に設定し、前記揺動手段によって前記被計測体を揺動させて得られる第3揺動周期と、前記回動手段によって前記被計測体を回転揺動させて得られる第4揺動周期と、を計測し、又は、前記被計測体を前記水平角0°かつ前記被計測体を前記水平角90°方向からみて仰角β、に設定し、前記揺動手段によって前記被計測体を揺動させて得られる第3揺動周期と、前記回動手段によって前記被計測体を回転揺動させて得られる第4揺動周期と、を計測し、前記第3揺動周期及び前記第4揺動周期から前記被計測体の慣性乗積を導出可能とすることが好適である。これにより、簡易な装置構成によって、被計測体の別方向の慣性乗積を正確に求めることができる。   The inertial product measuring apparatus corresponding to claim 2 further includes a rotating means for rotating and swinging the mounting table with respect to the gantry, the measuring object is set to the horizontal angle of 0 °, and the measuring object is set to the measuring object. The elevation angle β when viewed from the horizontal angle 0 ° direction is set, and the third swing period obtained by swinging the measured object by the swinging means, and the measured object is rotated and swung by the rotating means. A fourth oscillation period obtained by the measurement, or setting the object to be measured to an elevation angle β when the object to be measured is viewed at the horizontal angle of 0 ° and the object to be measured from the direction of the horizontal angle of 90 °. Measuring a third swing period obtained by swinging the measured object by a moving means and a fourth swing period obtained by rotating and swinging the measured object by the rotating means; The inertial product of the measured object can be derived from the third oscillation cycle and the fourth oscillation cycle. It is preferred. Thereby, the inertial product in another direction of the measurement object can be accurately obtained with a simple device configuration.

請求項3に対応した慣性乗積計測装置は、前記載置台を前記架台に対して回転揺動させる回動手段をさらに備え、前記被計測体を水平角90°かつ前記被計測体を前記水平角0°方向からみて仰角γに設定し、前記揺動手段によって前記被計測体を揺動させて得られる第5揺動周期と、前記回動手段によって前記被計測体を回転揺動させて得られる第6揺動周期と、を計測し、又は、前記被計測体を水平角90°かつ前記被計測体を前記水平角90°方向からみて仰角γに設定し、前記揺動手段によって前記被計測体を揺動させて得られる第5揺動周期と、前記回動手段によって前記被計測体を回転揺動させて得られる第6揺動周期と、を計測し、前記第5揺動周期及び前記第6揺動周期から前記被計測体の慣性乗積を導出可能とすることが好適である。これにより、簡易な装置構成によって、被計測体の別方向の慣性乗積を正確に求めることができる。   The inertial product measuring device corresponding to claim 3 further includes a rotating means for rotating and swinging the mounting table with respect to the gantry, the measuring object is set to a horizontal angle of 90 °, and the measuring object is set to the horizontal. A fifth oscillation period obtained by setting the elevation angle γ as seen from the angle 0 ° direction and causing the measurement object to be oscillated by the oscillating means, and rotating the oscillating object by the rotating means. The obtained sixth swing period, or set the measured body to a horizontal angle of 90 ° and the measured body to an elevation angle γ when viewed from the horizontal angle of 90 ° direction, and the swinging means A fifth swing period obtained by swinging the measured object and a sixth swing period obtained by rotating and swinging the measured object by the turning means are measured, and the fifth swing is measured. It is preferable that the inertial product of the measured object can be derived from the period and the sixth oscillation period. A. Thereby, the inertial product in another direction of the measurement object can be accurately obtained with a simple device configuration.

請求項4に対応した慣性乗積計測装置は、前記揺動手段が、前記水平角0°に沿って転動可能とする円弧状の転動面を有する転動子を含んで構成されることが好適である。転動子を用いることにより、慣性乗積計測装置の構成をより簡易化することができる。   The inertial product measuring device according to claim 4 is configured such that the swinging means includes a rolling element having an arcuate rolling surface that enables rolling along the horizontal angle of 0 °. Is preferred. By using the rolling element, the configuration of the inertial product measuring device can be further simplified.

請求項5に対応した慣性乗積計測装置は、前記載置台は、前記被計測体の支持面を有するターンテーブルを含んで構成されることが好適である。ターンテーブルを回転揺動させる構成とすることで、装置構成をより簡易化することができる。   In the inertial product measuring apparatus corresponding to claim 5, it is preferable that the mounting table includes a turntable having a support surface of the object to be measured. By adopting a configuration in which the turntable is rotated and oscillated, the device configuration can be further simplified.

請求項6に対応した慣性乗積計測装置は、前記架台又は前記載置台は、前記被計測体の位置を調整する位置調整手段又は前記被計測体の仰角を調整する仰角調整手段を備えることを特徴とする。これにより、載置台上に載せ置かれた被計測体を容易に水平に調整することができ、さらに被計測体の仰角を容易に調整することができる。   The inertial product measuring apparatus according to claim 6, wherein the gantry or the mounting table includes a position adjusting unit that adjusts a position of the measured object or an elevation angle adjusting unit that adjusts an elevation angle of the measured object. Features. As a result, the object to be measured placed on the mounting table can be easily adjusted horizontally, and the elevation angle of the object to be measured can be easily adjusted.

請求項7に対応した慣性乗積計測装置は、前記水平角設定手段によって前記載置台を前記水平角0°又は水平角90°に設定し、前記被計測体の前記水平角0°方向又は前記水平角90°方向の慣性モーメントを導出可能とすることが好適である。これにより、慣性乗積のみならず、被計測体の慣性モーメントを求めることができる。   The inertial product measuring device corresponding to claim 7 sets the mounting table at the horizontal angle of 0 ° or the horizontal angle of 90 ° by the horizontal angle setting means, and the horizontal angle of the object to be measured is 0 ° or It is preferable to be able to derive the moment of inertia in the horizontal angle 90 ° direction. As a result, not only the inertial product but also the moment of inertia of the measured object can be obtained.

請求項8に対応した慣性乗積計測装置は、前記揺動手段による揺動の周期を計測する揺動周期計測手段をさらに備えることが好適である。揺動周期を計測することにより、直接的に慣性乗積や慣性モーメントを算出することができる。   It is preferable that the inertial product measuring apparatus corresponding to claim 8 further includes a swing period measuring means for measuring a swing period by the swing means. By measuring the oscillation period, the product of inertia and the moment of inertia can be directly calculated.

請求項9に対応した慣性乗積計測方法は、X−Y−Zの3次元直交座標系において、被計測体を載せ置いた載置台をX−Y面において回転させて前記被計測体をX軸から第1水平角αをなす方向に設定し、揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第1揺動周期に基づき得られる前記被計測体の慣性モーメントIyy(α)と、前記載置台をX−Y面において回転させて前記被計測体をX軸から第2水平角(90°−α)をなす方向に設定し、前記揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第2揺動周期に基づき得られる前記被計測体の慣性モーメントIxx(α)と、を用いて、

Figure 0005435576
により慣性乗積Ixyを求めることを特徴とする。これにより、簡易な装置構成によって、被計測体の慣性乗積Ixyを正確に求めることができる。 According to an inertial product measuring method corresponding to claim 9, in a three-dimensional orthogonal coordinate system of XYZ, a mounting table on which a measurement object is placed is rotated in an XY plane so that the measurement object is X The first horizontal angle α is set in a direction from the shaft, and the first object is obtained based on the first oscillation period when the object to be measured is rocked along the XZ plane together with the mounting table using the rocking means. And the inertial moment Iyy (α) of the measured object to be measured and the mounting table is rotated in the XY plane to set the measured object in a direction that forms a second horizontal angle (90 ° -α) from the X axis. The inertia moment Ixx (α) of the measured object obtained based on the second swing period when the measured object is swung along the XZ plane together with the mounting table using the swinging means. And
Figure 0005435576
The inertial product Ixy is obtained by the following. Thereby, the inertial product Ixy of the measured object can be accurately obtained with a simple device configuration.

請求項10に対応した慣性乗積計測方法は、X−Y−Zの3次元直交座標系において、載置台に載せ置かれた被計測体をY−Z面において回転させて前記被計測体をY軸から仰角βをなす方向、及び、X−Y面において水平角0°をなす方向に設定し、揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第3揺動周期に基づき得られる前記被計測体の慣性モーメントIyy(β)と、前記載置台をZ軸廻りに回転揺動させたときの第4揺動周期に基づき得られる前記被計測体の慣性モーメントIzz(β)と、を用いて、又は、載置台に載せ置かれた被計測体をX−Z面において回転させて前記被計測体をX軸から仰角βをなす方向、及び、X−Y面において水平角0°をなす方向に設定し、揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第3揺動周期に基づき得られる前記被計測体の慣性モーメントIyy(β)と、前記載置台をZ軸廻りに回転揺動させたときの第4揺動周期に基づき得られる前記被計測体の慣性モーメントIzz(β)と、を用いて、

Figure 0005435576
により慣性乗積Iyzを求めることを特徴とする。これにより、簡易な装置構成によって、被計測体の慣性乗積Iyzを正確に求めることができる。 According to an inertial product measuring method corresponding to claim 10, in a three-dimensional orthogonal coordinate system of XYZ, the object to be measured placed on a mounting table is rotated on the YZ plane so that the object to be measured is rotated. The direction to make the elevation angle β from the Y axis and the direction to make the horizontal angle 0 ° on the XY plane are set, and the object to be measured is shaken along the XZ plane together with the mounting table using the swinging means. Obtained based on the moment of inertia Iyy (β) of the measured object obtained based on the third oscillation period when moved, and the fourth oscillation period obtained when the mounting table is rotated about the Z axis. The measured inertial moment Izz (β) of the measured object is used, or the measured object placed on the mounting table is rotated in the XZ plane so that the measured object is moved from the X axis to the elevation angle β. Set to the direction to make and the direction to make a horizontal angle of 0 ° on the XY plane, using the swinging means Third the obtained based on the swing cycle with the measurement object of the moment of inertia Iyy (beta), the placing table Z axis when the measured object together with the mounting table is swung along the X-Z plane Using the moment of inertia Izz (β) of the object to be measured obtained based on the fourth oscillation period when rotating around the circumference,
Figure 0005435576
The inertial product Iyz is obtained by the following. Thereby, the inertial product Iyz of the measured object can be accurately obtained with a simple device configuration.

請求項11に対応した慣性乗積計測方法は、X−Y−Zの3次元直交座標系において、載置台に載せ置かれた被計測体をY−Z面において回転させて前記被計測体をY軸から仰角γをなす方向、及び、X−Y面において水平角90°をなす方向に設定し、揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第5揺動周期に基づき得られる前記被計測体の慣性モーメントIxx(γ)と、前記載置台をZ軸廻りに回転揺動させたときの第6揺動周期に基づき得られる前記被計測体の慣性モーメントIzz(γ)と、を用いて、又は、載置台に載せ置かれた被計測体をX−Z面において回転させて前記被計測体をX軸から仰角γをなす方向、及び、X−Y面において水平角90°をなす方向に設定し、揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第5揺動周期に基づき得られる前記被計測体の慣性モーメントIxx(γ)と、前記載置台をZ軸廻りに回転揺動させたときの第6揺動周期に基づき得られる前記被計測体の慣性モーメントIzz(γ)と、を用いて、

Figure 0005435576
により慣性乗積Izxを求めることを特徴とする。これにより、簡易な装置構成によって、被計測体の慣性乗積Izxを正確に求めることができる。 According to an inertial product measuring method corresponding to claim 11, in a three-dimensional orthogonal coordinate system of XYZ, a measurement object placed on a mounting table is rotated on a YZ plane so that the measurement object is rotated. The direction to make an elevation angle γ from the Y axis and the direction to make a horizontal angle of 90 ° on the XY plane are set, and the object to be measured is shaken along the XZ plane together with the mounting table using the swinging means. Obtained based on the inertia moment Ixx (γ) of the measured object obtained based on the fifth oscillation period when moved, and the sixth oscillation period obtained when the mounting table is rotated about the Z axis. Or the measured object moment of inertia Izz (γ) of the object to be measured, or the object to be measured placed on the mounting table is rotated in the XZ plane so that the object to be measured has an elevation angle γ from the X axis. And the direction that makes a horizontal angle of 90 ° in the XY plane. There the moment of inertia Ixx fifth based on the swing cycle obtained the measured object when the measured object is swung along the X-Z plane (gamma) with the mounting table previous, the mounting table Z Using the moment of inertia Izz (γ) of the object to be measured obtained based on the sixth oscillation period when it is rotationally oscillated around the axis,
Figure 0005435576
The inertial product Izx is obtained by the following. Thereby, the inertial product Izx of the measured object can be accurately obtained with a simple device configuration.

本発明の慣性乗積計測装置及び慣性乗積計測方法では、被計測体の慣性乗積や慣性モーメント等の被計測体の特性を正確に求めることができる。特に、従来より簡易な装置構成によって、被計測体の慣性乗積や慣性モーメント等の被計測体の特性を正確に求めることを可能とする。例えば、本発明の慣性乗積計測装置によれば、慣性乗積Ixy,Iyz及びIzxをそれぞれ求めることができる。   In the inertial product measuring device and the inertial product measuring method of the present invention, characteristics of the measured object such as the inertial product and the moment of inertia of the measured object can be accurately obtained. In particular, it is possible to accurately obtain the characteristics of the measured object such as the inertial product and the moment of inertia of the measured object with a simpler apparatus configuration. For example, according to the inertial product measuring apparatus of the present invention, the inertial products Ixy, Iyz, and Izx can be obtained, respectively.

また、転動子を用いることによって、より簡易な装置構成によって慣性乗積や慣性モーメント等の被計測体の特性を求めることが可能となる。また、固定軸がないことにより支柱を設ける必要がなく、載置台を広く利用できる。   Further, by using a rolling element, it is possible to obtain characteristics of the measured object such as an inertial product and an inertial moment with a simpler device configuration. Further, since there is no fixed shaft, there is no need to provide a support column, and the mounting table can be widely used.

また、被計測体の支持面を有するターンテーブルを用いることによって、被計測体の水平角を所望の角度に維持することが可能となり、より簡易に慣性乗積や慣性モーメント等の被計測体の特性を求めることができる。さらに、ターンテーブルの回転揺動の周期から慣性乗積を求めることができる。   In addition, by using a turntable having a support surface of the measured object, the horizontal angle of the measured object can be maintained at a desired angle, and the measured object such as the inertial product and the inertial moment can be more easily obtained. Characteristics can be obtained. In addition, the inertial product can be obtained from the period of rotation of the turntable.

また、架台又は載置台に被計測体の位置を調整する位置調整手段や被計測体の仰角を調整する仰角調整手段を設けることにより、被計測体を容易に水平に調整したり、より簡易に慣性乗積や慣性モーメント等の被計測体の特性を求めたりすることができる。   In addition, by providing position adjustment means for adjusting the position of the measurement object and elevation angle adjustment means for adjusting the elevation angle of the measurement object on the gantry or mounting table, the measurement object can be easily adjusted horizontally or more easily. The characteristics of the measured object such as inertial product and moment of inertia can be obtained.

もちろん、水平角設定手段によって載置台を水平角0°又は水平角90°に設定し、被計測体の水平角0°方向又は前記水平角90°方向の慣性モーメントを導出可能とすることもできる。   Of course, it is possible to set the mounting table at a horizontal angle of 0 ° or a horizontal angle of 90 ° by the horizontal angle setting means, and to derive the moment of inertia of the measured object in the horizontal angle of 0 ° direction or the horizontal angle of 90 ° direction. .

本発明の実施の形態における慣性乗積計測装置の構成を示す斜視図である。It is a perspective view which shows the structure of the inertial product measuring device in embodiment of this invention. 本発明の実施の形態における慣性乗積計測装置の構成を示す側面図である。It is a side view which shows the structure of the inertial product measuring device in embodiment of this invention. 本発明の実施の形態における慣性乗積計測装置の使用状態を示す平面図である。It is a top view which shows the use condition of the inertial product measuring device in embodiment of this invention. 本発明の実施の形態における慣性乗積計測装置の使用状態を示す正面図である。It is a front view which shows the use condition of the inertial product measuring device in embodiment of this invention. 本発明の実施の形態における慣性乗積計測装置の使用状態を示す側面図である。It is a side view which shows the use condition of the inertial product measuring device in embodiment of this invention. 本発明の実施の形態における慣性乗積計測装置の使用状態を示す正面図である。It is a front view which shows the use condition of the inertial product measuring device in embodiment of this invention. 本発明の実施の形態における慣性乗積計測装置の使用状態を示す側面図である。It is a side view which shows the use condition of the inertial product measuring device in embodiment of this invention. 本発明の実施の形態における慣性乗積計測装置による重心位置の計測方法を説明する図である。It is a figure explaining the measuring method of the gravity center position by the inertial product measuring device in embodiment of this invention. 本発明の実施の形態における慣性乗積計測装置の別例の構成を示す斜視図である。It is a perspective view which shows the structure of another example of the inertial product measuring device in embodiment of this invention. 本発明の実施の形態における慣性乗積計測装置の別例の構成を示す斜視図である。It is a perspective view which shows the structure of another example of the inertial product measuring device in embodiment of this invention.

以下、本発明の実施の形態を、図面に従って説明する。図1は、本発明の実施の形態における慣性乗積計測装置100の全体構成を示す図である。なお、以下の説明では、図中に示した、X−Y−Zの3次元直交座標系を用いて説明を行う。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of an inertial product measuring apparatus 100 according to an embodiment of the present invention. In the following description, the description will be made using the XYZ three-dimensional orthogonal coordinate system shown in the drawing.

慣性乗積計測装置100は、図1に示すように、載置台10、架台12及び転動子14を基本構成として備える。さらに、慣性乗積計測装置100は、水平角設定機構20、仰角設定機構22、位置調整機構24、水平方向揺動周期センサ26、仰角方向揺動周期センサ28及び制御部30を含んで構成される。   As shown in FIG. 1, the inertial product measuring apparatus 100 includes a mounting table 10, a gantry 12, and a rolling element 14 as a basic configuration. Further, the inertial product measuring apparatus 100 includes a horizontal angle setting mechanism 20, an elevation angle setting mechanism 22, a position adjustment mechanism 24, a horizontal direction oscillation period sensor 26, an elevation direction oscillation period sensor 28, and a control unit 30. The

慣性乗積計測装置100は、載置台10の上に載せ置かれた被計測体200の慣性モーメントや慣性乗積を求めることを可能とする。なお、図1では、慣性乗積計測装置100の構成をより明確に示すために、被計測体200を破線で示している。また、慣性乗積計測装置100の一部の隠れた構成要素を破線で示している。また、図2は、慣性乗積計測装置100をY軸方向からみた概略図である。図2において、転動子14による揺動を行った場合の様子を破線で示している。   The inertial product measuring apparatus 100 can obtain the moment of inertia and the inertial product of the measurement object 200 placed on the mounting table 10. In FIG. 1, the measured object 200 is indicated by a broken line in order to more clearly show the configuration of the inertial product measuring apparatus 100. In addition, some hidden components of the inertial product measuring apparatus 100 are indicated by broken lines. FIG. 2 is a schematic view of the inertial product measuring apparatus 100 as viewed from the Y-axis direction. In FIG. 2, the broken line shows the state when rocking is performed by the rolling element 14.

載置台10は、計測時に被計測体200を載せ置くための構成要素である。載置台10は、被計測体200を載せ置くためのターンテーブル10aを備えることが好適である。ターンテーブル10aは、例えば、円盤状の平板とする。ターンテーブル10aには、被計測体200を固定するための固定具を設けてもよい。   The mounting table 10 is a component for mounting the measured object 200 during measurement. It is preferable that the mounting table 10 includes a turntable 10a on which the measurement target 200 is placed. The turntable 10a is a disk-shaped flat plate, for example. The turntable 10a may be provided with a fixture for fixing the measured object 200.

ターンテーブル10aは、回動軸10bを中心に回動揺動可能となるように架台12に取り付けられる。回動軸10bには、ターンテーブル10aをスムーズに回動させるためにベアリング等の機構を設けてもよい。また、ターンテーブル10aは、図1に破線で示すように、バネ等の弾性部材40の復元力によって回動軸10b廻りに回転揺動可能となるように設けられる。弾性部材40は、ターンテーブル10a及び架台12に固定され、後述する水平角設定機構20により水平角が固定されていない状態において、ターンテーブル10aを回動軸10b廻りに回動させた初期状態からターンテーブル10aを解放することによって、弾性部材の復元力によってターンテーブル10aが回動軸10b廻りに回転揺動するように構成される。ターンテーブル10a、回動軸10b及び弾性部材40は回動手段を構成する。なお、ターンテーブル10aを回転揺動させる必要がない場合には、弾性部材40を外したり、ターンテーブル10a及び架台12の少なくとも一方との係止を緩めたりすることができるように構成してもよい。   The turntable 10a is attached to the gantry 12 so that the turntable 10a can be pivoted about the pivot shaft 10b. The rotating shaft 10b may be provided with a mechanism such as a bearing for smoothly rotating the turntable 10a. Further, as shown by a broken line in FIG. 1, the turntable 10a is provided so as to be able to rotate and swing around the rotation shaft 10b by a restoring force of an elastic member 40 such as a spring. The elastic member 40 is fixed to the turntable 10a and the gantry 12 and is in an initial state in which the turntable 10a is rotated around the rotation shaft 10b in a state where the horizontal angle is not fixed by the horizontal angle setting mechanism 20 described later. By releasing the turntable 10a, the turntable 10a is configured to rotate and swing around the rotation shaft 10b by the restoring force of the elastic member. The turntable 10a, the rotating shaft 10b, and the elastic member 40 constitute rotating means. If it is not necessary to rotate and swing the turntable 10a, the elastic member 40 may be removed or the engagement with at least one of the turntable 10a and the gantry 12 may be loosened. Good.

また、載置台10は、転動子14によって揺動が与えられていない状態においてターンテーブル10aの回動軸10bがZ軸方向に向くように構成される。   Further, the mounting table 10 is configured such that the rotating shaft 10b of the turntable 10a faces in the Z-axis direction in a state where the swinging motion is not given by the rolling element 14.

架台12は、載置台10を転動子14に取り付けると共に、載置台10を機械的に支持する部材である。架台12は、載置台10に固定されると共に、後述する位置調整機構24を介して転動子14に固定される。これにより、後述する転動子14の揺動が載置台10に伝達される。   The gantry 12 is a member that attaches the mounting table 10 to the rolling element 14 and mechanically supports the mounting table 10. The gantry 12 is fixed to the mounting table 10 and is fixed to the rolling element 14 via a position adjusting mechanism 24 described later. Thereby, the swing of the rolling element 14 described later is transmitted to the mounting table 10.

転動子14は、載置台10を振り子状に揺動させる部材であり、揺動手段として機能する。転動子14は、例えば、図1に示すように、円筒を直径の半分以下で切断したような形状を有する部材とすればよい。この場合、転動子14は、平面状の上面14aと、円弧状の転動面となる下面14bと、を有する。転動子14の側面には架台12が取り付けられる。これにより、転動子14の下面14bを転動面としてX軸方向(水平角0°のX−Z面)に沿って載置台10及び架台12を揺動させることが可能となる。このような転動子14を用いることにより、固定軸がないことから支柱を設ける必要がなく、載置台10上を広く利用できる。なお、架台12の取り付けは、転動子14の側面でなく、上面でも構わない。   The rolling element 14 is a member that swings the mounting table 10 like a pendulum, and functions as a swinging means. For example, as shown in FIG. 1, the rolling element 14 may be a member having a shape obtained by cutting a cylinder by half or less of its diameter. In this case, the rolling element 14 has a planar upper surface 14a and a lower surface 14b serving as an arcuate rolling surface. A gantry 12 is attached to the side surface of the rolling element 14. As a result, the mounting table 10 and the gantry 12 can be swung along the X-axis direction (XZ plane with a horizontal angle of 0 °) using the lower surface 14b of the rolling element 14 as a rolling surface. By using such a rolling element 14, there is no fixed shaft, so there is no need to provide a support column, and the top of the mounting table 10 can be widely used. Note that the mount 12 may be attached to the upper surface instead of the side surface of the rolling element 14.

水平角設定機構20は、回動軸10bを回動中心としてターンテーブル10aを所定の水平角に設定するために設けられる。水平角設定機構20は、図3に示すように、X軸方向を0°として、ターンテーブル10aを少なくとも0°から90°の間の任意の水平角αに調整及び固定できる機構を有する。例えば、ターンテーブル10aを0°から90°の間の水平角αに維持した状態でターンテーブル10aの回動軸10bを締め付けて架台12に固定するラッチ機構を設ければよい。ただし、水平角設定機構20は、これに限定されるものでなく、ターンテーブル10aと架台12との角度を調整できるものであればよい。   The horizontal angle setting mechanism 20 is provided to set the turntable 10a to a predetermined horizontal angle with the rotation shaft 10b as a rotation center. As shown in FIG. 3, the horizontal angle setting mechanism 20 has a mechanism capable of adjusting and fixing the turntable 10a to an arbitrary horizontal angle α between at least 0 ° and 90 ° with the X-axis direction being 0 °. For example, a latch mechanism that fastens the rotating shaft 10b of the turntable 10a and fixes the turntable 10a to the gantry 12 in a state where the turntable 10a is maintained at a horizontal angle α between 0 ° and 90 ° may be provided. However, the horizontal angle setting mechanism 20 is not limited to this, and any mechanism that can adjust the angle between the turntable 10a and the gantry 12 may be used.

仰角設定機構22は、載置台10(ターンテーブル10a)上において被計測体200をY−Z面内及びX−Z面内において所定の仰角に設定するために設けられる。仰角設定機構22は、図4(a),図4(b)に示すように、載置台10が水平の状態を仰角0°として、X軸を軸としてY−Z面内及びX−Z面内において載置台10上に載せ置かれた被計測体200を仰角βに保持する構成を含むものとする。例えば、図4(a),図4(b)に示すように、ターンテーブル10a上において被計測体200を仰角βに傾けるための高さ調整部22aを設ければよい。また、仰角設定機構22は、図5(a),図5(b)に示すように、ターンテーブル10aを水平角90°に回転させた状態において、X軸及びY軸を軸としてY−Z面内及びX−Z面内においてターンテーブル10a上に載せ置かれた被計測体200を仰角γに保持する構成を含むものとする。例えば、図5(a),図5(b)に示すように、ターンテーブル10a上において被計測体200を仰角γに傾けるための高さ調整部22bを設ければよい。ただし、仰角設定機構22は、これに限定されるものでなく、載置台10上に載せ置かれた被計測体200と載置台10(ターンテーブル10a)との間の角度を調整できるものであればよい。   The elevation angle setting mechanism 22 is provided for setting the measured object 200 at a predetermined elevation angle in the YZ plane and the XZ plane on the mounting table 10 (turntable 10a). As shown in FIGS. 4 (a) and 4 (b), the elevation angle setting mechanism 22 has an elevation angle of 0 ° when the mounting table 10 is in a horizontal state, and an YZ plane and an XZ plane with the X axis as an axis. It is assumed that the measurement object 200 placed on the mounting table 10 is held at the elevation angle β. For example, as shown in FIGS. 4A and 4B, a height adjusting unit 22a for tilting the measurement target 200 to the elevation angle β may be provided on the turntable 10a. Further, as shown in FIGS. 5 (a) and 5 (b), the elevation angle setting mechanism 22 is YZ with the X and Y axes as axes in the state where the turntable 10a is rotated at a horizontal angle of 90 °. It is assumed that the measured object 200 placed on the turntable 10a in the plane and the XZ plane is held at the elevation angle γ. For example, as shown in FIGS. 5A and 5B, a height adjustment unit 22b for tilting the measurement target 200 to the elevation angle γ may be provided on the turntable 10a. However, the elevation angle setting mechanism 22 is not limited to this, and is capable of adjusting the angle between the measurement target 200 placed on the mounting table 10 and the mounting table 10 (turn table 10a). That's fine.

位置調整機構24は、架台12(載置台10)と転動子14との取付角度を調整するために設けられる。位置調整機構24は、例えば、図1に示すように、架台12に固定された棒状の軸24aと、軸24aと嵌合可能であり転動子14に固定された円筒状の連結部24bと、を含んで構成することができる。軸24aを連結部24bの円筒に回動可能に挿入し、連結部24bと軸24aとをネジ等の固定部材(図示しない)により固定できるように構成すればよい。これにより、架台12(載置台10)が水平状態となるように転動子14との取付角度を調整した後、計測中にその取付角度が保持されるように軸24aと連結部24bとを固定することが可能となる。ただし、位置調整機構24はこれに限定されるものでなく、架台12(載置台10)と転動子14との取付角度を調整できるものであればよい。   The position adjusting mechanism 24 is provided to adjust the mounting angle between the gantry 12 (mounting table 10) and the rolling element 14. For example, as shown in FIG. 1, the position adjustment mechanism 24 includes a rod-shaped shaft 24 a fixed to the gantry 12, and a cylindrical connecting portion 24 b that can be fitted to the shaft 24 a and is fixed to the rolling element 14. , Can be configured. What is necessary is just to comprise so that the axis | shaft 24a can be rotatably inserted in the cylinder of the connection part 24b, and the connection part 24b and the axis | shaft 24a can be fixed by fixing members (not shown), such as a screw | thread. Thus, after adjusting the mounting angle with the rolling element 14 so that the gantry 12 (mounting table 10) is in a horizontal state, the shaft 24a and the connecting portion 24b are connected so that the mounting angle is maintained during measurement. It can be fixed. However, the position adjustment mechanism 24 is not limited to this, and any mechanism that can adjust the mounting angle between the gantry 12 (the mounting table 10) and the rolling element 14 may be used.

また、位置調整機構24として、載置台10上に載せ置かれた被計測体200のX軸方向、Y軸方向及びZ軸方向の位置のいずれかを調整できる3次元ステージを設けてもよい。   In addition, as the position adjustment mechanism 24, a three-dimensional stage that can adjust any of the positions in the X-axis direction, the Y-axis direction, and the Z-axis direction of the measurement target 200 placed on the mounting table 10 may be provided.

水平方向揺動周期センサ26は、載置台10(ターンテーブル10a)の回転揺動の周期を検出するセンサである。水平方向揺動周期センサ26は、例えば、載置台10(ターンテーブル10a)の回転角を検出する回転角センサとし、載置台10(ターンテーブル10a)の架台12に対する回転角から回転揺動周期を検出するものとすればよい。また、水平方向揺動周期センサ26は、例えば、載置台10(ターンテーブル10a)の一部に反射板を取り付け、反射型光学センサで載置台10(ターンテーブル10a)の架台12に対する回転揺動周期を検出してもよい。ただし、水平方向揺動周期センサ26は、これらに限定されるものでなく、載置台10(ターンテーブル10a)の回動軸10bを回動中心とする回転揺動の周期を検出できるものであればよい。   The horizontal direction swing period sensor 26 is a sensor that detects the period of the rotational swing of the mounting table 10 (turntable 10a). The horizontal direction swing cycle sensor 26 is, for example, a rotation angle sensor that detects the rotation angle of the mounting table 10 (turn table 10a), and the rotation swing cycle is determined from the rotation angle of the mounting table 10 (turn table 10a) with respect to the gantry 12. What is necessary is just to detect. In addition, the horizontal direction oscillation cycle sensor 26 is, for example, a reflection plate attached to a part of the mounting table 10 (turn table 10a), and a reflection type optical sensor that rotates and swings the mounting table 10 (turn table 10a) with respect to the frame 12. The period may be detected. However, the horizontal direction swing cycle sensor 26 is not limited to these, and can detect the cycle of the rotational swing about the rotation shaft 10b of the mounting table 10 (turn table 10a). That's fine.

仰角方向揺動周期センサ28は、転動子14のX軸方向(水平角0°であるX−Z面)に沿った揺動の周期を検出するセンサである。仰角方向揺動周期センサ28は、例えば、転動子14の傾斜角度を検出する傾斜センサとし、転動子14の傾斜角からX軸方向に沿った揺動周期を検出すればよい。また、仰角方向揺動周期センサ28は、例えば、転動子14の一部に反射板を取り付け、反射型光学センサで転動子14のX軸方向に沿った揺動周期を検出してもよい。ただし、仰角方向揺動周期センサ28は、これらに限定されるものでなく、転動子14のX軸方向に沿った揺動の周期を検出できるものであればよい。   The elevation direction oscillating period sensor 28 is a sensor that detects the period of oscillating along the X-axis direction (XZ plane where the horizontal angle is 0 °) of the rolling element 14. The elevation direction oscillation cycle sensor 28 may be, for example, an inclination sensor that detects the inclination angle of the rolling element 14 and may detect the oscillation period along the X-axis direction from the inclination angle of the rolling element 14. Further, the elevation angle direction oscillation cycle sensor 28 may be configured such that, for example, a reflection plate is attached to a part of the rolling element 14 and the oscillation period along the X-axis direction of the rolling element 14 is detected by a reflective optical sensor. Good. However, the elevation direction oscillation cycle sensor 28 is not limited to these, and any sensor that can detect the oscillation cycle of the rolling element 14 along the X-axis direction may be used.

制御部30は、慣性乗積計測装置100の各部を統合的に制御する。制御部30は、水平方向揺動周期センサ26及び仰角方向揺動周期センサ28からターンテーブル10aの揺動周期及び転動子14の揺動周期の入力を受けて、それらの計測値から慣性乗積や慣性モーメント等の被計測体200の特性値を算出する。算出された特性値は、ディスプレイやプリンタ等の出力手段によってユーザに呈示されたり、半導体メモリ,ハードディスク及び光ディスク等の記憶媒体に出力したりするようにしてもよい。   The control unit 30 controls each part of the inertial product measurement apparatus 100 in an integrated manner. The control unit 30 receives inputs of the swing period of the turntable 10a and the swing period of the rolling element 14 from the horizontal direction swing period sensor 26 and the elevation direction direction swing period sensor 28, and calculates the inertial multiplication from these measured values. Characteristic values of the measured object 200 such as product and moment of inertia are calculated. The calculated characteristic value may be presented to the user by output means such as a display or a printer, or may be output to a storage medium such as a semiconductor memory, a hard disk, or an optical disk.

制御部30は、一般的なコンピュータにおいて計測用のプログラムを実行することにより実現することができる。具体的には、コンピュータの記憶手段に以下に説明する処理を実行するための計測用プログラムを記憶させ、CPUにて当該計測用プログラムを実行する。   The control unit 30 can be realized by executing a measurement program in a general computer. Specifically, a measurement program for executing the processing described below is stored in the storage means of the computer, and the measurement program is executed by the CPU.

<計測処理>
以下、慣性乗積計測装置100を用いた慣性乗積計測方法について説明する。
<Measurement process>
Hereinafter, an inertial product measurement method using the inertial product measurement apparatus 100 will be described.

まず、最初に、被計測体200をターンテーブル10a上に載せ置いて固定する。以下の説明では、被計測体200は質量Mであるとする。また、船舶等の模型を被計測体200とする場合には、実物の船舶等に合わせて重心の調整を行う。例えば、模型である被計測体200内に錘を配置し、実物の船舶等の重心位置に合わせる。   First, the measured object 200 is placed and fixed on the turntable 10a. In the following description, it is assumed that the measurement target 200 has a mass M. Further, when a model such as a ship is used as the measurement object 200, the center of gravity is adjusted according to the actual ship or the like. For example, a weight is arranged in the measured object 200 that is a model, and is adjusted to the position of the center of gravity of a real ship or the like.

次に、質量mの移動用錘Xを用いて傾斜試験を行い、被計測体200の重心位置Gsを求める。図6に示すように、重心位置を調整した被計測体200に転動子14の揺動中心点0を通る垂線から距離dだけ離れた位置に移動用錘Xを設置し、その時の転動子14の傾きの角度θを計測する。このとき、重心位置Gsは数式(4)によって算出することができる。

Figure 0005435576
Next, an inclination test is performed using the moving weight X of mass m, and the center of gravity position Gs of the measurement target 200 is obtained. As shown in FIG. 6, a moving weight X is installed at a position separated by a distance d from a perpendicular passing through the swing center point 0 of the rolling element 14 on the measured object 200 whose center of gravity is adjusted, and rolling at that time is performed. The inclination angle θ of the child 14 is measured. At this time, the center-of-gravity position Gs can be calculated by Equation (4).
Figure 0005435576

次に、慣性乗積の計測処理を開始する。慣性乗積の計測では、慣性乗積Ixy,Iyz及びIzxを求める処理を行う。以下、慣性乗積Ixy,Iyz及びIzxを求める処理についてそれぞれ説明する。   Next, an inertial product measurement process is started. In measuring the inertial product, a process for obtaining inertial products Ixy, Iyz, and Izx is performed. Hereinafter, processing for obtaining inertial products Ixy, Iyz, and Izx will be described.

(慣性乗積Ixy)
被計測体200の重心位置Gsを調整した状態で、図3に示すように、水平角設定機構20を用いて、X軸方向を0°として水平角αだけずらした角度にターンテーブル10aを固定する。この状態において、揺動手段である転動子14をX軸方向(水平角0°であるX−Z面)に沿って揺動させ、仰角方向揺動周期センサ28にて転動子14の第1揺動周期Txx(α)を計測する。制御部30は、計測された第1揺動周期Txx(α)を取得する。制御部30では、第1揺動周期Txx(α)を用いて数式(5)により慣性モーメントIxx(α)を算出する。ここで、gは重力加速度である。

Figure 0005435576
(Inertial product Ixy)
With the center-of-gravity position Gs of the measured object 200 adjusted, as shown in FIG. 3, the turntable 10a is fixed at an angle shifted by the horizontal angle α with the X-axis direction set to 0 ° using the horizontal angle setting mechanism 20. To do. In this state, the rotator 14 as the oscillating means is oscillated along the X-axis direction (XZ plane having a horizontal angle of 0 °), and the elevation direction oscillating period sensor 28 detects the rotator 14. The first oscillation period Txx (α) is measured. The control unit 30 acquires the measured first oscillation period Txx (α) . In the control unit 30, the moment of inertia Ixx (α) is calculated by the equation (5) using the first oscillation period Txx (α) . Here, g is a gravitational acceleration.
Figure 0005435576

次に、水平角設定機構20を用いて、水平角90°−αだけずらした角度にターンテーブル10aを固定する。この状態において、揺動手段である転動子14をX軸方向に沿って揺動させ、仰角方向揺動周期センサ28にて転動子14の第2揺動周期Tyy(α)を計測する。制御部30は、計測された第2揺動周期Tyy(α)を取得する。制御部30では、第2揺動周期Tyy(α)を用いて数式(6)により慣性モーメントIyy(α)を算出する。

Figure 0005435576
Next, using the horizontal angle setting mechanism 20, the turntable 10a is fixed at an angle shifted by a horizontal angle of 90 ° −α. In this state, the rotator 14 as the oscillating means is oscillated along the X-axis direction, and the second oscillating period Tyy (α) of the rotator 14 is measured by the elevation direction oscillating period sensor 28. . The control unit 30 acquires the measured second oscillation period Tyy (α) . In the control unit 30, the moment of inertia Iyy (α) is calculated by the equation (6) using the second oscillation period Tyy (α) .
Figure 0005435576

以上のように算出された慣性モーメントIxx(α)及びIyy(α)から、数式(7)により被計測体200に水平角αを与えた場合の慣性乗積Ixyを算出する。

Figure 0005435576
From the inertia moments Ixx (α) and Iyy (α) calculated as described above, the inertial product Ixy when the horizontal angle α is given to the measured object 200 is calculated according to Equation (7).
Figure 0005435576

(慣性乗積Iyz)
被計測体200の重心位置Gsを調整した状態で、図4(a)に示すように、仰角設定機構22を用いて、載置台10のターンテーブル10aに載せ置かれた被計測体200をY−Z面において回転させて、被計測体200をY軸から仰角βをなす方向に固定する。この状態において、揺動手段である転動子14をX軸方向(X−Z面)に沿って揺動させ、仰角方向揺動周期センサ28にて転動子14の第3揺動周期Tyy(β)を計測する。制御部30は、計測された第3揺動周期Tyy(β)を取得する。制御部30では、第3揺動周期Tyy(β)を用いて数式(8)により慣性モーメントIyy(β)を算出する。

Figure 0005435576
(Inertial product Iyz)
With the center-of-gravity position Gs of the measured object 200 adjusted, the measured object 200 placed on the turntable 10a of the mounting table 10 is set to Y using the elevation angle setting mechanism 22 as shown in FIG. Rotate in the −Z plane to fix the measured object 200 in a direction that forms an elevation angle β from the Y axis. In this state, the rotator 14 as the oscillating means is oscillated along the X-axis direction (XZ plane), and the third oscillating period Tyy of the rotator 14 is detected by the elevation direction oscillating period sensor 28. (Β) is measured. The control unit 30 acquires the measured third oscillation cycle Tyy (β) . In the control unit 30, the moment of inertia Iyy (β) is calculated by the mathematical formula (8) using the third oscillation period Tyy (β) .
Figure 0005435576

次に、回動手段を用いて、ターンテーブル10aをZ軸廻りに回転揺動させ、水平方向揺動周期センサ26にてターンテーブル10aの第4揺動周期Tzz(β)を計測する。制御部30は、計測された第4揺動周期Tzz(β)を取得する。制御部30では、第4揺動周期Tzz(β)を用いて数式(9)により慣性モーメントIzz(β)を算出する。

Figure 0005435576
Next, the turntable 10a is rotated and swung about the Z axis by using the rotating means, and the fourth swing period Tzz (β) of the turntable 10a is measured by the horizontal swing period sensor 26. The control unit 30 acquires the measured fourth oscillation period Tzz (β) . In the control unit 30, the moment of inertia Izz (β) is calculated by Equation (9) using the fourth oscillation period Tzz (β) .
Figure 0005435576

以上のように算出された慣性モーメントIyy(β)及びIzz(β)から、数式(10)により被計測体200に仰角βを与えた場合の慣性乗積Iyzを算出する。

Figure 0005435576
From the inertia moments Iyy (β) and Izz (β) calculated as described above, the inertial product Iyz in the case where the elevation angle β is given to the measured object 200 is calculated according to Equation (10).
Figure 0005435576

また、被計測体200の重心位置Gsを調整した状態で、図4(b)に示すように、仰角設定機構22を用いて、載置台10のターンテーブル10aに載せ置かれた被計測体200をX−Z面において回転させて、被計測体200をX軸から仰角βをなす方向に固定する。この状態において、揺動手段である転動子14をX軸方向(X−Z面)に沿って揺動させ、仰角方向揺動周期センサ28にて転動子14の第3揺動周期Tyy(β)を計測し、計測された第3揺動周期Tyy(β)を取得する。制御部30では、第3揺動周期Tyy(β)を用いて数式(8)により慣性モーメントIyy(β)を算出する。さらに、回動手段を用いて、ターンテーブル10aをZ軸廻りに回転揺動させ、水平方向揺動周期センサ26にてターンテーブル10aの第4揺動周期Tzz(β)を計測し、計測された第4揺動周期Tzz(β)を取得する。制御部30では、第4揺動周期Tzz(β)を用いて数式(9)により慣性モーメントIzz(β)を算出する。そして、算出された慣性モーメントIyy(β)及びIzz(β)から、数式(10)により被計測体200に仰角βを与えた場合の慣性乗積Iyzを算出してもよい。 In addition, as shown in FIG. 4B, the measured object 200 placed on the turntable 10 a of the mounting table 10 using the elevation angle setting mechanism 22 with the center of gravity position Gs of the measured object 200 adjusted. Is rotated in the XZ plane, and the measured object 200 is fixed in the direction of the elevation angle β from the X axis. In this state, the rotator 14 as the oscillating means is oscillated along the X-axis direction (XZ plane), and the third oscillating period Tyy of the rotator 14 is detected by the elevation direction oscillating period sensor 28. (Β) is measured, and the measured third oscillation period Tyy (β) is acquired. In the control unit 30, the moment of inertia Iyy (β) is calculated by the mathematical formula (8) using the third oscillation period Tyy (β) . Further, the turn table 10a is rotated and swung about the Z axis by using the rotating means, and the fourth swing period Tzz (β) of the turn table 10a is measured by the horizontal swing period sensor 26 and measured. The fourth oscillation period Tzz (β) is acquired. In the control unit 30, the moment of inertia Izz (β) is calculated by Equation (9) using the fourth oscillation period Tzz (β) . Then, from the calculated moments of inertia Iyy (β) and Izz (β) , the product of inertia Iyz when the elevation angle β is given to the measured object 200 according to Equation (10) may be calculated.

(慣性乗積Izx)
被計測体200の重心位置Gsを調整した状態で、図5(a)に示すように、水平角設定機構20を用いて、X軸方向を0°として水平角90°だけずらした角度にターンテーブル10aを固定すると共に、仰角設定機構22を用いて、載置台10のターンテーブル10aに載せ置かれた被計測体200をY−Z面において回転させて、被計測体200をY軸から仰角γをなす方向に固定する。この状態において、揺動手段である転動子14をX軸方向(X−Z面)に沿って揺動させ、仰角方向揺動周期センサ28にて転動子14の第5揺動周期Txx(γ)を計測する。制御部30は、計測された第5揺動周期Txx(γ))を取得する。制御部30では、第5揺動周期Txx(γ)を用いて数式(11)により慣性モーメントIxx(γ)を算出する。

Figure 0005435576
(Inertial product Izx)
With the center of gravity position Gs of the measured object 200 adjusted, as shown in FIG. 5A, the horizontal angle setting mechanism 20 is used to turn the X axis direction to 0 ° and shift it to a horizontal angle of 90 °. While fixing the table 10a, using the elevation setting mechanism 22, the measured object 200 placed on the turntable 10a of the mounting table 10 is rotated on the YZ plane, and the measured object 200 is lifted from the Y axis. Fix in the direction of γ. In this state, the rotator 14 as the oscillating means is oscillated along the X-axis direction (XZ plane), and the fifth oscillating period Txx of the rotator 14 is detected by the elevation direction oscillating period sensor 28. Measure (γ) . The control unit 30 acquires the measured fifth oscillation period Txx (γ) . In the control unit 30, the moment of inertia Ixx (γ) is calculated by the equation (11) using the fifth oscillation period Txx (γ) .
Figure 0005435576

次に、回動手段を用いて、ターンテーブル10aをZ軸廻りに回転揺動させ、水平方向揺動周期センサ26にてターンテーブル10aの第6揺動周期Tzz(γ)を計測する。制御部30は、計測された第6揺動周期Tzz(γ)を取得する。制御部30では、第6揺動周期Tzz(γ)を用いて数式(12)により慣性モーメントIzz(γ)を算出する。

Figure 0005435576
Next, the turntable 10a is rotated and swung around the Z axis by using the rotating means, and the sixth swing period Tzz (γ) of the turntable 10a is measured by the horizontal swing period sensor 26. The control unit 30 acquires the measured sixth oscillation period Tzz (γ) . In the control unit 30, the moment of inertia Izz (γ) is calculated by the equation (12) using the sixth oscillation period Tzz (γ) .
Figure 0005435576

以上のように算出された慣性モーメントIxx(γ)及びIzz(γ)から、数式(13)により被計測体200に仰角γを与えた場合の慣性乗積Izxを算出する。

Figure 0005435576
From the inertia moments Ixx (γ) and Izz (γ) calculated as described above, the inertial product Izx in the case where the elevation angle γ is given to the measurement object 200 is calculated according to Equation (13).
Figure 0005435576

また、被計測体200の重心位置Gsを調整した状態で、図5(b)に示すように、水平角設定機構20を用いて、X軸方向を0°として水平角90°だけずらした角度にターンテーブル10aを固定すると共に、仰角設定機構22を用いて、載置台10のターンテーブル10aに載せ置かれた被計測体200をX−Z面において回転させて、被計測体200をX軸から仰角γをなす方向に固定する。この状態において、揺動手段を用いて、転動子14をX軸方向(X−Z面)に沿って揺動させ、仰角方向揺動周期センサ28にて転動子14の第5揺動周期Txx(γ)を計測する。制御部30は、計測された第5揺動周期Txx(γ))を取得する。制御部30では、第5揺動周期Txx(γ)を用いて数式(11)により慣性モーメントIxx(γ)を算出する。次に、回動手段を用いて、ターンテーブル10aをZ軸廻りに回転揺動させ、水平方向揺動周期センサ26にてターンテーブル10aの第6揺動周期Tzz(γ)を計測する。制御部30は、計測された第6揺動周期Tzz(γ)を取得する。制御部30では、第6揺動周期Tzz(γ)を用いて数式(12)により慣性モーメントIzz(γ)を算出する。そして、算出された慣性モーメントIxx(γ)及びIzz(γ)から、数式(13)により被計測体200に仰角γを与えた場合の慣性乗積Izxを算出してもよい。 Further, as shown in FIG. 5B, with the center-of-gravity position Gs of the measurement target 200 adjusted, the horizontal angle setting mechanism 20 is used to shift the angle by 90 degrees with the X-axis direction being 0 degrees. The measurement object 200 placed on the turntable 10a of the mounting table 10 is rotated on the XZ plane using the elevation angle setting mechanism 22 to fix the measurement object 200 to the X axis. Is fixed in a direction that forms an elevation angle γ. In this state, the oscillating means is used to oscillate the rotator 14 along the X-axis direction (X-Z plane), and the elevation oscillating period sensor 28 causes the oscillating element 14 to The period Txx (γ) is measured. The control unit 30 acquires the measured fifth oscillation period Txx (γ) . In the control unit 30, the moment of inertia Ixx (γ) is calculated by the equation (11) using the fifth oscillation period Txx (γ) . Next, the turntable 10a is rotated and swung around the Z axis by using the rotating means, and the sixth swing period Tzz (γ) of the turntable 10a is measured by the horizontal swing period sensor 26. The control unit 30 acquires the measured sixth oscillation period Tzz (γ) . In the control unit 30, the moment of inertia Izz (γ) is calculated by the equation (12) using the sixth oscillation period Tzz (γ) . Then, from the calculated moments of inertia Ixx (γ) and Izz (γ) , the product of inertia Izx when the elevation angle γ is given to the measured object 200 may be calculated by Equation (13).

以上のように、慣性乗積計測装置100を用いて慣性乗積Ixy,Iyz及びIzxを求めることができる。特に、回転揺動可能なターンテーブル10aを有する載置台10並びに水平角設定機構20及び仰角設定機構22を備えることによって、従来の装置より簡易な構成及び方法で慣性乗積を求めることができる。   As described above, the inertial products Ixy, Iyz, and Izx can be obtained using the inertial product measuring apparatus 100. In particular, by providing the mounting table 10 having the turntable 10a that can be rotated and swung, the horizontal angle setting mechanism 20, and the elevation angle setting mechanism 22, the inertial product can be obtained with a simpler configuration and method than the conventional apparatus.

なお、水平角設定機構20により被計測体200を水平角0°かつ仰角設定機構22により仰角0°に保って転動子14の揺動周期Txx(0)を計測することによって、数式(14)にて慣性モーメントIxxを求めることもできる。

Figure 0005435576
Note that by measuring the swing period Txx (0) of the rolling element 14 while keeping the measured object 200 at the horizontal angle 0 ° by the horizontal angle setting mechanism 20 and the elevation angle 0 ° by the elevation angle setting mechanism 22, the mathematical expression (14 ) To obtain the moment of inertia Ixx.
Figure 0005435576

また、水平角設定機構20により被計測体200を水平角90°かつ仰角設定機構22により仰角0°に保って転動子14の揺動周期Tyy(0)を計測することによって、数式(15)にて慣性モーメントIyyを求めることもできる。

Figure 0005435576
Further, by measuring the swing period Tyy (0) of the rolling element 14 while keeping the measured object 200 at the horizontal angle 90 ° by the horizontal angle setting mechanism 20 and at the elevation angle 0 ° by the elevation angle setting mechanism 22, the mathematical expression (15 ) To obtain the moment of inertia Iyy.
Figure 0005435576

さらに、水平角設定機構20により被計測体200を水平角0°かつ仰角設定機構22により仰角0°に保って載置台10のターンテーブル10aの揺動周期Tzz(0)を計測することによって、数式(16)にて慣性モーメントIzzを求めることもできる。

Figure 0005435576
Furthermore, by measuring the swing period Tzz (0) of the turntable 10a of the mounting table 10 while keeping the measured object 200 at the horizontal angle 0 ° by the horizontal angle setting mechanism 20 and the elevation angle 0 ° by the elevation angle setting mechanism 22. The moment of inertia Izz can also be obtained from Equation (16).
Figure 0005435576

なお、上記実施の形態では揺動手段として転動子14を適用したが、これに限定されるものでなく、架台12(載置台10)をX軸方向(X−Z面)に沿って揺動可能とするものであればよい。例えば、図7に示すように、吊り部材31によって軸32に載置台10を吊り下げ、軸32を回動中心としてX軸方向(X−Z面)に沿って架台12(載置台10)をブランコ状に揺動させる慣性乗積計測装置102としてもよい。また、図8に示すように、軸34によって架台12を回動可能に支える支柱36を設けると共に、架台12を水平にバランスさせる錘38a,38bを設け、軸34を回動中心としてX軸方向(X−Z面)に沿って架台12(載置台10)を振り子状に揺動させる慣性乗積計測装置104としてもよい。これらの慣性乗積計測装置102,104においても上記と同様に慣性乗積及び慣性モーメントを算出することができる。   In the above-described embodiment, the rolling element 14 is applied as the swinging means. However, the present invention is not limited to this, and the platform 12 (mounting table 10) is swung along the X-axis direction (XZ plane). Anything that can be moved is acceptable. For example, as shown in FIG. 7, the mounting table 10 is suspended from the shaft 32 by the suspension member 31, and the platform 12 (mounting table 10) is moved along the X-axis direction (XZ plane) with the shaft 32 as the rotation center. The inertial product measuring device 102 that swings in a swing shape may be used. Further, as shown in FIG. 8, a support column 36 that rotatably supports the gantry 12 by a shaft 34 is provided, and weights 38a and 38b that horizontally balance the gantry 12 are provided. It is good also as the inertial product measuring device 104 which rocks the mount frame 12 (mounting table 10) like a pendulum along (XZ plane). In these inertial product measuring apparatuses 102 and 104, the inertial product and the moment of inertia can be calculated in the same manner as described above.

以上の実施形態は、船舶及び船舶の模型の計測のみならず、他の構造物、例えば鉄道車両、自動車等についても適用することができる。   The above embodiments can be applied not only to measurement of ships and ship models, but also to other structures such as railway vehicles and automobiles.

10 載置台、10a ターンテーブル、10b 回動軸、12 架台、14 転動子、14a 上面、14b 下面、20 水平角設定機構、22 仰角設定機構、22a 調整部、22b 調整部、24 位置調整機構、24a 軸、24b 連結部、26 水平方向揺動周期センサ、28 仰角方向揺動周期センサ、30 制御部、31 吊り部材、32 軸、34 軸、36 支柱、38a,38b 錘、100,102,104 慣性乗積計測装置、200 被計測体。   DESCRIPTION OF SYMBOLS 10 Mounting stand, 10a Turntable, 10b Rotating shaft, 12 Mount, 14 Roller, 14a Upper surface, 14b Lower surface, 20 Horizontal angle setting mechanism, 22 Elevation angle setting mechanism, 22a Adjustment part, 22b Adjustment part, 24 Position adjustment mechanism , 24a axis, 24b coupling part, 26 horizontal direction oscillation period sensor, 28 elevation angle direction oscillation period sensor, 30 control part, 31 suspension member, 32 axis, 34 axis, 36 column, 38a, 38b weight, 100, 102, 104 inertial product measuring device, 200 object to be measured.

Claims (11)

架台と、
前記架台を水平角0°方向に沿って揺動させる揺動手段と、
前記架台上に前記架台に対して回動可能に設けられ、被計測体を載せ置く載置台と、
前記載置台を回転させ、水平角0°とは異なる第1水平角αと第2水平角(90°−α)に前記被計測体を設定する水平角設定手段と、を備え、
前記被計測体を前記第1水平角αの方向に設定した状態で前記架台を揺動させて得られる第1揺動周期と、前記被計測体を前記第2水平角(90°−α)の方向に設定した状態で前記架台を揺動させて得られる第2揺動周期と、を計測し、
前記第1揺動周期及び前記第2揺動周期から前記被計測体の慣性乗積を導出可能としたことを特徴とする慣性乗積計測装置。
A frame,
Rocking means for rocking the gantry along a horizontal angle of 0 °;
A mounting table provided on the platform so as to be rotatable with respect to the platform;
Horizontal angle setting means for rotating the mounting table and setting the measured object at a first horizontal angle α and a second horizontal angle (90 ° −α) different from the horizontal angle of 0 °,
A first swing period obtained by swinging the gantry in a state in which the measurement object is set in the direction of the first horizontal angle α; and the second horizontal angle (90 ° −α) of the measurement object. Measuring a second swing period obtained by swinging the gantry in a state set in the direction of
An inertial product measuring apparatus characterized in that an inertial product of the measurement object can be derived from the first swing period and the second swing period.
請求項1に記載の慣性乗積計測装置であって、
前記載置台を前記架台に対して回転揺動させる回動手段をさらに備え、
前記被計測体を前記水平角0°かつ前記被計測体を前記水平角0°方向からみて仰角β、に設定し、前記揺動手段によって前記被計測体を揺動させて得られる第3揺動周期と、前記回動手段によって前記被計測体を回転揺動させて得られる第4揺動周期と、を計測し、
又は、
前記被計測体を前記水平角0°かつ前記被計測体を前記水平角90°方向からみて仰角β、に設定し、前記揺動手段によって前記被計測体を揺動させて得られる第3揺動周期と、前記回動手段によって前記被計測体を回転揺動させて得られる第4揺動周期と、を計測し、
前記第3揺動周期及び前記第4揺動周期から前記被計測体の慣性乗積を導出可能としたことを特徴とする慣性乗積計測装置。
The inertial product measuring device according to claim 1,
A rotating means for rotating and swinging the mounting table with respect to the frame;
A third swing obtained by setting the measured body to the horizontal angle 0 ° and the measured body to an elevation angle β when viewed from the horizontal angle 0 ° direction, and swinging the measured body by the swinging means. Measuring a moving cycle and a fourth swinging cycle obtained by rotating and swinging the measured object by the turning means;
Or
A third swing obtained by setting the object to be measured to the horizontal angle of 0 ° and the object to be measured to an elevation angle β when viewed from the direction of the horizontal angle of 90 °, and swinging the object to be measured by the swinging means. Measuring a moving cycle and a fourth swinging cycle obtained by rotating and swinging the measured object by the turning means;
An inertial product measuring apparatus characterized in that an inertial product of the measurement object can be derived from the third swing period and the fourth swing period.
請求項1に記載の慣性乗積計測装置であって、
前記載置台を前記架台に対して回転揺動させる回動手段をさらに備え、
前記被計測体を水平角90°かつ前記被計測体を前記水平角0°方向からみて仰角γに設定し、前記揺動手段によって前記被計測体を揺動させて得られる第5揺動周期と、前記回動手段によって前記被計測体を回転揺動させて得られる第6揺動周期と、を計測し、
又は、
前記被計測体を水平角90°かつ前記被計測体を前記水平角90°方向からみて仰角γに設定し、前記揺動手段によって前記被計測体を揺動させて得られる第5揺動周期と、前記回動手段によって前記被計測体を回転揺動させて得られる第6揺動周期と、を計測し、
前記第5揺動周期及び前記第6揺動周期から前記被計測体の慣性乗積を導出可能としたことを特徴とする慣性乗積計測装置。
The inertial product measuring device according to claim 1,
A rotating means for rotating and swinging the mounting table with respect to the frame;
A fifth swing period obtained by setting the measured object at a horizontal angle of 90 ° and the measured object at an elevation angle γ when viewed from the horizontal angle of 0 °, and swinging the measured object by the swinging means. And a sixth swing period obtained by rotating and swinging the measurement object by the turning means,
Or
A fifth swing period obtained by setting the object to be measured at a horizontal angle of 90 ° and the object to be measured at an elevation angle γ when viewed from the direction of the horizontal angle of 90 °, and swinging the object to be measured by the swinging means. And a sixth swing period obtained by rotating and swinging the measurement object by the turning means,
An inertial product measuring apparatus characterized in that an inertial product of the object to be measured can be derived from the fifth swing period and the sixth swing period.
請求項1〜3のいずれか1つに記載の慣性乗積計測装置であって、
前記揺動手段は、前記水平角0°に沿って転動可能とする円弧状の転動面を有する転動子を含んで構成されることを特徴とする慣性乗積計測装置。
The inertial product measuring apparatus according to any one of claims 1 to 3,
The inertial product measuring device according to claim 1, wherein the rocking means includes a rolling element having an arcuate rolling surface that can roll along the horizontal angle of 0 °.
請求項1〜4のいずれか1つに記載の慣性乗積計測装置であって、
前記載置台は、前記被計測体の支持面を有するターンテーブルを含んで構成されることを特徴とする慣性乗積計測装置。
An inertial product measuring device according to any one of claims 1 to 4,
The inertial product measuring apparatus according to the invention, wherein the mounting table includes a turntable having a support surface of the object to be measured.
請求項1〜5のいずれか1つに記載の慣性乗積計測装置であって、
前記架台又は前記載置台は、前記被計測体の位置を調整する位置調整手段又は前記被計測体の仰角を調整する仰角調整手段を備えることを特徴とする慣性乗積計測装置。
The inertial product measuring device according to any one of claims 1 to 5,
The inertial product measuring apparatus according to claim 1, wherein the gantry or the mounting table includes a position adjusting unit that adjusts a position of the measurement object or an elevation angle adjustment unit that adjusts an elevation angle of the measurement object.
請求項1〜6のいずれか1つに記載の慣性乗積計測装置であって、
前記水平角設定手段によって前記載置台を前記水平角0°又は水平角90°に設定し、前記被計測体の前記水平角0°方向又は前記水平角90°方向の慣性モーメントを導出可能としたことを特徴する慣性乗積計測装置。
The inertial product measuring device according to any one of claims 1 to 6,
The horizontal angle setting means sets the mounting table at the horizontal angle of 0 ° or the horizontal angle of 90 ° so that the inertia moment of the measurement object in the horizontal angle of 0 ° direction or the horizontal angle of 90 ° direction can be derived. Inertial product measuring device characterized by that.
請求項1〜7のいずれか1つに記載の慣性乗積計測装置であって、
前記揺動手段による揺動の周期を計測する揺動周期計測手段をさらに備えることを特徴とする慣性乗積計測装置。
The inertial product measuring device according to any one of claims 1 to 7,
The inertial product measuring device further comprising swing period measuring means for measuring a period of swing by the swing means.
X−Y−Zの3次元直交座標系において、
被計測体を載せ置いた載置台をX−Y面において回転させて前記被計測体をX軸から第1水平角αをなす方向に設定し、揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第1揺動周期に基づき得られる前記被計測体の慣性モーメントIyy(α)と、
前記載置台をX−Y面において回転させて前記被計測体をX軸から第2水平角(90°−α)をなす方向に設定し、前記揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第2揺動周期に基づき得られる前記被計測体の慣性モーメントIxx(α)と、を用いて、
Figure 0005435576
により慣性乗積Ixyを求めることを特徴とする慣性乗積計測方法。
In the three-dimensional orthogonal coordinate system of XYZ,
The mounting table on which the measurement object is placed is rotated in the XY plane so that the measurement object is set in a direction that forms a first horizontal angle α from the X axis, and the measurement object is moved together with the mounting table using the swinging means. The moment of inertia Iyy (α) of the measurement object obtained based on the first oscillation period when the measurement body is caused to swing along the XZ plane;
The mounting table is rotated in the X-Y plane so that the measured object is set in a direction that forms a second horizontal angle (90 ° -α) from the X axis, and the swinging means is used together with the mounting table. Using the moment of inertia Ixx (α) of the measured object obtained based on the second oscillation period when the measurement body is caused to swing along the XZ plane,
Figure 0005435576
An inertial product measuring method characterized in that the inertial product Ixy is obtained by:
X−Y−Zの3次元直交座標系において、
載置台に載せ置かれた被計測体をY−Z面において回転させて前記被計測体をY軸から仰角βをなす方向、及び、X−Y面において水平角0°をなす方向に設定し、揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第3揺動周期に基づき得られる前記被計測体の慣性モーメントIyy(β)と、
前記載置台をZ軸廻りに回転揺動させたときの第4揺動周期に基づき得られる前記被計測体の慣性モーメントIzz(β)と、を用いて、
又は、
載置台に載せ置かれた被計測体をX−Z面において回転させて前記被計測体をX軸から仰角βをなす方向、及び、X−Y面において水平角0°をなす方向に設定し、揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第3揺動周期に基づき得られる前記被計測体の慣性モーメントIyy(β)と、
前記載置台をZ軸廻りに回転揺動させたときの第4揺動周期に基づき得られる前記被計測体の慣性モーメントIzz(β)と、を用いて、
Figure 0005435576
により慣性乗積Iyzを求めることを特徴とする慣性乗積計測方法。
In the three-dimensional orthogonal coordinate system of XYZ,
The measurement object placed on the mounting table is rotated in the YZ plane, and the measurement object is set in a direction that forms an elevation angle β from the Y axis and a direction that forms a horizontal angle of 0 ° in the XY plane. , The moment of inertia Iyy (β) of the measured object obtained based on the third swing period when the measured object is swung along the XZ plane together with the mounting table using the swinging means. ,
Using the moment of inertia Izz (β) of the measured object obtained based on the fourth swing period when the mounting table is rotated and swung about the Z axis,
Or
The object to be measured placed on the mounting table is rotated in the XZ plane, and the object to be measured is set in a direction that forms an elevation angle β from the X axis and a direction that forms a horizontal angle of 0 ° in the XY plane. , The moment of inertia Iyy (β) of the measured object obtained based on the third swing period when the measured object is swung along the XZ plane together with the mounting table using the swinging means. ,
Using the moment of inertia Izz (β) of the measured object obtained based on the fourth swing period when the mounting table is rotated and swung about the Z axis,
Figure 0005435576
An inertial product measuring method characterized in that an inertial product Iyz is obtained by:
X−Y−Zの3次元直交座標系において、
載置台に載せ置かれた被計測体をY−Z面において回転させて前記被計測体をY軸から仰角γをなす方向、及び、X−Y面において水平角90°をなす方向に設定し、揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第5揺動周期に基づき得られる前記被計測体の慣性モーメントIxx(γ)と、
前記載置台をZ軸廻りに回転揺動させたときの第6揺動周期に基づき得られる前記被計測体の慣性モーメントIzz(γ)と、を用いて、
又は、
載置台に載せ置かれた被計測体をX−Z面において回転させて前記被計測体をX軸から仰角γをなす方向、及び、X−Y面において水平角90°をなす方向に設定し、揺動手段を用いて前記載置台と共に前記被計測体をX−Z面に沿って揺動させたときの第5揺動周期に基づき得られる前記被計測体の慣性モーメントIxx(γ)と、
前記載置台をZ軸廻りに回転揺動させたときの第6揺動周期に基づき得られる前記被計測体の慣性モーメントIzz(γ)と、を用いて、
Figure 0005435576
により慣性乗積Izxを求めることを特徴とする慣性乗積計測方法。
In the three-dimensional orthogonal coordinate system of XYZ,
The object to be measured placed on the mounting table is rotated in the YZ plane, and the object to be measured is set in a direction forming an elevation angle γ from the Y axis and in a direction forming a horizontal angle of 90 ° on the XY plane. , The inertia moment Ixx (γ) of the measured object obtained based on the fifth swing period when the measured object is swung along the XZ plane together with the mounting table using the swinging means. ,
Using the moment of inertia Izz (γ) of the measured object obtained based on the sixth swing period when the mounting table is rotated and swung about the Z-axis,
Or
The object to be measured placed on the mounting table is rotated in the XZ plane, and the object to be measured is set in a direction that forms an elevation angle γ from the X axis and a direction that forms a horizontal angle of 90 ° in the XY plane. , The inertia moment Ixx (γ) of the measured object obtained based on the fifth swing period when the measured object is swung along the XZ plane together with the mounting table using the swinging means. ,
Using the moment of inertia Izz (γ) of the measured object obtained based on the sixth swing period when the mounting table is rotated and swung about the Z-axis,
Figure 0005435576
An inertial product measuring method characterized in that an inertial product Izx is obtained by:
JP2010089139A 2010-04-08 2010-04-08 Inertial product measuring device and inertial product measuring method Expired - Fee Related JP5435576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089139A JP5435576B2 (en) 2010-04-08 2010-04-08 Inertial product measuring device and inertial product measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089139A JP5435576B2 (en) 2010-04-08 2010-04-08 Inertial product measuring device and inertial product measuring method

Publications (2)

Publication Number Publication Date
JP2011220785A JP2011220785A (en) 2011-11-04
JP5435576B2 true JP5435576B2 (en) 2014-03-05

Family

ID=45037968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089139A Expired - Fee Related JP5435576B2 (en) 2010-04-08 2010-04-08 Inertial product measuring device and inertial product measuring method

Country Status (1)

Country Link
JP (1) JP5435576B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200058690A (en) * 2018-11-20 2020-05-28 한국해양과학기술원 Apparatus for measuring the moment of inertia of model ship in the direction of roll and yaw motions

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507091B (en) * 2011-11-22 2014-01-15 天津大学 Object mass center measuring device and method
CN102645304B (en) * 2011-12-15 2014-09-10 上海卫星装备研究所 Adjustable product-quality characteristic measuring device
CN108760151B (en) * 2018-08-16 2024-04-19 孝感市宝龙电子有限公司 Mass center rotational inertia comprehensive test tool
CN109115404A (en) * 2018-10-16 2019-01-01 天津中精微仪器设备有限公司 Air-bearing measures rotary inertia device
KR102257042B1 (en) * 2019-10-07 2021-05-27 한국해양과학기술원 A portable measuring instrument for model ship cycle
CN110595688B (en) * 2019-10-18 2021-06-25 江麓机电集团有限公司 Vehicle three-dimensional centroid detection method
KR102329346B1 (en) * 2020-06-16 2021-11-18 부산대학교 산학협력단 Apparatus for rotational period measurement of the medium class model ship

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265433A (en) * 1993-03-11 1994-09-22 Suzuki Motor Corp Measuring method for position of center of gravity of car body, etc.
JP3298806B2 (en) * 1997-05-29 2002-07-08 トヨタ自動車株式会社 Main axis direction moment of inertia measurement device
JP3412450B2 (en) * 1997-05-30 2003-06-03 トヨタ自動車株式会社 Method and apparatus for measuring inertia moment in main axis direction
JP2002310839A (en) * 2001-04-18 2002-10-23 Bridgestone Corp Tire balance adjustment device, tire balance adjustment method and tire balance measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200058690A (en) * 2018-11-20 2020-05-28 한국해양과학기술원 Apparatus for measuring the moment of inertia of model ship in the direction of roll and yaw motions
KR102223923B1 (en) * 2018-11-20 2021-03-04 한국해양과학기술원 Apparatus for measuring the moment of inertia of model ship in the direction of roll and yaw motions

Also Published As

Publication number Publication date
JP2011220785A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5435576B2 (en) Inertial product measuring device and inertial product measuring method
JP5997701B2 (en) Center of gravity detection system
CN100567926C (en) Gyrosope spherical rotor three-D static balaming measuring method and device
TWI628433B (en) Non-contact dynamic stiffness measurment system and method
KR101162975B1 (en) Device and method for measuring center of gravity and moment of inertia
JP2007271392A (en) Method for calculating deviation in gravity center position of biaxial gimbal
CN105823600B (en) The dynamical balancing method of motion on a kind of three-axis air-bearing table
JP3298806B2 (en) Main axis direction moment of inertia measurement device
US20130036801A1 (en) Apparatus and method for measuring moment of inertia
CN106595955B (en) Online calibration system and method for rotational inertia of flight simulator
JPH06265433A (en) Measuring method for position of center of gravity of car body, etc.
JP4411402B2 (en) Model ship inertial radius measuring device
JPH03180722A (en) Scale
JPH11132836A (en) Weight measuring apparatus provided with rock correction device
JP4349513B2 (en) Vibration correction device inspection device, interchangeable lens, camera, vibration correction device inspection method, and vibration correction effect observation method
JP5310336B2 (en) measuring device
JP3412450B2 (en) Method and apparatus for measuring inertia moment in main axis direction
JP2019045252A (en) Weighing system
CN113495598A (en) Data processing device and data processing method for folding equipment
JP5886123B2 (en) Drop test apparatus and drop test method
KR102067066B1 (en) Inertia test apparatus with swing type for model ship
JP2015114286A (en) Calibration device and calibration method of angular velocity sensor
JP4766391B2 (en) Rolling type inertial radius measuring device
JP4691706B2 (en) Inertial radius measuring device with torque meter for model ship
JPH10132565A (en) Heaving measuring device and its method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131204

R150 Certificate of patent or registration of utility model

Ref document number: 5435576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees