JP5434421B2 - Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device - Google Patents

Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device Download PDF

Info

Publication number
JP5434421B2
JP5434421B2 JP2009214447A JP2009214447A JP5434421B2 JP 5434421 B2 JP5434421 B2 JP 5434421B2 JP 2009214447 A JP2009214447 A JP 2009214447A JP 2009214447 A JP2009214447 A JP 2009214447A JP 5434421 B2 JP5434421 B2 JP 5434421B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
insulating film
surface emitting
laser
emitting semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009214447A
Other languages
Japanese (ja)
Other versions
JP2011066125A (en
Inventor
淳 櫻井
広己 乙間
亮次 石井
伸明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2009214447A priority Critical patent/JP5434421B2/en
Publication of JP2011066125A publication Critical patent/JP2011066125A/en
Application granted granted Critical
Publication of JP5434421B2 publication Critical patent/JP5434421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18355Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置に関する。   The present invention relates to a surface emitting semiconductor laser, a surface emitting semiconductor laser device, an optical transmission device, and an information processing device.

面発光型半導体レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)は、通信装置や画像形成装置の光源に利用されている。これらの装置には、偏光ビームスプリッタなど偏光依存性のある光学機器が含まれることが多く、面発光型半導体レーザには、レーザ光の安定した偏光制御が求められる。DBRの形状を光軸を基準に異方性を持たせて偏光方向を制御するもの(特許文献1)、垂直共振器を構成する反射ミラーの表面にグレーティング構造を設けて偏光方向を制御するもの(特許文献2)などが開示されている。   A surface emitting semiconductor laser (VCSEL: Vertical Cavity Surface Emitting Laser) is used as a light source of a communication apparatus or an image forming apparatus. These devices often include polarization-dependent optical devices such as polarization beam splitters, and surface-emitting semiconductor lasers are required to have stable polarization control of laser light. Controlling the polarization direction by giving anisotropy to the shape of the DBR with respect to the optical axis (Patent Document 1), and controlling the polarization direction by providing a grating structure on the surface of the reflecting mirror constituting the vertical resonator (Patent Document 2) and the like are disclosed.

特開2008−28120号JP 2008-28120 A 特開平5−21889号Japanese Patent Laid-Open No. 5-21889

本発明は、偏光方向を制御することができる面発光型半導体レーザを提供することを目的とする。   An object of this invention is to provide the surface emitting semiconductor laser which can control a polarization direction.

請求項1に係る面発光型半導体レーザは、基板と、前記基板上に形成された第1導電型の第1の半導体多層膜反射鏡と、前記第1の半導体多層膜反射鏡上に形成された活性領域と、前記活性領域上に形成された第2導電型の第2の半導体多層膜反射鏡と、前記第2の半導体多層膜反射鏡上に形成され、かつレーザ光を出射する光出射口を前記第2の半導体多層膜反射鏡上に規定する金属部材と、前記活性領域上に形成され、選択的に酸化された酸化領域と当該酸化領域によって囲まれた導電領域とを有する電流狭窄層と、レーザ光の発振波長に対して透明な材質から構成され、前記基板の主面と平行な面内において長手方向と短手方向に異方性を有し、前記光出射口を部分的に覆う絶縁膜とを有し、前記絶縁膜の長手方向の長さは、前記導電領域の前記基板の主面と平行な面内における径よりも大きく、かつ前記絶縁膜の短手方向の長さは、前記導電領域の前記径よりも小さく、前記絶縁膜が形成された第2の半導体多層膜反射鏡の反射率は、前記絶縁膜が形成されていない第2の半導体多層膜反射鏡の反射率よりも大きく、前記金属部材および前記絶縁膜は、第2の半導体多層膜反射鏡の最上層上に形成される
請求項2において、前記第2の半導体多層膜反射鏡の最上層の終端面がレーザ光の定在波の節になるようにし、前記絶縁膜の終端面がレーザ光の定在波の腹になるようにする。
請求項3において、前記絶縁膜の光学的膜厚は、レーザ光の発振波長の1/4の奇数倍である。
請求項4において、前記導電領域は円形状であり、前記光出射口は円形状である。
請求項5において、少なくとも前記光出射口の領域は、保護膜によって被覆され、前記保護膜の膜厚は、前記絶縁膜の有無による前記第2の半導体多層膜反射鏡の反射率の差の変化が小さくするように調整される。
請求項6に係る半導体レーザ装置は、請求項1ないし5いずれか1つに記載の面発光型半導体レーザと、前記面発光型半導体レーザからの光を入射する光学部材とを実装する。
請求項7に係る光伝送装置は、請求項6に記載された面発光型半導体レーザ装置と、前記面発光型半導体レーザ装置から発せられたレーザ光を光媒体を介して伝送する伝送手段とを備える。
請求項8に係る情報処理装置は、請求項1ないし5いずれか1つに記載の面発光型半導体レーザと、前記面発光型半導体レーザから出射されるレーザ光を記録媒体に集光する集光手段と、前記集光手段により集光されたレーザ光を前記記録媒体上で走査する機構とを有する。
The surface-emitting type semiconductor laser according to claim 1 is formed on a substrate, a first semiconductor multilayer reflector of the first conductivity type formed on the substrate, and the first semiconductor multilayer reflector. Active region, a second semiconductor multilayer reflector of the second conductivity type formed on the active region, and light emission formed on the second semiconductor multilayer reflector and emitting laser light A current confinement comprising a metal member defining a mouth on the second semiconductor multilayer film reflector, an oxidized region formed on the active region and selectively oxidized, and a conductive region surrounded by the oxidized region A layer and a material transparent to the oscillation wavelength of the laser beam, having anisotropy in the longitudinal direction and the short side direction in a plane parallel to the main surface of the substrate, and the light exit opening partially And the length of the insulating film in the longitudinal direction is the conductive film. And the length of the insulating film in the short direction is smaller than the diameter of the conductive region, and the insulating film is formed in the second direction. the reflectance of the semiconductor multilayer reflector, wherein the insulating film is much larger than the reflectivity of the second semiconductor multilayer reflector which is not formed, the metal member and the insulating film, the second semiconductor multilayer film Formed on the top layer of the reflector .
3. The end surface of the uppermost layer of the second semiconductor multilayer film reflecting mirror is a node of a standing wave of laser light, and the end surface of the insulating film is an antinode of the standing wave of laser light. To be.
4. The optical film thickness of the insulating film according to claim 3, wherein the optical film thickness is an odd multiple of 1/4 of the oscillation wavelength of the laser beam.
5. The conductive region according to claim 4, wherein the conductive region has a circular shape, and the light emission port has a circular shape.
6. The light emitting port according to claim 5, wherein at least a region of the light emission port is covered with a protective film, and the film thickness of the protective film is a change in reflectance difference of the second semiconductor multilayer film reflecting mirror depending on the presence or absence of the insulating film. Is adjusted to be small.
A semiconductor laser device according to a sixth aspect mounts the surface-emitting type semiconductor laser according to any one of the first to fifth aspects and an optical member that receives light from the surface-emitting type semiconductor laser.
According to a seventh aspect of the present invention, there is provided an optical transmission device comprising: the surface emitting semiconductor laser device according to the sixth aspect; and a transmission unit that transmits the laser light emitted from the surface emitting semiconductor laser device through an optical medium. Prepare.
An information processing apparatus according to an eighth aspect of the present invention includes a surface emitting semiconductor laser according to any one of the first to fifth aspects, and a condensing unit that condenses a laser beam emitted from the surface emitting semiconductor laser onto a recording medium. And a mechanism for scanning the laser beam condensed by the condensing unit on the recording medium.

請求項1によれば、レーザ光の偏光方向を絶縁膜の長手方向に制御することができる。
請求項2によれば、絶縁膜の有無による第2の半導体多層膜反射鏡の反射率の差を最も大きくすることができる。
請求項3によれば、絶縁膜が形成された第2の半導体多層膜反射鏡の反射率を大きくすることができる。
請求項4によれば、円形のレーザビームの偏光方向を制御することができる。
請求項5によれば、保護膜の膜厚の調整を行わない場合と比較して、絶縁膜の有無による第2の半導体多層膜反射鏡の反射率の差を大きくすることができる。
請求項6ないし8によれば、偏光方向が制御された面発光型半導体レーザを利用した面発光型半導体レーザ装置、光伝送装置および情報処理装置を提供することができる。
According to the first aspect, the polarization direction of the laser light can be controlled in the longitudinal direction of the insulating film.
According to the second aspect, the difference in reflectance of the second semiconductor multilayer film reflecting mirror depending on the presence or absence of the insulating film can be maximized.
According to the third aspect, it is possible to increase the reflectance of the second semiconductor multilayer film reflecting mirror on which the insulating film is formed.
According to the fourth aspect, the polarization direction of the circular laser beam can be controlled.
According to the fifth aspect, compared with the case where the thickness of the protective film is not adjusted, the difference in reflectance of the second semiconductor multilayer film reflecting mirror depending on the presence or absence of the insulating film can be increased.
According to the sixth to eighth aspects, it is possible to provide a surface emitting semiconductor laser device, an optical transmission device, and an information processing device using a surface emitting semiconductor laser whose polarization direction is controlled.

本発明の第1の実施例に係る面発光型半導体レーザの概略平面図、X−X線断面図、Y−Y線断面図である。1 is a schematic plan view, a cross-sectional view taken along line XX, and a cross-sectional view taken along line YY of a surface-emitting type semiconductor laser according to a first embodiment of the present invention. 図1に示す面発光型半導体レーザの光出射口、電流狭窄層および絶縁膜の関係を説明する平面図である。FIG. 2 is a plan view for explaining a relationship among a light emitting port, a current confinement layer, and an insulating film of the surface emitting semiconductor laser shown in FIG. 上部DBRの反射率の絶縁膜膜厚依存性を示すグラフである。It is a graph which shows the insulating film film thickness dependence of the reflectance of upper DBR. レーザ光の定在波と上部DBRの終端面および絶縁膜の膜厚との関係を示す図である。It is a figure which shows the relationship between the standing wave of a laser beam, the termination | terminus surface of upper DBR, and the film thickness of an insulating film. 本発明の第2の実施例に係る面発光型半導体レーザの概略平面図である。It is a schematic plan view of the surface emitting semiconductor laser according to the second embodiment of the present invention. 本発明の第3の実施例に係る面発光型半導体レーザの概略平面図である。It is a schematic plan view of the surface emitting semiconductor laser according to the third embodiment of the present invention. 本発明の第4の実施例に係る面発光型半導体レーザの概略平面図、X−X線断面図、Y−Y線断面図である。FIG. 6 is a schematic plan view, a cross-sectional view taken along line XX, and a cross-sectional view taken along line YY of a surface-emitting type semiconductor laser according to a fourth embodiment of the present invention. 本実施例の面発光型半導体レーザに光学部品を実装した面発光型半導体レーザ装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the surface emitting semiconductor laser apparatus which mounted the optical component in the surface emitting semiconductor laser of a present Example. 本実施例の面発光型半導体レーザを使用した光源装置の構成例を示す図である。It is a figure which shows the structural example of the light source device which uses the surface emitting semiconductor laser of a present Example. 図9に示す面発光型半導体レーザ装置を用いた光伝送装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the optical transmission apparatus using the surface emitting semiconductor laser apparatus shown in FIG.

次に、本発明の実施の形態について図面を参照して説明する。以下の説明では、選択酸化型の面発光型半導体レーザを例示し、面発光型半導体レーザをVCSELと称する。なお、図面のスケールは、発明の特徴を分かり易くするために強調しており、必ずしも実際のデバイスのスケールと同一ではないことに留意すべきである。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description, a selective oxidation type surface emitting semiconductor laser is illustrated, and the surface emitting semiconductor laser is referred to as a VCSEL. It should be noted that the scale of the drawings is emphasized for easy understanding of the features of the invention and is not necessarily the same as the scale of an actual device.

図1は、本発明の第1の実施例に係るVCSELの概略平面図、X−X線断面図、Y−Y線断面図である。本実施例のVCSEL10は、n型のGaAs基板100上に、Al組成の異なるAlGaAs層を交互に重ねたn型の分布ブラック型反射鏡(Distributed Bragg Reflector:以下、DBRという)102、上部および下部スペーサ層に挟まれた量子井戸層を含む活性領域104、活性領域104上に形成されたAl組成の異なるAlGaAs層を交互に重ねたp型の上部DBR106を積層している。   FIG. 1 is a schematic plan view, a sectional view taken along line XX, and a sectional view taken along line YY of a VCSEL according to a first embodiment of the present invention. The VCSEL 10 of this embodiment includes an n-type distributed black reflector (hereinafter referred to as DBR) 102 in which AlGaAs layers having different Al compositions are alternately stacked on an n-type GaAs substrate 100, and an upper portion and a lower portion. An active region 104 including a quantum well layer sandwiched between spacer layers and a p-type upper DBR 106 in which AlGaAs layers having different Al compositions formed on the active region 104 are alternately stacked are stacked.

n型の下部DBR102は、例えば、Al0.9Ga0.1As層とAl0.3Ga0.7As層との複数層積層体で、各層の厚さはλ/4n(但し、λは発振波長、nは媒質の屈折率)であり、これらを交互に40.5周期で積層してある。n型不純物であるシリコンをドーピングした後のキャリア濃度は、3×1018cm-3である。 The n-type lower DBR 102 is, for example, a multi-layer stack of an Al 0.9 Ga 0.1 As layer and an Al 0.3 Ga 0.7 As layer, and the thickness of each layer is λ / 4n r (where λ is the oscillation wavelength, and n r is The refractive index of the medium), and these are alternately laminated with a period of 40.5. The carrier concentration after doping silicon, which is an n-type impurity, is 3 × 10 18 cm −3 .

活性領域104の下部スペーサ層は、アンドープのAl0.6Ga0.4As層であり、量子井戸活性層5は、アンドープAl0.11Ga0.89As量子井戸層およびアンドープのAl0.3Ga0.7As障壁層であり、上部スペーサ層は、アンドープのAl0.6Ga0.4As層である。 The lower spacer layer of the active region 104 is an undoped Al 0.6 Ga 0.4 As layer, and the quantum well active layer 5 is an undoped Al 0.11 Ga 0.89 As quantum well layer and an undoped Al 0.3 Ga 0. 7 As barrier layer and the upper spacer layer is an undoped Al 0.6 Ga 0.4 As layer.

p型の上部DBR106は、例えば、Al0.9Ga0.1As層とp型のAl0.3Ga0.7As層との積層体で、各層の厚さはλ/4n(但し、λは発振波長、nは媒質の屈折率)であり、これらを交互に30周期積層してある。p型不純物であるカーボンをドーピングした後のキャリア濃度は、3×1018cm-3である。また、上部DBR106の最上層は、p型GaAsからなるコンタクト層108が形成され、上部DBR106の最下層もしくはその内部にp型AlAsから形成された電流狭窄層110が形成される。コンタクト層108のキャリア濃度は、例えば、1×1019cm-3である。 The p-type upper DBR 106 is, for example, a laminate of an Al 0.9 Ga 0.1 As layer and a p-type Al 0.3 Ga 0.7 As layer, and the thickness of each layer is λ / 4n r (where λ is the oscillation wavelength, n r Is the refractive index of the medium), and these are alternately laminated for 30 periods. The carrier concentration after doping with carbon which is a p-type impurity is 3 × 10 18 cm −3 . A contact layer 108 made of p-type GaAs is formed on the uppermost layer of the upper DBR 106, and a current confinement layer 110 made of p-type AlAs is formed on the lowermost layer of the upper DBR 106 or inside thereof. The carrier concentration of the contact layer 108 is, for example, 1 × 10 19 cm −3 .

なお、図1では省略されているが、レーザ素子の直列抵抗を下げるため、p型の上部DBR106あるいは/およびn型の下部DBR102中に、Al0.9Ga0.1As層とAl0.3Ga0.7As層との間の中間のGaAs/AlAs混晶比を有する中間層(グレーデッド層)を挿入してもよい。 Although not shown in FIG. 1, in order to reduce the series resistance of the laser element, an Al 0.9 Ga 0.1 As layer and an Al 0.3 Ga 0.7 As layer are formed in the p-type upper DBR 106 and / or the n-type lower DBR 102. An intermediate layer (graded layer) having an intermediate GaAs / AlAs mixed crystal ratio may be inserted.

上部DBR106から下部DBR102に至る半導体層をエッチングすることにより、基板100上に円筒状のメサ(柱状構造)Mが形成される。電流狭窄層110は、メサMの側面で露出され、当該側面から選択的に酸化された酸化領域110Aと酸化領域110Aによって囲まれた導電領域(酸化アパーチャ)110Bを有する。VCSELの酸化工程において、AlAs層はAlGaAs層よりも酸化速度が速く、AlAs層は、メサMの側面から内部に向けてほぼ一定の速度で酸化される。このため、導電領域110Bの基板100の主面と平行な面内の平面形状は、メサMの外形を反映した円形状となり、その中心は、メサMの軸方向の光軸を既定する。本実施例では、シングルモードのレーザ光が出射されるように、導電領域110Bの径は、約5μmまたはそれ以下にすることが好ましい。   By etching the semiconductor layer from the upper DBR 106 to the lower DBR 102, a cylindrical mesa (columnar structure) M is formed on the substrate 100. The current confinement layer 110 includes an oxidized region 110A that is exposed on the side surface of the mesa M and is selectively oxidized from the side surface, and a conductive region (oxidized aperture) 110B that is surrounded by the oxidized region 110A. In the oxidation process of the VCSEL, the AlAs layer has a higher oxidation rate than the AlGaAs layer, and the AlAs layer is oxidized from the side surface of the mesa M toward the inside at a substantially constant rate. For this reason, the planar shape in a plane parallel to the main surface of the substrate 100 of the conductive region 110B is a circular shape reflecting the outer shape of the mesa M, and its center defines the optical axis in the axial direction of the mesa M. In the present embodiment, the diameter of the conductive region 110B is preferably about 5 μm or less so that single mode laser light is emitted.

GaAsコンタクト層108上には、Ti/Auなどを積層した金属製の環状のp側電極112が形成され、p側電極112は、コンタクト層108にオーミック接続される。p側電極112の中央の円形状の開口は、レーザ光を出射する光出射口112Aとなる。光出射口112Aの中心は、メサMの光軸にほぼ一致する。また、基板100の裏面には、n側電極114が形成される。本実施例のVCSEL10は、p側電極112とn側電極114間に順方向の駆動電流が印加されたとき、光出射口112Aから発振波長が約850nmのシングルモードのレーザ光を出射する。   On the GaAs contact layer 108, a metal annular p-side electrode 112 in which Ti / Au or the like is laminated is formed, and the p-side electrode 112 is ohmically connected to the contact layer 108. The circular opening at the center of the p-side electrode 112 serves as a light emission port 112A that emits laser light. The center of the light exit port 112A substantially coincides with the optical axis of the mesa M. An n-side electrode 114 is formed on the back surface of the substrate 100. The VCSEL 10 of this embodiment emits single mode laser light having an oscillation wavelength of about 850 nm from the light exit port 112A when a forward drive current is applied between the p-side electrode 112 and the n-side electrode 114.

本実施例において特徴的なことは、メサMの頂部に異方性の形状を有する透明な絶縁膜120が形成されることである。絶縁膜120は、X軸方向においてだけ、電流狭窄層110の導電領域110Bの内側で反射率分布ができるように光出射口112Aを部分的に被覆している。図2は、絶縁膜120、導電領域110Bおよび光出射口112Aの寸法の関係を説明する平面図である。   What is characteristic in this embodiment is that a transparent insulating film 120 having an anisotropic shape is formed on the top of the mesa M. The insulating film 120 partially covers the light emission port 112A so that a reflectance distribution can be formed inside the conductive region 110B of the current confinement layer 110 only in the X-axis direction. FIG. 2 is a plan view for explaining the relationship among the dimensions of the insulating film 120, the conductive region 110B, and the light emission port 112A.

絶縁膜120は、発振波長に対して透明な絶縁膜、好ましくはSiONから構成される。絶縁膜120の短手方向(X軸方向)の長さをLx、長手方向(Y軸方向)の長さをLyとするとき、Lx<Lyの関係の異方性を有する。光出射口112Aの平面矢視は円形であり、その直径をD1とし、電流狭窄層110の平面矢視は円形であり、導電領域110Bの直径をD2(D1>D2)とする。絶縁膜120の長手方向の長さLyは、導電領域の直径D2よりも大きく、かつ、光出射口112Aの直径よりも大きい(Ly>D1>D2)。また、絶縁膜120の短手方向の長さLxは、導電領域110Bの直径D2よりも小さい(Lx<D2)。   The insulating film 120 is made of an insulating film transparent to the oscillation wavelength, preferably SiON. When the length in the short direction (X-axis direction) of the insulating film 120 is Lx and the length in the long direction (Y-axis direction) is Ly, the anisotropy has a relationship of Lx <Ly. The plane arrow of the light exit port 112A is circular, the diameter is D1, the plane arrow of the current confinement layer 110 is circular, and the diameter of the conductive region 110B is D2 (D1> D2). The length Ly in the longitudinal direction of the insulating film 120 is larger than the diameter D2 of the conductive region and larger than the diameter of the light exit port 112A (Ly> D1> D2). The length Lx in the short direction of the insulating film 120 is smaller than the diameter D2 of the conductive region 110B (Lx <D2).

矩形状である絶縁膜120は、その中心(この場合、対角線の交点)が光軸Cにほぼ一致するように形成される。このため、光出射口112A内のX軸方向の導電領域110Bより内側に、絶縁膜120によって被覆されていない一対の非被覆領域130が形成される。一方、光出射口112A内のY軸方向の導電領域110Bは、絶縁膜120によって完全に被覆される。こうして、異方性の絶縁膜120により光出射口112Aを部分的に被覆することで、導電領域110Bの内側に絶縁膜120が被覆されていない領域130を形成し、これにより、後述するように、レーザ光の偏光方向をY軸方向に制御する。   The rectangular insulating film 120 is formed such that its center (in this case, the intersection of diagonal lines) substantially coincides with the optical axis C. Therefore, a pair of uncovered regions 130 that are not covered with the insulating film 120 are formed inside the conductive region 110B in the X-axis direction in the light exit port 112A. On the other hand, the conductive region 110B in the Y-axis direction in the light exit port 112A is completely covered with the insulating film 120. In this way, the light emitting port 112A is partially covered with the anisotropic insulating film 120, thereby forming the region 130 where the insulating film 120 is not covered inside the conductive region 110B. The polarization direction of the laser light is controlled in the Y-axis direction.

次に、本実施例の偏光制御の原理を図3および図4を参照して説明する。図3は、p型上部DBR反射率の絶縁膜依存性を示すグラフであり、縦軸は、上部DBR106の反射率、横軸は、絶縁膜の光学膜厚である。ここでは、絶縁膜120は、SiONであり、その屈折率nは、n=1.6である。本実施例では、図4(a)に示すように、上部DBR106の光軸方向の長さは、その最上層の終端面S(ここでは、GaAsコンタクト層108の終端面)が、レーザ光の定在波の節に一致するように調整されている。上部DBR106の各層は、λ/4nの膜厚を有するので、上部DBR106の光軸方向の全体の長さは、レーザ光の半波長(λ/2)の倍数にすればよい。あるいは、最上層のGaAsコンタクト層108の膜厚を調整し、コンタクト層108の終端面Sが節に一致するようにしてもよい。 Next, the principle of polarization control of this embodiment will be described with reference to FIGS. FIG. 3 is a graph showing the dependency of the p-type upper DBR reflectance on the insulating film, where the vertical axis represents the reflectance of the upper DBR 106 and the horizontal axis represents the optical film thickness of the insulating film. Here, the insulating film 120 is SiON, and its refractive index n is n = 1.6. In this embodiment, as shown in FIG. 4A, the length of the upper DBR 106 in the optical axis direction is such that the uppermost termination surface S (here, the termination surface of the GaAs contact layer 108) It has been adjusted to match the standing wave section. Since each layer of the upper DBR 106 has a film thickness of λ / 4n r , the entire length of the upper DBR 106 in the optical axis direction may be a multiple of the half wavelength (λ / 2) of the laser light. Alternatively, the thickness of the uppermost GaAs contact layer 108 may be adjusted so that the end surface S of the contact layer 108 matches the node.

図3に示すように、上部DBR106上に絶縁膜120が形成されていないとき、上部DBR106の反射率は、約0.976である。図3の矢印で示す膜厚の時に、絶縁膜120も含めた多層反射鏡が整合条件になる。つまり、絶縁膜120の膜厚が、媒質内波長のλ/4またはその奇数倍になったとき、上部DBR106の反射率は、約0.988のピークとなる。図4(b)に示すように、絶縁膜120の膜厚がλ/4(またはその奇数倍)のとき、絶縁膜120の終端面Sは、レーザ光の定在波の腹に一致する。このように、絶縁膜120の有無で、上部DBR106の反射率差を大きくつけることで、絶縁膜120のない領域、すなわち非被覆領域130の発振を抑えることができる。つまり、絶縁膜120が存在しない領域は、DBRの反射率が小さくなり、その結果、しきい値電流が大きくなり、発振し難くなる。他方、絶縁膜120が存在する領域は、DBRの反射率が大きなり、その結果、しきい値電流が小さくなり、発振し易くなる。従って、光出射口112Aから出射されるレーザビームは円形でありながら、その偏光方向がY軸方向に制御される。図4(a)、(b)に示す例は、本発明のうち最も効果が大きい例である。   As shown in FIG. 3, when the insulating film 120 is not formed on the upper DBR 106, the reflectance of the upper DBR 106 is about 0.976. When the film thickness is indicated by the arrow in FIG. 3, the multi-layer reflecting mirror including the insulating film 120 becomes the matching condition. That is, when the film thickness of the insulating film 120 is λ / 4 of the wavelength in the medium or an odd multiple thereof, the reflectance of the upper DBR 106 has a peak of about 0.988. As shown in FIG. 4B, when the thickness of the insulating film 120 is λ / 4 (or an odd multiple thereof), the termination surface S of the insulating film 120 coincides with the antinode of the standing wave of the laser light. In this way, by increasing the reflectance difference of the upper DBR 106 with or without the insulating film 120, oscillation of the region without the insulating film 120, that is, the uncovered region 130 can be suppressed. That is, in the region where the insulating film 120 does not exist, the reflectivity of the DBR becomes small, and as a result, the threshold current becomes large and oscillation becomes difficult. On the other hand, the region where the insulating film 120 exists has a high DBR reflectivity, and as a result, the threshold current becomes small and oscillation tends to occur. Therefore, the laser beam emitted from the light exit port 112A is circular, but its polarization direction is controlled in the Y-axis direction. The examples shown in FIGS. 4A and 4B are the most effective examples of the present invention.

次に、本発明の第2の実施例について説明する。図5は、本発明の第2の実施例に係るVCSELの概略平面図である。第2の実施例のVCSEL10Aでは、ひし形の絶縁膜120A(分かり易くするためハッチングで表示)により光出射口112Aの一部を被覆している。絶縁膜120Aは、ひし形であり、長軸と短軸の長さが異なる異方性を有している。メサMの頂部には、環状のp側電極112(分かり易くするためハッチングで表示)が形成され、その中央に円形状の光出射口112Aが形成されている。絶縁膜120Aの短軸方向(X軸)の幅は、導電領域110Bの直径D2よりも小さく、絶縁膜120Aの長軸方向(Y軸)の幅は、導電領域110Bの直径D2および光出射口112Aの直径D1よりも大きい。絶縁膜120Aの中心は、光軸Cにほぼ一致するように形成され、その結果、光出射口112A内の導電領域110Bより内側に絶縁膜120Aによって被覆されない一対の非被覆領域130Aが形成される。第2の実施例においても、異方性の絶縁膜120Aによって導電領域110Bの内側に反射率分布が形成され、円形ビームのレーザ光は、Y軸方向に偏光制御される。   Next, a second embodiment of the present invention will be described. FIG. 5 is a schematic plan view of a VCSEL according to the second embodiment of the present invention. In the VCSEL 10A of the second embodiment, a part of the light emission port 112A is covered with a diamond-shaped insulating film 120A (indicated by hatching for easy understanding). The insulating film 120A has a rhombus shape and anisotropy in which the lengths of the major axis and the minor axis are different. An annular p-side electrode 112 (shown by hatching for easy understanding) is formed on the top of the mesa M, and a circular light emission port 112A is formed at the center thereof. The width of the insulating film 120A in the short axis direction (X axis) is smaller than the diameter D2 of the conductive region 110B, and the width of the insulating film 120A in the long axis direction (Y axis) is the diameter D2 of the conductive region 110B and the light exit port. It is larger than the diameter D1 of 112A. The center of the insulating film 120A is formed so as to substantially coincide with the optical axis C. As a result, a pair of uncovered regions 130A that are not covered by the insulating film 120A are formed inside the conductive region 110B in the light exit port 112A. . Also in the second embodiment, a reflectance distribution is formed inside the conductive region 110B by the anisotropic insulating film 120A, and the circular laser beam is polarization-controlled in the Y-axis direction.

次に、本発明の第3の実施例について説明する。図6は、本発明の第3の実施例に係るVCSELの概略平面図である。第3の実施例に係るVCSEL10Bでは、メサMを楕円構造にしている。基板の主面と平行な面から見たメサMの形状は、楕円形状であり、その短軸はX軸方向、長軸はY軸方向に一致している。電流狭窄層110の導電領域110Bは、メサMの外形を反映した楕円形状である。メサMの頂部には、環状のp側電極(ハッチングで表示)が形成され、その中央に円形状の光出射口112Aが形成される。長手方向と短手方向の長さが異なる異方性(矩形状)の絶縁膜120B(ハッチングで表示)が光出射口112Aの一部を覆うように形成されている。絶縁膜120Bの短手方向の長さは、導電領域110Bの短軸方向の長さよりも小さく、絶縁膜120Bの長手方向の長さは、導電領域110Bの長軸方向の長さおよび光出射口112Aの直径よりも大きい。第1、第2の実施例と同様に、絶縁膜120Bは、その中心が光軸に一致するように形成され、その結果、光出射口112A内の導電領域110Bの内側に絶縁膜120Bによって被覆されていない非被覆領域130B(ハッチングされていない部分)が形成される。   Next, a third embodiment of the present invention will be described. FIG. 6 is a schematic plan view of a VCSEL according to the third embodiment of the present invention. In the VCSEL 10B according to the third embodiment, the mesa M has an elliptical structure. The shape of the mesa M viewed from a plane parallel to the main surface of the substrate is an ellipse, and its short axis coincides with the X-axis direction and its long axis coincides with the Y-axis direction. The conductive region 110 </ b> B of the current confinement layer 110 has an elliptical shape reflecting the outer shape of the mesa M. An annular p-side electrode (indicated by hatching) is formed on the top of the mesa M, and a circular light emission port 112A is formed at the center thereof. An anisotropic (rectangular) insulating film 120B (indicated by hatching) having different lengths in the longitudinal direction and the short direction is formed so as to cover a part of the light exit port 112A. The length in the short direction of the insulating film 120B is smaller than the length in the short axis direction of the conductive region 110B, and the length in the long direction of the insulating film 120B is the length in the long axis direction of the conductive region 110B and the light emitting port. It is larger than the diameter of 112A. Similar to the first and second embodiments, the insulating film 120B is formed so that the center thereof coincides with the optical axis, and as a result, the insulating film 120B covers the inside of the conductive region 110B in the light emitting port 112A. An uncovered uncovered region 130B (unhatched portion) is formed.

第3の実施例では、メサMが異方性を有する楕円構造であり、電流狭窄層110の導電領域110Bが楕円形状となるため、メサ自身の異方性によりレーザ光がY軸方向に偏光制御される。加えて、絶縁膜120Bの有無により上部DBR106の反射率差が形成されることで、レーザ光の偏光方向がよりY軸方向に安定的に制御される。   In the third embodiment, the mesa M has an elliptical structure having anisotropy, and since the conductive region 110B of the current confinement layer 110 has an elliptical shape, the laser light is polarized in the Y-axis direction by the anisotropy of the mesa itself. Be controlled. In addition, since the reflectance difference of the upper DBR 106 is formed depending on the presence or absence of the insulating film 120B, the polarization direction of the laser light is more stably controlled in the Y-axis direction.

次に、本発明の第4の実施例について説明する。図7は、本発明の第4の実施例に係るVCSELの概略平面図とそのX−X線断面図、Y−Y線断面図である。第4の実施例に係るVCSEL10Cは、第1の実施例の構成に加えて、光出射口112Aを保護するための保護膜150(分かり易くするため平面図でハッチング表示)を有している。保護膜150は、少なくとも絶縁膜120によって露出された領域を被覆するようにしてもよいし、絶縁膜120を含む光出射口112Aの全体を覆うようにしてもよい。好ましくは、保護膜150は、絶縁膜120が形成された出射口中心の反射率が最大になるように、あるいは、絶縁膜120によって得られたDBRの反射率差ができるだけ小さくならないように(例えば、一様な膜厚)、その膜厚および材質が調整される。また、保護膜150は、絶縁膜120と同じ材質の絶縁膜であってもよいし、それと異なる材質から構成されてもよい。   Next, a fourth embodiment of the present invention will be described. FIG. 7 is a schematic plan view of a VCSEL according to a fourth embodiment of the present invention, a sectional view taken along line XX, and a sectional view taken along line YY. The VCSEL 10C according to the fourth embodiment has a protective film 150 (hatched display in a plan view for easy understanding) for protecting the light exit port 112A in addition to the configuration of the first embodiment. The protective film 150 may cover at least a region exposed by the insulating film 120, or may cover the entire light emission port 112 </ b> A including the insulating film 120. Preferably, the protective film 150 is configured so that the reflectance at the center of the emission port where the insulating film 120 is formed is maximized, or the difference in the reflectance of the DBR obtained by the insulating film 120 is not as small as possible (for example, , Uniform film thickness), its film thickness and material are adjusted. Further, the protective film 150 may be an insulating film made of the same material as the insulating film 120 or may be made of a different material.

次に、第1の実施例で説明したVCSELの好ましい構成とその製造工程を例示する。VCSELの製造は、有機金属気相成長(MOCVD)法を用いて行われ、n型のGaAs基板100上に、n型の下部DBR102、活性領域104、p型の上部DBR106が順次積層される。DBRの各層の膜厚は、媒質内波長の1/4となるように形成される。上部DBR106には、p型のAlAsからなる電流狭窄層110が活性領域104の近傍に挿入され、上部DBR106の最上層にp型のGaAsコンタクト層108が形成される。   Next, a preferred configuration of the VCSEL described in the first embodiment and a manufacturing process thereof will be exemplified. The VCSEL is manufactured using metal organic chemical vapor deposition (MOCVD), and an n-type lower DBR 102, an active region 104, and a p-type upper DBR 106 are sequentially stacked on an n-type GaAs substrate 100. The film thickness of each DBR layer is formed to be ¼ of the wavelength in the medium. In the upper DBR 106, a current confinement layer 110 made of p-type AlAs is inserted in the vicinity of the active region 104, and a p-type GaAs contact layer 108 is formed on the uppermost layer of the upper DBR 106.

次に、基板上の半導体層は、公知のフォトリソ工程を用いてエッチングされ、基板上に円柱状のメサMが形成される。次に、酸化処理を行い、電流狭窄層110内に酸化領域110Aとこれによって囲まれた導電領域110Bを形成する。導電領域110Bの径は、好ましくは5μm以下に設定される。   Next, the semiconductor layer on the substrate is etched using a known photolithography process, and a cylindrical mesa M is formed on the substrate. Next, oxidation treatment is performed to form an oxidized region 110A and a conductive region 110B surrounded by the oxidized region 110A in the current confinement layer 110. The diameter of the conductive region 110B is preferably set to 5 μm or less.

次に、リフトオフ工程により、コンタクト層108上に環状のp側電極112が形成される。但し、p側電極112は、メサMを形成する前にコンタクト層108上に形成しておいてもよい。次に、メサを含む基板全面にSiON膜がCVDによって形成され、SiON膜をエッチングして光出射口上に異方性の絶縁膜120を形成する。そして、基板の裏面にn側電極114を形成することで、図1に示すようなVCSELを得ることができる。   Next, an annular p-side electrode 112 is formed on the contact layer 108 by a lift-off process. However, the p-side electrode 112 may be formed on the contact layer 108 before the mesa M is formed. Next, a SiON film is formed on the entire surface of the substrate including the mesa by CVD, and the anisotropic insulating film 120 is formed on the light emitting port by etching the SiON film. Then, the VCSEL as shown in FIG. 1 can be obtained by forming the n-side electrode 114 on the back surface of the substrate.

上記第1ないし第4の実施例において種々の例を示したが、本発明は、これらの例示に限定されるものではない。例えば、上記実施例では、基板上にメサを形成し、酸化工程によりメサ内に酸化領域110Aを形成するものであるが、必ずしも酸化工程による電流狭窄層を用いる必要はない。例えば、基板上に積層されたDBR層内にプロトンイオン注入を行って、電流狭窄層内に環状の電気的絶縁領域を形成するようにしてもよい。この場合には、基板上にメサを形成する必要はない。   Although various examples have been shown in the first to fourth embodiments, the present invention is not limited to these examples. For example, in the above embodiment, the mesa is formed on the substrate and the oxidized region 110A is formed in the mesa by the oxidation process. However, it is not always necessary to use the current confinement layer by the oxidation process. For example, proton ion implantation may be performed in the DBR layer stacked on the substrate to form an annular electrically insulating region in the current confinement layer. In this case, it is not necessary to form a mesa on the substrate.

また、発振波長に対して透明な絶縁膜は、上記したSiONに限らず、他のSiO、SiNx、TiOなどの絶縁膜または誘電体膜を用いることができる。これらの膜厚は、上部DBRを構成する半導体層の材質等との関係において適宜選択される。また、絶縁膜の形状は、矩形、長方形、ひし形の他に、楕円形状などを用いることができ、要は、絶縁膜の平面形状は、中心に関し長手方向と短手方向で差が生じるような形状であればよい。 The insulating film transparent to the oscillation wavelength is not limited to the above-described SiON, and other insulating films or dielectric films such as SiO 2 , SiNx, and TiO 2 can be used. These film thicknesses are appropriately selected in relation to the material of the semiconductor layer constituting the upper DBR. Further, the shape of the insulating film can be rectangular, rectangular, rhombus, oval, etc. In short, the planar shape of the insulating film is such that there is a difference between the longitudinal direction and the short side with respect to the center. Any shape is acceptable.

また、上記実施例では、上部DBRの終端面がレーザ光の定在波の節に一致し、絶縁膜120の終端面が定在波の腹に一致する例を示したが、これに限定されるものではない。DBRの終端面は、節以外の部分に一致し、絶縁膜の終端面は腹以外の部分に一致していてもよく、要は、絶縁膜を含むDBRの反射率が、絶縁膜を含まないDBRの反射率よりも高くなればよい。   In the above-described embodiment, an example in which the termination surface of the upper DBR coincides with the node of the standing wave of the laser beam and the termination surface of the insulating film 120 coincides with the antinode of the standing wave is shown, but the present invention is not limited thereto. It is not something. The end surface of the DBR may coincide with a portion other than the node, and the end surface of the insulating film may coincide with a portion other than the antinode. In short, the reflectance of the DBR including the insulating film does not include the insulating film. What is necessary is just to become higher than the reflectance of DBR.

さらに上記実施例では、メサMを円筒状または楕円構造を例示したが、これは一例であって直方体状であってもよい。さらに、光出射口の形状は、円形状を例示したが、これ以外にも楕円形状であってもよい。さらに、光出射口は、p側電極によって形成したが、他の金属等を用いて光出射口が形成されてもよい。さらに上記実施例で示したDBRのAl組成比は一例であって、目的や用途に応じてAl組成比を適宜選択することができる。さらに、上記実施例では、AlGaAs系のVCSELを例示したが、他のIII−V族の化合物半導体を用いたVCSELであってもよい。さらに、上記実施例では、シングルスポットのVCSELを例示したが、基板上に多数のメサ(発光部)が形成されたマルチスポットのVCSELあるいはVCSELアレイであってもよい。さらに電流狭窄層として、AlAsのほかにも、Al0.98Ga0.02AsなどのAl組成の高いAlGaAsを使用するものであってもよい。 Furthermore, in the said Example, although mesa M illustrated the cylindrical shape or the elliptical structure, this is an example and a rectangular parallelepiped shape may be sufficient as it. Furthermore, the shape of the light exit port is exemplified as a circular shape, but may be an elliptical shape in addition to this. Furthermore, although the light emission port is formed by the p-side electrode, the light emission port may be formed using another metal or the like. Furthermore, the Al composition ratio of the DBR shown in the above embodiment is an example, and the Al composition ratio can be appropriately selected according to the purpose and application. Furthermore, although the AlGaAs-based VCSEL has been exemplified in the above-described embodiment, a VCSEL using another III-V group compound semiconductor may be used. Furthermore, in the above embodiment, a single spot VCSEL is illustrated, but a multi-spot VCSEL or VCSEL array in which a number of mesas (light emitting portions) are formed on a substrate may be used. In addition to AlAs, AlGaAs having a high Al composition such as Al 0.98 Ga 0.02 As may be used as the current confinement layer.

次に、本実施例のVCSELを利用した面発光型半導体レーザ装置、光情報処理装置および光伝送装置について図面を参照して説明する。図8(a)は、VCSELと光学部材を実装(パッケージ)した面発光型半導体レーザ装置の構成を示す断面図である。面発光型半導体レーザ装置300は、VCSELが形成されたチップ310を、導電性接着剤320を介して円盤状の金属ステム330上に固定する。導電性のリード340、342は、ステム330に形成された貫通孔(図示省略)内に挿入され、一方のリード340は、VCSELのn側電極に電気的に接続され、他方のリード342は、p側電極に電気的に接続される。   Next, a surface-emitting type semiconductor laser device, an optical information processing device, and an optical transmission device using the VCSEL of this embodiment will be described with reference to the drawings. FIG. 8A is a cross-sectional view showing a configuration of a surface emitting semiconductor laser device in which a VCSEL and an optical member are mounted (packaged). In the surface emitting semiconductor laser device 300, the chip 310 on which the VCSEL is formed is fixed on the disk-shaped metal stem 330 via the conductive adhesive 320. Conductive leads 340 and 342 are inserted into through holes (not shown) formed in the stem 330, one lead 340 is electrically connected to the n-side electrode of the VCSEL, and the other lead 342 is It is electrically connected to the p-side electrode.

チップ310を含むステム330上に矩形状の中空のキャップ350が固定され、キャップ350の中央の開口352内にボールレンズ360等の光学部材が固定されている。ボールレンズ360の光軸は、チップ310のほぼ中心と一致するように位置決めされる。リード340、342間に順方向の電圧が印加されると、チップ310から垂直方向にレーザ光が出射される。チップ310とボールレンズ360との距離は、チップ310からのレーザ光の広がり角θ内にボールレンズ360が含まれるように調整される。また、キャップ内に、VCSELの発光状態をモニターするための受光素子や温度センサを含ませるようにしてもよい。   A rectangular hollow cap 350 is fixed on the stem 330 including the chip 310, and an optical member such as a ball lens 360 is fixed in the central opening 352 of the cap 350. The optical axis of the ball lens 360 is positioned so as to substantially coincide with the center of the chip 310. When a forward voltage is applied between the leads 340 and 342, laser light is emitted from the chip 310 in the vertical direction. The distance between the chip 310 and the ball lens 360 is adjusted so that the ball lens 360 is included within the spread angle θ of the laser light from the chip 310. Further, a light receiving element or a temperature sensor for monitoring the light emission state of the VCSEL may be included in the cap.

図8(b)は、他の面発光型半導体レーザ装置の構成を示す図であり、同図に示す面発光型半導体レーザ装置302は、ボールレンズ360を用いる代わりに、キャップ350の中央の開口352内に平板ガラス362を固定している。平板ガラス362の中心は、チップ310のほぼ中心と一致するように位置決めされる。チップ310と平板ガラス362との距離は、平板ガラス362の開口径がチップ310からのレーザ光の広がり角度θ以上になるように調整される。   FIG. 8B is a diagram showing the configuration of another surface-emitting type semiconductor laser device. The surface-emitting type semiconductor laser device 302 shown in FIG. 8B has an opening at the center of the cap 350 instead of using the ball lens 360. A flat glass 362 is fixed in the 352. The center of the flat glass 362 is positioned so as to substantially coincide with the center of the chip 310. The distance between the chip 310 and the flat glass 362 is adjusted so that the opening diameter of the flat glass 362 is equal to or greater than the spread angle θ of the laser light from the chip 310.

図9は、VCSELを光情報処理装置の光源に適用した例を示す図である。光情報処理装置370は、図8(a)または図8(b)のようにVCSELを実装した面発光型半導体レーザ装置300または302からのレーザ光を入射するコリメータレンズ372、一定の速度で回転し、コリメータレンズ372からの光線束を一定の広がり角で反射するポリゴンミラー374、ポリゴンミラー374からのレーザ光を入射し反射ミラー378を照射するfθレンズ376、ライン状の反射ミラー378、反射ミラー378からの反射光に基づき潜像を形成する感光体ドラム(記録媒体)380を備えている。このように、VCSELからのレーザ光を感光体ドラム上に集光する光学系と、集光されたレーザ光を光体ドラム上で走査する機構とを備えた複写機やプリンタなど、光情報処理装置の光源として利用することができる。   FIG. 9 is a diagram illustrating an example in which the VCSEL is applied to the light source of the optical information processing apparatus. As shown in FIG. 8A or FIG. 8B, the optical information processing device 370 rotates at a constant speed with a collimator lens 372 that receives laser light from the surface emitting semiconductor laser device 300 or 302 on which the VCSEL is mounted. The polygon mirror 374 that reflects the light beam from the collimator lens 372 with a certain spread angle, the fθ lens 376 that receives the laser light from the polygon mirror 374 and irradiates the reflection mirror 378, the line-shaped reflection mirror 378, and the reflection mirror A photosensitive drum (recording medium) 380 that forms a latent image based on reflected light from 378 is provided. As described above, optical information processing such as a copying machine or a printer provided with an optical system for condensing the laser light from the VCSEL on the photosensitive drum and a mechanism for scanning the condensed laser light on the optical drum. It can be used as a light source for the apparatus.

図10は、図8(a)に示す面発光型半導体レーザ装置を光伝送装置に適用したときの構成を示す断面図である。光伝送装置400は、ステム330に固定された円筒状の筐体410、筐体410の端面に一体に形成されたスリーブ420、スリーブ420の開口422内に保持されるフェルール430、およびフェルール430によって保持される光ファイバ440を含んで構成される。ステム330の円周方向に形成されたフランジ332には、筐体410の端部が固定される。フェルール430は、スリーブ420の開口422に正確に位置決めされ、光ファイバ440の光軸がボールレンズ360の光軸に整合される。フェルール430の貫通孔432内に光ファイバ440の芯線が保持されている。   FIG. 10 is a cross-sectional view showing a configuration when the surface-emitting type semiconductor laser device shown in FIG. 8A is applied to an optical transmission device. The optical transmission device 400 includes a cylindrical housing 410 fixed to the stem 330, a sleeve 420 integrally formed on the end surface of the housing 410, a ferrule 430 held in the opening 422 of the sleeve 420, and a ferrule 430. The optical fiber 440 to be held is included. An end of the housing 410 is fixed to a flange 332 formed in the circumferential direction of the stem 330. The ferrule 430 is accurately positioned in the opening 422 of the sleeve 420 and the optical axis of the optical fiber 440 is aligned with the optical axis of the ball lens 360. The core wire of the optical fiber 440 is held in the through hole 432 of the ferrule 430.

チップ310の表面から出射されたレーザ光は、ボールレンズ360によって集光され、集光された光は、光ファイバ440の芯線に入射され、送信される。上記例ではボールレンズ360を用いているが、これ以外にも両凸レンズや平凸レンズ等の他のレンズを用いることができる。さらに、光伝送装置400は、リード340、342に電気信号を印加するための駆動回路を含むものであってもよい。さらに、光伝送装置400は、光ファイバ440を介して光信号を受信するための受信機能を含むものであってもよい。   The laser light emitted from the surface of the chip 310 is collected by the ball lens 360, and the collected light is incident on the core wire of the optical fiber 440 and transmitted. Although the ball lens 360 is used in the above example, other lenses such as a biconvex lens and a plano-convex lens can be used. Further, the optical transmission device 400 may include a drive circuit for applying an electrical signal to the leads 340 and 342. Furthermore, the optical transmission device 400 may include a reception function for receiving an optical signal via the optical fiber 440.

以上、本発明の好ましい実施の形態について詳述したが、本発明は、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiment of the present invention has been described in detail above, but the present invention is not limited to the specific embodiment, and various modifications can be made within the scope of the present invention described in the claims. Deformation / change is possible.

10:VCSEL
100:基板
102:下部DBR
104:活性領域
106:上部DBR
108:コンタクト層
110:電流狭窄層
110A:酸化領域
110B:導電領域
112:p側電極
112A:出射口
114:n側電極
120、120A:絶縁膜
130、130A:非被覆領域
150:保護膜
S:終端面
10: VCSEL
100: Substrate 102: Lower DBR
104: Active region 106: Upper DBR
108: contact layer 110: current confinement layer 110A: oxidized region 110B: conductive region 112: p-side electrode 112A: exit port 114: n-side electrode 120, 120A: insulating film 130, 130A: uncovered region 150: protective film S: End surface

Claims (8)

基板と、
前記基板上に形成された第1導電型の第1の半導体多層膜反射鏡と、
前記第1の半導体多層膜反射鏡上に形成された活性領域と、
前記活性領域上に形成された第2導電型の第2の半導体多層膜反射鏡と、
前記第2の半導体多層膜反射鏡上に形成され、かつレーザ光を出射する光出射口を前記第2の半導体多層膜反射鏡上に規定する金属部材と、
前記活性領域上に形成され、選択的に酸化された酸化領域と当該酸化領域によって囲まれた導電領域とを有する電流狭窄層と、
レーザ光の発振波長に対して透明な材質から構成され、前記基板の主面と平行な面内において長手方向と短手方向に異方性を有し、前記光出射口を部分的に覆う絶縁膜とを有し、
前記絶縁膜の長手方向の長さは、前記導電領域の前記基板の主面と平行な面内における径よりも大きく、かつ前記絶縁膜の短手方向の長さは、前記導電領域の前記径よりも小さく、前記絶縁膜が形成された第2の半導体多層膜反射鏡の反射率は、前記絶縁膜が形成されていない第2の半導体多層膜反射鏡の反射率よりも大きく、
前記金属部材および前記絶縁膜は、第2の半導体多層膜反射鏡の最上層上に形成される、面発光型半導体レーザ。
A substrate,
A first conductivity type first semiconductor multilayer film reflecting mirror formed on the substrate;
An active region formed on the first semiconductor multilayer reflector;
A second semiconductor multilayer reflector of the second conductivity type formed on the active region;
A metal member which is formed on the second semiconductor multilayer film reflecting mirror and which defines a light emitting port for emitting laser light on the second semiconductor multilayer film reflector;
A current confinement layer formed on the active region and having an oxidized region selectively oxidized and a conductive region surrounded by the oxidized region;
Insulating which is made of a material transparent to the oscillation wavelength of the laser beam, has anisotropy in the longitudinal direction and the short side direction in a plane parallel to the main surface of the substrate, and partially covers the light exit port And having a membrane
The length of the insulating film in the longitudinal direction is larger than the diameter of the conductive region in a plane parallel to the main surface of the substrate, and the length of the insulating film in the short direction is the diameter of the conductive region. less than the reflectivity of the second semiconductor multilayer reflector, wherein the insulating film is formed, the insulating film is much larger than the reflectivity of the second semiconductor multilayer reflector that is not formed,
The surface emitting semiconductor laser , wherein the metal member and the insulating film are formed on an uppermost layer of a second semiconductor multilayer film reflecting mirror .
前記第2の半導体多層膜反射鏡の最上層の終端面がレーザ光の定在波の節になるようにし、前記絶縁膜の終端面がレーザ光の定在波の腹になるようにする、請求項1に記載の面発光型半導体レーザ。 The termination surface of the uppermost layer of the second semiconductor multilayer film reflector is a node of a standing wave of laser light, and the termination surface of the insulating film is an antinode of the standing wave of laser light, The surface emitting semiconductor laser according to claim 1. 前記絶縁膜の光学的膜厚は、レーザ光の発振波長の1/4の奇数倍である、請求項1または2に記載の面発光型半導体レーザ。 3. The surface emitting semiconductor laser according to claim 1, wherein the optical film thickness of the insulating film is an odd multiple of ¼ of the oscillation wavelength of the laser beam. 前記導電領域は円形状であり、前記光出射口は円形状である、請求項1ないし3いずれか1つに記載の面発光型半導体レーザ。 4. The surface emitting semiconductor laser according to claim 1, wherein the conductive region has a circular shape, and the light emission port has a circular shape. 5. 少なくとも前記光出射口の領域は、保護膜によって被覆され、前記保護膜の膜厚は、前記絶縁膜の有無による前記第2の半導体多層膜反射鏡の反射率の差の変化が小さくするように調整される、請求項1ないし4いずれか1つに記載の面発光型半導体レーザ。 At least the region of the light exit opening is covered with a protective film, and the film thickness of the protective film is such that the change in the difference in reflectance of the second semiconductor multilayer film reflecting mirror due to the presence or absence of the insulating film is small. The surface emitting semiconductor laser according to claim 1, wherein the surface emitting semiconductor laser is adjusted. 請求項1ないし5いずれか1つに記載の面発光型半導体レーザと、
前記面発光型半導体レーザからの光を入射する光学部材と、
を実装した面発光型半導体レーザ装置。
A surface-emitting type semiconductor laser according to any one of claims 1 to 5,
An optical member that receives light from the surface-emitting type semiconductor laser; and
A surface emitting semiconductor laser device mounted with a laser.
請求項6に記載された面発光型半導体レーザ装置と、
前記面発光型半導体レーザ装置から発せられたレーザ光を光媒体を介して伝送する伝送手段と、
を備えた光伝送装置。
A surface-emitting type semiconductor laser device according to claim 6;
Transmission means for transmitting laser light emitted from the surface-emitting type semiconductor laser device through an optical medium;
An optical transmission device comprising:
請求項1ないし5いずれか1つに記載の面発光型半導体レーザと、
前記面発光型半導体レーザから出射されるレーザ光を記録媒体に集光する集光手段と、
前記集光手段により集光されたレーザ光を前記記録媒体上で走査する機構と、
を有する情報処理装置。
A surface emitting semiconductor laser according to any one of claims 1 to 5,
Condensing means for condensing the laser light emitted from the surface emitting semiconductor laser onto a recording medium;
A mechanism for scanning the recording medium with the laser beam condensed by the condensing means;
An information processing apparatus.
JP2009214447A 2009-09-16 2009-09-16 Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device Active JP5434421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214447A JP5434421B2 (en) 2009-09-16 2009-09-16 Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214447A JP5434421B2 (en) 2009-09-16 2009-09-16 Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device

Publications (2)

Publication Number Publication Date
JP2011066125A JP2011066125A (en) 2011-03-31
JP5434421B2 true JP5434421B2 (en) 2014-03-05

Family

ID=43952092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214447A Active JP5434421B2 (en) 2009-09-16 2009-09-16 Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device

Country Status (1)

Country Link
JP (1) JP5434421B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445806B2 (en) * 2008-11-27 2014-03-19 株式会社リコー Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
JP5261754B2 (en) 2008-11-27 2013-08-14 株式会社リコー Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
JP5632318B2 (en) 2011-03-24 2014-11-26 日本碍子株式会社 Honeycomb filter and manufacturing method thereof
JP5929259B2 (en) * 2011-05-17 2016-06-01 株式会社リコー Surface emitting laser element, optical scanning device, and image forming apparatus
JP5782883B2 (en) * 2011-07-14 2015-09-24 富士ゼロックス株式会社 Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP5929057B2 (en) * 2011-09-09 2016-06-01 富士ゼロックス株式会社 Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
WO2016162236A1 (en) * 2015-04-10 2016-10-13 Koninklijke Philips N.V. Safe laser device for optical sensing applications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837969B2 (en) * 1999-07-06 2006-10-25 富士ゼロックス株式会社 Surface emitting semiconductor laser and manufacturing method thereof
JP2006210429A (en) * 2005-01-25 2006-08-10 Sony Corp Surface emitting semiconductor laser
JP5261754B2 (en) * 2008-11-27 2013-08-14 株式会社リコー Surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus

Also Published As

Publication number Publication date
JP2011066125A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5593700B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP5824802B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP5434421B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP5998701B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
US8824520B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing apparatus
JP2011151293A (en) Surface emission semiconductor laser, surface emission semiconductor laser device, optical transmission device, and information processor
JP2011124314A (en) Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processing device
JP2012015139A (en) Vertical cavity surface emitting semiconductor laser, vertical cavity surface emitting semiconductor laser device, optical transmission device and information processing apparatus
JP5092533B2 (en) Surface emitting semiconductor laser, optical device, light irradiation device, information processing device, light transmission device, space optical transmission device, and light transmission system
JP5672012B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP2012009727A (en) Surface emission semiconductor laser, surface emission semiconductor laser device, optical transmission device, and information processor
JP5954469B1 (en) Surface-emitting semiconductor laser, surface-emitting semiconductor laser array, surface-emitting semiconductor laser device, optical transmission device, and information processing device
JP5978669B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP5381180B2 (en) Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmitter, and information processing apparatus
US9502863B2 (en) Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processing device
JP5782883B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
US8842709B2 (en) Surface emitting semiconductor laser, manufacturing method for surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP5515722B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP5776825B1 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
US8270448B2 (en) Surface emitting semiconductor laser
JP6237075B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP5282673B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP2016213486A (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing apparatus
JP2013045845A (en) Surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device and information processing device
JP5435008B2 (en) Surface emitting semiconductor laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5434421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350