JP5433845B2 - Semiconductor integrated circuit device and manufacturing method thereof - Google Patents

Semiconductor integrated circuit device and manufacturing method thereof Download PDF

Info

Publication number
JP5433845B2
JP5433845B2 JP2007073928A JP2007073928A JP5433845B2 JP 5433845 B2 JP5433845 B2 JP 5433845B2 JP 2007073928 A JP2007073928 A JP 2007073928A JP 2007073928 A JP2007073928 A JP 2007073928A JP 5433845 B2 JP5433845 B2 JP 5433845B2
Authority
JP
Japan
Prior art keywords
transistor
semiconductor integrated
integrated circuit
circuit device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007073928A
Other languages
Japanese (ja)
Other versions
JP2008235621A (en
Inventor
貴弘 羽生
明 望月
弘勝 白濱
成友 三浦
英男 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2007073928A priority Critical patent/JP5433845B2/en
Publication of JP2008235621A publication Critical patent/JP2008235621A/en
Application granted granted Critical
Publication of JP5433845B2 publication Critical patent/JP5433845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、製造過程のばらつきを補正することができる半導体集積回路装置及びその製造方法に関する。   The present invention relates to a semiconductor integrated circuit device capable of correcting variations in manufacturing processes and a manufacturing method thereof.

ナノメートル世代(65ナノメートル以細)の半導体集積回路装置においては、チップ内の同一形状のトランジスタであっても、製造過程のばらつきにより特性が異なってくる。そのため、良品チップの歩留りが低下したり、良品チップでも性能が劣化するといった問題が生じる。   In a semiconductor integrated circuit device of nanometer generation (65 nanometers or smaller), even if transistors of the same shape in a chip have different characteristics due to variations in manufacturing processes. Therefore, there arises a problem that the yield of non-defective chips is reduced, and the performance is deteriorated even with good chips.

またナノメートル世代の半導体集積回路装置においては、ウェハ間、チップ間におけるトランジスタの特性ばらつきのみならず、チップ内のトランジスタの特性ばらつきが顕著となり、ウェハ当たりの良品チップ率である歩留りを低下させ、経済的にもコストを低下させる。また、目標速度や消費電力といった仕様を満たせないチップも多くなる。このため、回路設計においてばらつきマージンを大きく取る必要があり、仕様性能を満たすための設計に大きな負担を負うことになる。   In addition, in the nanometer generation semiconductor integrated circuit device, not only the transistor characteristic variation between wafers and chips, but also the transistor characteristic variation in the chip becomes significant, reducing the yield, which is a good chip rate per wafer, Economically reduce costs. In addition, more chips cannot meet the specifications such as target speed and power consumption. For this reason, it is necessary to provide a large variation margin in the circuit design, and a large burden is imposed on the design for satisfying the specification performance.

現在DFM(Design For Manufacturability:製造容易化設計)によりこの問題を解決しようと試みられている。これは、特性ばらつきを予測し、設計や製造プロセスにフィードバックして歩留りを向上させようとする技術である(図13参照)。しかしながら、この手法では、設計や製造プロセスに大きな制約がかかり、TAT(ターンアラウンドタイム)を悪化させる等の問題がある。特に大ききな特性ばらつきを考慮するため、設計マージンが大きく、仕様設計の段階で高い性能のチップを目指すことが困難となっている。
NIKKEI MICRODEVICES 2005年5月号、第239号 25〜33頁 IEEE Design&Test of Computers NOVEMBER-DECEMBER 2006 p436-437
At present, an attempt is made to solve this problem by DFM (Design For Manufacturability). This is a technique for predicting characteristic variations and feeding back to the design and manufacturing process to improve the yield (see FIG. 13). However, with this method, there is a problem that the design and the manufacturing process are greatly restricted, and TAT (turnaround time) is deteriorated. In particular, since a large characteristic variation is taken into consideration, the design margin is large, and it is difficult to aim for a high-performance chip at the specification design stage.
NIKKEI MICRODEVICES May 2005, No.239, pp. 25-33 IEEE Design & Test of Computers NOVEMBER-DECEMBER 2006 p436-437

本発明が解決しようとする課題は、ナノメートル世代の半導体集積回路装置の製造上で生じるトランジスタの特性ばらつきによる動作不良や性能劣化を製造後に検出し、その部分、又は回路全体の動作を良品レベルに引き上げ、歩留り及び性能を向上させようとするものである。また、DFMによる設計制約や製造プロセス制約を緩和させ、マージンによる仕様設計の性能劣化を改善しつつ、歩留りも向上できるといった設計、製造容易性と歩留りを両立させることである。   The problem to be solved by the present invention is to detect a malfunction or performance degradation due to variations in characteristics of transistors occurring in the fabrication of a nanometer generation semiconductor integrated circuit device after fabrication, and to detect the operation of the part or the entire circuit at a non-defective level. To improve the yield and performance. In addition, the design constraints and manufacturing process constraints due to DFM are alleviated, the performance deterioration of the specification design due to the margin is improved, and the yield can also be improved, and both the ease of design and manufacturability and the yield are compatible.

上記の課題を解決するために本発明は、次のような半導体集積回路装置及びその製造方法を提供するものである。
(1)製造後のトランジスタの特性のばらつきを補正できる回路素子を接続したトランジスタを含み、上記回路素子は、不揮発性のTMR素子であることを特徴とする半導体集積回路装置。
(2)上記回路素子は、上記各トランジスタの抵抗特性を補正できるものであることを特徴とする(1)に記載の半導体集積回路装置。
(3)上記回路素子は、異なる絶対値を持つ複数のTMR素子を直列、並列、又は直並列に接続して構成されたものであることを特徴とする(1)又は(2)に記載の半導体集積回路装置。
(4)上記トランジスタは、差動増幅回路又はCMOSインバータ回路を構成するトランジスタであることを特徴とする(1)乃至(3)のいずれかに記載の半導体集積回路装置。
(5)上記回路素子は、補正対象のトランジスタに直列に接続されていることを特徴とする(1)乃至(4)のいずれかに記載の半導体集積回路装置。
(6)上記回路素子は、補正対象のトランジスタに並列に接続されていることを特徴とする(1)乃至(4)のいずれかに記載の半導体集積回路装置。
(7)製造後の各トランジスタの特性のばらつきを補正できる回路素子として、不揮発性のTMR素子補正対象のトランジスタに接続し、トランジスタの製造後、前記補正対象のトランジスタの特性のばらつきを補正できるようにしたことを特徴とする半導体集積回路装置の製造方法。
(8)上記トランジスタの特性は、トランジスタの抵抗特性であることを特徴とする(7)に記載の半導体集積回路装置の製造方法。
In order to solve the above-described problems, the present invention provides the following semiconductor integrated circuit device and manufacturing method thereof.
(1) saw including a transistor connected to the circuit element variations can be corrected in the characteristics of the transistor after manufacturing, the circuit elements, the semiconductor integrated circuit device which is a TMR element in a nonvolatile.
(2) The semiconductor integrated circuit device according to (1), wherein the circuit element is capable of correcting a resistance characteristic of each transistor.
(3) The circuit element is configured by connecting a plurality of TMR elements having different absolute values in series, parallel, or series-parallel, according to (1) or (2) Semiconductor integrated circuit device.
(4) The semiconductor integrated circuit device according to any one of (1) to (3) , wherein the transistor is a transistor constituting a differential amplifier circuit or a CMOS inverter circuit.
(5) The semiconductor integrated circuit device according to any one of (1) to (4), wherein the circuit element is connected in series to a transistor to be corrected.
(6) The semiconductor integrated circuit device according to any one of (1) to (4), wherein the circuit element is connected in parallel to a transistor to be corrected.
(7) A non-volatile TMR element can be connected to a transistor to be corrected as a circuit element that can correct the variation in characteristics of each transistor after manufacture, and the characteristics variation of the transistor to be corrected can be corrected after the transistor is manufactured. A method of manufacturing a semiconductor integrated circuit device, characterized in that it is configured as described above.
(8) The method for manufacturing a semiconductor integrated circuit device according to (7), wherein the characteristics of the transistor are resistance characteristics of the transistor.

本発明によれば、特性ばらつきを製造後に補正することで歩留り及び性能を改善可能である。さらに製造プロセス制約や設計マージン制約等が緩和され、より高性能な半導体集積回路装置を制約にとらわれずに設計・製造することが可能となる。   According to the present invention, it is possible to improve yield and performance by correcting characteristic variations after manufacturing. Further, manufacturing process restrictions, design margin restrictions, and the like are relaxed, and a higher performance semiconductor integrated circuit device can be designed and manufactured without being restricted by the restrictions.

本発明に係る製造工程を図12に示す。本発明では、トランジスタの特性を補正できる回路素子をトランジスタに付加し、トランジスタの製造後、トランジスタの特性を補正できるようにしている。以下本発明の半導体集積回路装置及びその製造方法について詳細に説明する。   A manufacturing process according to the present invention is shown in FIG. In the present invention, a circuit element capable of correcting the characteristics of the transistor is added to the transistor so that the characteristics of the transistor can be corrected after the transistor is manufactured. Hereinafter, a semiconductor integrated circuit device and a manufacturing method thereof according to the present invention will be described in detail.

図1にトランジスタの特性を補正できる回路素子として不揮発性メモリ等に使用される不揮発性デバイスを用いた例を示す。これは、トランジスタの特性ばらつきを、製造後に不揮発性デバイスの抵抗値などの特性により改善するものである。図1(a)、(b)に示すようにトランジスタに不揮発性デバイス等の回路素子を直列又は並列に接続することが基本である。   FIG. 1 shows an example in which a nonvolatile device used in a nonvolatile memory or the like is used as a circuit element that can correct the characteristics of a transistor. This is to improve the characteristic variation of the transistor by the characteristic such as the resistance value of the nonvolatile device after the manufacture. As shown in FIGS. 1A and 1B, a circuit element such as a nonvolatile device is basically connected in series or in parallel to a transistor.

図2(a)は、磁気メモリ(MRAM)の記憶セルであるTMR(磁気抵抗効果)素子を上記回路素子として用いた例であり、トランジスタと直接接続して回路を構成する。簡単のためトランジスタの特性を線形抵抗と考え設計時の目標値をRTRとする。このとき製造ばらつきによる抵抗値のずれを−ΔRとする。ここで、TMR素子の抵抗値RTMRをΔRと等しくすることにより、ばらつきによる特性変化を相殺することが可能となる。また、図2(b)のようにTMR素子を並列に接続することでばらつきを補正することもできる。 FIG. 2A shows an example in which a TMR (magnetoresistance effect) element, which is a storage cell of a magnetic memory (MRAM), is used as the circuit element, and a circuit is configured by directly connecting to a transistor. For simplicity, the transistor characteristics are assumed to be linear resistors, and the target value at the time of design is RTR . At this time, the deviation of the resistance value due to manufacturing variation is assumed to be −ΔR. Here, by making the resistance value R TMR of the TMR element equal to ΔR, it is possible to cancel the characteristic change due to variation. Further, the variation can be corrected by connecting TMR elements in parallel as shown in FIG.

図3は、基本的なCMOSインバータ回路である。
図4は、CMOSインバータ回路の直流特性であり、反転する入力電圧値VINをVTとする。通常VTは、電源電圧の1/2となるように設計されるが、PMOS又はNMOSトランジスタの特性がばらつくと、VTが変化してしまい、遅延に変動を起こし、誤動作の原因となる場合がある。
FIG. 3 shows a basic CMOS inverter circuit.
FIG. 4 shows the DC characteristics of the CMOS inverter circuit, and the inverted input voltage value V IN is V T. Normally, V T is designed to be 1/2 of the power supply voltage, but if the characteristics of the PMOS or NMOS transistor vary, V T will change, causing fluctuations in the delay and causing malfunctions. There is.

図5は、各NMOS、PMOSトランジスタにそれぞれTMR素子を直列に接続したCMOSインバータ回路であり、このTMR素子の抵抗値を変化させることで、PMOS又はNMOSトランジスタの特性のばらつきを補正することができる。   FIG. 5 shows a CMOS inverter circuit in which a TMR element is connected in series to each NMOS and PMOS transistor, and variations in the characteristics of the PMOS or NMOS transistor can be corrected by changing the resistance value of the TMR element. .

図6は、アナログ回路の基本となり、ディジタル回路の高速スイッチング基本回路としても活用されている差動増幅回路である。差動増幅回路では、差動入力VIN1‐VIN2により、出力電流I1、I2は図7のような特性を示す。 FIG. 6 shows a differential amplifier circuit that is the basis of an analog circuit and is also used as a high-speed switching basic circuit of a digital circuit. In the differential amplifier circuit, the output currents I 1 and I 2 exhibit characteristics as shown in FIG. 7 due to the differential inputs V IN1 to V IN2 .

しかしながら、差動対の両方又は片方のトランジスタの特性がばらつきにより変化してしまうと、図8のようにクロスポイントがずれてしまい、アナログ回路においてはオフセットとなったり、ディジタル回路においては、論理値に誤りを発生させる場合がある。そのため、図9のように各差動対トランジスタに直列にTMR素子を挿入することで、差動対の両方又は片方のトランジスタの特性のばらつきを吸収し、クロスポイントを補正することが可能となる。   However, if the characteristics of both or one of the transistors in the differential pair change due to variations, the cross point shifts as shown in FIG. 8, resulting in an offset in an analog circuit or a logical value in a digital circuit. May cause errors. Therefore, by inserting a TMR element in series with each differential pair transistor as shown in FIG. 9, it is possible to absorb variations in characteristics of both or one of the transistors in the differential pair and correct the cross point. .

TMR素子は、磁性の方向により2種類の抵抗値しか記憶することができないため、図10のように異なる絶対値を持つTMR素子を直列、並列又は直並列に接続することで細かな抵抗値を作り出すことが可能となる。   Since the TMR element can only store two types of resistance values depending on the direction of magnetism, a fine resistance value can be obtained by connecting TMR elements having different absolute values in series, parallel, or series-parallel as shown in FIG. It becomes possible to produce.

さらに回路が複雑になった場合、図11(a)、(b)に示すように、トランジスタとTMR素子を組合わせたブロックを直並列に接続することで、各トランジスタの特性補正が可能となるだけでなく、全体回路のばらつきによる補正も可能となる。   When the circuit becomes more complicated, as shown in FIGS. 11A and 11B, the characteristics of each transistor can be corrected by connecting the combination of the transistor and the TMR element in series and parallel. In addition, correction by variations in the entire circuit is also possible.

また、TMR素子は不揮発性であるため、一度書き込みを行えば、その抵抗値を維持することができるため、書込み動作は、製造後基本的に1回だけで済む。
また、トランジスタの経年変化により特性が変わって動作不良を起こしても、そのトランジスタを再度補正することにより、半導体集積回路装置が再利用可能となる。
In addition, since the TMR element is non-volatile, the resistance value can be maintained once writing is performed. Therefore, the writing operation is basically required only once after the manufacture.
In addition, even if the characteristics change due to the aging of the transistor and malfunction occurs, the semiconductor integrated circuit device can be reused by correcting the transistor again.

TMR素子の書込み方法としては、磁界を使って磁化の方向を変える方法と、TMR素子自体に電流を流し、書き換える方法がある。前者の場合には、非接触でTMR素子の特性を変えることができる利点がある。   As a writing method of the TMR element, there are a method of changing the direction of magnetization using a magnetic field and a method of rewriting by passing a current through the TMR element itself. The former case has an advantage that the characteristics of the TMR element can be changed without contact.

本発明の基本回路図Basic circuit diagram of the present invention 本発明に係るトランジスタとTMR素子Transistor and TMR element according to the present invention CMOSインバータ回路CMOS inverter circuit CMOSインバータ回路の直流特性DC characteristics of CMOS inverter circuits. TMR素子を挿入したCMOSインバータ回路CMOS inverter circuit with TMR element 差動増幅回路Differential amplifier circuit 差動増幅回路の特性Characteristics of differential amplifier circuit ばらつきが起こった差動増幅回路の特性Characteristics of differential amplifier circuits with variations TMR素子を挿入した差動増幅回路Differential amplifier circuit with TMR element inserted TMR素子の接続による所望の抵抗値を得る方法A method for obtaining a desired resistance value by connecting TMR elements. CMOS回路及び差動増幅回路における複数接続Multiple connections in CMOS circuits and differential amplifier circuits 本発明による半導体集積回路装置の製造工程Manufacturing process of semiconductor integrated circuit device according to the present invention DFM技術による半導体集積回路装置の製造工程Manufacturing process of semiconductor integrated circuit device by DFM technology

Claims (8)

製造後のトランジスタの特性のばらつきを補正できる回路素子を接続したトランジスタを含み、上記回路素子は、不揮発性のTMR素子であることを特徴とする半導体集積回路装置。 A semiconductor integrated circuit device comprising a transistor connected to a circuit element capable of correcting variation in characteristics of each transistor after manufacture, wherein the circuit element is a nonvolatile TMR element. 上記回路素子は、上記トランジスタの抵抗特性を補正できるものであることを特徴とする請求項1に記載の半導体集積回路装置。 2. The semiconductor integrated circuit device according to claim 1, wherein the circuit element is capable of correcting a resistance characteristic of each transistor. 上記回路素子は、異なる絶対値を持つ複数のTMR素子を直列、並列、又は直並列に接続して構成されたものであることを特徴とする請求項1又は2に記載の半導体集積回路装置。  3. The semiconductor integrated circuit device according to claim 1, wherein the circuit element is configured by connecting a plurality of TMR elements having different absolute values in series, parallel, or series-parallel. 上記トランジスタは、差動増幅回路又はCMOSインバータ回路を構成するトランジスタであることを特徴とする請求項1乃至3のいずれか一項に記載の半導体集積回路装置。 The transistor is a semiconductor integrated circuit device according to any one of claims 1 to 3, wherein the transistors constituting a differential amplifier circuit or a CMOS inverter circuit. 上記回路素子は、補正対象のトランジスタに直列に接続されていることを特徴とする請求項1乃至4のいずれか一項に記載の半導体集積回路装置。 5. The semiconductor integrated circuit device according to claim 1, wherein the circuit element is connected in series to a transistor to be corrected . 上記回路素子は、補正対象のトランジスタに並列に接続されていることを特徴とする請求項1乃至4のいずれか一項に記載の半導体集積回路装置。 5. The semiconductor integrated circuit device according to claim 1, wherein the circuit element is connected in parallel to a transistor to be corrected . 製造後の各トランジスタの特性のばらつきを補正できる回路素子として、不揮発性のTMR素子を補正対象のトランジスタに接続し、トランジスタの製造後、前記補正対象のトランジスタの特性のばらつきを補正できるようにしたことを特徴とする半導体集積回路装置の製造方法。 A non-volatile TMR element is connected to the transistor to be corrected as a circuit element that can correct the variation in characteristics of each transistor after manufacture, and the characteristics of the transistor to be corrected can be corrected after manufacturing the transistor. A method of manufacturing a semiconductor integrated circuit device. 上記トランジスタの特性は、トランジスタの抵抗特性であることを特徴とする請求項7に記載の半導体集積回路装置の製造方法。   8. The method of manufacturing a semiconductor integrated circuit device according to claim 7, wherein the characteristics of the transistor are resistance characteristics of the transistor.
JP2007073928A 2007-03-22 2007-03-22 Semiconductor integrated circuit device and manufacturing method thereof Active JP5433845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073928A JP5433845B2 (en) 2007-03-22 2007-03-22 Semiconductor integrated circuit device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073928A JP5433845B2 (en) 2007-03-22 2007-03-22 Semiconductor integrated circuit device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008235621A JP2008235621A (en) 2008-10-02
JP5433845B2 true JP5433845B2 (en) 2014-03-05

Family

ID=39908059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073928A Active JP5433845B2 (en) 2007-03-22 2007-03-22 Semiconductor integrated circuit device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5433845B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5684081B2 (en) * 2011-09-22 2015-03-11 株式会社東芝 Analog / digital converter
JP5684080B2 (en) * 2011-09-22 2015-03-11 株式会社東芝 Analog / digital converter
JP6935931B2 (en) 2016-12-09 2021-09-15 国立大学法人東北大学 Read device and logic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314429B2 (en) * 1973-05-11 1978-05-17
JP2951802B2 (en) 1992-08-07 1999-09-20 シャープ株式会社 Clock generation circuit
JPH07235637A (en) * 1994-02-21 1995-09-05 Hitachi Ltd Variable resistor, manufacture thereof, and integrated circuit equipment therewith
JPH10247845A (en) 1997-03-04 1998-09-14 Kawasaki Steel Corp Delay compensation circuit
JP4180411B2 (en) * 2003-03-17 2008-11-12 松下電器産業株式会社 Transconductance amplifier
JP2005310930A (en) * 2004-04-20 2005-11-04 Matsushita Electric Works Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2008235621A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5201487B2 (en) Nonvolatile latch circuit
JP5010700B2 (en) Semiconductor integrated circuit
US8243502B2 (en) Nonvolatile latch circuit and logic circuit using the same
US9412448B2 (en) C-element with non-volatile back-up
US9979401B2 (en) Magnetoelectric computational devices
US9601203B2 (en) Floating gate non-volatile memory bit cell
US7796423B2 (en) Reconfigurable logic circuit
CN107017873B (en) Digital circuit structure
JP5433845B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
US9100013B2 (en) Nonvolatile resistor network assembly and nonvolatile logic gate with increased fault tolerance using the same
US9653163B2 (en) Memory cell with non-volatile data storage
JP6935931B2 (en) Read device and logic device
US20240105261A1 (en) Non-volatile storage circuit
JP2014154189A (en) Resistance change type memory counter basis read-out circuit
JP5225419B2 (en) Memory circuit using spin MOSFET, pass transistor circuit with memory function, switching box circuit, switching block circuit, and field programmable gate array
JP5238784B2 (en) Look-up table circuit and field programmable gate array
Sharma et al. Unipolar magnetoelectric magnetic tunnel junction devices and circuits
JP4941733B2 (en) Current amplifier circuit
JP5830797B2 (en) Integrated circuit and manufacturing method thereof
JP4630905B2 (en) Logic circuit having spin MOSFET
Na Body-biasing-based Latch Offset Cancellation Sensing Circuit for Deep Submicrometer STT-MRAM
JP2013125568A (en) Read circuit for variable resistance memory
JP2014157643A (en) Semiconductor device
JP2013069368A (en) Semiconductor integrated circuit including non-volatile resistance change element and operation method thereof
JP2007184024A (en) Read-out circuit of magnetic semiconductor storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130405

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130731

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150