JP5432818B2 - Railway vehicle state monitoring device, state monitoring method, and rail vehicle - Google Patents
Railway vehicle state monitoring device, state monitoring method, and rail vehicle Download PDFInfo
- Publication number
- JP5432818B2 JP5432818B2 JP2010118741A JP2010118741A JP5432818B2 JP 5432818 B2 JP5432818 B2 JP 5432818B2 JP 2010118741 A JP2010118741 A JP 2010118741A JP 2010118741 A JP2010118741 A JP 2010118741A JP 5432818 B2 JP5432818 B2 JP 5432818B2
- Authority
- JP
- Japan
- Prior art keywords
- abnormality
- acceleration
- threshold
- determination processing
- amplitude ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
本発明は、軌道上を走行する鉄道車両の異常状態、特に軌道異常や車両異常を監視する鉄道車両の状態監視装置及び状態監視方法、並びに鉄道車両に関する。 The present invention relates to an abnormal state of a railway vehicle traveling on a track, in particular, a rail vehicle state monitoring device and a state monitoring method for monitoring a track abnormality or a vehicle abnormality, and a rail vehicle.
従来の鉄道車両の状態監視装置(異常検出装置)として、車両の台車及び輪軸の両方の振動を検出し、検出した台車及び輪軸の振動値に基づいて振動の原因が台車にあるのか又は軌道にあるかを特定することにより、軌道の異常を検出するだけでなく、軌道の状態に拘わらず、台車の異常も検出する技術が提案されている(例えば、特許文献1参照)。 As a conventional railway vehicle state monitoring device (abnormality detection device), it detects the vibration of both the bogie and the wheel shaft of the vehicle, and the cause of the vibration is in the bogie or on the track based on the detected vibration value of the bogie and the wheel shaft. A technique has been proposed that not only detects an abnormality in a track by specifying whether it is present, but also detects an abnormality in a carriage regardless of the state of the track (see, for example, Patent Document 1).
すなわち、車両の台車及び輪軸の両方の振動を加速度計により検出し、検出した加速度信号を高速フ−リエ変換処理(FFT)又はフィルタ処理することでノイズ除去し、ノイズ除去した輪軸の加速度信号とその閾値との閾値判定処理から軌道の異常有無を判定している。また、ノイズ除去した輪軸の加速度信号を入力とした台車の同定用の物理モデルを用いて台車加速度を推定し、推定した台車加速度とノイズ除去した台車加速度信号との近似判定処理から台車の異常有無を判定している。 That is, the vibrations of both the vehicle carriage and the wheel shaft are detected by an accelerometer, and the detected acceleration signal is subjected to high-speed Fourier transform processing (FFT) or filter processing to remove noise, and the noise-removed wheel shaft acceleration signal and The presence or absence of an abnormality in the trajectory is determined from the threshold determination process with the threshold. Also, the bogie acceleration is estimated using a bogie identification physical model that uses the decelerated wheel axle acceleration signal as input, and the presence or absence of the bogie is determined based on the approximate determination process between the estimated bogie acceleration and the derailed bogie acceleration signal. Is judged.
しかしながら、かかる従来技術における車両の状態、つまり異常を検出する異常検出装置によれば、軌道異常によって輪軸加速度が所定の閾値を超えた時、台車異常によって台車加速度が所定の閾値を超えたとしても軌道異常と判定し、軌道異常と台車異常の両異常を同時に検知できない課題がある。また、輪軸加速度から台車加速度を推定する同定用の物理モデルを用いる場合、仮に軌道異常と台車異常の両異常を同時に検知できたとしても、軌道異常は輪軸加速度のみで判定されるため、軌道異常と台車異常の異常要因の分離(判定)ができない。ここで、所定の閾値とは、鉄道車両の状態、つまり異常を判定するための異常判定用を意味する。 However, according to the abnormality detection device that detects the state of the vehicle in the related art, that is, abnormality, even if the wheel acceleration exceeds a predetermined threshold due to the track abnormality, even if the vehicle acceleration exceeds the predetermined threshold due to the abnormality of the carriage, There is a problem that it is determined that the track is abnormal and that both the track abnormality and the cart abnormality cannot be detected simultaneously. Also, when using a physical model for identification that estimates the bogie acceleration from the wheel axle acceleration, even if both the track anomaly and the bogie anomaly can be detected at the same time, the track anomaly is determined only by the wheel axle acceleration. It is not possible to separate (determine) the cause of the abnormality in the cart and Here, the predetermined threshold means an abnormality determination for determining a state of the railway vehicle, that is, an abnormality.
本発明の目的は、前記の問題に鑑み、軸箱加速度と車体加速度の振幅比率の閾値判定を考慮することで、軌道異常と台車異常の両異常検知、及び両異常の要因分離を精度良く簡単に実施することが可能な鉄道車両の状態監視装置及び状態監視方法、並びに鉄道車両を提供することにある。 In view of the above problems, the object of the present invention is to accurately and easily detect both abnormalities of track abnormalities and cart abnormalities and to separate the causes of both abnormalities by considering threshold determination of the amplitude ratio of the axle box acceleration and the vehicle body acceleration. It is an object of the present invention to provide a railway vehicle state monitoring apparatus and state monitoring method, and a railway vehicle that can be implemented.
前記の目的を達成するために、例えば、鉄道車両は、鉄道車両の振動を検出する振動検出装置と、前記振動検出装置から検出した信号を用いて前記鉄道車両の異常を検知する異常検出装置を備え、前記振動検出装置は、前記輪軸に設置された軸箱の振動加速度及び前記車体の振動加速度から前記鉄道車両の振動を検出する振動検出手段を備え、前記異常検出装置は、前記振動検出手段の前記軸箱振動加速度と前記車体振動加速度との第1振幅比率を計算する第1振幅比率計算手段と、前記第1振幅比率と閾値とを比較判定する第1閾値判定処理手段と、前記第1閾値判定処理手段の判定結果から異常要因を判定する異常判定処理手段を備えたものである。 In order to achieve the above object, for example, a railway vehicle includes a vibration detection device that detects vibration of the railway vehicle, and an abnormality detection device that detects an abnormality of the railway vehicle using a signal detected from the vibration detection device. The vibration detection device includes vibration detection means for detecting vibration of the railway vehicle from vibration acceleration of an axle box installed on the wheel shaft and vibration acceleration of the vehicle body, and the abnormality detection device includes the vibration detection means. First amplitude ratio calculation means for calculating a first amplitude ratio between the axle box vibration acceleration and the vehicle body vibration acceleration, first threshold value determination processing means for comparing and comparing the first amplitude ratio and a threshold value, 1 is provided with an abnormality determination processing means for determining an abnormality factor from the determination result of the threshold value determination processing means.
また、前記鉄道車両は前記異常検出装置が、更に前記車両加速度から一定量の信号を抽出する窓フィルタと、前記窓フィルタで抽出した時刻歴波形のRMS(Root Mean Square)値、または最大値を算出する計算処理手段と、前記RMS値、または前記最大値の頻度を算出する頻度計算処理手段と、を備えたものである。 In addition, the rail vehicle is the abnormality detecting apparatus further a window filter for extracting a certain amount of signal from the vehicle acceleration, the RMS of the extracted time history waveform window filter (R oot M ean S quare) value, or And a calculation processing means for calculating a maximum value, and a frequency calculation processing means for calculating the RMS value or the frequency of the maximum value.
また、前記鉄道車両は前記異常装置が、更に前記鉄道車両の走行位置検知装置の走行位置と走行速度検知装置の走行速度を基に前記所定の閾値を保存するデ−タベ−スとを備えたものである。 In addition, the railway vehicle further includes a database that stores the predetermined threshold based on the traveling position of the traveling position detection device of the railway vehicle and the traveling speed of the traveling speed detection device. Is.
また、前記鉄道車両は前記異常検出装置が、前記鉄道車両の軸箱振動加速度と前記鉄道車両の台車枠振動加速度との第2振幅比率を計算する第2振幅比率計算手段と、前記第2振幅比率と所定の閾値とを判定する第4閾値判定処理手段と、前記鉄道車両の車体振動加速度と前記鉄道車両の台車枠振動加速度との第3振幅比率を計算する第3振幅比率計算手段と、前記第3振幅比率と所定の閾値とを判定する第5閾値判定処理手段とを備えたものである。 The railway vehicle has a second amplitude ratio calculating means for calculating a second amplitude ratio between the axle box vibration acceleration of the railway vehicle and the bogie frame vibration acceleration of the railway vehicle, and the second amplitude. Fourth threshold value determination processing means for determining a ratio and a predetermined threshold value; third amplitude ratio calculation means for calculating a third amplitude ratio between the vehicle body vibration acceleration of the railway vehicle and the bogie frame vibration acceleration of the railway vehicle; And a fifth threshold value determination processing means for determining the third amplitude ratio and a predetermined threshold value.
本発明によれば、軸箱加速度の閾値判定に車体加速度と軸箱加速度の振幅比率の閾値判定を考慮することで、異常検知の精度が向上し、軌道側異常と車両側異常の異常要因を分離することができる。 According to the present invention, by considering the threshold value determination of the amplitude ratio between the vehicle body acceleration and the axle box acceleration in the threshold value determination of the axle box acceleration, the accuracy of abnormality detection is improved, and the abnormality factors of the track side abnormality and the vehicle side abnormality are determined. Can be separated.
以下、本発明の実施形態について図面を参照しながら詳細に説明する。なお、各図において、共通な機能を有する構成要素には同一の参照番号を付し、説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, components having common functions are denoted by the same reference numerals and description thereof is omitted.
図1は、本発明の一実施例(実施例1)の鉄道車両の状態監視装置の構成例を示すシステム構成図である。
図1において、軌道(線路)1上を走行する車両7は車体6と台車5から構成されている。車体6は、空気ばね4を介して台車5(1台車のみ図示)に搭載される。台車5は台車枠3と輪軸2から構成されている。台車枠3には、軸ばね8を介して輪軸2の軸受けハウジングとなる軸箱9が取付けられる。輪軸2は回転運動するもので軌道1上を前後方向に移動する。
FIG. 1 is a system configuration diagram illustrating a configuration example of a railway vehicle state monitoring apparatus according to an embodiment (embodiment 1) of the present invention.
In FIG. 1, a
車両7の軸箱9には、輪軸2の振動加速度を計測する軸箱加速度計101が設置されており、車体6の床面上には、車体6の振動加速度を計測する車体加速度計102が設置されている。軸箱加速度計101は、該軸箱加速度計の電圧を検出する軸箱加速度検出装置10(軸箱加速度検出手段)を備えている。軸箱加速度計101の電圧20aは軸箱加速度検出装置10によって軸箱加速度信号22aとして検出される。車体加速度計102は、該車体加速度計の電圧を検出する車体加速度検出装置11(車体加速度検出手段)を備えている。車体加速度計102の電圧21aは車体加速度検出装置11によって車体加速度信号23aとして検出される。すなわち、軸箱加速度計101を含む軸箱加速度検出装置10及び車体加速度計102を含む車体加速度検出装置11は、車両7の振動を検出する振動検出手段を構成している。
An
車両7の異常を検出する異常検出装置(異常検出手段)17は、軸箱加速度検出装置10と車体加速度検出装置11とに電気的に接続され、軸箱加速度検出装置10の軸箱加速度信号22aと車体加速度検出装置11の車体加速度信号23aを受け、これらの信号をもって車両の異常を検出するものである。具体的には、軸箱加速度検出装置10及び車体加速度検出装置11に接続され、軸箱加速度信号22a及び車体加速度信号23aを受けるフィルタ処理部12と、該フィルタでノイズ除去された軸箱加速度信号22aと車体加速度信号23aとの振幅比率(第1振幅比率)を算出し、振幅比率信号24aを出力する振幅比率算出処理部(第1振幅比率算出処理部)13と、該振幅比率信号24aを受け、閾値判定処理を実行し、閾値判定処理信号25aを出力する閾値判定処理部(第1閾値判定処理部A)14と、該閾値判定処理信号25aを受け、閾値判定処を実行し、異常判定処理信号26aを出力する異常判定処理部15と、異常判定処理信号26aを受け、判定結果を出力する判定結果出力処理部16から構成されている。異常検出装置17は車体6側に設置されるが、その設置箇所は判定結果が確認可能な位置であるならばどこでも良い。
An abnormality detection device (abnormality detection means) 17 that detects an abnormality of the
振幅比率算出処理部13はフィルタ処理部12から出力される軸箱加速度信号22aと車体加速度信号23aを入力とし、閾値判定処理部(第1閾値判定処理部A)14は振幅比率算出処理部(第1振幅比率算出処理部)13から出力される振幅比率信号24aを入力とし、異常判定処理部15は閾値判定処理部(第1閾値判定処理部A)14から出力される閾値判定処理信号25aを入力とし、判定結果出力処理部16は異常判定処理部15から出力される異常判定処理信号26aを入力とする。
The amplitude ratio
ここで、異常検出装置17の振幅比率算出処理部(第1振幅比率算出処理部)13は、フィルタ処理部12からの軸箱振動加速度信号22a、車体振動加速度23aに基づき車両7の車体振動加速度と軸箱振動加速度との振幅比率(第1振幅比率)を計算する振幅比率計算手段(第1振幅比率計算手段)を構成し、閾値判定処理部(第1閾値判定処理部A)14は、振幅比率算出処理部(第1振幅比率算出処理部)13の振幅比率信号24aに基づき前記振幅比率(第1振幅比率)と所定の閾値とを判定する閾値判定処理手段(第1閾値判定処理手段)を構成し、また、異常判定処理部15及び判定結果出力処理部16は、前記閾値判定処理手段(第1閾値判定処理手段)の閾値判定処理部(第1閾値判定処理部A)14の閾値判定処理信号25a及び異常判定処理部15の異常判定処理信号26aに基づき得られる結果から異常要因を判定する異常判定処理手段を構成している。
Here, the amplitude ratio calculation processing unit (first amplitude ratio calculation processing unit) 13 of the
次に、図2〜図5によって、本発明の一実施例の鉄道車両の状態監視装置における異常検出装置17の処理動作、つまりフィルタ処理、振幅比率算出処理、閾値判定処理及び異常判定処理などの処理フロ−について詳細に説明する。
Next, referring to FIG. 2 to FIG. 5, processing operations of the
図2は、異常検出・判定処理を示すフロ−である。同図において、軸箱加速度・車体加速度信号入力から異常判定結果が出力されるまでの流れを説明する。図2において、sはステップ(step)を意味する。
まず、異常検出装置17は、フィルタ処理部12、12において、軸箱加速度検出装置10と車体加速度検出装置11とから振動加速度の軸箱加速度信号22aと車体加速度信号23aの入力(s1)を受け、該信号からノイズ除去するためのフィルタ処理を実行し(s2)、かつ一定量の信号数を抽出するために窓フィルタ(図3参照)を掛ける処理を実行する(s3)。
FIG. 2 is a flowchart showing the abnormality detection / determination process. In the figure, the flow from the axle box acceleration / vehicle body acceleration signal input to the output of the abnormality determination result will be described. In FIG. 2, s means a step ( s step).
First, the
次に、異常検出装置17は、振幅比率算出処理部(第1振幅比率算出処理部)13において、フィルタ処理部12にて抽出した軸箱加速度信号22aと車体加速度信号23aに対してRMS値計算処理を実行する(s4)。該RMS値計算処理の実行により、例えば、車両7で発生する車両振動の平均的な振動値を抽出することができる。あるいは、異常検出装置17は、抽出した軸箱加速度信号22aと車体加速度信号23aに対して最大値検出処理を実行する(s4)。最大値計算処理を実施することで、例えば、車両が分岐等通過する際に、瞬間的に車両に発生する著大なインパルス振動を抽出することができる。
また、異常検出装置17は、計算した軸箱加速度信号と車体加速度信号のRMS値と、計算した軸箱加速度信号と車体加速度信号の最大値を基に、軸箱加速度信号に対する車体加速度信号のRMS値と最大値の振幅比率(第1振幅比率)の計算を実行し(s5)、振幅比率算出信号24aを出力する。
Next, the
Further, the
次に、異常検出装置17は、閾値判定処理部(第1閾値判定処理部A)14において、振幅比率算出処理部13にて算出した振幅比率(第1振幅比率)に基づく振幅比率信号24aと予め設定してある所定の閾値(図4のα、β参照)を閾値判定処理(s6)し、閾値判定処理信号25aを出力する。ここで、予め設定してある所定の閾値とは、振幅比率(第1振幅比率)が正常範囲にあるのか、異常範囲にあるのかを判定するために設定した異常判定用閾値を示す。具体的には、後述する。
Next, the
最後に、異常検出装置17は、異常判定処理部15において、振幅比率信号24aの閾値判定結果(閾値判定処理信号25a)から異常要因を判定(s7)し、異常判定処理信号26aを出力する。そして、判定結果出力処理部16において、異常判定処理信号26aに基づき異常判定結果を出力する(s8)。
Finally, the
図3は、上述した窓フィルタの適用例とRMS値の振幅比率算出例を示す図であり、図2の処理s3〜s5に対応する。窓フィルタ50、50は、ある所定の長さ(時間)をもっており、その長さのなかでノイズ除去された軸箱加速度信号(波形)51(図1の22a)と車体加速度信号(波形)52(図1の23a)を抽出し、軸箱加速度RMS値53と車体加速度RMS値54が算出される。RMS値振幅比率55は軸箱加速度RMS値53に対する車体加速度RMS値54の比率として算出される。なお、窓フィルタ50内の加速度信号は時々刻々と変化するため、軸箱加速度RMS値53と車体加速度RMS値54とRMS値振幅比率55は一定値をとらず時々刻々と変化する。
なお、ここではRMS値を例としたが、最大値についても同様に適用可能であり、最大値振幅比率を算出する場合は、軸箱加速度信号51と車体加速度信号52の絶対値から最大値を算出し、振幅比率(第1振幅比率)を計算する。
上述した算出を実行するためには、前記窓フィルタで抽出した加速度信号から時刻歴波形のRMS値、又は最大値を算出する計算処理部を備える。
FIG. 3 is a diagram illustrating an application example of the window filter described above and an example of calculating an amplitude ratio of the RMS value, and corresponds to the processes s3 to s5 in FIG. The window filters 50, 50 have a certain predetermined length (time), and the shaft box acceleration signal (waveform) 51 (22a in FIG. 1) and the vehicle body acceleration signal (waveform) 52 from which noise is removed within the length. (23a in FIG. 1) is extracted, and the axle box
Here, the RMS value is taken as an example, but the same applies to the maximum value. When the maximum value amplitude ratio is calculated, the maximum value is calculated from the absolute values of the axle
In order to execute the above-described calculation, a calculation processing unit that calculates the RMS value or the maximum value of the time history waveform from the acceleration signal extracted by the window filter is provided.
図4は、RMS値振幅比率55を対象にした閾値判定処理と異常判定処理の例であり、図2の処理s6〜s7に対応する。同図において、判定処理部60は、RMS値振幅比率55(RMS値振幅比率:A)と所定の閾値α、βとの大小関係を比較判定する。例えば、閾値α、βは事前に健全な車両の振動値を算出しておき、その算出結果を基に設定する。判定処理部60はRMS値振幅比率55が所定の閾値αと閾値βの間にある場合には、異常無し62と判定し、RMS値振幅比率55が所定の閾値αより小さい場合、或いは、RMS値振幅比率55が所定の閾値βより大きい場合には、車両異常61と判定する。
FIG. 4 is an example of the threshold determination process and the abnormality determination process for the RMS
図4はRMS値振幅比率55を例としたが、最大値振幅比率においても同様の判定処理で適用できる。その際、閾値は所定の値を設定する必要がある。
また、図4ではRMS値振幅比率55に対して所定の閾値との閾値判定処理を実施しているが、図5に示すRMS値振幅比率55を頻度分布処理計算することで、振幅比率RMS頻度分布70と所定の閾値α’、β’との比較判定処理が実施可能となる。この場合、判定処理部60は、RMS値振幅比率頻度分布70が所定の閾値α’と閾値β’の間にある場合には、「異常無し」62と判定し、RMS値振幅比率頻度分布70がRMS値振幅比率頻度分布70aのように所定の閾値α’より小さい場合、或いは、RMS値振幅比率頻度分布70がRMS値振幅比率頻度分布70bのように所定の閾値β’より大きい場合には、「車両異常」61と判定する。
Although FIG. 4 shows the RMS
In FIG. 4, threshold determination processing with a predetermined threshold is performed for the RMS
図5はRMS値振幅比率頻度分布70を例としたが、最大値振幅比率頻度分布においても同様の判定処理で適用できる。その際、閾値は所定の値を設定する必要がある。
また、上述した頻度分布処理計算や最大値振幅比率頻度分布処理計算には、前記RMS値、又は前記最大値の頻度を算出する頻度計算処理部が必要である。
なお、以後の実施例においても、頻度分布の算出例は同様に適用可能である。
本実施例によれば、軸箱加速度に対する車体加速度の振幅比率(第1振幅比率)を用いて、所定の閾値に対する閾値判定処理(第1閾値判定処理)を実施することで、車両の異常検出の精度が良く、且つ、簡素なシステム構成で実施できる。
FIG. 5 illustrates the RMS value amplitude
The frequency distribution processing calculation and the maximum value amplitude ratio frequency distribution processing calculation described above require a frequency calculation processing unit that calculates the RMS value or the frequency of the maximum value.
In the following embodiments, the calculation example of the frequency distribution can be similarly applied.
According to the present embodiment, the vehicle abnormality detection is performed by performing the threshold determination process (first threshold determination process) for the predetermined threshold using the amplitude ratio (first amplitude ratio) of the vehicle body acceleration to the axle box acceleration. Can be implemented with a simple system configuration.
次に、本発明の他の実施例(実施例2)について説明する。図6は本発明の実施例2の鉄道車両の状態監視装置のシステム構成図、図7は本発明の実施例2の鉄道車両の状態監視装置の異常検出・判定処理フロ−、図8は本発明の実施例2の鉄道車両の異常状態監視装置の閾値判定処理と異常判定処理について示したものである。 Next, another embodiment (embodiment 2) of the present invention will be described. FIG. 6 is a system configuration diagram of the railway vehicle state monitoring apparatus according to the second embodiment of the present invention, FIG. 7 is an abnormality detection / determination process flow of the railway vehicle state monitoring apparatus according to the second embodiment of the present invention, and FIG. It shows about the threshold determination process and the abnormality determination process of the abnormal condition monitoring apparatus of the railway vehicle of Example 2 of invention.
本実施例と図1の実施例1とのシステム構成上の相違点は、図6に示す如く、閾値判定処理部(第2閾値判定処理部B)18の有無にある。すなわち、本実施例においては、異常検出装置17は、閾値判定処理部(第2閾値判定処理部B)18を備え、フィルタ処理部12からの軸箱加速度信号22aを入力し、異常判定処理部15に閾値判定処理信号27aを出力する構成となっている。
The difference in the system configuration between the present embodiment and the first embodiment shown in FIG. 1 lies in the presence or absence of a threshold determination processing unit (second threshold determination processing unit B) 18, as shown in FIG. That is, in the present embodiment, the
また、図2の異常検出・判定処理フロ−との相違点は、図7の異常検出・判定処理フロ−に示す如く、軸箱加速度の閾値判定処理と振幅比率(第1振幅比率)の閾値判定処理を実行する処理s6−1の有無にある。すなわち、本実施例においては、軸箱加速度に対する車体加速度の振幅比率計算処理(s5)の後に軸箱加速度の閾値判定処理(第2閾値判定処理)と、振幅比率(第1振幅比率)の閾値判定処理(第1閾値判定処理)を実行(s6−1)してなる構成となっている。
また、本実施例においては、図4の閾値判定処理と異常判定処理
を示す実施例1に対して、図8に示す如く、閾値判定処理と異常判定処理では軸箱加速度RMS値53と所定の閾値に対する大小関係を比較判定する判定処理部63が追加される。
2 is different from the abnormality detection / determination processing flow in FIG. 2 in that the threshold detection processing of the axle box acceleration and the threshold of the amplitude ratio (first amplitude ratio) are shown in the abnormality detection / determination processing flow in FIG. The presence or absence of the process s6-1 for executing the determination process exists. That is, in the present embodiment, the threshold value determination process (second threshold value determination process) for the axle box acceleration and the threshold value for the amplitude ratio (first amplitude ratio) after the amplitude ratio calculation process (s5) of the vehicle body acceleration to the axle box acceleration. The determination process (first threshold determination process) is executed (s6-1).
Further, in this embodiment, in contrast to the first embodiment showing the threshold value determination process and the abnormality determination process in FIG. 4, as shown in FIG. A
ここで、判定処理部60は、RMS値振幅比率55と所定の閾値α、βとの大小関係を比較判定する。判定処理部60は、例えば、RMS値振幅比率計算結果(s6−1)を基に、RMS値振幅比率55が所定の閾値αと閾値βの間にある場合には、「正常」と判定し、RMS値振幅比率55aが所定の閾値αより小さい場合には、「異常1」と判定し、RMS値振幅比率55bが所定の閾値βより大きい場合には、「異常2」と判定する。判定処理部63から出力される2つの信号と判定処理部60から出力される3つの信号は論理積65と論理和64により5つの異常に分類される。
Here, the
具体的な異常判定内容について説明すると、判定処理部63で軸箱加速度RMS値53が所定の閾値より大きく、判定処理部60でRMS値振幅比率55が所定の閾値αより小さい場合には、「車両異常或いは車両異常且つ軌道異常」66として判定される。
また、判定処理部63で軸箱加速度RMS値53が所定の閾値より小さく、判定処理部60でRMS値振幅比率55が所定の閾値αより小さい(或いは、RMS値振幅比率55が所定の閾値βより大きい)場合には、車両異常61として判定される。
また、判定処理部63で軸箱加速度RMS値53が所定の閾値より大きく、判定処理60でRMS値振幅比率55が所定の閾値αより大きい場合には、「車両異常且つ軌道異常」67として判定される。
また、判定処理63で軸箱加速度RMS値53が所定の閾値より大きく、判定処理部60でRMS値振幅比率55が所定の閾値αより小さく且つ閾値βより大きい場合には、軌道異常68として判定される。また、判定処理部63で軸箱加速度RMS値53が所定の閾値より小さく、判定処理60部でRMS値振幅比率55が所定の閾値αより大きく且つ閾値βより小さい場合には、異常無62として判定される。
これらの異常判定結果は車両・軌道異常判定結果部90に記録される。なお、図8ではRMS値を例としたが、最大値も同様の手段で適用可能である。
The specific abnormality determination content will be described. When the axle box
Further, in the
Further, if the axle box
Further, when the axle box
These abnormality determination results are recorded in the vehicle / track abnormality
本実施例によれば、軸箱加速度に対する車体加速度の振幅比率(第1振幅比率)に、軸箱加速度を追加考慮し、所定の閾値に対する閾値判定処理(第1、第2閾値判定処理)と異常判定処理を実施することで、軌道側且つ(或いは)車両側の異常検出が精度良く、簡素なシステム構成で実施できる。 According to the present embodiment, a threshold determination process (first and second threshold determination processes) with respect to a predetermined threshold value by additionally considering the axle box acceleration in the amplitude ratio (first amplitude ratio) of the vehicle body acceleration to the axle box acceleration, By performing the abnormality determination process, the abnormality detection on the track side and / or the vehicle side can be performed with high accuracy and a simple system configuration.
次に、本発明の更に他の実施例(実施例3)について説明する。図9は本発明の実施例3の鉄道車両の異常状態監視装置のシステム構成図、図10は本発明の実施例3の鉄道車両の異常状態監視装置の異常検出・判定処理フロ−について示したものである。 Next, another embodiment (Example 3) of the present invention will be described. FIG. 9 is a system configuration diagram of a railway vehicle abnormal state monitoring apparatus according to a third embodiment of the present invention, and FIG. 10 illustrates an abnormality detection / determination processing flow of the railway vehicle abnormal state monitoring apparatus according to the third embodiment of the present invention. Is.
本実施例は、図6の実施例2に対して、図9に示す如く、システム構成上、車両側6に、走行位置検出装置100及び車両速度検出装置104を追加し、異常検出装置17に、前記走行位置検出装置100及び車両速度検出装置104からの走行位置信号29aと走行速度信号33aを基に閾値判定処理部18(第2閾値判定処理部B)の閾値を設定する閾値設定部80及びその閾値を保存するデータベース81を追加したものである。
In the present embodiment, as shown in FIG. 9, a traveling
同図において、閾値設定部80は、車両7に設置されている走行位置検出装置100と車両速度検出装置104から出力される走行位置信号29aと走行速度信号33aの入力を受け、データベース81に閾値取得信号30aを出力する。また、閾値信号32aを閾値判定処理部(第2閾値判定処理部B)18に出力する。データベース81は、閾値設定部80からの閾値取得信号30aに基づき、データベース閾値信号31aを出力し、該データベース閾値信号は閾値設定部80に入力される。
また、異常検出・判定処理フロ−は、図7の実施例2に対して、図10に示す如く、軸箱加速度に対する車体加速度の振幅比率計算処理(s5)の後に、データベース81に保存された車両走行位置と車両走行速度に基づく軸箱加速度の閾値を利用して、閾値設定処理部(第2閾値判定処理部B)18の閾値設定を特徴的な走行箇所に応じて切換え設定処理を実行する(s5−1)ものである。
In the figure, a threshold
Further, the abnormality detection / determination processing flow is stored in the
本実施例によれば、車両の走行位置と走行速度に基づきデータベース81に記録された軸箱加速度の閾値を用いて、データベース81の閾値を所定の閾値と切換え設定(s5−1)しながら閾値判定処理(第2閾値判定処理)を実施することで、橋脚等の軌道状態が異なる区間に対する異常検知を精度良く実施することができる。
According to the present embodiment, the threshold value of the
次に、本発明の他の実施例(実施例4)について説明する。図11は本発明の実施例4の鉄道車両の異常状態監視装置のシステム構成図、図12は本発明の実施例4の鉄道車両の異常状態監視装置の異常検出・判定処理フロ−、図13は本発明の実施例4の鉄道車両の異常状態監視装置の閾値判定処理と異常判定処理を示す図、図14は本発明の実施例4の鉄道車両の異常状態監視装置のデータベース81の閾値を利用した各閾値切換設定方法について示したものである。
Next, another embodiment (embodiment 4) of the present invention will be described. FIG. 11 is a system configuration diagram of the railway vehicle abnormal state monitoring apparatus according to the fourth embodiment of the present invention. FIG. 12 is an abnormality detection / determination processing flow of the railway vehicle abnormal state monitoring apparatus according to the fourth embodiment of the present invention. FIG. 14 is a diagram illustrating threshold determination processing and abnormality determination processing of the railway vehicle abnormal state monitoring apparatus according to the fourth embodiment of the present invention. FIG. 14 illustrates threshold values of the
本実施例は、図9の実施例3に対して、図11に示す如く、システム構成上、異常検出装置17は、更に閾値判定処理部(第3閾値判定処理部C)19を備えたものである。
同図において、閾値設定部80は、閾値信号32aを閾値判定処理部(第1閾値判定処理部A)14と閾値判定処理部(第2閾値判定処理部B)18と閾値判定処理部19に出力する。閾値判定処理部19は、閾値信号32aと車体加速度信号23aを入力とし、これらの信号に基づいて異常判定処理部15に閾値判定処理信号28aを出力する。
In this embodiment, as shown in FIG. 11, the
In the figure, the
また、図10の実施例3に対して、異常検出・判定処理フロ−は、図12に示す如く、軸箱加速度に対する車体加速度の振幅比率計算処理(s5)の後に、デ−タベ−ス81に保存された閾値、つまり車両走行位置と車両走行速度に基づく軸箱加速度の閾値と振幅比率(第1振幅比率)の閾値と車体加速度の閾値を利用して、閾値判定処理部(第1閾値判定処理部A)14と閾値設定処理部(第2閾値判定処理部B)18と閾値設定処理部(第3閾値判定処理部C)19の閾値設定を特徴的な走行箇所に応じて切換え設定処理し(s5−2)、車体加速度の閾値判定処理(第3閾値判定処理)と軸箱加速度の閾値判定処理(第2閾値判定処理部)と振幅比率(第1振幅比率)の閾値判定処理(第1閾値判定処理部)を実行する(s6−2)ようにしたことにある。
In contrast to the third embodiment of FIG. 10, the abnormality detection / determination process flow is shown in FIG. 12, after the calculation of the amplitude ratio of the vehicle body acceleration to the axle box acceleration (s5), the
また、図8の実施例3に対して、閾値判定処理と異常判定処理は、図13に示す如く、図12のs6−2とs7に対応する。すなわち、判定処理部63の閾値γは閾値設定部80から出力される軸箱加速度の閾値信号32a−1として入力され、判定処理部60の閾値αと閾値βは閾値設定部80から出力される振幅比率の閾値信号32a−2として入力される。また、判定処理部93は車体加速度RMS値54と閾値設定部80から出力される車体加速度の閾値信号32a−3とを比較判定する。具体的な異常判定内容について説明すれば、判定処理部93で車体加速度RMS値54が車体加速度の閾値ηより大きい場合には、車両・軌道異常判定結果90に加えて、例えば、空力加振影響による車体異常振動92と判定する。また、判定処理部93で車体加速度RMS値54が車体加速度の閾値ηより小さい場合には、車両・軌道異常判定結果90に加えて、例えば、空力加振影響による車体異常振動無91と判定する。
Further, with respect to the third embodiment of FIG. 8, the threshold determination process and the abnormality determination process correspond to s6-2 and s7 of FIG. 12, as shown in FIG. That is, the threshold value γ of the
また、図12の異常判定フロ−のデ−タベ−スに基づいた各閾値設定切換え処理(s5−2)の例を、図14を用いて説明する。
図14は、トンネル区間331走行時と明かり区間330走行時、及びトンネル区間331と明かり区間330にそれぞれ橋梁やレ−ル継目といった軌道特徴区間332がある場合の軸箱加速度の閾値信号32a−1と振幅比率の閾値信号32a−2と車体加速度の閾値信号32a−3の設定手段の一例を示している。
An example of each threshold setting switching process (s5-2) based on the abnormality determination flow database in FIG. 12 will be described with reference to FIG.
FIG. 14 shows the
同図において、軸箱加速度閾値信号32a−1は、橋梁やレ−ル継目といった軌道特徴区間332がある場合において、また軸箱加速度の閾値信号32a−1は、所定の閾値信号300bが橋梁やレ−ル継目といった軌道特徴区間332を通過する場合において、閾値信号301bに示す通り上乗せされるように切り換えられる。
In the figure, the axle box
振幅比率(第1振幅比率)の閾値信号32a−2は、所定の閾値信号310bがトンネル区間331を通過する場合において、トンネル内での車体加速度の振幅増加分を考慮して閾値信号311bに示す通り上乗せされるように切り換えられる。
車体加速度の閾値信号32a−3は、軸箱加速度と振幅比率(第1振幅比率)を考慮して、所定の閾値信号320bがトンネル区間331(軌道特徴区間332は通過しない)を通過する場合において、トンネル内での車体加速度の振幅増加分を考慮した閾値信号311bを基に閾値信号321bに切り替えられる。
また、車体加速度の閾値信号32a−3は、所定の閾値信号320bがトンネル区間331且つ橋梁やレ−ル継目といった軌道特徴区間332を通過する場合において、閾値信号301bと閾値信号311bを考慮して閾値信号322bに切り換えられる。
また、車体加速度の閾値信号32a−3は、所定の閾値信号320bが明かり区間330且つ軌道特徴区間332を通過する場合において、橋梁やレ−ル継目といった軌道特徴区間332に起因した閾値信号301bを考慮して閾値信号323bに切り換えられる。
The
The vehicle body
The vehicle body
Further, the vehicle body
本実施例によれば、車両の走行位置と走行速度に基づきデ−タベ−ス81に記録された軸箱加速度と車体加速度と振幅比率(第1振幅比率)の閾値を用いて、デ−タベ−スの閾値を所定の閾値と切換え設定しながら閾値判定処理(第1、第2、第3閾値判定処理)を実施することで、これまでの軌道側、あるいは(且つ)車両側の異常検出に加えて、橋脚等の軌道状態の異なる区間やトンネル走行時の空力加振等で車体振動が発生する区間に対する異常検知を精度良く実施することができる。
According to this embodiment, the database is used by using the threshold values of the axle box acceleration, the vehicle body acceleration, and the amplitude ratio (first amplitude ratio) recorded in the
次に、本発明の他の実施例(実施例5)について説明する。図15は本発明の実施例5の鉄道車両の異常状態監視装置のシステム構成図、図16は本発明の実施例5の鉄道車両の異常状態監視装置の異常検出・判定処理フロ−、図17は本発明の実施例5の鉄道車両の異常状態監視装置の信号に対する窓フィルタの適用例とRMS値の振幅比率算出例、図18は本発明の実施例5の鉄道車両の異常状態監視装置の閾値判定処理と異常判定処理について示したものである。
Next, another embodiment (embodiment 5) of the present invention will be described. FIG. 15 is a system configuration diagram of a railway vehicle abnormal state monitoring apparatus according to
本実施例は、図1の実施例1に対して、システム構成上、図15に示す如く、台車枠振動加速度計103が台車枠3に設置されている。
台車枠加速度計103の電圧200aは、台車枠加速度検出装置(台車枠加速度検出手段)110によって台車枠加速度信号201aとして検出される。
異常検出装置17は、例えば、実施例1における台車枠加速度信号201aを入力としてフィルタ処理部12と振幅比率算出処理部(第2振幅比率算出処理部D)111と閾値判定処理部(第4閾値判定処理部D)112と振幅比率算出処理部(第3振幅比率算出処理部E)113と閾値判定処理部(第5閾値判定処理部E)114を備える。
振幅比率算出処理部(第2振幅比率算出処理D)111は、軸箱加速度信号22aと台車枠加速度信号201aを入力とし、輪軸−台車枠加速度振幅比率信号202aを出力する。
振幅比率算出処理部(第3振幅比率算出処理部E)113は、車体加速度信号23aと台車枠加速度信号201aを入力とし、台車枠−車体加速度振幅比率信号204aを出力する。
閾値判定処理部(第4閾値判定処理部D)112は、輪軸−台車枠加速度振幅比率信号202aを入力し、異常判定処理部15に閾値判定処理信号203aを出力する。
閾値判定処理部(第5閾値判定処理部E)114は、台車枠−車体加速度振幅比率信号204aを入力し、異常判定処理部15に閾値判定処理信号205aを出力する。
ここで、閾値判定処理部112,114の閾値は、実施例1、2と同様に予め設定した閾値を利用するものであるが、実施例3、4と同様に閾値設定手段などに基づき設定変更できるように構成しても良い。
In the present embodiment, a bogie
The voltage 200a of the
The
The amplitude ratio calculation processing unit (second amplitude ratio calculation process D) 111 receives the axle
The amplitude ratio calculation processing unit (third amplitude ratio calculation processing unit E) 113 receives the vehicle
The threshold determination processing unit (fourth threshold determination processing unit D) 112 receives the wheel axle-cart frame acceleration
The threshold determination processing unit (fifth threshold determination processing unit E) 114 receives the bogie frame-vehicle body acceleration amplitude ratio signal 204 a and outputs a threshold
Here, the threshold values of the threshold
また、本実施例は、図2の実施例1に対して、異常判定フロ−は、図16に示す如く、まず、軸箱加速度信号と車体加速度信号と台車枠信号を入力する(s1−1)。
次に、抽出した加速度信号に対するRMS値、最大値計算処理(s4)の後に、軸箱加速度に対する台車枠加速度の振幅比率計算処理と台車枠加速度に対する車体加速度の振幅比率計算処理する(s5−2)。
Further, in this embodiment, in contrast to the first embodiment shown in FIG. 2, the abnormality determination flow first inputs a shaft box acceleration signal, a vehicle body acceleration signal, and a carriage frame signal as shown in FIG. 16 (s1-1). ).
Next, the RMS value and maximum value calculation process (s4) for the extracted acceleration signal is followed by the calculation process of the amplitude ratio of the carriage frame acceleration to the axle box acceleration and the calculation of the amplitude ratio of the vehicle body acceleration to the carriage frame acceleration (s5-2). ).
また、本実施例は、図3の実施例1に対して、窓フィルタの適用例とRMS値の振幅比率算出例では、図17に示す如く、窓フィルタ50によって台車枠加速度120が抽出され、台車枠加速度RMS値121が算出され、軸箱加速度RMS値53と車体加速度RMS値54を用いて、軸箱加速度RMS値53に対する台車枠加速度RMS値121の比率として振幅比率(第2振幅比率)122、台車枠加速度RMS値121に対する車体加速度RMS値54の比率として振幅比率(第3振幅比率)123が算出される。
なお、図17はRMS値を例としたが、最大値も適用できる。また、図17は図12の処理s3〜s5−2に対応する。
Further, in the present embodiment, in comparison with the first embodiment of FIG. 3, in the application example of the window filter and the calculation example of the amplitude ratio of the RMS value, the
Although FIG. 17 shows the RMS value as an example, the maximum value can also be applied. FIG. 17 corresponds to the processes s3 to s5-2 in FIG.
また、本実施例は、図4の実施例1に対して、閾値判定処理と異常判定処理では、図18に示す如く、判定処理部124は、輪軸−台車枠間RMS値振幅比率122と所定の閾値α1、β1との大小関係を比較判定し、判定処理部127は台車枠−車体間RMS値振幅比率123と所定の閾値α2、β2との大小関係を比較判定する。例えば、判定処理部124は、輪軸−台車枠間RMS値振幅比率122が所定の閾値α1と閾値β1の間にある場合には、異常無し126と判定し、輪軸−台車枠間RMS値振幅比率122が所定の閾値α1より小さい場合、或いは、輪軸−台車枠間RMS値振幅比率122が所定の閾値β1より大きい場合には、軸バネ8等の車両異常125と判定する。
また、判定処理部127は、台車枠−車体間RMS値振幅比率123が所定の閾値α2と閾値β2の間にある場合には、異常無し126と判定し、台車枠−車体間RMS値振幅比率123が所定の閾値α2より小さい場合、或いは、台車枠−車体間RMS値振幅比率123が所定の閾値β2より大きい場合には、空気バネ4等の車両異常128と判定する。
なお、図18はRMS値を例としたが、最大値も適用できる。また、図18は図12の処理s6〜s7に対応する。
Further, in the present embodiment, in comparison with the first embodiment shown in FIG. 4, in the threshold value determination process and the abnormality determination process, as shown in FIG. threshold alpha 1 of comparing determines the magnitude relation between beta 1,
Further, when the carriage frame-vehicle body RMS
Although FIG. 18 shows the RMS value as an example, the maximum value can also be applied. FIG. 18 corresponds to the processes s6 to s7 in FIG.
以上述べたように、本実施例によれば、台車枠加速度を検出する台車枠加速度検出装置を追加し、軸箱加速度に対する台車枠加速度の振幅比率(第2振幅比率)と台車枠加速度に対する車体加速度の振幅比率(第3振幅比率)を考慮することで、車両異常の要因推定が部品レベルで実施可能であり、且つ、異常検知を精度良く、簡素なシステムで実施できる。すなわち、車体6の床下の異常(軸バネや空気バネなど)の判定が可能となるとともに異常個所(軸バネ:軸箱−台車枠間の振幅比率、空気バネ:台車枠−車体間の振幅比率)の特定も可能となる効果を奏する。 As described above, according to the present embodiment, a cart frame acceleration detecting device for detecting the cart frame acceleration is added, and the amplitude ratio (second amplitude ratio) of the cart frame acceleration to the axle box acceleration and the vehicle body with respect to the cart frame acceleration. By considering the acceleration amplitude ratio (third amplitude ratio), vehicle abnormality factor estimation can be performed at the component level, and abnormality detection can be performed with high accuracy and a simple system. That is, it becomes possible to determine an abnormality under the floor of the vehicle body 6 (such as an axial spring or an air spring) and an abnormal part (an axial spring: an amplitude ratio between the axle box and the carriage frame, an air spring: an amplitude ratio between the carriage frame and the automobile body). ) Can be specified.
上述した各実施例の他、それらの応用も可能である。例えば、実施例3及び実施例4においては、データベース81や閾値設定部80などを設け、該データベースに閾値を保存し、該データベースの保存閾値を閾値設定部80より取り出して第2の閾値判定処理部14及び第1、第2、第3の閾値判定処理部14、18、19における装置異常判定基準となる異常判定用閾値として利用しているが、これらの技術は、他の実施例に応用することも可能である。この場合、実施例3及び実施例4の如く、車両速度検出装置104や走行位置検出装置100などの出力を利用して閾値としてデータベース8に登録保存する。
In addition to the embodiments described above, their application is also possible. For example, in the third and fourth embodiments, the
また、実施例5において、台車枠加速度検出装置110を設け、その出力を、フィルタ処理部12を介して第2、第3の振幅比率算出処理部111、113に供給し、該処理部における振幅比率算出処理用信号として利用しているが、この技術も他の実施例に応用することも可能である。例えば、図6の実施例に適用する場合には、台車枠加速度検出装置110、フィルタ12を追加するとともに、その出力信号の台車枠加速度信号201aと軸箱加速度検出装置10−フィルタ12の出力信号の軸箱加速度信号22aとの振幅比率を算出する振幅比率算出処理部(第2振幅比率算出処理部D)111及び閾値判定処理部(第4閾値判定処理部D)112を設け、かつ振幅比率算出処理部(第1振幅比率算出処理部)13にて台車枠加速度信号201a(軸箱加速度信号22aに代えて)と車体加速度信号23aとの振幅比率を算出する如く構成する。また、異常判定処理部15にて、閾値判定処理部(第4閾値判定処理部D)112の閾値判定処理信号203aと閾値判定処理部(第2閾値判定処理部B)18の閾値判定処理信号27aと閾値判定処理部(第1閾値判定処理部)14の閾値判定処理信号25aとを異常判定処理部15にて判定する構成とする。但し、この場合、振幅比率算出処理部(第1振幅比率算出処理部)13及び閾値判定処理部(第1閾値判定処理部A)14には、図15の振幅比率算出処理部(第3振幅比率算出処理部E)113と同様な振幅比率算出処理及び閾値判定処理機能を持たせる。
係る適用例によれば、(1)軌道異常と(2)台車異常(軸バネ)と(3)台車異常(空気バネ)の分離判定が可能である。
図9の実施例に適用する場合も同様に構成すれば良い。
図11の実施例に適用する場合には、図6の実施例と同様に台車枠振動加速度を検出する台車枠加速度検出装置110、フィルタ12、振幅比率算出処理部(第2振幅比率算出処理部D)111、閾値判定処理部(第2閾値判定処理部D)112を追加するとともに、振幅比率算出処理部13にて車体加速度信号23aと台車枠加速度信号201a(軸箱加速度信号22aに代えて)との振幅比率を算出する如く構成する。また、振幅比率算出処理部13及び閾値判定処理部(第1閾値判定処理部A)14には、図15の振幅比率算出処理部(第3振幅比率算出処理部E)113及び閾値判定処理部(第5閾値判定処理部E)114と同様な振幅比率算出処理及び閾値判定処理機能を持たせる。異常判定処理部15は、閾値判定処理信号203aと閾値判定処理信号27aと閾値判定処理信号25aと閾値判定処理信号28aの4つの信号をもって異常を判定する。
係る適用例によれば、(1)軌道異常、(2)台車異常(軸バネ)、(3)台車異常(空気バネ)、(4)車体異常振動の分離判定が可能である。
In the fifth embodiment, the bogie frame
According to this application example, it is possible to determine whether (1) track abnormality, (2) bogie abnormality (shaft spring), and (3) bogie abnormality (air spring) are separated.
The same configuration may be applied when applied to the embodiment of FIG.
When applied to the embodiment of FIG. 11, as in the embodiment of FIG. 6, the bogie frame
According to this application example, it is possible to determine whether (1) track abnormality, (2) bogie abnormality (shaft spring), (3) bogie abnormality (air spring), and (4) vehicle body abnormal vibration are separated.
1:軌道
2:輪軸
3:台車枠
5:台車
6:車体
7:車両
9:軸箱
10:軸箱加速度検出装置
11:車体加速度検出装置
12:フィルタ処理部
13:振幅比率算出処理部
14:閾値判定処理部(A)
15:異常判定処理部
16:判定結果出力処理部
17:異常検出装置
18:閾値判定処理部(B)
19:閾値判定処理部(C)
22a:軸箱加速度信号
23a:車体加速度信号
24a:振幅比率信号
25a:閾値判定処理信号(A)
26a:異常判定処理信号
27a:閾値判定処理信号(B)
28a:閾値判定処理信号(C)
29a:走行位置信号
30a:閾値取得信号
31a:デ−タベ−ス閾値信号
32a:閾値信号
50:窓フィルタ
51:軸箱加速度信号
52:車体加速度信号
53:軸箱加速度RMS値
54:車体加速度RMS値
55:RMS値振幅比率
80:閾値設定部
81:デ−タベ−ス
100:走行位置検出装置
101:軸箱加速度計
102:車体加速度計
103:台車枠振動加速度計
110:台車枠加速度検出装置
111:振幅比率算出処理部(D)
112:閾値判定処理部(D)
113:振幅比率算出処理部(E)
114:閾値判定処理部(E)
122:輪軸−台車枠加速度RMS値振幅比率
123:台車枠−車体加速度RMS値振幅比率
1: Track 2: Wheel axle 3: Bogie frame 5: Bogie 6: Car body 7: Vehicle 9: Shaft box 10: Shaft box acceleration detection device 11: Car body acceleration detection device 12: Filter processing unit 13: Amplitude ratio calculation processing unit 14: Threshold determination processing unit (A)
15: Abnormality determination processing unit 16: Determination result output processing unit 17: Abnormality detection device 18: Threshold determination processing unit (B)
19: Threshold determination processing unit (C)
22a: axle
26a: Abnormality
28a: threshold determination processing signal (C)
29a: Traveling
112: Threshold determination processing unit (D)
113: Amplitude ratio calculation processing unit (E)
114: Threshold determination processing unit (E)
122: Wheel axis-cart frame acceleration RMS value amplitude ratio 123: Cart frame-vehicle acceleration RMS value amplitude ratio
Claims (10)
前記振動検出装置は、前記鉄道車両の輪軸に設置された軸箱の振動加速度及び前記鉄道車両の車体の振動加速度から前記鉄道車両の振動を検出する振動検出手段を含み、
前記異常検出装置は、前記振動検出手段の前記軸箱振動加速度と前記車体振動加速度との第1振幅比率を計算する第1振幅比率計算手段と、前記第1振幅比率と閾値とを比較判定する第1閾値判定処理手段と、前記第1閾値判定処理手段の判定結果から異常要因を判定する異常判定処理手段を含む、
ことを特徴とする鉄道車両。 A vibration detection device that detects vibration of the railway vehicle, and an abnormality detection device that detects an abnormality of the rail vehicle using a signal detected from the vibration detection device;
The vibration detection device includes vibration detection means for detecting vibration of the railway vehicle from vibration acceleration of an axle box installed on a wheel shaft of the railway vehicle and vibration acceleration of a vehicle body of the railway vehicle,
The abnormality detection device compares and determines the first amplitude ratio and a threshold value with first amplitude ratio calculation means for calculating a first amplitude ratio between the axle box vibration acceleration and the vehicle body vibration acceleration of the vibration detection means. A first threshold determination processing means; and an abnormality determination processing means for determining an abnormality factor from the determination result of the first threshold determination processing means.
A railway vehicle characterized by that.
前記鉄道車両の振動加速度を検出する振動検出装置と、前記振動加速度検出装置から検出した信号を用いて前記鉄道車両の異常を検知する異常検出装置とを備え、
前記振動検出装置は、前記軸箱の振動加速度を検出する軸箱加速度検出手段と、前記車体の振動加速度を検出する車体加速度検出手段と、前記台車枠の台車枠加速度検出手段とからなり、
前記異常検出装置は、前記軸箱加速度検出装置の軸箱振動加速度と前記台車枠加速度検出装置の台車枠振動加速度との第2振幅比率を計算する第2振幅比率計算手段と、
前記車体加速度検出装置の車体振動加速度と前記台車枠加速度検出装置の台車枠振動加速度との第3振幅比率を計算する第3振幅比率計算手段と、
前記第2振幅比率と予め設定された閾値との大小を判定する第4閾値判定処理手段と、
前記第3振幅比率と予め設定された閾値との大小を判定する第5閾値判定処理手段と、
前記第4、第5閾値判定処理手段の判定結果から異常要因を判定する異常判定処理手段と、を備えたことを特徴とする鉄道車両。 In a railway vehicle including a car body, a bogie frame, a wheel shaft, and an axle box,
A vibration detection device that detects vibration acceleration of the railway vehicle; and an abnormality detection device that detects abnormality of the rail vehicle using a signal detected from the vibration acceleration detection device;
The vibration detection device comprises a shaft box acceleration detection means for detecting vibration acceleration of the axle box, a vehicle body acceleration detection means for detecting vibration acceleration of the vehicle body, and a carriage frame acceleration detection means for the carriage frame,
The abnormality detection device includes second amplitude ratio calculation means for calculating a second amplitude ratio between the axle box vibration acceleration of the axle box acceleration detection device and the carriage frame vibration acceleration of the carriage frame acceleration detection device;
Third amplitude ratio calculating means for calculating a third amplitude ratio between the vehicle body vibration acceleration of the vehicle body acceleration detection device and the vehicle frame vibration acceleration of the vehicle frame acceleration detection device;
Fourth threshold value determination processing means for determining the magnitude of the second amplitude ratio and a preset threshold value;
Fifth threshold determination processing means for determining the magnitude of the third amplitude ratio and a preset threshold;
A railway vehicle comprising: an abnormality determination processing unit that determines an abnormality factor from a determination result of the fourth and fifth threshold determination processing units.
前記状態監視装置は、前記鉄道車両の振動を検出する振動検出装置と、前記振動検出装置から検出した信号を用いて前記鉄道車両の異常を検知する異常検出装置を含み、
前記振動検出装置は、前記輪軸に設置された軸箱の振動加速度及び前記車体の振動加速度から前記鉄道車両の振動を検出する振動検出手段からなり、
前記異常検出装置は、前記振動検出手段の前記軸箱振動加速度と前記車体振動加速度との第1振幅比率を計算する第1振幅比率計算手段と、前記第1振幅比率と異常判定用閾値とを比較判定する第1閾値判定処理手段と、前記第1閾値判定処理手段の判定結果から異常要因を判定する異常判定処理手段からなる
ことを特徴とする鉄道車両の状態監視装置。 In the state monitoring device for monitoring the state of the railway vehicle according to claim 1,
The state monitoring device includes a vibration detection device that detects vibration of the railway vehicle, and an abnormality detection device that detects an abnormality of the rail vehicle using a signal detected from the vibration detection device,
The vibration detection device comprises vibration detection means for detecting vibration of the railway vehicle from vibration acceleration of an axle box installed on the wheel shaft and vibration acceleration of the vehicle body,
The abnormality detection device includes: first amplitude ratio calculation means for calculating a first amplitude ratio between the axle box vibration acceleration and the vehicle body vibration acceleration of the vibration detection means; and the first amplitude ratio and an abnormality determination threshold value. A railway vehicle state monitoring apparatus comprising: a first threshold determination processing means for comparative determination; and an abnormality determination processing means for determining an abnormality factor from a determination result of the first threshold determination processing means.
前記鉄道車両の車体振動加速度と前記鉄道車両の軸箱振動加速度との第1振幅比率を計算する第1振幅比率計算ステップと、
前記第1振幅比率と所定の閾値との大小を判定する第1閾値判定処理ステップと、
前記第1閾値判定処理ステップの判定結果から異常要因を判定する異常判定処理ステップと、を備えたことを特徴とする鉄道車両の状態監視方法。 In a railway vehicle state monitoring method for detecting a railway vehicle composed of a vehicle body, a bogie frame and a wheel shaft, detecting vibrations of the railway vehicle, and detecting an abnormality of the railway vehicle using the detection signal,
A first amplitude ratio calculating step of calculating a first amplitude ratio between the vehicle body vibration acceleration of the railway vehicle and the axle box vibration acceleration of the railway vehicle;
A first threshold value determination processing step for determining a magnitude between the first amplitude ratio and a predetermined threshold value;
An abnormality determination processing step of determining an abnormality factor from the determination result of the first threshold determination processing step, a railway vehicle state monitoring method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010118741A JP5432818B2 (en) | 2010-05-24 | 2010-05-24 | Railway vehicle state monitoring device, state monitoring method, and rail vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010118741A JP5432818B2 (en) | 2010-05-24 | 2010-05-24 | Railway vehicle state monitoring device, state monitoring method, and rail vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011245917A JP2011245917A (en) | 2011-12-08 |
JP5432818B2 true JP5432818B2 (en) | 2014-03-05 |
Family
ID=45411739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010118741A Active JP5432818B2 (en) | 2010-05-24 | 2010-05-24 | Railway vehicle state monitoring device, state monitoring method, and rail vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5432818B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10953900B2 (en) | 2017-10-31 | 2021-03-23 | Mitsubishi Heavy Industries, Ltd. | Abnormality detection device, abnormality detection method, and program |
US11465507B2 (en) | 2017-02-23 | 2022-10-11 | Mitsubishi Heavy Industries Engineering, Ltd. | Abnormality monitoring device, abnormality monitoring method, and program |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5525404B2 (en) * | 2010-10-01 | 2014-06-18 | 株式会社日立製作所 | Railway vehicle state monitoring device, state monitoring method, and rail vehicle |
JP6101931B2 (en) * | 2013-03-19 | 2017-03-29 | パナソニックIpマネジメント株式会社 | Motor drive device |
JP6199063B2 (en) * | 2013-04-19 | 2017-09-20 | 公益財団法人鉄道総合技術研究所 | Multifunctional abnormality detection device equipped on the cart |
JP6128594B2 (en) * | 2013-05-29 | 2017-05-17 | 曙ブレーキ工業株式会社 | Derailment sign detection system, control device, derailment sign detection method, and derailment sign detection program |
WO2016113724A1 (en) * | 2015-01-15 | 2016-07-21 | 株式会社日立製作所 | State monitoring device, state monitoring system, and train |
JP6382732B2 (en) * | 2015-01-15 | 2018-08-29 | 株式会社日立製作所 | Condition monitoring device, condition monitoring system, and train train |
US10559138B2 (en) * | 2015-12-18 | 2020-02-11 | Ge Global Sourcing Llc | Sensor signal processing system and method |
KR101829645B1 (en) * | 2016-05-20 | 2018-02-20 | 주식회사 글로비즈 | Device and method for monitoring railway vehicle and method for monitoring using the same |
JP2018063225A (en) * | 2016-10-14 | 2018-04-19 | 公益財団法人鉄道総合技術研究所 | Abrupt advance point extraction processing method and abrupt advance point extraction processing system of waveform data |
IT201700050006A1 (en) * | 2017-05-09 | 2018-11-09 | Faiveley Transport Italia Spa | System and procedure for detecting an abnormal gait condition of a trolley of a railway vehicle. |
JP6930271B2 (en) * | 2017-08-03 | 2021-09-01 | 日本製鉄株式会社 | Rail vehicle simulation equipment, methods, and programs |
WO2019026297A1 (en) * | 2017-08-04 | 2019-02-07 | 株式会社日立製作所 | Abnormality detection device, abnormality detection system, and abnormality detection method |
WO2019155627A1 (en) * | 2018-02-09 | 2019-08-15 | 株式会社日立製作所 | Device and method for detecting abnormality in railroad vehicle |
EP4012370A4 (en) * | 2019-08-07 | 2023-05-17 | Hitachi, Ltd. | Railway vehicle anomaly detection device |
US11958513B2 (en) | 2019-12-13 | 2024-04-16 | Hitachi, Ltd. | Railroad car condition monitoring/analyzing device and method |
CN113281414B (en) * | 2021-06-30 | 2022-10-25 | 中国国家铁路集团有限公司 | Method and device for identifying short-wave disease types of steel rails and electronic equipment |
WO2024047741A1 (en) * | 2022-08-30 | 2024-03-07 | 日本製鉄株式会社 | Inference method, inference device, and inference program |
-
2010
- 2010-05-24 JP JP2010118741A patent/JP5432818B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11465507B2 (en) | 2017-02-23 | 2022-10-11 | Mitsubishi Heavy Industries Engineering, Ltd. | Abnormality monitoring device, abnormality monitoring method, and program |
US10953900B2 (en) | 2017-10-31 | 2021-03-23 | Mitsubishi Heavy Industries, Ltd. | Abnormality detection device, abnormality detection method, and program |
Also Published As
Publication number | Publication date |
---|---|
JP2011245917A (en) | 2011-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5432818B2 (en) | Railway vehicle state monitoring device, state monitoring method, and rail vehicle | |
US10703406B2 (en) | Method and system for determining road properties in a vehicle | |
JP2012078213A (en) | Railway vehicle state monitor, state monitoring method and railway vehicle | |
JP5538279B2 (en) | Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program | |
US9221476B2 (en) | Method and arrangement for monitoring a brake system of a brake arrangement of a rail vehicle | |
CN104309435B (en) | A kind of road roughness on-line identification method | |
JP5707090B2 (en) | Railway vehicle vibration analyzer | |
JP6061782B2 (en) | Abnormal sound detection device and program | |
JP2003146036A (en) | Method for detecting separation beginning of traveling tread of pneumatic tire in vehicle | |
Kidambi et al. | Accuracy and robustness of parallel vehicle mass and road grade estimation | |
CN112414651A (en) | Track rigidity determination method and device based on mobile line loading vehicle | |
CN105992939A (en) | Travel wheel degradation detection method and detection system, and travel carriage | |
JP2019184412A (en) | Device, method, and program for estimating mass of vehicle | |
KR20080090427A (en) | Method for estimating the longitudinal speed of a motor vehicle | |
CN103776589B (en) | Method for detecting dynamic balance of automobile wheel and system for detecting dynamic balance of automobile wheel | |
JP6586837B2 (en) | Bearing abnormality diagnosis device and vehicle | |
CN105556269A (en) | Method for detecting an imbalance of a vehicle wheel while the vehicle is rolling | |
KR102237230B1 (en) | System and Method for estimating a state of road for a vehicle | |
JP4252271B2 (en) | Railway vehicle abnormality detection device and abnormality detection method | |
Ward et al. | Wheel-rail profile condition monitoring | |
CN107848359B (en) | Device for estimating a state index of a driving route taken by a land vehicle | |
CN103781680B (en) | For the method monitoring rail vehicle wheel | |
CN110525441A (en) | Slope detection method, system and vehicle | |
Tanelli et al. | Friction-curve peak detection by wheel-deceleration measurements | |
JP3344648B2 (en) | Vehicle running state determination device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131206 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5432818 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |