JP5432812B2 - Non-ferrous metal melting furnace and non-ferrous metal melting method - Google Patents

Non-ferrous metal melting furnace and non-ferrous metal melting method Download PDF

Info

Publication number
JP5432812B2
JP5432812B2 JP2010106540A JP2010106540A JP5432812B2 JP 5432812 B2 JP5432812 B2 JP 5432812B2 JP 2010106540 A JP2010106540 A JP 2010106540A JP 2010106540 A JP2010106540 A JP 2010106540A JP 5432812 B2 JP5432812 B2 JP 5432812B2
Authority
JP
Japan
Prior art keywords
molten metal
metal
ferrous
electrodes
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010106540A
Other languages
Japanese (ja)
Other versions
JP2011237056A (en
Inventor
司 岸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Sangyo Co Ltd
Original Assignee
Sanken Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Sangyo Co Ltd filed Critical Sanken Sangyo Co Ltd
Priority to JP2010106540A priority Critical patent/JP5432812B2/en
Publication of JP2011237056A publication Critical patent/JP2011237056A/en
Application granted granted Critical
Publication of JP5432812B2 publication Critical patent/JP5432812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、アルミニウム合金等の非鉄金属を、各種鋳造製品の製造に使用すべく溶解するための非鉄金属用溶解炉に関するものである。   The present invention relates to a non-ferrous metal melting furnace for melting a non-ferrous metal such as an aluminum alloy to be used for manufacturing various cast products.

従来、アルミニウム合金等の非鉄金属を一旦溶解することで各種鋳造製品が製造されており、石油などの化石燃料を用いたバーナからの放射火炎によって溶湯を加熱し非鉄金属を溶解する非鉄金属用溶解炉が開示されている(例えば、特許文献1)。   Conventionally, various cast products have been manufactured by once melting non-ferrous metals such as aluminum alloys, and melting for non-ferrous metals by heating the molten metal with a radiant flame from a burner using fossil fuel such as petroleum. A furnace is disclosed (for example, Patent Document 1).

特許第3871646号公報Japanese Patent No. 3871646

特許文献1に記載の発明に係る非鉄金属用溶解炉は、図7及び図8に示すように、溶解室11内の溶湯をバーナ12の火炎放射によって加熱し、溶湯内に投入された非鉄金属を溶解する。また、ポンプ等の循環装置13によって溶湯を非鉄金属用溶解炉10内で循環させることで、非鉄金属を溶解し易くし、溶解時間の短縮を図っている。   As shown in FIGS. 7 and 8, the melting furnace for nonferrous metals according to the invention described in Patent Document 1 heats the molten metal in the melting chamber 11 by the flame radiation of the burner 12 and puts it into the molten metal. Dissolve. Further, the molten metal is circulated in the non-ferrous metal melting furnace 10 by a circulation device 13 such as a pump, thereby facilitating melting of the non-ferrous metal and shortening the melting time.

しかし、バーナ12を用いた非鉄金属用溶解炉10では、輻射、又は熱伝導率の小さい空気を介した間接的な加熱であるので、熱効率が悪いといった問題がある。
このため、より高温で溶湯を加熱することが考えられるが、高温にすることで溶湯内に酸化物が生成され易くなり、品質が低下してしまうという問題が新たに発生する。
また、高温で加熱しなくても、非鉄金属は空気を多く含んでいる酸化物によって既にその表面が覆われていることが多いので、非鉄金属を溶湯に投入しても沈み難い。その結果、非鉄金属が溶解し難いので、機械的に非鉄金属を溶湯内に押し込まなければならないといった問題もある。
However, the non-ferrous metal melting furnace 10 using the burner 12 has a problem of poor thermal efficiency because it is indirect heating via air having a low thermal conductivity or radiation.
For this reason, it is conceivable to heat the molten metal at a higher temperature. However, raising the temperature makes it easier for oxides to be generated in the molten metal, resulting in a new problem that the quality deteriorates.
Even if the non-ferrous metal is not heated at a high temperature, the surface of the non-ferrous metal is often already covered with an oxide containing a large amount of air. As a result, since the nonferrous metal is difficult to dissolve, there is a problem that the nonferrous metal must be mechanically pushed into the molten metal.

その改善策の一つとして電気ヒーターを利用した非鉄金属用溶解炉があり、本出願人は、それに関して既に特許出願を行っている(特願2008−266892)。
この非鉄金属用溶解炉は、図9及び図10に示すように、浸漬管に入れられた電気ヒーター22が加熱室21の溶湯に浸漬されており、空気を介さず電気ヒーター22で溶湯を加熱する。つまり、電気ヒーター22で発生した熱を効率よく溶湯に伝えることができるので、必要以上に電気ヒーター22の温度を上げることがなく、酸化物が生成され難い。
したがって、この非鉄金属用溶解炉20は、体積に対し表面積が大きく酸化物が生成され易い微細な非鉄金属を溶解することに適している。
As one of the improvement measures, there is a nonferrous metal melting furnace using an electric heater, and the present applicant has already filed a patent application (Japanese Patent Application No. 2008-266892).
In this non-ferrous metal melting furnace, as shown in FIGS. 9 and 10, the electric heater 22 placed in the dip tube is immersed in the molten metal in the heating chamber 21, and the molten metal is heated by the electric heater 22 without air. To do. That is, since the heat generated in the electric heater 22 can be efficiently transmitted to the molten metal, the temperature of the electric heater 22 is not increased more than necessary, and oxides are not easily generated.
Accordingly, the non-ferrous metal melting furnace 20 is suitable for melting a fine non-ferrous metal that has a large surface area relative to its volume and is likely to generate an oxide.

また、溶湯を漏斗状の渦巻き部24にポンプ23で供給することで、溶湯が渦巻き部24を上から下へ流れるときに渦巻き部24内で渦を発生させるとともに、溶湯を非鉄金属用溶解炉20内で循環させている。この渦巻き部24内の渦によって、投入された非鉄金属は速やかに溶湯中に分散するので、非鉄金属を溶解し易くするために、機械的に非鉄金属を溶湯内に押し込まなくてよい。   Further, by supplying the molten metal to the funnel-shaped spiral part 24 with the pump 23, when the molten metal flows from the top to the bottom of the spiral part 24, a vortex is generated in the spiral part 24, and the molten metal is melted in the non-ferrous metal melting furnace. It is circulated within 20. Since the introduced nonferrous metal is quickly dispersed in the molten metal by the vortex in the spiral portion 24, it is not necessary to mechanically push the nonferrous metal into the molten metal in order to easily dissolve the nonferrous metal.

しかしながら、従来の非鉄金属用溶解炉10,20はいずれも、溶湯を非鉄金属用溶解炉10,20内で循環させるために、大型の循環装置13,23が必要であり、この循環装置13,23が場所を取ってしまうといった問題がある。
また、非鉄金属を溶湯に沈めるために、非鉄金属を機械的に溶湯に押し込む装置や、渦巻き部24が必要で、それらも循環装置13,23と同様に場所を取ってしまうとともに溶湯中に空気を巻き込んでしまう。
However, both of the conventional non-ferrous metal melting furnaces 10 and 20 require large circulation devices 13 and 23 for circulating the molten metal in the non-ferrous metal melting furnaces 10 and 20. There is a problem that 23 takes up space.
In addition, in order to sink nonferrous metal into the molten metal, a device that mechanically pushes the nonferrous metal into the molten metal and a spiral portion 24 are required, and they take up space as well as the circulation devices 13 and 23 and air is contained in the molten metal. Will be involved.

そこで、本発明の目的とするところは、溶湯を循環させるための装置が場所を取らず、しかも投入した非鉄金属を沈めるための装置も場所を取らない非鉄金属用溶解炉及び非鉄金属の溶解方法を提供することにある。   Accordingly, an object of the present invention is to provide a non-ferrous metal melting furnace and a non-ferrous metal melting method in which an apparatus for circulating molten metal does not take up space, and an apparatus for sinking charged non-ferrous metal also does not take up space. Is to provide.

上記の目的を達成するために、本発明の請求項1に記載の非鉄金属用溶解炉(30)は、溶湯を加熱する溶解室(31)を備え、溶湯を内部で循環させるとともに溶湯に投入された非鉄金属を溶解する非鉄金属用溶解炉(30)であって、前記溶解室(31)において溶湯に浸漬され、水平方向に所定間隔を開けて対向する少なくとも一対の、発熱して溶湯に熱を与える電極(33)と、前記溶解室(31)の上方又は下方のうち少なくとも一方に配置され、前記一対の電極(33)間を流れる電流に対して略垂直に交差する磁界を生じさせる磁石(34)と、を備え、前記溶湯に推力を与えるとともに、前記一対の電極(33)に接続され、前記一対の電極(33)間を流れる電流を、溶湯を微小振動させ非鉄金属に付着した空気を非鉄金属から遊離させ非鉄金属表面の熱伝達率を大きくするとともに非鉄金属を沈み易くすることが可能な脈流とする整流器(35)を備えることを特徴とする。 In order to achieve the above object, a melting furnace (30) for a nonferrous metal according to claim 1 of the present invention includes a melting chamber (31) for heating a molten metal, and circulates the molten metal inside and throws it into the molten metal. A non-ferrous metal melting furnace (30) for melting a non-ferrous metal, which is immersed in the molten metal in the melting chamber (31), and at least a pair facing each other at a predetermined interval in the horizontal direction to generate heat into the molten metal. An electrode (33) for applying heat and at least one of the upper part and the lower part of the melting chamber (31) are arranged to generate a magnetic field that intersects the current flowing between the pair of electrodes (33) substantially perpendicularly. includes a magnet (34), and Rutotomoni give a thrust to the molten metal, which is connected to a pair of electrodes (33), the current flowing between the pair of electrodes (33), the non-ferrous metal is minutely vibrating the molten metal Adhering air to non-ferrous gold Be provided with a larger heat transfer coefficient of the non-ferrous metal surfaces to liberate rectifier for pulsating capable of easily sink nonferrous metals (35) from which it said.

また、請求項2に記載の非鉄金属の溶解方法は、溶湯を加熱する溶解室(31)を備え、溶湯を内部で循環させるとともに溶湯に非鉄金属を投入する非鉄金属用溶解炉(30)における非鉄金属の溶解方法であって、前記溶解室(31)において溶湯に浸漬され、左右に所定間隔を開けて対向する少なくとも一対の電極(33)間に電流を流すことで前記一対の電極(33)を発熱させて溶湯を加熱させ、溶湯内の非鉄金属を加熱するとともに、前記溶解室(31)の上方又は下方のうち少なくとも一方に配置された磁石(34)で、前記一対の電極(33)間を流れる電流に対して略垂直に磁界を生じさせ、電流と磁界とが交差する箇所の溶湯にフレミングの左手の法則による電磁力を前後方向に作用させることで溶湯を循環させ、さらに前記一対の電極(33)間を流れる電流を脈流として、溶湯を微小振動させることによって非鉄金属に付着している気体を非鉄金属から遊離させ、非鉄金属表面の熱伝達率を大きくするとともに非鉄金属を沈み易くしたことを特徴とする。 In addition, the nonferrous metal melting method according to claim 2 includes a melting chamber (31) for heating the molten metal, and circulates the molten metal inside and injects the nonferrous metal into the molten metal (30). A method for melting a non-ferrous metal, wherein the pair of electrodes (33) is immersed in a molten metal in the melting chamber (31), and a current is passed between at least a pair of electrodes (33) facing each other with a predetermined interval left and right. ) Is heated to heat the non-ferrous metal in the molten metal, and the magnet (34) disposed above or below the melting chamber (31) is used for the pair of electrodes (33). ) produce a magnetic field substantially perpendicular to the current flowing between, by circulating the molten metal by the action in the longitudinal direction electromagnetic force according to Fleming's left-hand rule to melt locations where the current and the magnetic field intersect, further Using the current flowing between the pair of electrodes (33) as a pulsating flow, the gas adhering to the non-ferrous metal is liberated from the non-ferrous metal by microvibrating the molten metal, increasing the heat transfer coefficient of the non-ferrous metal surface and non-ferrous It is characterized by facilitating the sinking of metal .

ここで、上記括弧内の記号は、図面および後述する発明を実施するための形態に掲載された対応要素または対応事項を示す。   Here, the symbols in the parentheses indicate corresponding elements or corresponding matters described in the drawings and the embodiments for carrying out the invention described later.

本発明の請求項1に記載の非鉄金属用溶解炉によれば、溶解室において溶湯に浸漬され、水平方向に所定間隔を開けて対向する少なくとも一対の電極と、溶解室の上方又は下方のうち少なくとも一方に配置され、一対の電極間を流れる電流に対して略垂直に交差する磁界を生じさせる磁石と、を備えるので、電流と磁界とが交差する箇所にフレミングの左手の法則による電磁力が発生し、溶湯に推力が与えられる。
そして、一対の電極は、それらの間を流れる電流によって自ら発熱し、溶湯に熱を与える。
つまり、溶湯を循環させるための装置は、溶解室内にあり熱源を兼ねた電極、及び溶解室の上方又は下方に配置された磁石であるので、場所を取らない。よって、これとは別個の循環装置が必要であっても、電極と磁石により溶湯に推力が与えられているので、従来よりも小型の循環装置で十分であり、場所を取らない。
さらに、電極間を流れる電流が大きくかつ磁石の磁束密度が高ければ、発生する電磁力が大きくなり、電磁力のみで溶湯を循環させることができるので、電極及び磁石以外の循環装置は必要なく、スペースの節約となる。
According to the melting furnace for a nonferrous metal according to claim 1 of the present invention, at least a pair of electrodes immersed in the molten metal in the melting chamber and facing each other at a predetermined interval in the horizontal direction, and above or below the melting chamber And a magnet that generates a magnetic field that intersects the current flowing between the pair of electrodes substantially perpendicularly, so that electromagnetic force according to Fleming's left-hand rule is generated at a location where the current and the magnetic field intersect. Occurs and thrust is given to the molten metal.
And a pair of electrodes generate | occur | produce itself with the electric current which flows between them, and give heat to a molten metal.
In other words, the device for circulating the molten metal is an electrode that also exists in the melting chamber and also serves as a heat source, and a magnet that is disposed above or below the melting chamber, and therefore does not take up space. Therefore, even if a separate circulation device is required, the thrust is applied to the molten metal by the electrodes and the magnets, so that a smaller circulation device than the conventional one is sufficient and does not take up space.
Furthermore, if the current flowing between the electrodes is large and the magnetic flux density of the magnet is high, the generated electromagnetic force increases, and the molten metal can be circulated only by the electromagnetic force, so there is no need for a circulation device other than the electrodes and magnets, Saves space.

また、一対の電極に接続され、一対の電極間を流れる電流を脈流とする整流器を備えるので、電流を流すことで溶湯を微小振動させることができる。これにより、非鉄金属に付着した空気を非鉄金属から遊離させることができるので、非鉄金属の沈殿が促進される。また、非鉄金属同士が絡み合って沈み難い場合であっても、微小振動によってその絡み合いが解けるので、非鉄金属が沈み易くなる。したがって、非鉄金属を効率よく溶解することができるので、溶解速度が上がる。
また、非鉄金属が沈んだとしても、溶湯中の非鉄金属の表面に空気が残存する場合があるが、溶湯の微小振動によってその残存空気も非鉄金属から遊離させることができるので、非鉄金属表面には熱伝導率の小さい空気がほとんど残らず、その結果、非鉄金属表面の熱伝達率を大きくすることができる。
さらに、微小振動によって溶湯内に溶け込んだ空気も溶湯から除去できるので、溶湯の熱伝導率も大きくすることができる。
ここで、非鉄金属を溶湯に沈めるために従来用いていた装置(例えば渦巻き部)よりも整流器は小型あり、しかも電極は熱源と循環装置を兼ねているので、溶湯に投入した非鉄金属を沈めるための装置である整流器及び電極は場所を取らない。
In addition, since the rectifier is connected to the pair of electrodes and pulsating the current flowing between the pair of electrodes, the molten metal can be microvibrated by flowing the current. Thereby, since the air adhering to the nonferrous metal can be liberated from the nonferrous metal, precipitation of the nonferrous metal is promoted. Further, even when the nonferrous metals are entangled with each other and difficult to sink, the entanglement can be solved by minute vibrations, so that the nonferrous metal can easily sink. Therefore, the nonferrous metal can be efficiently dissolved, so that the dissolution rate is increased.
Even if the non-ferrous metal sinks, air may remain on the surface of the non-ferrous metal in the molten metal, but the residual air can be released from the non-ferrous metal by the minute vibration of the molten metal. Almost no air with low thermal conductivity remains, and as a result, the heat transfer coefficient of the non-ferrous metal surface can be increased.
Furthermore, since the air melted into the molten metal by minute vibrations can be removed from the molten metal, the thermal conductivity of the molten metal can be increased.
Here, since the rectifier is smaller than the device conventionally used for sinking nonferrous metal into the molten metal (for example, a spiral part), and the electrode serves as a heat source and a circulation device, the nonferrous metal charged into the molten metal is submerged. The rectifiers and electrodes that are the devices of this do not take up space.

また、請求項2に記載の非鉄金属の溶解方法によれば、溶解室において溶湯に浸漬され、左右に所定間隔を開けて対向する少なくとも一対の電極間に電流を流すことで一対の電極を発熱させて溶湯を加熱させ、溶湯内の非鉄金属を加熱するとともに、溶解室の上方又は下方のうち少なくとも一方に配置された磁石で、一対の電極間を流れる電流に対して略垂直に磁界を生じさせ、電流と磁界とが交差する箇所の溶湯にフレミングの左手の法則による電磁力が前後方向に作用させることで循環させるので、場所を取らずに非鉄金属を循環させることができる。つまり、電極によって溶湯を加熱し、さらにその電極と磁石によって溶湯を循環させているので、スペースの節約になる。 Further, according to the method for melting a non-ferrous metal according to claim 2 , the pair of electrodes is heated by flowing current between at least a pair of electrodes which are immersed in the molten metal in the melting chamber and spaced apart from each other at a predetermined interval. The molten metal is heated to heat the non-ferrous metal in the molten metal, and a magnetic field is generated substantially perpendicularly to the current flowing between the pair of electrodes by a magnet disposed above or below the melting chamber. Since the electromagnetic force according to Fleming's left-hand rule acts in the front-rear direction on the melt where the current and the magnetic field intersect, the nonferrous metal can be circulated without taking up space. That is, the molten metal is heated by the electrode, and further, the molten metal is circulated by the electrode and the magnet, so that space is saved.

また、一対の電極間を流れる電流を脈流として、溶湯を微小振動させることによって非鉄金属に付着している気体を非鉄金属から遊離させ、非鉄金属表面の熱伝達率を大きくするとともに非鉄金属を沈み易くしたので、場所を取らずに非鉄金属を溶湯に沈めることができる。すなわち、溶湯に投入した非鉄金属を沈めるための装置である電極は熱源と循環装置を兼ねているので、非鉄金属を溶湯に沈めるために場所を取るものではない。 In addition, the current flowing between the pair of electrodes is used as a pulsating flow, and the gas adhering to the non-ferrous metal is liberated from the non-ferrous metal by microvibrating the molten metal, increasing the heat transfer coefficient on the surface of the non-ferrous metal and Because it is easy to sink, non-ferrous metals can be submerged in the molten metal without taking up space. That is, the electrode, which is a device for sinking the nonferrous metal charged into the molten metal, serves as both a heat source and a circulation device, and therefore does not take up space for sinking the nonferrous metal into the molten metal.

なお、ここでいう非鉄金属とは固体の非鉄金属を、溶湯とは非鉄金属が溶解したものをそれぞれ意味する。
ここで、上述した特許文献1には循環装置が記載されているが、本発明の非鉄金属用溶解炉のように、その循環装置が一対の電極と磁石である点は全く記載されていないし、フレミングの左手の法則による電磁力を作用させる非鉄金属の溶解方法についても記載されていない。
Here, the non-ferrous metal means a solid non-ferrous metal, and the molten metal means a non-ferrous metal dissolved.
Here, although the circulation device is described in Patent Document 1 described above, it is not described at all that the circulation device is a pair of electrodes and a magnet, like the melting furnace for non-ferrous metals of the present invention, It does not describe a method for dissolving non-ferrous metals in which electromagnetic force is applied according to Fleming's left-hand rule.

本発明の実施形態に係る非鉄金属用溶解炉を示す平面図である。It is a top view which shows the melting furnace for nonferrous metals which concerns on embodiment of this invention. 本発明の実施形態に係る非鉄金属用溶解炉を示す、図1のB−B線断面図である。It is the BB sectional drawing of FIG. 1 which shows the melting furnace for nonferrous metals which concerns on embodiment of this invention. 本発明の実施形態に係る非鉄金属用溶解炉を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the melting furnace for nonferrous metals which concerns on embodiment of this invention. 本発明の他の実施形態に係る非鉄金属用溶解炉を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the melting furnace for nonferrous metals which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る非鉄金属用溶解炉を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the melting furnace for nonferrous metals which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る非鉄金属用溶解炉を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the melting furnace for nonferrous metals which concerns on other embodiment of this invention. 従来例に係る非鉄金属用溶解炉を示す平面図である。It is a top view which shows the melting furnace for nonferrous metals which concerns on a prior art example. 図7に示す非鉄金属用溶解炉の正面図である。It is a front view of the melting furnace for nonferrous metals shown in FIG. 他の従来例に係る非鉄金属用溶解炉を示す平面図である。It is a top view which shows the melting furnace for nonferrous metals which concerns on another prior art example. 他の従来例に係る非鉄金属用溶解炉を示す、図9のA−A線断面図である。It is the sectional view on the AA line of FIG. 9 which shows the nonferrous metal melting furnace which concerns on another prior art example.

図1乃至図3を参照して、本発明の実施形態に係る非鉄金属用溶解炉30及び非鉄金属の溶解方法を説明する。
本実施形態に係る非鉄金属用溶解炉30は、アルミニウム合金等の非鉄金属を、ダイカスト鋳造等の鋳造製品を製造するために溶解するものである。
この非鉄金属用溶解炉30は、溶湯を溜める室として溶解室31と、保持室32とを備え、溶解室31に主に電極33と、磁石34と、整流器35と、を有する。
With reference to FIG. 1 thru | or FIG. 3, the melting furnace 30 for nonferrous metals and the melting method of a nonferrous metal which concern on embodiment of this invention are demonstrated.
The non-ferrous metal melting furnace 30 according to this embodiment melts a non-ferrous metal such as an aluminum alloy in order to produce a cast product such as die casting.
The non-ferrous metal melting furnace 30 includes a melting chamber 31 and a holding chamber 32 as a chamber for storing molten metal, and the melting chamber 31 mainly includes an electrode 33, a magnet 34, and a rectifier 35.

溶解室31は、溶湯を加熱する室であって、溶湯に投入された非鉄金属(インゴットや切粉)が溶湯の熱によって溶解される。
溶解室31の略中央部には、炉床30aから溶湯の表面より上方に露出する柱体31aを立設しており、溶解室31に一つの周回する流路31bとしている。
The melting chamber 31 is a chamber for heating the molten metal, and non-ferrous metal (ingot or chips) charged into the molten metal is melted by the heat of the molten metal.
A column body 31 a that is exposed above the surface of the molten metal from the hearth 30 a is erected at a substantially central portion of the melting chamber 31, and serves as a flow path 31 b that goes around the melting chamber 31.

保持室32は、溶解室31と隣接し、堰38によって隔てられている。そして、溶解室31の容量を超えた溶湯が、フィルター39で濾過され堰38をオーバーフローして保持室32に供給される。   The holding chamber 32 is adjacent to the melting chamber 31 and is separated by a weir 38. Then, the molten metal exceeding the capacity of the melting chamber 31 is filtered by the filter 39, overflows the weir 38 and is supplied to the holding chamber 32.

電極33は、少なくとも一対(ここでは二対)、水平方向にそれぞれ所定間隔を開けて対向するように溶解室31において溶湯に浸漬される。詳しくは、図1及び図2に示すように、一方の一対の電極33a,33bが流路31bの所定位置の幅方向両端に配置されている。そして、柱体31aに対して一方の電極33a,33bと反対の位置に、他方の一対の電極33c,33dが流路31bの幅方向両端に配置されている。ここで、いずれも内周側(柱体31a側)の電極33b,33cを正極とし、外周側の電極33a,33dを負極とした。
なお、電極33は銅等の金属よりも比抵抗の大きい炭素又は炭素化合物からなる。
The electrodes 33 are immersed in the molten metal in the melting chamber 31 so as to be opposed to each other at least a pair (here, two pairs) in the horizontal direction at predetermined intervals. Specifically, as shown in FIGS. 1 and 2, one pair of electrodes 33a and 33b are disposed at both ends in the width direction of a predetermined position of the flow path 31b. The other pair of electrodes 33c and 33d are arranged at both ends in the width direction of the flow path 31b at positions opposite to the one electrodes 33a and 33b with respect to the column body 31a. Here, in each case, the electrodes 33b and 33c on the inner peripheral side (column body 31a side) were positive electrodes, and the electrodes 33a and 33d on the outer peripheral side were negative electrodes.
The electrode 33 is made of carbon or a carbon compound having a higher specific resistance than a metal such as copper.

また、電極33の下端を露出させた状態で、電極33の下部から溶湯の表面に露出する部位までの表面を、溶湯からの侵食を防止する保護材36で覆っている。この保護材36は窒化珪素等からなり、窒化珪素は電極33の材質である炭素又は炭素化合物よりも比抵抗及び熱伝導率が大きい。
さらに、保護材36で覆われていない電極33の下端を、保護材36で覆われた部分よりも細く形成した。
そして、電極33間を流れる電流によって電極33が発熱し、溶湯に熱を与える熱源となる。
また、溶解室31の溶湯温度を熱電対(図示しない)と温度調節計(図示しない)でモニタし、その溶湯温度に応じて電極33間に流れる電流量(すなわち発熱量)を制御し、溶湯温度を所望の温度としている。
また、溶湯にはその他に、接地電極40も浸漬しており、アースされている。
Further, with the lower end of the electrode 33 exposed, the surface from the lower portion of the electrode 33 to the portion exposed on the surface of the molten metal is covered with a protective material 36 that prevents erosion from the molten metal. The protective material 36 is made of silicon nitride or the like, and silicon nitride has higher specific resistance and thermal conductivity than carbon or a carbon compound that is the material of the electrode 33.
Further, the lower end of the electrode 33 not covered with the protective material 36 was formed to be narrower than the portion covered with the protective material 36.
Then, the electrode 33 generates heat by the current flowing between the electrodes 33, and becomes a heat source for applying heat to the molten metal.
The molten metal temperature in the melting chamber 31 is monitored with a thermocouple (not shown) and a temperature controller (not shown), and the amount of current flowing between the electrodes 33 (that is, the amount of generated heat) is controlled according to the molten metal temperature. The temperature is set to a desired temperature.
In addition, a ground electrode 40 is also immersed in the molten metal and is grounded.

磁石34は、電極33間を流れる電流に対して略垂直に交差する磁界を生じさせるように、電極33間の上方の蓋30bに取付けられて配置される。ここでは電極33が二対あるので、それぞれの電極33間に磁界を作用させるように磁石34が二つ配置されている。
また、いずれの磁石34とも上方をN極、下方をS極としている。したがって、各電極33間における磁界の向きは下から上となる。
この磁石34は永久磁石又は電磁石のいずれであってもよい。
The magnet 34 is mounted and disposed on the lid 30 b above the electrodes 33 so as to generate a magnetic field that intersects substantially perpendicularly to the current flowing between the electrodes 33. Here, since there are two pairs of electrodes 33, two magnets 34 are arranged so that a magnetic field acts between the electrodes 33.
Further, any magnet 34 has an N pole on the upper side and an S pole on the lower side. Therefore, the direction of the magnetic field between the electrodes 33 is from bottom to top.
The magnet 34 may be a permanent magnet or an electromagnet.

整流器35は、スイッチング制御ユニット41を介してそれぞれの電極33に接続され、それぞれ一対の電極33間を流れる電流を脈流とする。整流器35で脈流となった電流は、スイッチング制御ユニット41によって周波数を0.5〜100Hzに制御され、また波形、振幅等も制御される。このように制御された電流が各電極33間を流れる。
また、整流器35の電源側には、感電防止のために絶縁トランス42が取付けられている。
なお、このような整流器35は一般に普及しており、非鉄金属を溶湯に沈めるために従来用いていた渦巻き部24よりも小型である。
The rectifier 35 is connected to each electrode 33 via the switching control unit 41, and the current flowing between the pair of electrodes 33 is a pulsating current. The current that is pulsating in the rectifier 35 is controlled to a frequency of 0.5 to 100 Hz by the switching control unit 41, and the waveform, amplitude, and the like are also controlled. A current controlled in this way flows between the electrodes 33.
An insulating transformer 42 is attached to the power supply side of the rectifier 35 to prevent electric shock.
Such a rectifier 35 is generally widespread, and is smaller than the spiral portion 24 that has been conventionally used for sinking non-ferrous metal in molten metal.

このように構成された非鉄金属用溶解炉30において、電流を流すことで電極33が発熱し、溶湯を加熱する。
そして、電極33間を流れる電流に対して略垂直に磁界を生じさせ、電流と磁界とが交差する箇所の溶湯にフレミングの左手の法則による電磁力を前後方向に作用させることで溶湯が溶解室31内を循環する。
つまり、一方の一対の電極33a,33b側においては、図3に示すように、電流は紙面の右から左に流れ、磁界の向きは下から上であるので、フレミングの左手の法則によって電磁力が紙面手前から奥に働く。また、他方の一対の電極33c,33d側においては、電流が左から右、磁界は下から上であるので、電磁力が紙面奥から手前に働く。
したがって、溶解室31全体の溶湯の流れは、図1に示すように時計回りとなる。
In the non-ferrous metal melting furnace 30 configured as described above, the electrode 33 generates heat by flowing a current, and the molten metal is heated.
Then, a magnetic field is generated substantially perpendicularly to the current flowing between the electrodes 33, and an electromagnetic force according to Fleming's left-hand rule is applied in the front-rear direction to the melt where the current and the magnetic field intersect, so that the melt is melted in the melting chamber. It circulates in 31.
That is, on one side of the pair of electrodes 33a and 33b, as shown in FIG. 3, the current flows from right to left and the direction of the magnetic field is from bottom to top. Works from the front of the page. On the other pair of electrodes 33c and 33d side, the current is from left to right and the magnetic field is from bottom to top, so that electromagnetic force acts from the back to the front of the page.
Therefore, the molten metal flow in the entire melting chamber 31 is clockwise as shown in FIG.

また、脈流である電流が流れることで溶湯が微小振動し、非鉄金属に付着している気体が非鉄金属から遊離する。これによって、非鉄金属表面の熱伝達率が大きくなるとともに非鉄金属が溶湯中に沈む。   Moreover, when the current which is a pulsating current flows, the molten metal vibrates slightly, and the gas adhering to the nonferrous metal is released from the nonferrous metal. As a result, the heat transfer coefficient of the non-ferrous metal surface increases and the non-ferrous metal sinks into the molten metal.

以上のように構成された非鉄金属用溶解炉30によれば、電極33と磁石34によって溶湯を循環させることができるので、従来のような大型の循環装置13,23が不要である。電極33と磁石34は従来の循環装置13,23よりも小型であることに加え、電極33は熱源を兼ねており、しかも磁石34は非鉄金属用溶解炉30の蓋30bに取付けられているので、溶湯を循環させても電極33と磁石34は場所を取るものではない。   According to the non-ferrous metal melting furnace 30 configured as described above, since the molten metal can be circulated by the electrode 33 and the magnet 34, the conventional large-scale circulation devices 13 and 23 are unnecessary. Since the electrode 33 and the magnet 34 are smaller than the conventional circulation devices 13 and 23, the electrode 33 also serves as a heat source, and the magnet 34 is attached to the lid 30 b of the non-ferrous metal melting furnace 30. Even if the molten metal is circulated, the electrode 33 and the magnet 34 do not take up space.

また、溶湯を微小振動させているので、非鉄金属に付着した空気を非鉄金属から遊離させることができ、非鉄金属の沈殿が促進される。また、非鉄金属同士が絡み合って沈み難い場合であっても、微小振動によってその絡み合いが解けるので、非鉄金属が沈み易くなる。したがって、非鉄金属を効率よく溶解することができるので、溶解速度が上がる。
また、従来のように渦で巻き込む等して非鉄金属を溶湯内に沈めたとしても、溶湯中の非鉄金属の表面に空気が残存する場合があるが、溶湯の微小振動によってその残存空気も非鉄金属から遊離させることができるので、非鉄金属表面には熱伝導率の小さい空気がほとんど残らず、その結果、非鉄金属表面の熱伝達率を大きくすることができる。よって、溶解の効率が上がる。
さらに、微小振動によって溶湯内に溶け込んだ空気も溶湯から除去できるので、溶湯の熱伝導率も大きくすることができる。
ここで、非鉄金属を溶湯に沈めるために従来用いていた渦巻き部24等よりも整流器35は小型あり、しかも電極33は熱源と循環装置を兼ねているので、溶湯に投入した非鉄金属を沈めるための装置である整流器35及び電極33は場所を取らない。
Moreover, since the molten metal is vibrated minutely, the air adhering to the nonferrous metal can be released from the nonferrous metal, and precipitation of the nonferrous metal is promoted. Further, even when the nonferrous metals are entangled with each other and difficult to sink, the entanglement can be solved by minute vibrations, so that the nonferrous metal can easily sink. Therefore, the nonferrous metal can be efficiently dissolved, so that the dissolution rate is increased.
In addition, even if the nonferrous metal is submerged in the molten metal by vortexing or the like as before, air may remain on the surface of the nonferrous metal in the molten metal. Since it can be liberated from the metal, almost no air with low thermal conductivity remains on the non-ferrous metal surface, and as a result, the heat transfer coefficient of the non-ferrous metal surface can be increased. Therefore, the efficiency of dissolution increases.
Furthermore, since the air melted into the molten metal by minute vibrations can be removed from the molten metal, the thermal conductivity of the molten metal can be increased.
Here, since the rectifier 35 is smaller than the spiral part 24 or the like conventionally used for sinking nonferrous metal into the molten metal, and the electrode 33 serves as a heat source and a circulation device, the nonferrous metal charged into the molten metal is submerged. The rectifier 35 and the electrode 33, which are the devices of FIG.

また、従来の浸漬管等に電極33を入れることなく、電極33を直接溶湯に浸漬しているので、熱伝導率の小さい空気や他の固体等を介さず溶湯を加熱することができ、熱効率がよい。なお、電極33は保護材36で覆われているが、保護材36の熱伝導率は電極33の熱伝導率より大きいので、保護材36による熱損失は従来の浸漬管による熱損失よりも小さい。
また、電極33の下端を露出させているので、主に電極33の下端間に電流が流れ、電極33間の電流密度が上がる。よって、単位面積あたりの電磁力が大きくなるので、溶湯循環の効率がよい。
In addition, since the electrode 33 is directly immersed in the molten metal without putting the electrode 33 in a conventional dip tube or the like, the molten metal can be heated without passing through air or other solid having a low thermal conductivity, and thermal efficiency. Is good. In addition, although the electrode 33 is covered with the protective material 36, since the heat conductivity of the protective material 36 is larger than the heat conductivity of the electrode 33, the heat loss by the protective material 36 is smaller than the heat loss by the conventional dip tube. .
Moreover, since the lower end of the electrode 33 is exposed, a current flows mainly between the lower ends of the electrodes 33, and the current density between the electrodes 33 is increased. Therefore, since the electromagnetic force per unit area becomes large, the efficiency of molten metal circulation is good.

また、電極33の下部から溶湯の表面に露出する部位までの表面を保護材36で覆うので、電極33の大部分を溶湯による侵食から保護できる。
また、電極33の下端を細く形成したので、電極33の下端での電流密度が上がり、この部分における発熱量が大きくなる。つまり、直接溶湯に触れている部分の発熱量が大きくなるので、より熱効率がよい。
Moreover, since the surface from the lower part of the electrode 33 to the part exposed on the surface of the molten metal is covered with the protective material 36, most of the electrode 33 can be protected from erosion by the molten metal.
Further, since the lower end of the electrode 33 is formed thin, the current density at the lower end of the electrode 33 is increased, and the amount of heat generated in this portion is increased. That is, since the amount of heat generated in the portion directly touching the molten metal is increased, the thermal efficiency is better.

さらに、溶解室31の略中央部に炉床30aから溶湯の表面より上方に露出する柱体31aを立設して溶解室31に一つの周回する流路31bとするとともに、流路31bの幅方向両端に一対の電極33を配置したので、流路31bに沿った大きな流れを作ることができる。よって、溶解室31内で溶湯の淀む部分が発生し難いので、溶湯の品質が均一になる。   Further, a column body 31a that is exposed above the surface of the molten metal from the hearth 30a is provided at a substantially central portion of the melting chamber 31 to form a flow path 31b that goes around the melting chamber 31, and the width of the flow path 31b. Since the pair of electrodes 33 are arranged at both ends in the direction, a large flow along the flow path 31b can be created. Therefore, since the portion where the molten metal stagnates in the melting chamber 31 is difficult to occur, the quality of the molten metal becomes uniform.

また、堰38をオーバーフローさせて溶湯を保持室32に供給しているので、溶解室31の溶湯の表面の高さをほぼ一定に保つことができる。これにより、電極33の発熱している部分が常に溶湯に浸漬されることになるので、電極33の熱を最大限溶湯に与えることができるとともに、保持室32に溜める溶湯の量を必要最小限にすることができる。   Moreover, since the molten metal is supplied to the holding chamber 32 by overflowing the weir 38, the height of the molten metal surface in the melting chamber 31 can be kept substantially constant. As a result, the heat generating portion of the electrode 33 is always immersed in the molten metal, so that the heat of the electrode 33 can be given to the molten metal as much as possible, and the amount of the molten metal stored in the holding chamber 32 is minimized. Can be.

なお、磁石34を非鉄金属用溶解炉30の蓋30bに取付けたが、これに限られるものではなく、図4に示すように、溶解室31の下方に配置してもよい。このとき、ステンレス板43を炉床30aと磁石34との間に挟む。
また、溶解室31の上方及び下方のいずれにも磁石34を配置してもよい。このとき、電極33間の磁界の向きが一方向になるように上下の磁石34を配置する必要がある。
Although the magnet 34 is attached to the lid 30b of the nonferrous metal melting furnace 30, the present invention is not limited to this, and it may be disposed below the melting chamber 31 as shown in FIG. At this time, the stainless steel plate 43 is sandwiched between the hearth 30 a and the magnet 34.
Further, the magnet 34 may be disposed above and below the melting chamber 31. At this time, it is necessary to arrange the upper and lower magnets 34 so that the direction of the magnetic field between the electrodes 33 is one direction.

また、整流器35によって電流を脈流としたが、電流を脈流とする手段はこれに限られるものではない。さらに、電流を脈流としなくてもよく、この場合であっても溶湯を溶解室31内で循環させることは可能である。
また、保護材36で電極33の表面を覆ったが、電極33が対侵食性に優れるものであれば、保護材36は必要ない。
Further, although the current is pulsated by the rectifier 35, the means for pulsating the current is not limited to this. Furthermore, the current need not be a pulsating flow, and even in this case, the molten metal can be circulated in the melting chamber 31.
Moreover, although the surface of the electrode 33 was covered with the protective material 36, the protective material 36 is not required if the electrode 33 is excellent in anti-erosion property.

さらに、電極33の下端を細く形成したが、これに限られるものではなく、図5に示すように、電極33の下端も保護材36で覆われた部分と同じ太さであってもよい。   Furthermore, although the lower end of the electrode 33 is formed thinly, the present invention is not limited to this, and the lower end of the electrode 33 may have the same thickness as the portion covered with the protective material 36 as shown in FIG.

また、磁石34を溶解室31の蓋に固定したが、図6に示すように、炉床30a側に、例えば上裁された磁石34の上下位置をシリンダ44aで調節可能にする位置調節機構44を備えてもよい。
ここで、磁石34を降下させて電極33間に流れる電流から磁石34を遠ざけると、電流に作用する部分の磁束密度が低くなるので、推力となる電磁力が小さくなり、溶湯の循環速度が下がる。一方、磁石34を上昇させて電極33間に流れる電流に磁石34を近づけると、電流に作用する部分の磁束密度が高くなるので、推力となる電磁力が大きくなり、溶湯の循環速度が上がる。このように位置調節機構44を備えていれば、溶湯温度制御と独立して溶湯の循環速度を制御可能である。
また、溶解室31の上方に磁石34を配置したときであっても、位置調節機構44を設けてもよい。
Further, although the magnet 34 is fixed to the lid of the melting chamber 31, as shown in FIG. 6, on the furnace floor 30a side, for example, a position adjusting mechanism 44 that makes it possible to adjust the up and down position of the magnet 34 that has been turned up by the cylinder 44a. May be provided.
Here, if the magnet 34 is lowered to move the magnet 34 away from the current flowing between the electrodes 33, the magnetic flux density of the portion acting on the current is reduced, so that the electromagnetic force serving as a thrust is reduced and the circulating speed of the molten metal is reduced. . On the other hand, when the magnet 34 is raised to bring the magnet 34 close to the current flowing between the electrodes 33, the magnetic flux density of the portion acting on the current increases, so that the electromagnetic force that becomes a thrust increases and the circulation speed of the molten metal increases. If the position adjusting mechanism 44 is provided as described above, the molten metal circulation speed can be controlled independently of the molten metal temperature control.
Further, even when the magnet 34 is disposed above the melting chamber 31, the position adjusting mechanism 44 may be provided.

また、循環装置として電極33と磁石34のみを用いたが、発生する電磁力が溶湯を循環させるための推力として不足していれば、ポンプ等の従来用いていた別個の循環装置を補助的に用いてもよい。この場合、小型のポンプ等で十分であるので、場所を取るものではない。
また、溶解室31に柱体31aを立設したが、これに限られるものではなく、溶解室31内で溶湯が循環すればよい。
Further, only the electrode 33 and the magnet 34 are used as the circulation device. However, if the generated electromagnetic force is insufficient as a thrust for circulating the molten metal, a separate circulation device conventionally used such as a pump is supplementarily used. It may be used. In this case, a small pump or the like is sufficient and does not take up space.
Further, the column body 31 a is erected in the melting chamber 31, but the invention is not limited to this, and the molten metal may be circulated in the melting chamber 31.

また、非鉄金属用溶解炉30は溶解室31と保持室32とを備えるとしたが、溶湯を加熱する溶解室31があれば、他の用途の室がいくつあってもよい。
また、電流の向きや磁石34の向きはこれに限られるものではなく、溶湯が円滑に循環すればよい。
Further, the nonferrous metal melting furnace 30 is provided with the melting chamber 31 and the holding chamber 32. However, as long as there is the melting chamber 31 for heating the molten metal, there may be any number of chambers for other purposes.
Further, the direction of the current and the direction of the magnet 34 are not limited to this, and the molten metal may be circulated smoothly.

10 非鉄金属用溶解炉
11 溶解室
12 バーナ
13 循環装置
20 非鉄金属用溶解炉
21 加熱室
22 電気ヒーター
23 ポンプ(循環装置)
24 渦巻き部
30 非鉄金属用溶解炉
30a 炉床
30b 蓋
31 溶解室
31a 柱体
31b 流路
32 保持室
33 電極
33a 電極
33b 電極
33c 電極
33d 電極
34 磁石
35 整流器
36 保護材
37 位置調節機構
38 堰
39 フィルター
40 接地電極
41 スイッチング制御ユニット
42 絶縁トランス
43 ステンレス板
44 位置調節機構
44a シリンダ
DESCRIPTION OF SYMBOLS 10 Nonferrous metal melting furnace 11 Melting chamber 12 Burner 13 Circulation apparatus 20 Nonferrous metal melting furnace 21 Heating chamber 22 Electric heater 23 Pump (circulation apparatus)
24 vortex part 30 non-ferrous metal melting furnace 30a hearth 30b lid 31 melting chamber 31a column body 31b flow path 32 holding chamber 33 electrode 33a electrode 33b electrode 33c electrode 33d electrode 34 magnet 35 rectifier 36 protective material 37 position adjusting mechanism 38 weir 39 Filter 40 Ground electrode 41 Switching control unit 42 Insulation transformer 43 Stainless steel plate 44 Position adjustment mechanism 44a Cylinder

Claims (2)

溶湯を加熱する溶解室を備え、溶湯を内部で循環させるとともに溶湯に投入された非鉄金属を溶解する非鉄金属用溶解炉であって、
前記溶解室において溶湯に浸漬され、水平方向に所定間隔を開けて対向する少なくとも一対の、発熱して溶湯に熱を与える電極と、
前記溶解室の上方又は下方のうち少なくとも一方に配置され、前記一対の電極間を流れる電流に対して略垂直に交差する磁界を生じさせる磁石と、を備え、
前記溶湯に推力を与えるとともに、
さらに前記一対の電極に接続され、前記一対の電極間を流れる電流を、溶湯を微小振動させ非鉄金属に付着した空気を非鉄金属から遊離させ非鉄金属表面の熱伝達率を大きくするとともに非鉄金属を沈み易くすることが可能な脈流とする整流器を備えることを特徴とする非鉄金属用溶解炉。
A melting furnace for heating non-ferrous metals, comprising a melting chamber for heating molten metal, circulating the molten metal inside and melting non-ferrous metals charged into the molten metal,
At least a pair of electrodes that are immersed in the molten metal in the melting chamber and face each other at a predetermined interval in the horizontal direction, and generate heat to heat the molten metal ;
A magnet that is disposed on at least one of the upper and lower sides of the melting chamber and generates a magnetic field that intersects substantially perpendicularly to the current flowing between the pair of electrodes,
Rutotomoni give a thrust to the molten metal,
Further, the current flowing between the pair of electrodes and flowing between the pair of electrodes causes the molten metal to vibrate slightly to release the air adhering to the non-ferrous metal from the non-ferrous metal and increase the heat transfer coefficient of the non-ferrous metal surface. A melting furnace for non-ferrous metals, comprising a rectifier having a pulsating flow that can easily sink .
溶湯を加熱する溶解室を備え、溶湯を内部で循環させるとともに溶湯に非鉄金属を投入する非鉄金属用溶解炉における非鉄金属の溶解方法であって、
前記溶解室において溶湯に浸漬され、左右に所定間隔を開けて対向する少なくとも一対の電極間に電流を流すことで前記一対の電極を発熱させて溶湯を加熱させ、溶湯内の非鉄金属を加熱するとともに、
前記溶解室の上方又は下方のうち少なくとも一方に配置された磁石で、前記一対の電極間を流れる電流に対して略垂直に磁界を生じさせ、電流と磁界とが交差する箇所の溶湯にフレミングの左手の法則による電磁力を前後方向に作用させることで溶湯を循環させ
さらに前記一対の電極間を流れる電流を脈流として、溶湯を微小振動させることによって非鉄金属に付着している気体を非鉄金属から遊離させ、非鉄金属表面の熱伝達率を大きくするとともに非鉄金属を沈み易くしたことを特徴とする非鉄金属の溶解方法。
A melting method for non-ferrous metals in a melting furnace for non-ferrous metals, comprising a melting chamber for heating molten metal, circulating the molten metal inside and adding non-ferrous metals to the molten metal,
In the melting chamber, a current is passed between at least a pair of electrodes facing each other at a predetermined interval on the left and right sides to generate heat by heating the pair of electrodes to heat the non-ferrous metal in the melt. With
A magnet arranged at least one of the upper and lower sides of the melting chamber generates a magnetic field substantially perpendicular to the current flowing between the pair of electrodes, and the flaming is applied to the molten metal at the location where the current and the magnetic field intersect. The molten metal is circulated by applying the electromagnetic force according to the left hand rule in the front-rear direction .
Further, the current flowing between the pair of electrodes is pulsated, and the gas adhering to the non-ferrous metal is liberated from the non-ferrous metal by microvibrating the molten metal, increasing the heat transfer coefficient of the non-ferrous metal surface and reducing the non-ferrous metal. A method for dissolving a non-ferrous metal, characterized by being easily sunk .
JP2010106540A 2010-05-06 2010-05-06 Non-ferrous metal melting furnace and non-ferrous metal melting method Active JP5432812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106540A JP5432812B2 (en) 2010-05-06 2010-05-06 Non-ferrous metal melting furnace and non-ferrous metal melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106540A JP5432812B2 (en) 2010-05-06 2010-05-06 Non-ferrous metal melting furnace and non-ferrous metal melting method

Publications (2)

Publication Number Publication Date
JP2011237056A JP2011237056A (en) 2011-11-24
JP5432812B2 true JP5432812B2 (en) 2014-03-05

Family

ID=45325239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106540A Active JP5432812B2 (en) 2010-05-06 2010-05-06 Non-ferrous metal melting furnace and non-ferrous metal melting method

Country Status (1)

Country Link
JP (1) JP5432812B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819270B2 (en) 2012-08-08 2015-11-18 高橋 謙三 Permanent magnet type cylindrical molten metal stirrer and melting furnace with permanent magnet pump
CA3057130C (en) * 2017-04-13 2021-12-28 Kenzo Takahashi Molten metal stirring device and continuous casting device system provided with same
JP6445201B2 (en) * 2017-04-13 2018-12-26 高橋 謙三 Molten metal stirrer and continuous casting system provided with the same
JP7244445B2 (en) * 2020-02-04 2023-03-22 三建産業株式会社 Melting furnace for non-ferrous metals and holding furnace for non-ferrous metals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194278A (en) * 1984-03-15 1985-10-02 株式会社宮本工業所 Aluminum melting furnace
JPH03120322A (en) * 1989-10-04 1991-05-22 Nippon Air Brake Co Ltd Device for melting aluminum swarf
JP2529427B2 (en) * 1989-12-14 1996-08-28 動力炉・核燃料開発事業団 Glass melting furnace
JPH05293458A (en) * 1992-04-17 1993-11-09 Tokyo Electric Power Co Inc:The Melting furnace for industrial waste and method for promoting melting of industrial waste
JPH07190906A (en) * 1993-12-27 1995-07-28 Hitachi Ltd Stirrer/mixer
JP2006349293A (en) * 2005-06-17 2006-12-28 Kenzo Takahashi Melting furnace with stirrer, and stirrer for melting furnace

Also Published As

Publication number Publication date
JP2011237056A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5564150B2 (en) Cold crucible induction melting furnace integrated with induction coil and melting furnace
JP5432812B2 (en) Non-ferrous metal melting furnace and non-ferrous metal melting method
JP2007524798A (en) Cold crucible induction furnace using eddy current damping
CN105324199A (en) Method and processing machine for creating a three-dimensional component by selective laser melting
JP5766271B2 (en) Apparatus and method for induction heating discharge of melt
JP6016818B2 (en) Open bottom conductive cooled crucible for ingot electromagnetic casting.
JP5918572B2 (en) Continuous casting apparatus and continuous casting method for titanium ingot and titanium alloy ingot
JP2007522425A (en) Cold crucible induction furnace
JP2007240102A (en) Ingot production method using cold crucible melting device
US9922870B2 (en) Method for applying an image of an electrically conductive material onto a recording medium and device for ejecting droplets of an electrically conductive fluid
JP2008188632A (en) Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus
JP2002146447A (en) Degassing apparatus for non-ferrous metal
JP2005205479A (en) Soldering machine
JP5267315B2 (en) Tundish for continuous casting and continuous casting method
JP2010017749A (en) Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus
TWI736936B (en) Method for producing cast bodies and apparatus for levitation melting electrically conductive material
JP2007083286A (en) Levitation melting and casting method, and water-cooled crucible to be used by the method
US9950362B2 (en) Clean green energy electric protectors for materials
JP5126973B2 (en) Glass melting furnace
CN106133208B (en) Apparatus for controlling heat flow in a melt and method of processing the same
JP2021522666A (en) Floating melting method using cyclic elements
Nemchinsky Electrode melting during arc welding with pulsed current
JP2008174423A (en) Directional solidification of metal
JP2007024396A (en) Induction heating melting furnace
JP7315218B2 (en) Molten metal driving device and molten metal driving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250