JP5428865B2 - High pressure hydrogen production system - Google Patents

High pressure hydrogen production system Download PDF

Info

Publication number
JP5428865B2
JP5428865B2 JP2010000391A JP2010000391A JP5428865B2 JP 5428865 B2 JP5428865 B2 JP 5428865B2 JP 2010000391 A JP2010000391 A JP 2010000391A JP 2010000391 A JP2010000391 A JP 2010000391A JP 5428865 B2 JP5428865 B2 JP 5428865B2
Authority
JP
Japan
Prior art keywords
pressure
storage tank
side storage
hydrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010000391A
Other languages
Japanese (ja)
Other versions
JP2011140674A (en
Inventor
敦史 加藤
哲也 吉田
勉 五百蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Daiki Ataka Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Daiki Ataka Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2010000391A priority Critical patent/JP5428865B2/en
Publication of JP2011140674A publication Critical patent/JP2011140674A/en
Application granted granted Critical
Publication of JP5428865B2 publication Critical patent/JP5428865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水電解によって高圧水素を製造するシステムに関する。   The present invention relates to a system for producing high-pressure hydrogen by water electrolysis.

例えば燃料電池に供給する燃料として用いられる0.5MPa以上の高圧水素を製造するものとして高圧水素製造システムが知られている。図1に示すように、一般的な高圧水素製造システム3は、水電解を行うセル10と、セル10で発生した水素ガスを貯蔵する水素側貯蔵タンク11と、セル10で発生した酸素ガスを貯蔵する酸素側貯蔵タンク12を備えている。セル10は、例えば固体高分子形の可逆セルや水電解セルであり、セル10の内部は、隔膜によって陽極側と陰極側に分離され、純水を電気分解させることにより、陽極側に酸素ガスを発生させ、陰極側に水素ガスを発生させる。なお、固体高分子形の水電解セルと燃料電池セルを一体化して、任意に運転モードを切替えての運用ができる可逆セルにおける水電解運転用のシステムフローと水電解専用機のシステムフローは基本的にはほぼ同一であるため、以降の説明は水電解専用機のシステムフローで行う。   For example, a high-pressure hydrogen production system is known as one that produces high-pressure hydrogen of 0.5 MPa or more used as fuel to be supplied to a fuel cell. As shown in FIG. 1, a general high-pressure hydrogen production system 3 includes a cell 10 that performs water electrolysis, a hydrogen-side storage tank 11 that stores hydrogen gas generated in the cell 10, and oxygen gas generated in the cell 10. An oxygen-side storage tank 12 is provided for storage. The cell 10 is, for example, a solid polymer type reversible cell or a water electrolysis cell. The inside of the cell 10 is separated into an anode side and a cathode side by a diaphragm, and oxygen gas is introduced into the anode side by electrolyzing pure water. To generate hydrogen gas on the cathode side. The system flow for water electrolysis operation and the system flow for water electrolysis dedicated machine in the reversible cell that can be operated by arbitrarily switching the operation mode by integrating the polymer electrolyte water electrolysis cell and the fuel cell Therefore, the following explanation will be made with the system flow of the water electrolysis dedicated machine.

水電解運転時や水電解専用機ではセル10から発生する酸素ガスや水素ガスの圧力を制御することで、コンプレッサー等の昇圧機器を使用しなくても、数MPa〜数10MPaの水素ガスと酸素ガスを発生することができる。しかし、セル10内で水素ガスと酸素ガスを隔離している隔膜は高分子の薄膜であり機械的強度が低い。そのため、両極間に過度の差圧が発生するとその隔膜等の破損によりシール損壊が発生する問題がある。そして、このような現象が起きると両極間のガスが混合するため、触媒上で燃焼反応が起きて最悪の場合にはセルが焼損し、運転継続が不可能になるという問題がある。これを防止するために、両極間の差圧を一定値以下(通常は数10MPa以下)に保つための制御が行われている。この極間差圧の制御は両極間の気密性喪失を防止する役目を果たしており、水電解の高圧運転を安全に行う上で非常に重要な制御である。だが、高圧になればなるほどその制御は困難になり、高度な管理と制御精度が必要となる。   By controlling the pressure of oxygen gas or hydrogen gas generated from the cell 10 during water electrolysis operation or in a water electrolysis dedicated machine, hydrogen gas and oxygen of several MPa to several tens of MPa can be used without using a booster such as a compressor. Gas can be generated. However, the diaphragm separating hydrogen gas and oxygen gas in the cell 10 is a polymer thin film and has low mechanical strength. For this reason, when an excessive differential pressure is generated between the two electrodes, there is a problem that a seal breakage occurs due to damage to the diaphragm and the like. When such a phenomenon occurs, the gas between the two electrodes is mixed, so that a combustion reaction occurs on the catalyst, and in the worst case, the cell is burnt out, and there is a problem that the operation cannot be continued. In order to prevent this, control is performed to keep the differential pressure between the two electrodes below a certain value (usually several tens of MPa or less). This control of the differential pressure between the electrodes plays a role in preventing the loss of airtightness between the two electrodes, and is very important for safe operation of the high pressure operation of water electrolysis. However, the higher the pressure, the more difficult the control becomes, and a high degree of management and control accuracy are required.

この問題を解決する方法として、隔膜の機械的強度を上げるかセル構造を工夫することで極間差圧耐性を高める方法と、セル構造以外の部分を工夫して現状の極間差圧耐性範囲内で管理する方法がある。前者の方法のみで差圧耐性を確保するのは困難であるため、通常は後者の方法が取られている。セル構造以外の部分を工夫する方法としては、一般的に発生ガスの両側または水素側(陰極側)のみの出口付近に系内の圧力が設定圧力になったら開となる調圧弁を設けることで系内の圧力を所定の圧力に保つ方法がとられている。   To solve this problem, increase the mechanical strength of the diaphragm or improve the cell structure by devising the cell structure, and devise parts other than the cell structure to improve the current range of pressure differential resistance. There is a way to manage within. Since it is difficult to ensure the differential pressure resistance only by the former method, the latter method is usually taken. As a method to devise parts other than the cell structure, in general, a pressure regulating valve that opens when the pressure in the system reaches the set pressure is provided on both sides of the generated gas or near the outlet of only the hydrogen side (cathode side). A method of keeping the pressure in the system at a predetermined pressure is used.

水電解運転では、各極の貯蔵タンクの気層容量が厳密に水素側貯蔵タンク:酸素側貯蔵タンクで2:1であれば理論上差圧は発生しないが、実際には運転に伴い各極の貯蔵タンクには水の出入りが発生するため水位は常に変化しており、結果的に貯蔵タンクの気層容量は常時変化している。水電解運転時は主にこの気層容積の変化や、その他諸々の原因により両極間に差圧が発生するため、通常は両極間に一定値以上の差圧が発生した場合には、高圧となった側の気層中のガスを微量系外に排気することで、両極間差圧を解消する方法が取られている。気層容量が小さい場合には、貯蔵タンクへの給水や貯蔵タンクからの排水、圧力調整用排気といった操作の重複に伴い差圧のみだれが激しくなるため、より正確で高精度な追従性と制御性が求められる。   In water electrolysis operation, if the gas layer capacity of each storage tank is strictly 2: 1 in the hydrogen storage tank: oxygen storage tank, theoretically no differential pressure will be generated. The water level constantly changes because of the occurrence of water in and out of the storage tank, and as a result, the air volume of the storage tank constantly changes. During water electrolysis operation, a differential pressure is generated between the two electrodes mainly due to the change in the volume of the air layer and various other factors. A method of eliminating the pressure difference between the two electrodes by exhausting the gas in the gas layer on the gas side to the outside of the trace amount system. When the air volume is small, since only the differential pressure becomes severe due to duplication of operations such as water supply to the storage tank, drainage from the storage tank, exhaust for pressure adjustment, etc., more accurate and highly accurate followability and control Sex is required.

これらの課題に対して従来は、特許文献1や特許文献2のように、水素ガス系統及び酸素ガス系統に調圧弁とリーク弁の2つの弁をそれぞれ又は片側に設け、調圧弁により水素及び酸素の圧力を設定し、リーク弁により水素圧力と酸素圧力を調整し直流電源によって水電解セルへの直流電流出力を自動制御して水素系統内圧と酸素系統内圧の均一化を図っている。一般的にはこの方法が採用されているが、タンク自体が過大になる。   Conventionally, with respect to these problems, as in Patent Document 1 and Patent Document 2, the hydrogen gas system and the oxygen gas system are each provided with two valves, a pressure regulating valve and a leak valve, on one or both sides, and the pressure regulating valve provides hydrogen and oxygen. The hydrogen pressure and oxygen pressure are adjusted by the leak valve, and the direct current output to the water electrolysis cell is automatically controlled by the direct current power source to equalize the hydrogen system internal pressure and the oxygen system internal pressure. In general, this method is adopted, but the tank itself becomes excessive.

また、特許文献3のように両側の純水貯蔵兼気液分離タンクの下流に別途ガスタンクを設け、そのタンクの容積比を水素1.9〜2.1:酸素1とすることで昇降圧時の極間差圧低減や、タンク水位変化に伴う気層容積変化に対するバッファの役目をさせて極間差圧を低減するシステムが提案されている。この方法については、従来方式の純水貯蔵兼気液分離タンクの気層容量を発生しうる水層容積変化よりも遙かに大きくし、その比率を2:1に近づけたことと同じである。そのためタンク容量は大きくなり、差圧制御を含む圧力制御自体も特許文献1や特許文献2と大きな違いは無い。   Further, as in Patent Document 3, a separate gas tank is provided downstream of the pure water storage and gas-liquid separation tanks on both sides, and the volume ratio of the tanks is set to hydrogen 1.9 to 2.1: oxygen 1. A system has been proposed in which the pressure difference between the electrodes is reduced by reducing the pressure difference between the electrodes and by acting as a buffer for the change in the air volume due to the change in the tank water level. This method is the same as making the volume of the water layer volume of the conventional pure water storage / gas / liquid separation tank larger than the change in water layer volume that can generate the ratio and approaching 2: 1. . Therefore, the tank capacity is increased, and the pressure control itself including the differential pressure control is not significantly different from Patent Document 1 and Patent Document 2.

さらには、特許文献4のように、両極の純水貯蔵兼気液分離器の液層間を配管で接続し、差圧が発生した場合には両極間の純水を移動させることで差圧を解消する方法がとられていた。また、酸素側タンクの気層容積を水素側気層容積の4%以下とすることで万が一両タンク間のガスが混合した場合でも、爆鳴気が発生することを防止している。この方法については、極間差圧の検知機構が複雑で微量の水を厳密に制御する必要があるばかりでなく、両極間が配管で接続されているためガス混合の可能性がある。気層容積の比率を管理することで全体平均として見れば爆発限界値に到達しないが、何らかの問題が発生する場合のガス移動は超急激に起こるため、局所で考えた場合は触媒上にて爆発限界値に到達する可能性が十分に考えられ、制御のロバスト性が低いと共にシステムとしても安全とは言いがたい。   Furthermore, as in Patent Document 4, the liquid layers of the pure water storage / gas / liquid separator of both electrodes are connected by piping, and when a differential pressure is generated, the differential pressure is reduced by moving the pure water between the two electrodes. There was a way to eliminate it. In addition, by setting the gas layer volume of the oxygen side tank to 4% or less of the hydrogen side gas layer volume, even if the gas between the two tanks is mixed, it is possible to prevent the generation of squealing gas. With this method, the detection mechanism of the differential pressure between the electrodes is complicated and it is necessary to strictly control a very small amount of water, and there is a possibility of gas mixing because the electrodes are connected by piping. By controlling the ratio of the air volume, the explosion limit value is not reached when viewed as an overall average, but gas movement occurs extremely suddenly if any problem occurs, so if considered locally, it will explode on the catalyst. The possibility of reaching the limit value is fully considered, and the control robustness is low and it is difficult to say that the system is safe.

特許第3400289号公報Japanese Patent No. 34002829 特開2007−31739号公報JP 2007-31739 A 特開2004−84042号公報JP 2004-84042 A 特開2003−342773号公報JP 2003-342773 A

本発明の目的は、水電解と燃料電池を一体化した可逆セルの水電解運転時や、水電解専用機による水素製造において、高圧水素発生運転時に問題となる両極間の差圧を容易に解消すると共にシステムのコンパクト化を実現することである。   The object of the present invention is to easily eliminate the differential pressure between the two electrodes, which is a problem during high-pressure hydrogen generation operation during water electrolysis operation of a reversible cell integrating water electrolysis and a fuel cell, or in hydrogen production using a water electrolysis dedicated machine. And to make the system more compact.

前記の目的を達成するため、本発明によれば、水電解を行うセルと、前記セルで発生した酸素ガスを貯蔵する酸素側貯蔵タンクと、前記セルで発生した水素ガスを貯蔵する水素側貯蔵タンクとを備えた高圧水素製造システムであって、前記酸素側貯蔵タンク内と前記水素側貯蔵タンク内の気層部分に、所定のガスが封入された密閉容器からなる変形自在な圧力吸収体が設けられていることを特徴とする、高圧水素製造システムが提供される。本発明では、水素側貯蔵タンク内と酸素側貯蔵タンク内に圧力吸収体を具備することで、両極間の差圧制御をすることなく差圧の発生を未然に防止または緩和する。 To achieve the above object, according to the present invention, a cell for performing water electrolysis, an oxygen side storage tank for storing oxygen gas generated in the cell, and a hydrogen side storage for storing hydrogen gas generated in the cell. A high-pressure hydrogen production system comprising a tank, wherein a deformable pressure absorber comprising a sealed container in which a predetermined gas is sealed in the oxygen-side storage tank and a gas layer portion in the hydrogen-side storage tank. A high-pressure hydrogen production system is provided. In the present invention, by providing pressure absorbers in the hydrogen side storage tank and the oxygen side storage tank, the generation of the differential pressure is prevented or alleviated without controlling the differential pressure between the two electrodes.

また本発明によれば、水電解を行うセルと、前記セルで発生した酸素ガスを貯蔵する酸素側貯蔵タンクと、前記セルで発生した水素ガスを貯蔵する水素側貯蔵タンクとを備えた高圧水素製造システムであって、前記酸素側貯蔵タンク内と前記水素側貯蔵タンク内に、所定のガスが封入された変形自在な圧力吸収体が設けられ、前記酸素側貯蔵タンク内に設けられた圧力吸収体と前記水素側貯蔵タンク内に設けられた圧力吸収体とを連通させる流路が設けられていることを特徴とする、高圧水素製造システム。が提供される。  According to the present invention, the high-pressure hydrogen comprising a cell for performing water electrolysis, an oxygen-side storage tank for storing oxygen gas generated in the cell, and a hydrogen-side storage tank for storing hydrogen gas generated in the cell. In the manufacturing system, a deformable pressure absorber filled with a predetermined gas is provided in the oxygen side storage tank and the hydrogen side storage tank, and the pressure absorption provided in the oxygen side storage tank. A high-pressure hydrogen production system characterized in that a flow path is provided for communicating a body and a pressure absorber provided in the hydrogen-side storage tank. Is provided.

また、この高圧水素製造システムにおいて、前記水素側貯蔵タンク内に設けられた圧力吸収体は、常圧無負荷状態において、前記水素側貯蔵タンク内の気層部分の90%以上の容積を占めることが望ましい。また、前記酸素側貯蔵タンク内に設けられた圧力吸収体は、常圧無負荷状態において、前記酸素側貯蔵タンク内の気層部分の90%以上の容積を占めることが望ましい。更に、前記水素側貯蔵タンク内と前記酸素側貯蔵タンク内との差圧が0のときに、前記酸素側貯蔵タンク内に設けられた圧力吸収体の容積に比べて前記水素側貯蔵タンク内に設けられた圧力吸収体の容積が1.6〜2倍であることが望ましい。   Further, in this high-pressure hydrogen production system, the pressure absorber provided in the hydrogen-side storage tank occupies a volume of 90% or more of the gas layer portion in the hydrogen-side storage tank in a normal pressure no-load state. Is desirable. Further, it is desirable that the pressure absorber provided in the oxygen side storage tank occupies a volume of 90% or more of the gas layer portion in the oxygen side storage tank in a normal pressure no-load state. Furthermore, when the differential pressure between the hydrogen side storage tank and the oxygen side storage tank is 0, the hydrogen side storage tank has a capacity larger than the volume of the pressure absorber provided in the oxygen side storage tank. It is desirable that the volume of the provided pressure absorber is 1.6 to 2 times.

また、前記水素側貯蔵タンク内に設けられた圧力吸収体と前記酸素側貯蔵タンク内に設けられた圧力吸収体は金属ベローズまたは高分子膜で形成されていても良い。この場合、前記水素側貯蔵タンク内に設けられた圧力吸収体と前記酸素側貯蔵タンク内に設けられた圧力吸収体に封入される所定のガスは例えば窒素ガスである。   The pressure absorber provided in the hydrogen side storage tank and the pressure absorber provided in the oxygen side storage tank may be formed of a metal bellows or a polymer film. In this case, the predetermined gas sealed in the pressure absorber provided in the hydrogen side storage tank and the pressure absorber provided in the oxygen side storage tank is, for example, nitrogen gas.

また、前記水素側貯蔵タンク内に設けられた圧力吸収体と前記酸素側貯蔵タンク内に設けられた圧力吸収体は高分子膜で形成され、前記水素側貯蔵タンク内に設けられた圧力吸収体と前記酸素側貯蔵タンク内に設けられた圧力吸収体に封入される所定のガスは、前記酸素側貯蔵タンク内の酸素ガスであっても良い。   The pressure absorber provided in the hydrogen side storage tank and the pressure absorber provided in the oxygen side storage tank are formed of a polymer film, and the pressure absorber provided in the hydrogen side storage tank. The predetermined gas sealed in the pressure absorber provided in the oxygen-side storage tank may be oxygen gas in the oxygen-side storage tank.

本発明によれば、水素側貯蔵タンク内と酸素側貯蔵タンク内に設けた圧力吸収体が変形することで、両極間の差圧制御をすることなく差圧の発生を未然に防止または緩和することができ、何らかの異常により差圧が発生したときでもその差圧値と差圧上昇速度を低減することが可能である。本発明の高圧水素製造システムは、昇圧−定常運転−降圧の各過程において差圧制御を行わなくても差圧は自動的に解消する。また、水素側貯蔵タンク内と酸素側貯蔵タンク内に形成される気層容積を従来よりも小さくできるため水素側貯蔵タンクと酸素側貯蔵タンクのコンパクト化が可能となる。   According to the present invention, the pressure absorbers provided in the hydrogen side storage tank and the oxygen side storage tank are deformed to prevent or alleviate the occurrence of the differential pressure without controlling the differential pressure between the two electrodes. Even when a differential pressure occurs due to some abnormality, the differential pressure value and the differential pressure increase rate can be reduced. The high-pressure hydrogen production system of the present invention automatically eliminates the differential pressure without performing the differential pressure control in each process of step-up, steady operation, and step-down. Further, since the gas volume formed in the hydrogen side storage tank and the oxygen side storage tank can be made smaller than before, the hydrogen side storage tank and the oxygen side storage tank can be made compact.

特に水素側貯蔵タンク内の圧力吸収体と酸素側貯蔵タンク内の圧力吸収体とを流路で連通させることにより、差圧が発生した場合でも流路で接続された圧力吸収体間で直ちにガスの移動が起こる。そのガス移動がそのまま両タンク間の間接的な気層容積変化となるため、「水素側貯蔵タンクの気層圧力=水素側貯蔵タンク内の圧力吸収体の圧力=酸素側貯蔵タンク内の圧力吸収体の圧力=酸素側貯蔵タンクの気層圧力」となるように速やかに圧力吸収体の容積が変化し、両極間の差圧を電気信号を介することなくその場で直接的に解消できる。そのため、両極間の差圧信号を受信しその受信した信号を制御機器に転送して圧力制御機器を動作させることで差圧を解消する従来の方法に比べて、一切の時間遅れや高精度な制御無しに確実な対処が可能である。さらに両極間を絶縁することにより、従来の方法のようなセル隔膜以外の部分での両極ガスの混合可能性は一切ない。加えて、差圧を調整するための排気は一切不要であるため電解したガスの無駄が無い。また水位変動に対しても、上述のように各圧力吸収体に分散させて変動を吸収するため、1つの容器(例えば従来方式の酸素側気層部)のみで対処する従来の方法よりも変化する圧力値自体も低減できる。その結果、気層容積や水容積の小容量化が可能となり、万が一隔膜が破損した場合でもシステム全体が貯蔵するエネルギーが少ないため、その被害を最小限に抑えることができる。   In particular, by connecting the pressure absorber in the hydrogen-side storage tank and the pressure absorber in the oxygen-side storage tank through the flow path, gas is immediately generated between the pressure absorbers connected in the flow path even when a differential pressure occurs. Movement occurs. Since the gas movement directly becomes an indirect gas layer volume change between the two tanks, “the gas layer pressure of the hydrogen side storage tank = the pressure of the pressure absorber in the hydrogen side storage tank = the pressure absorption in the oxygen side storage tank” The volume of the pressure absorber quickly changes so that the pressure of the body = the gas layer pressure of the oxygen-side storage tank ”, and the differential pressure between the two electrodes can be eliminated directly on the spot without using an electrical signal. Therefore, compared to the conventional method of eliminating the differential pressure by receiving the differential pressure signal between the two poles and transferring the received signal to the control device to operate the pressure control device, there is no time delay or high accuracy. Reliable handling is possible without control. Further, by insulating between the two electrodes, there is no possibility of mixing the bipolar gas at portions other than the cell diaphragm as in the conventional method. In addition, there is no waste of electrolyzed gas because no exhaust for adjusting the differential pressure is required. In addition, since the fluctuation is also dispersed in each pressure absorber as described above and the fluctuation is absorbed as described above, it changes compared to the conventional method in which only one container (for example, a conventional oxygen side air layer) is used. The pressure value itself can also be reduced. As a result, the air volume and the water volume can be reduced, and even if the diaphragm is broken, the energy stored in the entire system is small, so that the damage can be minimized.

従来の高圧水素製造システムの説明図である。It is explanatory drawing of the conventional high pressure hydrogen production system. 本発明の実施の形態にかかる高圧水素製造システムの説明図である。It is explanatory drawing of the high pressure hydrogen production system concerning embodiment of this invention. 本発明の別の実施の形態にかかる高圧水素製造システムの説明図である。It is explanatory drawing of the high pressure hydrogen production system concerning another embodiment of this invention. 本発明の実施例の高圧水素製造システムと従来例による差圧発生を比較したグラフである。(水素側貯蔵タンク)It is the graph which compared the high pressure hydrogen production system of the Example of this invention, and the differential pressure generation by a prior art example. (Hydrogen side storage tank) 本発明の実施例の高圧水素製造システムと従来例による差圧発生を比較したグラフである。(酸素側貯蔵タンク)It is the graph which compared the high pressure hydrogen production system of the Example of this invention, and the differential pressure generation by a prior art example. (Oxygen side storage tank)

以下、本発明の実施の形態の一例を図面を参照にして説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。図2に示すように、本発明の実施の形態にかかる高圧水素製造システム1は、水電解を行うセル10と、セル10で発生した水素ガスを貯蔵する水素側貯蔵タンク11と、セル10で発生した酸素ガスを貯蔵する酸素側貯蔵タンク12を備えている。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol. As shown in FIG. 2, the high-pressure hydrogen production system 1 according to the embodiment of the present invention includes a cell 10 that performs water electrolysis, a hydrogen-side storage tank 11 that stores hydrogen gas generated in the cell 10, and a cell 10. An oxygen-side storage tank 12 for storing the generated oxygen gas is provided.

セル10は、例えば固体高分子形の可逆セルや水電解セルである。セル10の内部は、図示しない隔膜によって陽極側と陰極側に分離され、セル10内に導入された純水Wを電気分解することにより、陰極側に水素ガスを発生させ、陽極側に酸素ガスを発生させる。セル10への電源供給は演算器13にて演算した後に直流電源装置14より行われる。セル10の陰極側に、配管15を介して水素側貯蔵タンク11が接続され、セル10の陽極側に、配管16を介して酸素側貯蔵タンク12が接続されている。   The cell 10 is, for example, a solid polymer type reversible cell or a water electrolysis cell. The inside of the cell 10 is separated into an anode side and a cathode side by a diaphragm (not shown), and the pure water W introduced into the cell 10 is electrolyzed to generate hydrogen gas on the cathode side and oxygen gas on the anode side. Is generated. The power supply to the cell 10 is performed by the DC power supply 14 after being calculated by the calculator 13. A hydrogen side storage tank 11 is connected to the cathode side of the cell 10 via a pipe 15, and an oxygen side storage tank 12 is connected to the anode side of the cell 10 via a pipe 16.

水素側貯蔵タンク11内の下部には純水Wが溜められている。水素側貯蔵タンク11の底部には、補給水タンク20に連通する配管21が接続されており、この配管21には、流量調整弁22と電磁弁23が設けられている。水素側貯蔵タンク11内の純水Wの水位はフロート式の水位計24により監視されており、この水位計24からの電気信号により電磁弁23の開閉が制御されて、水素側貯蔵タンク11内の純水Wの水位が一定の範囲内に収められる。   Pure water W is stored in the lower part of the hydrogen-side storage tank 11. A pipe 21 communicating with the makeup water tank 20 is connected to the bottom of the hydrogen-side storage tank 11, and a flow rate adjusting valve 22 and an electromagnetic valve 23 are provided in the pipe 21. The water level of the pure water W in the hydrogen side storage tank 11 is monitored by a float type water level gauge 24, and the opening and closing of the electromagnetic valve 23 is controlled by an electric signal from the water level gauge 24, and the hydrogen side storage tank 11 The level of the pure water W is kept within a certain range.

同様に、酸素側貯蔵タンク12内の下部にも純水Wが溜められている。酸素側貯蔵タンク12の底部には、セル10に連通する取り出し配管25が接続されており、この取り出し配管25には、酸素側貯蔵タンク12内の純水Wをセル10に供給するための循環ポンプ26が設けられている。循環ポンプ26の稼動で、酸素側貯蔵タンク12内の純水Wがセル10に供給され、セル10内において、純水Wが電気分解されて、陰極側に水素ガスが発生させられ、陽極側に酸素ガスが発生させられる。   Similarly, pure water W is also stored in the lower part of the oxygen-side storage tank 12. An extraction pipe 25 communicating with the cell 10 is connected to the bottom of the oxygen-side storage tank 12, and a circulation for supplying the pure water W in the oxygen-side storage tank 12 to the cell 10 is connected to the extraction pipe 25. A pump 26 is provided. By the operation of the circulation pump 26, the pure water W in the oxygen side storage tank 12 is supplied to the cell 10, and the pure water W is electrolyzed in the cell 10 to generate hydrogen gas on the cathode side. Oxygen gas is generated.

更に、酸素側貯蔵タンク12の底部には、補給水タンク20から連通する補給水配管30が接続されており、この補給水配管30には、補給水タンク20内の純水Wを酸素側貯蔵タンク12に補給するための補給水ポンプ31と流量調整弁32、電磁弁33が設けられている。酸素側貯蔵タンク12内の純水Wの水位はフロート式の水位計34により監視されており、循環ポンプ26の稼動で酸素側貯蔵タンク12内の純水Wがセル10に供給されることにより酸素側貯蔵タンク12内の純水Wの水位が下がると、この水位計34からの電気信号により電磁弁33の開閉が制御され、補給水配管30を通じて補給水タンク20から酸素側貯蔵タンク12内に純水Wが供給され、酸素側貯蔵タンク12内の純水Wの水位が一定の範囲内に収められる。   Further, a supplementary water pipe 30 communicating from the supplementary water tank 20 is connected to the bottom of the oxygen side storage tank 12, and the pure water W in the supplementary water tank 20 is stored in the supplementary water pipe 30 on the oxygen side. A replenishing water pump 31 for replenishing the tank 12, a flow rate adjusting valve 32, and an electromagnetic valve 33 are provided. The water level of the pure water W in the oxygen side storage tank 12 is monitored by a float type water level gauge 34, and the pure water W in the oxygen side storage tank 12 is supplied to the cell 10 by the operation of the circulation pump 26. When the water level of the pure water W in the oxygen-side storage tank 12 is lowered, the opening and closing of the electromagnetic valve 33 is controlled by an electric signal from the water level gauge 34, and the supply water tank 20 passes through the makeup water tank 20 to the oxygen-side storage tank 12. Is supplied with pure water W, and the water level of the pure water W in the oxygen-side storage tank 12 is kept within a certain range.

補給水配管30において補給水ポンプ31の下流側には、補給水配管30内の純水Wを補給水タンク20に戻すための戻し配管35が接続されている。この戻し配管35には、流量調整弁36、熱交換器37、イオン交換樹脂38、フィルター39が設けられている。補給水タンク20内の水は、酸素側貯蔵タンク12内に供給される以外の間、戻し配管35に循環され、これにより、系内の純水Wの純度が維持される。   A return pipe 35 for returning the pure water W in the makeup water pipe 30 to the makeup water tank 20 is connected to the makeup water pipe 30 downstream of the makeup water pump 31. The return pipe 35 is provided with a flow rate adjusting valve 36, a heat exchanger 37, an ion exchange resin 38, and a filter 39. While the water in the make-up water tank 20 is not supplied into the oxygen-side storage tank 12, it is circulated through the return pipe 35, whereby the purity of the pure water W in the system is maintained.

取り出し配管25において循環ポンプ26の下流側には、取り出し配管25内から一部の純水Wを取り出して補給水タンク20に戻すためのバイパス配管40が接続されている。このバイパス配管40には、流量調整弁41と電磁弁42が設けられている。   On the downstream side of the circulation pump 26 in the extraction pipe 25, a bypass pipe 40 for extracting a part of the pure water W from the extraction pipe 25 and returning it to the makeup water tank 20 is connected. The bypass pipe 40 is provided with a flow rate adjustment valve 41 and an electromagnetic valve 42.

水素側貯蔵タンク11内において、純水Wの液面よりも上の部分は水素ガスが貯められる気層部分11aであり、水素側貯蔵タンク11内において気液分離された水素ガスが、水素側貯蔵タンク11内の気層部分11aに貯められる。この気層部分11aの圧力は、気圧計45によって検出されている。   In the hydrogen side storage tank 11, the part above the liquid level of the pure water W is a gas layer part 11a in which hydrogen gas is stored, and the hydrogen gas separated in the hydrogen side storage tank 11 is hydrogen side. The gas is stored in the gas layer portion 11 a in the storage tank 11. The pressure in the air layer portion 11 a is detected by the barometer 45.

また、水素側貯蔵タンク11の気層部分11aには、電気分解した水素ガスの取り出し配管46が接続されており、この取り出し配管46には、ガス用フィルター47と、系内の圧力が設定圧力になったら開となる調圧弁48と、系内の圧力を検出する圧力測定器49が設けられている。また、取り出し配管46には、系内圧力が異常上昇した場合に圧力を開放するための安全弁50を備えたリーク配管51と、電磁弁52および調整弁53を備えた圧力開放配管54と、水素ガス中の水素濃度を計測する水素濃度計55および調整弁56を備えた濃度計測配管57が接続されている。   Also, an electrolyzed hydrogen gas extraction pipe 46 is connected to the gas layer portion 11a of the hydrogen-side storage tank 11, and the gas filter 47 and the pressure in the system are set to the set pressure. There are provided a pressure regulating valve 48 which is opened when the pressure reaches a pressure measuring device 49 for detecting the pressure in the system. The take-out pipe 46 includes a leak pipe 51 having a safety valve 50 for releasing the pressure when the system pressure abnormally increases, a pressure release pipe 54 having a solenoid valve 52 and a regulating valve 53, hydrogen A hydrogen concentration meter 55 for measuring the hydrogen concentration in the gas and a concentration measuring pipe 57 provided with a regulating valve 56 are connected.

また、水素側貯蔵タンク11内の気層部分11aには、変形自在な圧力吸収体60が設けられている。後述するように、この圧力吸収体60は、例えば金属ベローズまたは高分子膜で形成された変形自在な密閉容器であり、その内部には窒素ガス、酸素ガス等のガスを封入されている。このため、水素側貯蔵タンク11内の気層部分11aの圧力が変化すると、圧力吸収体60は膨張または収縮して圧力吸収体60自身が容積変化し、水素側貯蔵タンク11内の気層部分11aの圧力変化が吸収・緩和される。この圧力吸収体60は、気層部分11aの圧力が常圧となる無負荷状態において、水素側貯蔵タンク11内の気層部分11aの90%以上の容積を占めるようになっている。   A deformable pressure absorber 60 is provided in the gas layer portion 11 a in the hydrogen-side storage tank 11. As will be described later, the pressure absorber 60 is a deformable hermetic container formed of, for example, a metal bellows or a polymer film, and a gas such as nitrogen gas or oxygen gas is sealed therein. For this reason, when the pressure of the gas layer portion 11a in the hydrogen side storage tank 11 changes, the pressure absorber 60 expands or contracts and the volume of the pressure absorber 60 itself changes, and the gas layer portion in the hydrogen side storage tank 11 changes. The pressure change of 11a is absorbed and relaxed. The pressure absorber 60 occupies a volume of 90% or more of the gas layer portion 11a in the hydrogen-side storage tank 11 in a no-load state where the pressure of the gas layer portion 11a is normal pressure.

同様に酸素側貯蔵タンク12内において、純水Wの液面よりも上の部分は酸素ガスが貯められる気層部分12aであり、酸素側貯蔵タンク12内において気液分離された酸素ガスが、酸素側貯蔵タンク12内の気層部分12aに貯められる。この気層部分12aの圧力は、気圧計65によって検出されている。   Similarly, in the oxygen side storage tank 12, the part above the liquid level of the pure water W is a gas layer part 12a in which oxygen gas is stored, and the oxygen gas separated from the liquid in the oxygen side storage tank 12 is It is stored in the gas layer portion 12 a in the oxygen side storage tank 12. The pressure in the air layer portion 12 a is detected by the barometer 65.

また、酸素側貯蔵タンク12の気層部分12aには、電気分解した酸素ガスの取り出し配管66が接続されており、この取り出し配管66には、ガス用フィルター67と、系内の圧力が設定圧力になったら開となる調圧弁68が設けられている。また、取り出し配管66には、系内圧力が異常上昇した場合に圧力を開放するための安全弁70を備えたリーク配管71と、電磁弁72および調整弁73を備えた圧力開放配管74が接続されている。   Further, a gas extraction portion 66 for electrolyzed oxygen gas is connected to the gas layer portion 12 a of the oxygen-side storage tank 12, and a gas filter 67 and a pressure in the system are set to the set pressure in the extraction piping 66. There is provided a pressure regulating valve 68 that is opened when the value becomes. Further, a leakage pipe 71 provided with a safety valve 70 for releasing the pressure when the system pressure abnormally rises and a pressure release pipe 74 provided with an electromagnetic valve 72 and a regulating valve 73 are connected to the take-out pipe 66. ing.

また、酸素側貯蔵タンク12内の気層部分12aには、変形自在な圧力吸収体80が設けられている。後述するように、この圧力吸収体80は、例えば金属ベローズまたは高分子膜で形成された変形自在な密閉容器であり、その内部には窒素ガス、酸素ガス等のガスを封入されている。このため、酸素側貯蔵タンク12内の気層部分12aの圧力が変化すると、圧力吸収体80は膨張または収縮して圧力吸収体80自身が容積変化し、酸素側貯蔵タンク12内の気層部分12aの圧力変化が吸収・緩和される。この圧力吸収体80は、気層部分12aの圧力が常圧となる無負荷状態において、酸素側貯蔵タンク12内の気層部分12aの90%以上の容積を占めるようになっている。   In addition, a deformable pressure absorber 80 is provided in the gas layer portion 12 a in the oxygen-side storage tank 12. As will be described later, the pressure absorber 80 is a deformable hermetic container formed of, for example, a metal bellows or a polymer film, and a gas such as nitrogen gas or oxygen gas is sealed therein. For this reason, when the pressure of the gas layer portion 12a in the oxygen side storage tank 12 changes, the pressure absorber 80 expands or contracts and the pressure absorber 80 itself changes in volume, and the gas layer portion in the oxygen side storage tank 12 changes. The pressure change of 12a is absorbed and relaxed. The pressure absorber 80 occupies a volume of 90% or more of the gas layer portion 12a in the oxygen-side storage tank 12 in a no-load state where the pressure of the gas layer portion 12a is normal pressure.

水素側貯蔵タンク11内の気層部分11aに設けられた圧力吸収体60と酸素側貯蔵タンク12内の気層部分12aに設けられた圧力吸収体80は、流路81によって連通させられている。このため、2つの圧力吸収体60、80に封入されているガスは、2つの圧力吸収体60、80同士の間で自由に行き来することができ、これにより、2つの圧力吸収体60、80の内圧は常に等しく保たれる。   The pressure absorber 60 provided in the gas layer portion 11 a in the hydrogen side storage tank 11 and the pressure absorber 80 provided in the gas layer portion 12 a in the oxygen side storage tank 12 are communicated by a flow path 81. . For this reason, the gas sealed in the two pressure absorbers 60 and 80 can freely move between the two pressure absorbers 60 and 80, and thereby, the two pressure absorbers 60 and 80 can be moved back and forth. The internal pressure is always kept equal.

ここで、水素側貯蔵タンク11内の全容積から純水Wの容積を差し引いた容積を水素側貯蔵タンク11内の気層部分11aの全容積V11、酸素側貯蔵タンク12内の全容積から純水Wの容積を差し引いた容積を酸素側貯蔵タンク12内の気層部分12aの全容積V12と定義すると、水素側貯蔵タンク11内の圧力と酸素側貯蔵タンク12内の圧力が等しい場合に、水素側貯蔵タンク11内の気層部分11aの全容積V11が、酸素側貯蔵タンク12内の気層部分12aの全容積V12の1.6〜2倍となるように、水素側貯蔵タンク11内の容積および純水Wの水位WL1と酸素側貯蔵タンク12内の容積および純水Wの水位WL2が設計されている。   Here, the volume obtained by subtracting the volume of pure water W from the total volume in the hydrogen-side storage tank 11 is the pure volume from the total volume V11 of the gas layer portion 11 a in the hydrogen-side storage tank 11 and the total volume in the oxygen-side storage tank 12. When the volume obtained by subtracting the volume of the water W is defined as the total volume V12 of the gas layer portion 12a in the oxygen side storage tank 12, when the pressure in the hydrogen side storage tank 11 and the pressure in the oxygen side storage tank 12 are equal, In the hydrogen side storage tank 11, the total volume V11 of the gas layer portion 11 a in the hydrogen side storage tank 11 is 1.6 to 2 times the total volume V12 of the gas layer portion 12 a in the oxygen side storage tank 12. And the water level WL1 of the pure water W, the volume in the oxygen-side storage tank 12, and the water level WL2 of the pure water W are designed.

さて、以上のように構成された本発明の実施の形態にかかる高圧水素製造システム1において、酸素側貯蔵タンク12内の純水Wがセル10に供給される。そして、セル10内に所定流量以上の純水Wが安定的に供給されていることと、所定の水位が確保されていることが確認できたら直流電源装置14から電力が供給され、徐々に負荷が上昇させられる。これにより、セル10内において、純水Wが電気分解されて、陰極側に水素ガスが発生させられ、陽極側に酸素ガスが発生させられる。   Now, in the high-pressure hydrogen production system 1 according to the embodiment of the present invention configured as described above, pure water W in the oxygen-side storage tank 12 is supplied to the cell 10. When it is confirmed that the pure water W having a predetermined flow rate or more is stably supplied into the cell 10 and that the predetermined water level is secured, power is supplied from the DC power supply device 14 and the load is gradually increased. Is raised. Thereby, in the cell 10, the pure water W is electrolyzed, hydrogen gas is generated on the cathode side, and oxygen gas is generated on the anode side.

なお、この高圧水素製造システム1では、水素ガスの取り出し配管46に調圧弁48が設けられているので、圧力測定器49によって系内の圧力を監視しながら直流電源装置14の負荷を演算器13で制御することで需要側の負荷に合わせた水素製造が行われる。また、補給水配管30に設けられた補給水ポンプ31は水質が低下した場合、または、酸素側貯蔵タンク12に補給が必要な場合のみ運転すればよいが、常時運転しておいても良い。なお、ここに説明した需要側の負荷に合わせた水素製造の制御方法は公知技術の一例であり、この制御方法に限らず公知となっているより簡便な制御システムを構成しても良い。   In this high-pressure hydrogen production system 1, since the pressure regulating valve 48 is provided in the hydrogen gas extraction pipe 46, the load of the DC power supply 14 is monitored while the pressure in the system is monitored by the pressure measuring device 49. By controlling with, hydrogen production according to the load on the demand side is performed. Further, the makeup water pump 31 provided in the makeup water pipe 30 may be operated only when the water quality is lowered or when the oxygen-side storage tank 12 needs to be replenished, but it may be operated constantly. The control method for hydrogen production in accordance with the demand-side load described here is an example of a known technique, and is not limited to this control method, and a simpler control system that is known may be configured.

そして、セル10内では直流電源装置14の出力に応じて、純水Wが水素イオン、酸素イオンに電気分解される。そのうち酸素イオンは触媒上で酸素ガスとなり、循環水と共に酸素側貯蔵タンク12に排出される。また、水素イオンは随伴水を伴って水素側に移動し、水素側触媒上で水素ガスとなって水素側貯蔵タンク11に排出される。排出された酸素および水素は、それぞれ酸素側貯蔵タンク12および水素側貯蔵タンク11にて気液分離される。気液分離された純水Wは再度セル10に送られ、水素ガスは取り出し配管46から排出され、酸素ガスは取り出し配管66から排出される。その際、系内圧力が定格圧力以下であれば水素ガスおよび酸素ガスは水素側貯蔵タンク11と酸素側貯蔵タンク12内に滞留し圧力の上昇に寄与する。そして系内圧力が所定の値になったら、調圧弁48、68からガスが放出され、需要側に供給される。図示のように取り出し配管46に調圧弁48を設けた場合には、圧力測定器49によって検出した圧力を演算器13にて常時監視し、その圧力が所定の値よりも低下したときに直流電源装置14からセル10に電力を供給することで需要側の負荷に合わせた水素製造を行う。   In the cell 10, the pure water W is electrolyzed into hydrogen ions and oxygen ions according to the output of the DC power supply 14. Among them, oxygen ions become oxygen gas on the catalyst and are discharged to the oxygen-side storage tank 12 together with the circulating water. Further, the hydrogen ions move to the hydrogen side with accompanying water, become hydrogen gas on the hydrogen side catalyst, and are discharged to the hydrogen side storage tank 11. The discharged oxygen and hydrogen are subjected to gas-liquid separation in the oxygen side storage tank 12 and the hydrogen side storage tank 11, respectively. The pure water W subjected to the gas-liquid separation is sent again to the cell 10, the hydrogen gas is discharged from the extraction pipe 46, and the oxygen gas is discharged from the extraction pipe 66. At this time, if the system pressure is equal to or lower than the rated pressure, hydrogen gas and oxygen gas stay in the hydrogen side storage tank 11 and the oxygen side storage tank 12 and contribute to an increase in pressure. When the internal pressure reaches a predetermined value, gas is discharged from the pressure regulating valves 48 and 68 and supplied to the demand side. As shown in the figure, when a pressure regulating valve 48 is provided in the take-out piping 46, the pressure detected by the pressure measuring device 49 is constantly monitored by the computing unit 13, and when the pressure drops below a predetermined value, the DC power supply By supplying electric power from the device 14 to the cell 10, hydrogen production is performed in accordance with the load on the demand side.

なお、セル10に純水Wを供給する取り出し配管25から純水Wの水質を維持する目的でバイパス配管40に取り出された純水Wは補給水タンク20に返送される。セル10内での電気分解と補給水タンク20への返送により酸素側貯蔵タンク12内の水位は減少するため、水位計34の検出により補給水ポンプ31の稼動で補給水タンク20から酸素側貯蔵タンク12内に浄化処理された純水Wが補給される。   The pure water W taken out to the bypass pipe 40 for the purpose of maintaining the quality of the pure water W from the take-out pipe 25 for supplying the pure water W to the cell 10 is returned to the makeup water tank 20. Since the water level in the oxygen-side storage tank 12 decreases due to the electrolysis in the cell 10 and the return to the make-up water tank 20, the operation of the make-up water pump 31 by the operation of the make-up water pump 31 by the detection of the water level gauge 34. Purified pure water W is supplied into the tank 12.

なお、気圧計45、65は水素側貯蔵タンク11内と酸素側貯蔵タンク12内の圧力を測定しており、その差圧を常時演算器13で監視している。何らかの異常により極間差圧が所定の値以上になった場合には直ちに直流電源装置14からの電力を遮断し高圧水素製造システム1を緊急停止する。   The barometers 45 and 65 measure the pressure in the hydrogen side storage tank 11 and the oxygen side storage tank 12, and the differential pressure is constantly monitored by the calculator 13. When the pressure difference between the electrodes exceeds a predetermined value due to some abnormality, the power from the DC power supply 14 is immediately cut off, and the high-pressure hydrogen production system 1 is urgently stopped.

高圧水素製造システム1を停止する場合には、直流電源装置14からの電力供給を停止する。両極の圧力解放配管54、74の電磁弁52、72を開放し、系内のガスを排気して常圧近傍まで低下させる。本システムには差圧解消機構が設けられているため、上述のように昇圧から降圧の全ての工程に置いて特段の差圧制御をする必要はない。   When the high pressure hydrogen production system 1 is stopped, the power supply from the DC power supply device 14 is stopped. The solenoid valves 52 and 72 of the pressure release pipes 54 and 74 of both poles are opened, the gas in the system is exhausted, and the pressure is reduced to near normal pressure. Since this system is provided with a differential pressure elimination mechanism, it is not necessary to perform special differential pressure control in all steps from step-up to step-down as described above.

なお、系内の圧力が0.9MPa(G)を超えるような運転の場合には、水素側貯蔵タンク11内の気層部分11aに設けられる圧力吸収体60と酸素側貯蔵タンク12内の気層部分12aに設けられる圧力吸収体80を複数具備し、各圧力吸収体60、80に充填する窒素ガスの圧力を変えることで、任意の運転圧力に対して対応可能である。その際、各圧力吸収体60、80の初期封入圧力に対する設計上限圧力の倍率(以降、圧力上昇倍率と称す)は8〜10倍以下にすることが望ましい。例えば、圧力吸収体60、80の初期圧力が0MPa(G)(=常圧、絶対圧力:0.1MPa)の場合に、圧力上昇倍率を10倍とした場合には最大圧力は0.9MPa(G)(=絶対圧力:1.0MPa)となる。それ以上昇圧する場合には、分離膜容器の初期圧力を0MPa(G)とした圧力吸収体60、80と0.9MPa(G)とした圧力吸収体60、80の2つをタンク内に具備させればよい。各圧力吸収体60、80の圧力上昇倍率を下げるほど差圧解消能力は高まるが、それに伴い圧力吸収体60、80の数が増えるため、最大使用圧力に合わせて圧力吸収体60、80の数と各圧力吸収体60、80の圧力上昇倍率を選定すればよい。その際、初期圧力が高い圧力吸収体60、80ほど圧力上昇倍率を下げるようにする。   In the case of operation in which the pressure in the system exceeds 0.9 MPa (G), the pressure absorber 60 provided in the gas layer portion 11a in the hydrogen side storage tank 11 and the gas in the oxygen side storage tank 12 are used. By providing a plurality of pressure absorbers 80 provided in the layer portion 12a and changing the pressure of the nitrogen gas filled in each pressure absorber 60, 80, it is possible to cope with any operating pressure. In that case, it is desirable that the magnification of the design upper limit pressure with respect to the initial sealed pressure of each of the pressure absorbers 60 and 80 (hereinafter referred to as pressure increase magnification) is 8 to 10 times or less. For example, when the initial pressure of the pressure absorbers 60 and 80 is 0 MPa (G) (= normal pressure, absolute pressure: 0.1 MPa), and the pressure increase ratio is 10 times, the maximum pressure is 0.9 MPa ( G) (= absolute pressure: 1.0 MPa). When the pressure is further increased, the tank is equipped with two pressure absorbers 60 and 80 having an initial pressure of the separation membrane container of 0 MPa (G) and pressure absorbers 60 and 80 having a pressure of 0.9 MPa (G). You can do it. As the pressure increase rate of each pressure absorber 60, 80 is decreased, the differential pressure elimination capability increases. However, the number of pressure absorbers 60, 80 increases accordingly, so that the number of pressure absorbers 60, 80 in accordance with the maximum operating pressure. And the pressure increase magnification of each pressure absorber 60, 80 may be selected. At that time, the pressure increase factor is decreased for the pressure absorbers 60 and 80 having a higher initial pressure.

この高圧水素製造システム1によれば、水素側貯蔵タンク11内と酸素側貯蔵タンク12内に設けた圧力吸収体60、80が変形することで、両極間の差圧制御をすることなく差圧の発生を未然に防止または緩和することができ、何らかの異常により差圧が発生したときでもその差圧値と差圧上昇速度を低減することが可能である。昇圧−定常運転−降圧の各過程において差圧制御を行わなくても差圧は自動的に解消する。また、水素側貯蔵タンク11内と酸素側貯蔵タンク12内に形成される気層部分11a、12aの容積を従来よりも小さくできるため水素側貯蔵タンク11と酸素側貯蔵タンク12のコンパクト化が可能となる。   According to the high-pressure hydrogen production system 1, the pressure absorbers 60 and 80 provided in the hydrogen-side storage tank 11 and the oxygen-side storage tank 12 are deformed, so that the differential pressure can be controlled without controlling the differential pressure between the two electrodes. Can be prevented or alleviated in advance, and even when a differential pressure occurs due to some abnormality, the differential pressure value and the differential pressure increase rate can be reduced. Even if the differential pressure control is not performed in each process of step-up, steady operation, and step-down, the differential pressure is automatically eliminated. Further, since the volume of the gas layer portions 11a and 12a formed in the hydrogen side storage tank 11 and the oxygen side storage tank 12 can be made smaller than before, the hydrogen side storage tank 11 and the oxygen side storage tank 12 can be made compact. It becomes.

特に水素側貯蔵タンク11内の圧力吸収体60と酸素側貯蔵タンク12内の圧力吸収体80を流路81で連通させることにより、差圧が発生した場合でも流路81で接続された圧力吸収体60、80間で直ちにガスの移動が起こる。そのガス移動がそのまま両タンク間の間接的な気層容積変化となるため、「水素側貯蔵タンク11の気層圧力=水素側貯蔵タンク11内の圧力吸収体60の圧力=酸素側貯蔵タンク12内の圧力吸収体80の圧力=酸素側貯蔵タンク12の気層圧力」となるように速やかに圧力吸収体60、80の容積が変化し、両極間の差圧を電気信号を介することなくその場で直接的に解消できる。そのため、両極間の差圧信号を受信しその受信した信号を制御機器に転送して圧力制御機器を動作させることで差圧を解消する従来の方法に比べて、一切の時間遅れや高精度な制御無しに確実な対処が可能である。さらに両極間を絶縁することにより、従来の方法のようなセル隔膜以外の部分での両極ガスの混合可能性は一切ない。加えて、差圧を調整するための排気は一切不要であるため電解したガスの無駄が無い。また水位変動に対しても、上述のように各圧力吸収体に分散させて変動を吸収するため、1つの容器(例えば従来方式の酸素側気層部)のみで対処する従来の方法よりも変化する圧力値自体も低減できる。その結果、気層容積や水容積の小容量化が可能となり、万が一隔膜が破損した場合でもシステム全体が貯蔵するエネルギーが少ないため、その被害を最小限に抑えることができる。   In particular, by connecting the pressure absorber 60 in the hydrogen side storage tank 11 and the pressure absorber 80 in the oxygen side storage tank 12 through the flow path 81, the pressure absorption connected by the flow path 81 even when a differential pressure is generated. Immediate gas transfer occurs between the bodies 60,80. Since the gas movement becomes an indirect gas layer volume change between the two tanks as it is, “the gas layer pressure of the hydrogen side storage tank 11 = the pressure of the pressure absorber 60 in the hydrogen side storage tank 11 = the oxygen side storage tank 12”. The volume of the pressure absorbers 60 and 80 quickly changes so that the pressure of the pressure absorber 80 in the inside = the gas layer pressure of the oxygen-side storage tank 12, and the differential pressure between the two electrodes can be obtained without using an electric signal. Can be solved directly on the spot. Therefore, compared to the conventional method of eliminating the differential pressure by receiving the differential pressure signal between the two poles and transferring the received signal to the control device to operate the pressure control device, there is no time delay or high accuracy. Reliable handling is possible without control. Further, by insulating between the two electrodes, there is no possibility of mixing the bipolar gas at portions other than the cell diaphragm as in the conventional method. In addition, there is no waste of electrolyzed gas because no exhaust for adjusting the differential pressure is required. In addition, since the fluctuation is also dispersed in each pressure absorber as described above and the fluctuation is absorbed as described above, it changes compared to the conventional method in which only one container (for example, a conventional oxygen side air layer) is used. The pressure value itself can also be reduced. As a result, the air volume and the water volume can be reduced, and even if the diaphragm is broken, the energy stored in the entire system is small, so that the damage can be minimized.

なお、本発明で差圧解消機構として使用する圧力吸収体60、80は、自動車サスペンション等に用いられているアキュムレータで使用されている分離膜容器を転用することができる。圧力吸収体60、80は、使用材質の違いにより金属ベローズ式と高分子膜式に大別できる。両方式とも通常は圧力吸収体60、80内に窒素等のガスを封入し、外界の圧力変動が起きたときには内部に封入した窒素ガスの圧縮性を利用して自身が容積変化をすることで、その圧力変動を吸収・緩和する。この圧力吸収体60、80は、高周波応答性に優れているため、水電解運転中の圧力変動に対する追従性を有している。なお、金属ベローズ式は分離膜が金属製であるため封入したガスの透過は一切無く、メンテナンス(ガスの再封入)の必要が無いため、金属ベローズ式の採用が好ましい。   In addition, the separation membrane container used with the accumulator currently used for the automobile suspension etc. can be diverted to the pressure absorbers 60 and 80 used as a differential pressure cancellation mechanism by this invention. The pressure absorbers 60 and 80 can be broadly classified into a metal bellows type and a polymer film type depending on the material used. Both types normally enclose a gas such as nitrogen in the pressure absorbers 60 and 80, and when the external pressure fluctuations occur, the volume changes itself by utilizing the compressibility of the nitrogen gas enclosed inside. , Absorb and mitigate pressure fluctuations. Since the pressure absorbers 60 and 80 are excellent in high-frequency response, they have followability to pressure fluctuation during water electrolysis operation. In the metal bellows type, since the separation membrane is made of metal, there is no permeation of the enclosed gas and there is no need for maintenance (gas re-encapsulation).

図2では、金属膜式の圧力吸収体60、80を使用したときのシステムフローを説明した。各極のタンクに挿入する圧力吸収体60、80は、タンク気層全容積中に占める圧力吸収体60、80の容積比率を高めれば高めるほど大きな差圧解消効果が得られる。このため、各極のタンク内圧が運転前の常圧状態であるときに、タンク気層部の90%以上を占める容量とするのが好ましい。ここで、水素側貯蔵タンク11内の実ガス容積(水素側貯蔵タンク11内の気層部分11aの容積−水素側貯蔵タンク11の圧力吸収体60の容積)と酸素側貯蔵タンク12内の実ガス容積(酸素側貯蔵タンク12内に形成される気層部分12aの容積−酸素側貯蔵タンク12の圧力吸収体80の容積)の比は、圧力吸収体60、80の容積が最大となる無負荷時の常圧状態と、圧力吸収体60、80の容積が最小となる最大圧力の状態のいずれにおいても1.6〜2倍(酸素側貯蔵タンク12の圧力吸収体80の容積基準)とするのが好ましい。そのためには、圧力吸収体60、80の容積が起動時の昇圧過程や停止時の降圧過程といった容積が大きく変化する状況においても1.6〜2倍(酸素側貯蔵タンク12の実ガス容積基準)の比率を保てるように圧力吸収体60、80を設計すればよい。具体的には、水素側、酸素側共に同一直径のタンクを用いて、圧力吸収体60、80の初期長さ(無負荷の常圧時)の比を1.6〜2倍(酸素側の長さ基準)としたり、圧力吸収体60、80の伸縮に対する耐久性を考慮して、圧力吸収体60、80の長さは両極同一とし、容器の断面積の比を1.6〜2倍(酸素側の断面積基準)にしても良い。これ以外であっても、極間差圧が0の場合に両極間の圧力吸収体60、80の容積比が1.6〜2倍となるように設計すればよい。なお、理論発生量を考慮すれば厳密に水素側貯蔵タンク11内の気層部分11aの全容積V11:酸素側貯蔵タンク12内の気層部分12aの全容積V12=2:1とするのが理想であるが、現実的には厳密に2:1になるように製作することは不可能であり、また水電解運転中のタンク水位は給排水に伴い常に変動しているため、昇圧降圧過程、定常過程の全ての過程で必ず差圧が発生する。しかし、差圧解消機構を組み込んだ本システムではその容積比を1.6倍〜2倍に収めればよく、製作上やその他様々な制約条件・運転状態を考慮しても十分な許容を有している。なお、昇圧過程で生じる差圧により圧力吸収体60、80の容積が所定の容積比(例えば2倍で設計した場合は水素2:酸素1)になっていなくても、定格圧力に到達すれば圧力吸収体60、80自体の弾性力によりほぼ所定の容積比となる。   In FIG. 2, the system flow when the metal film type pressure absorbers 60 and 80 are used has been described. As the pressure absorbers 60 and 80 inserted into the tanks of the respective poles increase the volume ratio of the pressure absorbers 60 and 80 in the total volume of the tank gas layer, the greater the differential pressure elimination effect is obtained. For this reason, when the tank internal pressure of each electrode is a normal pressure state before the operation, it is preferable to set the capacity to occupy 90% or more of the tank gas layer. Here, the actual gas volume in the hydrogen-side storage tank 11 (the volume of the gas layer portion 11 a in the hydrogen-side storage tank 11 -the volume of the pressure absorber 60 in the hydrogen-side storage tank 11) and the actual gas in the oxygen-side storage tank 12. The ratio of the gas volume (the volume of the gas layer portion 12a formed in the oxygen side storage tank 12-the volume of the pressure absorber 80 of the oxygen side storage tank 12) is such that the volume of the pressure absorbers 60 and 80 is maximized. 1.6 to 2 times (based on the volume of the pressure absorber 80 of the oxygen-side storage tank 12) in both the normal pressure state during loading and the maximum pressure state in which the volume of the pressure absorbers 60 and 80 is minimized. It is preferable to do this. For this purpose, the volume of the pressure absorbers 60 and 80 is 1.6 to 2 times (in reference to the actual gas volume standard of the oxygen-side storage tank 12) even in a situation where the volume changes greatly, such as the pressure increasing process at the start and the pressure decreasing process at the stop. The pressure absorbers 60 and 80 may be designed so as to maintain the ratio of Specifically, using a tank having the same diameter on both the hydrogen side and the oxygen side, the ratio of the initial lengths of the pressure absorbers 60 and 80 (at the time of no-load normal pressure) is 1.6 to 2 times (on the oxygen side) The length of the pressure absorbers 60 and 80 is the same for both poles, and the ratio of the cross-sectional area of the container is 1.6 to 2 times (oxygen) Side cross-sectional area standard). Even if it is other than this, when the pressure difference between the electrodes is 0, the volume ratio of the pressure absorbers 60 and 80 between the two electrodes may be designed to be 1.6 to 2 times. In consideration of the theoretical generation amount, the total volume V11 of the gas layer portion 11a in the hydrogen side storage tank 11 is strictly set to the total volume V12 of the gas layer portion 12a in the oxygen side storage tank 12 = 2: 1. Although it is ideal, in reality it is impossible to make it strictly 2: 1, and since the tank water level during water electrolysis operation constantly fluctuates with water supply and drainage, Differential pressure is always generated in all the steady processes. However, in this system incorporating the differential pressure canceling mechanism, the volume ratio needs only to be 1.6 to 2 times, and there is sufficient tolerance in consideration of manufacturing and various other constraints and operating conditions. doing. Even if the volume of the pressure absorbers 60 and 80 does not reach a predetermined volume ratio (for example, hydrogen 2: oxygen 1 in the case of a double design) due to the differential pressure generated in the pressurization process, if the rated pressure is reached. A substantially predetermined volume ratio is obtained by the elastic force of the pressure absorbers 60 and 80 themselves.

また、システム運転停止時の降圧過程においては、従来どおり電源を遮断した後に系内のガスを微量排気することで降圧すればよいが、その際の両極からの排気量の関係は、酸素側排気量を水素側排気量の0.4〜1倍とすればよい。本システムの差圧解消能力によりこれだけの広範な流量域を許容できるため、減圧過程においても一切高精度な機器や制御を使用する必要が無い。加えて貯蔵量も少ないことから迅速に系内を常圧の状態に戻すことができる。   In addition, in the step-down process when the system is shut down, it is only necessary to step down the pressure by exhausting a small amount of gas in the system after shutting off the power as before, but the relationship between the amount of exhaust from both poles at that time is The amount may be 0.4 to 1 times the hydrogen side displacement. Since this system can tolerate such a wide flow rate range, there is no need to use highly accurate equipment or control even in the decompression process. In addition, since the storage amount is small, the system can be quickly returned to normal pressure.

また、何らかの異常対応として、差圧を検知して圧力を調整する従来行われている制御を組み込んでおくとさらに安全である。この場合においても、差圧解消装置が組み込まれた本システムで発生する差圧は、それがない装置で発生する差圧よりもその上昇速度が鈍化するため、安価な圧力調整方式を採用することができる。   In addition, as a countermeasure against some abnormality, it is safer if a conventionally performed control for detecting the differential pressure and adjusting the pressure is incorporated. Even in this case, the differential pressure generated in this system with a built-in differential pressure canceling device becomes slower than the differential pressure generated in a device without it, so an inexpensive pressure adjustment method should be adopted. Can do.

なお、本方法では、差圧解消機構がない場合に生じる100KPa以上の差圧を自然に解消するため、例えば運転終了後の降圧過程で絞り弁やその前段のフィルターのゴミ詰まり等により片極の排気が所定どおり行われない場合でも、各圧力吸収体60、80間の容積変化によりある程度までは差圧が解消されるため、その異常を早期に検知できない可能性がある。このような緊急事態に対しても、特段の対策を行わなくても差圧を検知してシステムが緊急停止する回路が演算器13に組み込まれているが、この検知遅れを安価な方法で防止するには、降圧工程を時間で管理すればよい。具体的には所定の時間で所定の圧力まで下がらない場合には異常と判断し排気を中止しシステムを緊急停止する回路を演算器13に組み込んでおけば良い。その後は別途設けた予備調節弁から手動で排気することで対処する。これにより、フィルターの目詰まり等の前兆を早期に検知することができ異常事態の未然防止ともなる。このことは昇圧過程においても同様であり、所定時間で所定の圧力まで上がらない場合には異常と判断し直流電源装置14からの電力を遮断しシステムを緊急停止する回路を演算器13に組み込んでおけば良い。   In this method, in order to eliminate the differential pressure of 100 KPa or more that occurs when there is no differential pressure elimination mechanism, for example, in the process of pressure reduction after the end of operation, for example, due to clogging of the throttle valve or the filter in the preceding stage, etc. Even if the exhaust is not performed as prescribed, the pressure difference is eliminated to some extent due to the volume change between the pressure absorbers 60 and 80, so that the abnormality may not be detected early. Even in such an emergency situation, a circuit that detects the differential pressure and urgently stops the system without incorporating any special measures is built in the calculator 13, but this detection delay is prevented by an inexpensive method. For this purpose, the step-down process may be managed by time. Specifically, if the pressure does not drop to a predetermined pressure within a predetermined time, a circuit that determines that there is an abnormality, stops the exhaust, and urgently stops the system may be incorporated in the calculator 13. After that, it is dealt with by exhausting manually from the preliminary control valve provided separately. As a result, a precursor such as clogging of the filter can be detected at an early stage, and an abnormal situation can be prevented. This is the same in the step-up process. If the pressure does not rise to a predetermined pressure within a predetermined time, it is determined that there is an abnormality, and a circuit that cuts off the power from the DC power supply 14 and urgently stops the system is incorporated in the arithmetic unit 13. It ’s fine.

また、前述のように高分子膜製の隔膜の機械的強度は低いため、システムを設計する上では隔膜の破損を想定しておく必要がある。隔膜等が破損しても被害を最小限に抑えるためには、システム内に存在する燃料および燃焼補助剤(水素ガス、酸素ガス、水)の量を最小化することが有効であり、タンク容量の低減が不可欠である。本システムでは差圧解消機構の効果により圧力バッファでもある気層容積を従来方式よりも遙かに小さくできることから、この点に関しても従来方式での純水貯蔵兼気液分離タンクと比べて数〜数10分の一に抑えることができる。   Moreover, since the mechanical strength of the membrane made of a polymer membrane is low as described above, it is necessary to assume that the membrane is damaged in designing the system. Minimizing the amount of fuel and combustion aids (hydrogen gas, oxygen gas, water) present in the system is an effective way to minimize damage even if the diaphragm is damaged. Reduction is essential. In this system, the volume of the gas layer, which is also the pressure buffer, can be much smaller than that of the conventional method due to the effect of the differential pressure canceling mechanism. In this respect as well, compared to the pure water storage and gas-liquid separation tank of the conventional method, It can be reduced to a few tenths.

ここで、圧力吸収体60、80の材質が高分子膜であっても上述の効果が得られるが、高分子膜式を採用した場合には、金属ベローズ式と異なり高分子膜からのガス透過があるため定期的に圧力吸収体60、80内の圧力補充が必要となる。高分子膜式の圧力吸収体60、80を使用したときの実施の形態にかかる高圧水素製造システム2を図3に示す。圧力吸収体60、80に高分子膜を使用する場合には、窒素の代わりに圧力吸収体60、80内に酸素を封入し、運転に伴い発生する酸素ガスを用い、圧力吸収体60、80から透過した分のガスを定期的に再封入してやればよい。   Here, even if the material of the pressure absorbers 60 and 80 is a polymer film, the above-described effect can be obtained. However, when the polymer film type is adopted, the gas permeation from the polymer film is different from the metal bellows type. Therefore, the pressure absorbers 60 and 80 need to be replenished regularly. FIG. 3 shows the high-pressure hydrogen production system 2 according to the embodiment when the polymer membrane type pressure absorbers 60 and 80 are used. In the case of using a polymer film for the pressure absorbers 60, 80, oxygen is enclosed in the pressure absorbers 60, 80 instead of nitrogen, and oxygen gas generated during operation is used, and the pressure absorbers 60, 80 are used. What is necessary is just to re-enclose the gas permeated from the inside periodically.

図3に示す高圧水素製造システム2では、酸素側貯蔵タンク12内の気層部分12aから流路81に酸素ガスを導入する酸素ガス流路85が接続されている。酸素ガス流路85には調圧弁86が設けられている。この図3に示す高圧水素製造システム2では、圧力吸収体60、80からは酸素側のみならず水素側にも微量の酸素が透過するが、その透過量よりも通常運転時のセル10内の隔膜における透過量のほうがはるかに高いことから安全上も問題無い。また、上述の通り発生した水素ガスにはもともと微量の酸素が含まれるため、水素ガスの純度を高める目的で水素供給配管系統には一般的に酸素を燃焼するための触媒塔が設けられている(図示せず)。封入ガスに酸素ガスを用いることで、圧力吸収体60、80から透過した酸素もこの触媒塔で燃焼されるため、生成水素ガスの純度を下げることなく、また圧力吸収体60、80からの透過ガス用に新たな除去設備を設ける必要がない。   In the high-pressure hydrogen production system 2 shown in FIG. 3, an oxygen gas flow path 85 for introducing oxygen gas from the gas layer portion 12 a in the oxygen side storage tank 12 to the flow path 81 is connected. A pressure regulating valve 86 is provided in the oxygen gas flow path 85. In the high-pressure hydrogen production system 2 shown in FIG. 3, a small amount of oxygen permeates from the pressure absorbers 60 and 80 not only to the oxygen side but also to the hydrogen side. Since the amount of permeation through the diaphragm is much higher, there is no safety problem. Further, since the hydrogen gas generated as described above originally contains a small amount of oxygen, the hydrogen supply piping system is generally provided with a catalyst tower for burning oxygen for the purpose of increasing the purity of the hydrogen gas. (Not shown). By using oxygen gas as the sealing gas, oxygen permeated from the pressure absorbers 60 and 80 is also combusted in the catalyst tower, so that the permeation from the pressure absorbers 60 and 80 does not occur without lowering the purity of the generated hydrogen gas. There is no need to install new removal equipment for the gas.

この図3に示す高圧水素製造システム2では、圧力吸収体60、80への再ガス封入に必要な設備は、酸素側貯蔵タンク12内の気層部分12aと流路81を接続する酸素ガス流路85と調圧弁86を付加するのみであり、極めて簡素な構成であり制御も不要である。この調圧弁86は、酸素側貯蔵タンク12内の圧力に係わらず調圧弁以降(圧力吸収体60、80側)の圧力を常に一定にでき、かつ圧力吸収体60、80の内圧が高くなっても圧力吸収体60、80から酸素側貯蔵タンク12内への逆流が生じない汎用の調圧弁である。   In the high-pressure hydrogen production system 2 shown in FIG. 3, the equipment necessary for regassing the pressure absorbers 60 and 80 is an oxygen gas flow that connects the gas layer portion 12 a in the oxygen-side storage tank 12 and the flow path 81. Only the passage 85 and the pressure regulating valve 86 are added, and the configuration is very simple and no control is required. This pressure regulating valve 86 can always keep the pressure after the pressure regulating valve (the pressure absorbers 60 and 80 side) constant regardless of the pressure in the oxygen side storage tank 12, and the internal pressure of the pressure absorbers 60 and 80 becomes high. Also, this is a general-purpose pressure regulating valve that does not cause a back flow from the pressure absorbers 60 and 80 into the oxygen-side storage tank 12.

以下、本発明の実施例を説明する。図4、5は、本発明の高圧水素製造システムと従来例との発生差圧の相違を表したものである。このときの水素側と酸素側の容積比率は最大値の2倍で、圧力吸収体の容積は水素側貯蔵タンクと酸素側貯蔵タンクの気層部分の容積中のそれぞれ90%である。図4は、定格圧力状態から水素側圧力が低下した場合の効果を、図5は、定格圧力状態から酸素側圧力が低下した場合の効果をそれぞれ表している。両図には圧力上昇倍率を4倍(0.3MPa(G))、7倍(0.6MPa(G))、10倍(0.9MPa(G))としたときの差圧解消機構の効果を示している。圧力上昇倍率が低いほど差圧解消効果(差圧解消機構が無い場合(従来例)に発生する差圧に対してそこに差圧解消機構を組込んだ場合(本発明)に差圧が低下する効果)が大きいことはこの図からもわかる。また、水素側が圧力低下した場合よりも酸素側が圧力低下した場合の方がはるかに大きな差圧解消効果が得られることもわかる。これは、容積比率を2倍としているため酸素側と水素側で差圧解消効果に大きな違いが出ているが、容積比率を下げることで徐々に平均化されていくが、基本的には酸素側圧力低下に対する効果のほうが大きくなる。気層容積の変動要因であるタンク水位変化は酸素側のほうが顕著であり、また水素側に比べれば酸素側のほうが複数の機器を制御することで水位管理をしているという点で、何らかの異常が発生する可能性が高い。この点を考慮すると、酸素側の圧力変動に対する差圧解消効果が高いのは理想的であり、本システムはそれに適っている。なお、ここで出している各数値は、許容極間差圧を±50kPaとした時の値であるため、その値が上がればその分許容範囲が広がる。   Examples of the present invention will be described below. 4 and 5 show the difference in the generated differential pressure between the high-pressure hydrogen production system of the present invention and the conventional example. At this time, the volume ratio between the hydrogen side and the oxygen side is twice the maximum value, and the volume of the pressure absorber is 90% of the volume of the gas layer portion of the hydrogen side storage tank and the oxygen side storage tank. FIG. 4 shows the effect when the hydrogen side pressure decreases from the rated pressure state, and FIG. 5 shows the effect when the oxygen side pressure decreases from the rated pressure state. Both figures show the effect of the differential pressure canceling mechanism when the pressure increase magnification is 4 times (0.3 MPa (G)), 7 times (0.6 MPa (G)), 10 times (0.9 MPa (G)). Is shown. The lower the pressure increase ratio, the lower the differential pressure cancellation effect (the differential pressure decreases when the differential pressure cancellation mechanism is incorporated into the differential pressure generated when there is no differential pressure cancellation mechanism (conventional example)). It can be seen from this figure that the effect is large. It can also be seen that a much greater differential pressure elimination effect can be obtained when the pressure on the oxygen side drops than when the pressure on the hydrogen side drops. Since the volume ratio is doubled, there is a big difference in the effect of eliminating the differential pressure between the oxygen side and the hydrogen side. However, the volume ratio is gradually averaged by lowering the volume ratio. The effect on the side pressure drop is greater. The tank water level change, which is the variation factor of the air volume, is more noticeable on the oxygen side, and compared to the hydrogen side, the oxygen side controls the water level by controlling multiple devices. Is likely to occur. Considering this point, it is ideal that the effect of eliminating the differential pressure against the pressure fluctuation on the oxygen side is high, and this system is suitable for this. Each numerical value given here is a value when the allowable inter-electrode differential pressure is ± 50 kPa. Therefore, if the value increases, the allowable range increases accordingly.

本発明は、例えば燃料電池の燃料として用いられる水素の製造に有用である。   The present invention is useful, for example, for the production of hydrogen used as fuel for fuel cells.

W 純水
1、2 高圧水素製造システム(本発明の実施の形態)
3 高圧水素製造システム(従来技術)
10 セル
11 水素側貯蔵タンク
11a 気層部分
12 酸素側貯蔵タンク
12a 気層部分
13 演算器
14 直流電源装置
15、16、21 配管
20 補給水タンク
22 流量調整弁
23 電磁弁
24 水位計
25 取り出し配管
26 循環ポンプ
30 補給水配管
31 補給水ポンプ
32 流量調整弁
33 電磁弁
34 水位計
35 戻し配管
36 流量調整弁
37 熱交換器
38 イオン交換樹脂
39 フィルター
40 バイパス配管
41 流量調整弁
42 電磁弁
45 気圧計
46 取り出し配管
47 ガス用フィルター
48 調圧弁
49 圧力測定器
50 安全弁
51 リーク配管
52 電磁弁
53 調整弁
54 圧力開放配管
55 水素濃度計
56 調整弁
57 濃度計測配管
60 圧力吸収体
66 取り出し配管
67 ガス用フィルター
68 調圧弁
70安全弁
71 リーク配管
72 電磁弁
73 調整弁
74 圧力開放配管
80 圧力吸収体
81 流路
85 酸素ガス流路
86 調圧弁
W pure water 1, 2 high pressure hydrogen production system (embodiment of the present invention)
3 High-pressure hydrogen production system (prior art)
DESCRIPTION OF SYMBOLS 10 Cell 11 Hydrogen side storage tank 11a Gas layer part 12 Oxygen side storage tank 12a Gas layer part 13 Calculator 14 DC power supply device 15, 16, 21 Pipe 20 Supply water tank 22 Flow control valve 23 Electromagnetic valve 24 Water level gauge 25 Extraction pipe 26 Circulation pump 30 Supply water piping 31 Supply water pump 32 Flow rate adjustment valve 33 Solenoid valve 34 Water level gauge 35 Return piping 36 Flow rate adjustment valve 37 Heat exchanger 38 Ion exchange resin 39 Filter 40 Bypass piping 41 Flow rate adjustment valve 42 Electromagnetic valve 45 Atmospheric pressure Total 46 Extraction piping 47 Gas filter 48 Pressure regulating valve 49 Pressure measuring instrument 50 Safety valve 51 Leak piping 52 Solenoid valve 53 Adjustment valve 54 Pressure release piping 55 Hydrogen concentration meter 56 Adjustment valve 57 Concentration measurement piping 60 Pressure absorber 66 Extraction piping 67 Gas Filter 68 Pressure regulating valve 70 Safety valve 71 Leak pipe 72 Electric Magnetic valve 73 Adjustment valve 74 Pressure release pipe 80 Pressure absorber 81 Flow path 85 Oxygen gas flow path 86 Pressure control valve

Claims (8)

水電解を行うセルと、前記セルで発生した酸素ガスを貯蔵する酸素側貯蔵タンクと、前記セルで発生した水素ガスを貯蔵する水素側貯蔵タンクとを備えた高圧水素製造システムであって、
前記酸素側貯蔵タンク内と前記水素側貯蔵タンク内の気層部分に、所定のガスが封入された密閉容器からなる変形自在な圧力吸収体が設けられていることを特徴とする、高圧水素製造システム。
A high-pressure hydrogen production system comprising a cell that performs water electrolysis, an oxygen-side storage tank that stores oxygen gas generated in the cell, and a hydrogen-side storage tank that stores hydrogen gas generated in the cell,
A high-pressure hydrogen production, characterized in that a deformable pressure absorber comprising a sealed container filled with a predetermined gas is provided in a gas layer portion in the oxygen-side storage tank and in the hydrogen-side storage tank. system.
水電解を行うセルと、前記セルで発生した酸素ガスを貯蔵する酸素側貯蔵タンクと、前記セルで発生した水素ガスを貯蔵する水素側貯蔵タンクとを備えた高圧水素製造システムであって、
前記酸素側貯蔵タンク内と前記水素側貯蔵タンク内に、所定のガスが封入された変形自在な圧力吸収体が設けられ、
前記酸素側貯蔵タンク内に設けられた圧力吸収体と前記水素側貯蔵タンク内に設けられた圧力吸収体とを連通させる流路が設けられていることを特徴とする、高圧水素製造システム。
A high-pressure hydrogen production system comprising a cell that performs water electrolysis, an oxygen-side storage tank that stores oxygen gas generated in the cell, and a hydrogen-side storage tank that stores hydrogen gas generated in the cell,
In the oxygen side storage tank and the hydrogen side storage tank, a deformable pressure absorber filled with a predetermined gas is provided,
A high-pressure hydrogen production system, characterized in that a flow path is provided for communicating a pressure absorber provided in the oxygen-side storage tank and a pressure absorber provided in the hydrogen-side storage tank.
前記酸素側貯蔵タンク内に設けられた圧力吸収体は、常圧無負荷状態において、前記酸素側貯蔵タンク内の気層部分の90%以上の容積を占めることを特徴とする、請求項1または2に記載の高圧水素製造システム。   The pressure absorber provided in the oxygen side storage tank occupies a volume of 90% or more of a gas layer portion in the oxygen side storage tank in a normal pressure no-load state. 2. The high-pressure hydrogen production system according to 2. 前記水素側貯蔵タンク内に設けられた圧力吸収体は、常圧無負荷状態において、前記水素側貯蔵タンク内の気層部分の90%以上の容積を占めることを特徴とする、請求項1〜3のいずれかに記載の高圧水素製造システム。   The pressure absorber provided in the hydrogen side storage tank occupies a volume of 90% or more of a gas layer portion in the hydrogen side storage tank in a normal pressure no-load state. 4. The high-pressure hydrogen production system according to any one of 3. 前記酸素側貯蔵タンク内と前記水素側貯蔵タンク内との差圧が0のときに、前記酸素側貯蔵タンク内に設けられた圧力吸収体の容積に比べて前記水素側貯蔵タンク内に設けられた圧力吸収体の容積が1.6〜2倍であることを特徴とする、請求項1〜4のいずれかに記載の高圧水素製造システム。   When the differential pressure between the oxygen side storage tank and the hydrogen side storage tank is 0, the pressure is provided in the hydrogen side storage tank compared to the volume of the pressure absorber provided in the oxygen side storage tank. The high-pressure hydrogen production system according to claim 1, wherein the pressure absorber has a volume of 1.6 to 2 times. 前記酸素側貯蔵タンク内に設けられた圧力吸収体と前記水素側貯蔵タンク内に設けられた圧力吸収体は金属ベローズまたは高分子膜で形成されることを特徴とする、請求項1〜5のいずれかに記載の高圧水素製造システム。   The pressure absorber provided in the oxygen-side storage tank and the pressure absorber provided in the hydrogen-side storage tank are formed of a metal bellows or a polymer film. The high-pressure hydrogen production system according to any one of the above. 前記酸素側貯蔵タンク内に設けられた圧力吸収体と前記水素側貯蔵タンク内に設けられた圧力吸収体に封入される所定のガスは窒素ガスであることを特徴とする、請求項1〜6のいずれかに記載の高圧水素製造システム。   The predetermined gas sealed in the pressure absorber provided in the oxygen-side storage tank and the pressure absorber provided in the hydrogen-side storage tank is nitrogen gas. The high-pressure hydrogen production system according to any one of the above. 前記酸素側貯蔵タンク内に設けられた圧力吸収体と前記水素側貯蔵タンク内に設けられた圧力吸収体は高分子膜で形成され、
前記酸素側貯蔵タンク内に設けられた圧力吸収体と前記水素側貯蔵タンク内に設けられた圧力吸収体に封入される所定のガスは、前記酸素側貯蔵タンク内の酸素ガスであることを特徴とする、請求項1〜5のいずれかに記載の高圧水素製造システム。
The pressure absorber provided in the oxygen side storage tank and the pressure absorber provided in the hydrogen side storage tank are formed of a polymer film,
The predetermined gas sealed in the pressure absorber provided in the oxygen side storage tank and the pressure absorber provided in the hydrogen side storage tank is oxygen gas in the oxygen side storage tank. The high-pressure hydrogen production system according to any one of claims 1 to 5.
JP2010000391A 2010-01-05 2010-01-05 High pressure hydrogen production system Active JP5428865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000391A JP5428865B2 (en) 2010-01-05 2010-01-05 High pressure hydrogen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010000391A JP5428865B2 (en) 2010-01-05 2010-01-05 High pressure hydrogen production system

Publications (2)

Publication Number Publication Date
JP2011140674A JP2011140674A (en) 2011-07-21
JP5428865B2 true JP5428865B2 (en) 2014-02-26

Family

ID=44456731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010000391A Active JP5428865B2 (en) 2010-01-05 2010-01-05 High pressure hydrogen production system

Country Status (1)

Country Link
JP (1) JP5428865B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5960464B2 (en) * 2012-03-23 2016-08-02 高砂熱学工業株式会社 Charging / discharging system and its operation method
JP6147482B2 (en) * 2012-10-01 2017-06-14 高砂熱学工業株式会社 Charge / discharge system
JP6121826B2 (en) * 2013-07-24 2017-04-26 京セラ株式会社 Electrolyzer
EP3547429A4 (en) * 2016-11-25 2020-07-29 IHI Corporation Regenerative fuel cell system and water electrolysis system
WO2018174281A1 (en) * 2017-03-23 2018-09-27 旭化成株式会社 Water electrolysis system, water electrolysis method and method for producing hydrogen
JP7363419B2 (en) * 2019-11-29 2023-10-18 株式会社豊田中央研究所 water electrolysis system
WO2023021678A1 (en) * 2021-08-20 2023-02-23 日揮グローバル株式会社 Oxygen recovery system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131787A (en) * 1999-10-29 2001-05-15 Shinko Pantec Co Ltd Pressure compensation structure of electrolysis cell
JP4010185B2 (en) * 2002-05-28 2007-11-21 三菱商事株式会社 High pressure hydrogen production method and apparatus
JP2006348328A (en) * 2005-06-14 2006-12-28 Yamatake Corp Electrolytic cell, and gas generation and storage device

Also Published As

Publication number Publication date
JP2011140674A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5428865B2 (en) High pressure hydrogen production system
JP5455874B2 (en) Hydrogen production method and hydrogen production system
JP5622544B2 (en) Hydrogen production cell and hydrogen production apparatus
US7892688B2 (en) Fuel cell system running on high pressure gas and process for controlling the system
US20050183948A1 (en) Apparatus and method for reducing instances of pump de-priming
US20090071819A1 (en) Electrolyzer cell stack system
JP5394458B2 (en) How to stop water electrolysis system
JP2005353569A (en) Fuel cell system
US20120255868A1 (en) Water electrolysis system and method of operating same
JP6610904B2 (en) Fuel cell system and control method thereof
US10170784B2 (en) Regenerative fuel cell system
JP5192004B2 (en) How to stop water electrolysis system
US11214880B2 (en) Water electrolysis system and control method therefor
US8663434B2 (en) Water electrolysis system and method for operating water electrolysis system
US10355292B2 (en) Method of controlling fuel cell system by comparing pressures in fuel gas path
JP4425113B2 (en) Hydrogen supply system and hydrogen supply method
CN111826668B (en) Water electrolysis system and control method thereof
JP2012219276A (en) Water electrolysis system and method for controlling the same
JP2005180545A (en) High-pressure hydrogen producing apparatus
JP5653278B2 (en) How to stop water electrolysis system
JP5200496B2 (en) Fuel cell system
WO2018096713A1 (en) Regenerative fuel cell system and water electrolysis system
JP2011256432A (en) Method of shutting down water electrolysis apparatus
JP2014092185A (en) Fluid supply system
CN113169359B (en) Method for reducing carbon corrosion in a fuel cell stack and motor vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250