JP5428829B2 - Hard coat film for molding - Google Patents
Hard coat film for molding Download PDFInfo
- Publication number
- JP5428829B2 JP5428829B2 JP2009287454A JP2009287454A JP5428829B2 JP 5428829 B2 JP5428829 B2 JP 5428829B2 JP 2009287454 A JP2009287454 A JP 2009287454A JP 2009287454 A JP2009287454 A JP 2009287454A JP 5428829 B2 JP5428829 B2 JP 5428829B2
- Authority
- JP
- Japan
- Prior art keywords
- hard coat
- mass
- molding
- film
- ionizing radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Laminated Bodies (AREA)
Description
本発明は、干渉斑の抑制が良好で、表面硬度、耐擦傷性が優れていて、かつ、成型性にも優れる成型用ハードコートフィルムに関するものである。 The present invention relates to a hard coat film for molding which has good suppression of interference spots, excellent surface hardness and scratch resistance, and excellent moldability.
従来、成型用フィルムとしては、ポリ塩化ビニルフィルムが代表的であり、近年の耐環境性のニーズにより、環境負荷が小さいポリエステル、ポリカーボネートおよびアクリル系樹脂よるなる未延伸フィルム、さらには耐熱性や耐溶剤性に優れた二軸延伸ポリエステルフィルム等が使用されている。(例えば、特許文献1〜10を参照)。 Conventionally, as a film for molding, a polyvinyl chloride film has been representative, and due to recent needs for environmental resistance, unstretched films made of polyester, polycarbonate and acrylic resin, which have a low environmental load, and further heat resistance and resistance. A biaxially stretched polyester film having excellent solvent properties is used. (For example, see Patent Documents 1 to 10).
例えば、家電、自動車の銘板用または建材用部材など、成型用フィルムを外部に触れる位置に装着する場合、キズつき防止のため、成型用フィルムの表面硬度を補い、耐擦傷性を向上させる目的で、表面にハードコート層を設けることが行われる。 For example, when a molding film is attached to a position where it touches the outside, such as a home appliance, a car nameplate or a building material member, in order to prevent scratches, the surface hardness of the molding film is supplemented and the scratch resistance is improved. A hard coat layer is provided on the surface.
成型用フィルムにハードコート層を設ける方法として、圧空成型法や真空成型法等で成型した後、ディッピング方式、スプレー方式等によって後加工し、ハードコート層を積層させる方法が一般的である。しかしながら、前述の方法では枚葉加工でハードコート層を積層させるため、生産速度の向上に限界があるほか、品質の安定性に課題があった。そのため、ハードコート層を成型前のフィルムにロール・トゥ・ロール方式で設けた後、成型を行う方法での成型体が求められるようになった。 As a method for providing a hard coat layer on a molding film, a method is generally employed in which a hard coat layer is laminated after being molded by a pressure forming method, a vacuum forming method, or the like and then post-processed by a dipping method, a spray method or the like. However, in the above-described method, the hard coat layer is laminated by single-wafer processing, so that there is a limit to improvement in production speed and there is a problem in stability of quality. Therefore, after a hard coat layer is provided on a film before molding by a roll-to-roll method, a molded body by a method of molding is required.
成型前にハードコート層を積層させる方式の場合、ハードコート層に求められる特性として、成形後の後加工でハードコート層を設ける方式と同程度の表面硬度、耐擦傷性が必要であるほか、成型時に伴う変形に追随可能な成型性が必須となる。しかしながら、一般的なハードコート樹脂の場合、表面硬度を満足させるために、ハードコート層が硬すぎるため、成型性が無く、成型加工時の変形によりハードコート層にクラック(ハードコート層の割れ)が発生する問題が生じていた。 In the case of a method of laminating a hard coat layer before molding, as the characteristics required for the hard coat layer, surface hardness and scratch resistance comparable to the method of providing a hard coat layer in post-processing after molding are required, Formability that can follow the deformation accompanying molding is essential. However, in the case of a general hard coat resin, since the hard coat layer is too hard to satisfy the surface hardness, there is no moldability and cracks in the hard coat layer due to deformation during molding (cracking of the hard coat layer) There was a problem that occurred.
そこで、硬化後もある程度の表面硬度を有しながらも柔軟性のある樹脂を積層させ、成型性を向上させたハードコートフィルムや、基材上に柔軟性のある層と強い表面硬度がある層を複数積層させることで強い表面硬度と、屈曲性を有するハードコートフィルムが提案されている(特許文献11〜14)。 Therefore, a hard coat film in which a flexible resin is laminated while having a certain degree of surface hardness after curing to improve moldability, and a layer having a flexible surface and a strong surface hardness on the substrate A hard coat film having strong surface hardness and flexibility has been proposed by laminating a plurality of layers (Patent Documents 11 to 14).
加えて、装飾材などの用途では、近年さらなる高級性が求められ、それにともなって特に蛍光灯下での虹彩状色彩(干渉縞)の抑制に対する要求レベルが高くなってきている。また、蛍光灯は昼光色の再現性のため3波長形が主流となってきており、より干渉縞が出やすくなっている。さらに、反射防止層の簡素化によるコストダウン要求も高くなってきている。そのため、ハードコートフィルムのみでも干渉縞をできるだけ抑制することが求められている(特許文献15)。 In addition, in applications such as decorative materials, a higher level of quality has been demanded in recent years, and accordingly, a required level for suppressing iris-like colors (interference fringes) particularly under fluorescent lamps has increased. In addition, fluorescent lamps have become a three-wavelength type for daylight color reproducibility, and interference fringes are more likely to occur. Further, there is an increasing demand for cost reduction by simplifying the antireflection layer. Therefore, it is required to suppress interference fringes as much as possible with only the hard coat film (Patent Document 15).
しかしながら、特許文献11、13で提案されているハードコートフィルムは、適度な表面硬度を有するものの、成型性については屈曲性や打ち抜き加工といった限定的な加工特性しか有さず、特許文献12で提案されるハードコートフィルムは、伸張性は有するものの、表面硬度については満足のいくものではなくかった。また、特許文献14で提案されるハードコートフィルムでは表面硬度と成形性の両立が試みられているものの、より高度な成形性や、より高度な表面硬度が要求される分野においては十分な性能が発揮できない場合もあった。すなわち、上記特許文献は、高い表面硬度と、高い成型性と両方の特性を同時に満足するような成型用ハードコートフィルムを提供するものではなかった。 However, although the hard coat film proposed in Patent Documents 11 and 13 has an appropriate surface hardness, the hard coat film has only limited processing characteristics such as bendability and punching, and is proposed in Patent Document 12. Although the hard coat film has extensibility, the surface hardness was not satisfactory. In addition, although the hard coat film proposed in Patent Document 14 attempts to achieve both surface hardness and formability, it has sufficient performance in fields where higher formability and higher surface hardness are required. In some cases, it could not be demonstrated. That is, the above-mentioned patent document does not provide a hard coat film for molding that satisfies both high surface hardness and high moldability at the same time.
本発明の目的は、上記課題を解決するためになされたものであり、すなわち、成型前に成型用フィルムにハードコート層を加工、積層させることで、生産性、品質の安定性を向上に寄与することができ、かつ、表面硬度、耐擦傷性と成型時の変形に追随可能な成型性の両方を兼ね備え、干渉斑の発生が少ない成型用ハードコートフィルムを提供することにある。 The object of the present invention is to solve the above problems, that is, by processing and laminating a hard coat layer on a molding film before molding, it contributes to improving productivity and stability of quality. Another object of the present invention is to provide a hard coat film for molding which has both surface hardness, scratch resistance and moldability capable of following deformation at the time of molding, and has less interference spots.
本発明者らは上記の課題を解決するため、鋭意研究した結果、ついに本発明を完成するに到った。即ち、本発明は、以下の通りである。 As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
第1の発明は、少なくとも基材フィルム、中間層、ハードコート層の順で積層された成型用ハードコートフィルムであって、基材フィルムが共重合ポリエステルを含む二軸配向ポリエステルフィルムであり、中間層が水性ポリエステル樹脂(A)と、水溶性のチタンキレート化合物、水溶性のチタンアシレート化合物、水溶性のジルコニウムキレート化合物、または水溶性のジルコニウムアシレート化合物の少なくとも1種(B)とを主たる構成成分とし、(A)/(B)の混合比(質量比)が10/90〜95/5である樹脂組成物を含む水系塗布液を塗布、乾燥したものであり、ハードコート層は、基材フィルムの中間層面に塗布液を塗布硬化させてなり、前記塗布液が、3以上の官能基を有する電離放射線硬化型化合物と、1および/または2官能の電離放射線硬化型化合物とを少なくとも含み、前記塗布液に含まれる電離放射線硬化型化合物中の1および/または2官能の電離放射線硬化型化合物の含有量が5質量%以上95質量%以下であり、前記塗布液に含まれる電離放射線硬化型化合物の少なくとも1種がアミノ基を有する電離放射線硬化型化合物である成型用ハードコートフィルムである。
第2の発明は、前記ハードコート層中に平均粒子径10nm以上300nm以下の粒子を含み、前記粒子のハードコート層中の含有量が5質量%以上70質量%以下である前記成型用ハードコートフィルムである。
第3の発明は、前記ハードコート層中に電離放射線硬化型シリコーン樹脂を含み、前記電離放射線硬化型シリコーン樹脂のハードコート層中の含有量が前記電離放射線硬化型化合物100質量部に対して0.15質量部以上15質量部以下である前記成型用ハードコートフィルムである。
第4の発明は、前記の水性ポリエステル樹脂(A)がスルホン酸金属塩基を含有する芳香族ジカルボン酸成分をポリエステルの全ジカルボン酸成分に対し1〜10モル%含有する共重合ポリエステル樹脂である前記成型用ハードコートフィルムである。
第5の発明は、前記の水性ポリエステル樹脂(A)のガラス転移温度が40℃以上である前記成型用ハードコートフィルムである。
第6の発明は、前記成型用ハードコートフィルムを成型してなる成型体である。
1st invention is the hard-coat film for a shaping | molding laminated | stacked in order of the base film, the intermediate | middle layer, and the hard-coat layer, Comprising: A base film is a biaxially-oriented polyester film containing copolyester, The layer mainly comprises an aqueous polyester resin (A) and at least one of a water-soluble titanium chelate compound, a water-soluble titanium acylate compound, a water-soluble zirconium chelate compound, or a water-soluble zirconium acylate compound (B). As a constituent component, an aqueous coating solution containing a resin composition having a mixing ratio (mass ratio) of (A) / (B) of 10/90 to 95/5 is applied and dried. A coating liquid is applied and cured on the intermediate layer surface of the base film, and the coating liquid comprises an ionizing radiation curable compound having three or more functional groups, 1 and / or Or a bifunctional ionizing radiation curable compound, and the content of the mono- and / or bifunctional ionizing radiation curable compound in the ionizing radiation curable compound contained in the coating solution is 5% by mass or more and 95% by mass. % Ri der less, at least one ionizing radiation-curable compound contained in the coating liquid is a molding for a hard coat film is ionizing radiation-curable compound having an amino group.
2nd invention contains the particle | grains with an average particle diameter of 10 nm or more and 300 nm or less in the said hard-coat layer, The content in the hard-coat layer of the said particle | grain is 5 mass% or more and 70 mass% or less. It is a film.
In a third aspect of the invention, the hard coat layer contains an ionizing radiation curable silicone resin, and the content of the ionizing radiation curable silicone resin in the hard coat layer is 0 with respect to 100 parts by mass of the ionizing radiation curable compound. .. The hard coat film for molding that is 15 parts by mass or more and 15 parts by mass or less.
4th invention is the said copolyester resin in which the said water-based polyester resin (A) contains 1-10 mol% of aromatic dicarboxylic acid components containing a sulfonic-acid metal base with respect to all the dicarboxylic acid components of polyester. It is a hard coat film for molding.
5th invention is the said hard-coat film for shaping | molding whose glass transition temperature of the said water-based polyester resin (A) is 40 degreeC or more.
6th invention is a molded object formed by shape | molding the said hard-coat film for a shaping | molding.
本発明の成型用ハードコートフィルムは、蛍光灯下での虹彩状色彩が少なく、表面硬度、耐擦傷性と成型時の変形に追随可能な成型性の両方の特性を有する。本発明は、視認性に優れ、高い表面硬度と、優れた伸張性を備える為、好ましい実施態様として、例えば銘板用または建材用の部材などに好適に使用しうる。また、本発明の好ましい実施態様として、アミノ基を有する電離放射線硬化樹脂もしくは/および粒子を用いる場合は、表面硬度と成型性の両方の特性をより高度に両立でき、例えば筐体などの部材として好適に使用しうる。さらに、本発明は成型後のハードコート加工が不要であり、成型加工の製造面で生産性、品質の安定性に寄与することができ、本願発明の好ましい実施態様として成型用フィルムロールとして用いる場合は成型体の品質の安定性に優れる。 The hard coat film for molding according to the present invention has few iris colors under a fluorescent lamp, and has both characteristics of surface hardness, scratch resistance and moldability that can follow deformation during molding. Since the present invention has excellent visibility, high surface hardness, and excellent extensibility, it can be suitably used as, for example, a nameplate member or a building material member as a preferred embodiment. Further, as a preferred embodiment of the present invention, when an ionizing radiation curable resin or / and particles having an amino group are used, both characteristics of surface hardness and moldability can be achieved at a higher level. For example, as a member such as a housing It can be preferably used. Furthermore, the present invention does not require a hard coat process after molding, can contribute to productivity and stability of quality in the manufacturing process of the molding process, and is used as a film roll for molding as a preferred embodiment of the present invention. Is excellent in the quality stability of the molded body.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
(基材フィルム)
本発明において、基材フィルムとしては、低い温度や低い圧力下での加熱成型時の成型性に優れた共重合ポリエステルを含むポリエステルフィルムを用いる。ここで成型性とは、金型成型や圧空成型、真空成型などの成型加工により成型体を形成しうることをいう。具体的には成型によって局部的に伸長された部分において、部分的に高い応力が発生した際にも基材フィルムの破断なく成型体を形成可能なフィルム応力特性を有するものである。
(Base film)
In the present invention, as the base film, a polyester film containing a copolymerized polyester excellent in moldability at the time of heat molding at a low temperature or low pressure is used. Here, moldability means that a molded body can be formed by a molding process such as mold molding, pressure molding, or vacuum molding. Specifically, it has a film stress characteristic that can form a molded body without breaking the base film even when a high stress is partially generated in a portion that is locally elongated by molding.
共重合ポリエステルとしては、(a)芳香族ジカルボン酸成分と、エチレングリコールと、分岐状脂肪族グリコール又は脂環族グリコールを含むグリコール成分から構成される共重合ポリエステル、あるいは(b)テレフタル酸及びイソフタル酸を含む芳香族ジカルボン酸成分と、エチレングリコールを含むグリコール成分から構成される共重合ポリエステルが好適である。 Examples of the copolyester include (a) a copolyester composed of an aromatic dicarboxylic acid component, ethylene glycol, and a glycol component containing a branched aliphatic glycol or alicyclic glycol, or (b) terephthalic acid and isophthalic acid. A copolyester composed of an aromatic dicarboxylic acid component containing an acid and a glycol component containing ethylene glycol is preferred.
前記の共重合ポリエステルとして、芳香族ジカルボン酸成分と、エチレングリコールと、分岐状脂肪族グリコール又は脂環族グリコールを含むグリコール成分から構成される共重合ポリエステルを用いる場合、芳香族ジカルボン酸成分としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸又はそれらのエステル形成性誘導体が好適であり、全ジカルボン酸成分に対するテレフタル酸および/またはナフタレンジカルボン酸成分の量は70モル%以上、好ましくは85モル%以上、特に好ましくは95モル%以上、とりわけ好ましくは100モル%である。 When using a copolymer polyester composed of an aromatic dicarboxylic acid component, ethylene glycol, and a glycol component containing a branched aliphatic glycol or alicyclic glycol as the copolymer polyester, the aromatic dicarboxylic acid component is Terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid or ester-forming derivatives thereof are suitable, and the amount of terephthalic acid and / or naphthalenedicarboxylic acid component relative to the total dicarboxylic acid component is 70 mol% or more, preferably 85 mol% or more. Particularly preferred is 95 mol% or more, and particularly preferred is 100 mol%.
本発明において、共重合ポリエステルを含むポリエステルフィルムは、フィルムの構成成分として共重合ポリエステル成分を含むものであり、具体的な態様として以下のようなものが例示される。(1)基材フィルムがすべて共重合ポリエステルからなるもの、(2)基材フィルムの構成成分の一部として共重合ポリエステルを含むもの(例えば、共重合ポリエステルと、ポリエチレンテレフタレートやポリエチレンナフタレートなどの他の(ホモ)ポリエステルとを混合した樹脂組成物からなるもの)、(3)基材フィルムが、共重合ポリエステルを含むポリエステル層と共重合ポリエステルを含まないポリエステル層との多層からなるもの。 In the present invention, the polyester film containing the copolymerized polyester includes a copolymerized polyester component as a component of the film, and specific examples thereof include the following. (1) The base film consists entirely of a copolymerized polyester, (2) the base film contains a copolymerized polyester as part of the constituent components (for example, a copolymerized polyester, polyethylene terephthalate, polyethylene naphthalate, etc. (Consisting of a resin composition mixed with another (homo) polyester), (3) a base film comprising a multilayer of a polyester layer containing a copolymerized polyester and a polyester layer not containing the copolymerized polyester.
前記基材フィルムは、耐熱性や耐溶剤性等の点から、二軸延伸フィルムが特に好ましい。延伸方法としては、チューブラ延伸法、同時二軸延伸法、逐次二軸延伸法等が挙げられるが、平面性、寸法安定性、厚みムラ等から逐次二軸延伸法が好ましい。例えば基材フィルムとしてポリエステルフィルムを用いる場合の逐次二軸延伸法としては、長手方向に50℃以上110℃以下で、1.6倍以上4.0倍に長手方向にロール延伸し、引き続き、テンターで予熱後、ポリエステルのガラス転移温度−40℃以上+65℃以下で1.2倍以上5.0倍以下に幅方向に延伸することができる。さらに、二軸延伸後にポリエステルの融点の−40℃以上−10℃以下の温度で熱固定処理を行うことができる。 The base film is particularly preferably a biaxially stretched film from the viewpoints of heat resistance and solvent resistance. Examples of the stretching method include a tubular stretching method, a simultaneous biaxial stretching method, a sequential biaxial stretching method, and the like, but a sequential biaxial stretching method is preferable in view of flatness, dimensional stability, thickness unevenness, and the like. For example, as a sequential biaxial stretching method in the case of using a polyester film as a base film, the film is stretched in the longitudinal direction from 50 ° C. to 110 ° C. in the longitudinal direction and from 1.6 times to 4.0 times in the longitudinal direction. After preheating, it can be stretched in the width direction from 1.2 times to 5.0 times at a glass transition temperature of -40 ° C to + 65 ° C. Furthermore, after the biaxial stretching, a heat setting treatment can be performed at a temperature of −40 ° C. or more and −10 ° C. or less of the melting point of the polyester.
本発明で用いる基材フィルムは、ハンドリング性(例えば、積層後の巻取り性)を付与するために、フィルムに粒子を含有させてフィルム表面に突起を形成させることが好ましい。フィルムに含有させる粒子としては、シリカ、カオリナイト、タルク、炭酸カルシウム、ゼオライト、アルミナ、等の無機粒子、アクリル、PMMA、ナイロン、ポリスチレン、ポリエステル、ベンゾグアナミン・ホルマリン縮合物、等の耐熱性高分子粒子が挙げられる。透明性の点から、フィルム中の粒子の含有量は少ないことが好ましく、例えば1ppm以上1000ppm以下であることが好ましい。さらに、透明性の点から使用する樹脂と屈折率の近い粒子を選択することが好ましい。また、フィルムには必要に応じて各種機能を付与するために、耐光剤(紫外線防止剤)、色素、帯電防止剤などを含有させてもよい。 In order for the base film used by this invention to provide handling property (for example, winding property after lamination | stacking), it is preferable to make a film contain particle | grains and to form a processus | protrusion on the film surface. As particles to be included in the film, inorganic particles such as silica, kaolinite, talc, calcium carbonate, zeolite, alumina, etc., heat resistant polymer particles such as acrylic, PMMA, nylon, polystyrene, polyester, benzoguanamine / formalin condensate, etc. Is mentioned. From the viewpoint of transparency, the content of particles in the film is preferably small, for example, preferably 1 ppm or more and 1000 ppm or less. Furthermore, it is preferable to select particles having a refractive index close to that of the resin used from the viewpoint of transparency. Moreover, in order to provide various functions as needed, the film may contain a light-resistant agent (ultraviolet ray inhibitor), a pigment, an antistatic agent, and the like.
成型用ハードコートフィルムを、例えばハードコート層を積層しない面に印刷加工を施す場合は、基材フィルムの全光線透過率が80%以上で、かつヘーズが5%以下であることが好ましい。基材フィルムの透明性に劣る場合には、印刷層をハードコート層側から見た際の視認性が低下する。 When the hard coat film for molding is printed, for example, on the surface where the hard coat layer is not laminated, it is preferable that the total light transmittance of the base film is 80% or more and the haze is 5% or less. When the transparency of the substrate film is inferior, the visibility when the printed layer is viewed from the hard coat layer side is lowered.
本発明で用いる基材フィルムは、単層フィルムであっても、表層と中心層を積層した2層以上の複合フィルムであっても構わない。複合フィルムの場合、表層と中心層の機能を独立して設計することができる利点がある。例えば、厚みの薄い表層にのみ粒子を含有させて表面に凹凸を形成することでハンドリング性を維持しながら、厚みの厚い中心層には粒子を実質上含有させないことで、複合フィルム全体として透明性をさらに向上させることができる。前記の複合フィルムの製造方法は特に限定されるものではないが、生産性を考慮すると、表層と中心層の原料を別々の押出機から押出し、1つのダイスに導き未延伸シートを得た後、少なくとも1軸方向に配向させる、いわゆる共押出法による積層が好ましい。 The base film used in the present invention may be a single layer film or a composite film having two or more layers in which a surface layer and a center layer are laminated. In the case of a composite film, there is an advantage that the functions of the surface layer and the center layer can be designed independently. For example, by containing particles only on the thin surface layer and forming irregularities on the surface, the handling property is maintained, but the thick central layer does not substantially contain particles, so that the composite film as a whole is transparent. Can be further improved. The method for producing the composite film is not particularly limited, but considering productivity, after extruding the raw material of the surface layer and the central layer from separate extruders, leading to one die and obtaining an unstretched sheet, Lamination by a so-called coextrusion method that is oriented in at least one axial direction is preferable.
本発明で用いる基材フィルムの厚みは、下限は35μm以上が好ましく、より好ましくは50μm以上である。一方、厚みの上限は260μm以下が好ましく、より好ましくは200μm以下である。厚みが薄い場合には、ハンドリング性が不良となるばかりか、ハードコート層の残留溶媒を少なくなるように乾燥時に加熱した場合に、フィルムに熱シワが発生して平面性が不良となりやすい。一方、厚みが厚い場合にはコスト面で問題があるだけでなく、ロール状に巻き取って保存した場合に巻き癖による平面性不良が発生しやすくなる。 The lower limit of the thickness of the substrate film used in the present invention is preferably 35 μm or more, more preferably 50 μm or more. On the other hand, the upper limit of the thickness is preferably 260 μm or less, more preferably 200 μm or less. When the thickness is small, not only the handling property becomes poor, but also when heated at the time of drying so as to reduce the residual solvent of the hard coat layer, the film tends to be wrinkled and flatness tends to be poor. On the other hand, when the thickness is large, not only is there a problem in terms of cost, but flatness due to curling tends to occur when the material is wound and stored in a roll shape.
(中間層)
本発明の成型用ハードコートフィルムは、中間層が水性ポリエステル樹脂(A)と、水溶性のチタンキレート化合物、水溶性のチタンアシレート化合物、水溶性のジルコニウムキレート化合物、または水溶性のジルコニウムアシレート化合物の少なくとも1種(B)とを主たる構成成分とし、(A)/(B)の混合比(質量比)が10/90〜95/5である樹脂組成物からなる。
(Middle layer)
In the hard coat film for molding of the present invention, the intermediate layer has an aqueous polyester resin (A) and a water-soluble titanium chelate compound, a water-soluble titanium acylate compound, a water-soluble zirconium chelate compound, or a water-soluble zirconium acylate. It consists of a resin composition in which at least one compound (B) is a main constituent and the mixing ratio (mass ratio) of (A) / (B) is 10/90 to 95/5.
本発明では、上記中間層を用いることで、基材のポリエステルフィルムと中間層との屈折率差、中間層とハードコート層の屈折率差をそれぞれ小さくなるように、中間層を構成する樹脂と添加剤の種類と含有量で中間層の屈折率を制御することができ、ハードコート層との密着性、及び高温高湿下での密着性(耐湿熱性)を維持しながら、蛍光灯下での虹彩状色彩を抑制できる。 In the present invention, by using the intermediate layer, a resin constituting the intermediate layer so that the refractive index difference between the polyester film of the base material and the intermediate layer and the refractive index difference between the intermediate layer and the hard coat layer are reduced. The refractive index of the intermediate layer can be controlled by the type and content of the additive, while maintaining the adhesion with the hard coat layer and the adhesion under high temperature and high humidity (humidity heat resistance) The iris color can be suppressed.
この樹脂組成物は基材フィルムの延伸工程中の熱で加熱することにより、チタンキレート化合物、チタンアシレート化合物、ジルコニウムキレート化合物、またはジルコニウムアシレート化合物の少なくとも1種(B)が、ポリエステル樹脂との架橋反応により均一な膜を生成する。すなわち、前記の金属キレート化合物または金属アシレート化合物は加熱処理することにより分解するため、中間層中には水系塗布液に添加した状態では存在しない。 This resin composition is heated with heat during the stretching process of the base film, so that at least one of a titanium chelate compound, a titanium acylate compound, a zirconium chelate compound, or a zirconium acylate compound (B) is a polyester resin. A uniform film is formed by the crosslinking reaction. That is, since the metal chelate compound or metal acylate compound is decomposed by heat treatment, it does not exist in the intermediate layer in a state of being added to the aqueous coating solution.
そこで、熱処理後の中間層中の金属元素(TiまたはZr)の含有量から、水系塗布液中の金属キレート化合物または金属アシレート化合物の含有量は、以下のように算出する。
(1)まず、中間層中のキレートまたはアシレートの残渣から水系塗布液中に含有させたキレートまたはアシレートの種類を同定する。
(2)次いで、中間層中の金属元素(TiまたはZr)の含有量から、水系塗布液中の前記の金属キレート化合物または金属アシレート化合物の含有量を算出する。
Therefore, the content of the metal chelate compound or metal acylate compound in the aqueous coating solution is calculated from the content of the metal element (Ti or Zr) in the intermediate layer after the heat treatment as follows.
(1) First, the type of chelate or acylate contained in the aqueous coating solution is identified from the chelate or acylate residue in the intermediate layer.
(2) Next, the content of the metal chelate compound or metal acylate compound in the aqueous coating solution is calculated from the content of the metal element (Ti or Zr) in the intermediate layer.
中間層の屈折率は、チタンキレート化合物、チタンアシレート化合物、ジルコニウムキレート化合物、またはジルコニウムアシレート化合物の少なくとも1種(B)の組成比を大きくすることにより、ポリエステル樹脂(A)単独の場合よりも高くすることができる。 The refractive index of the intermediate layer is higher than that of the polyester resin (A) alone by increasing the composition ratio of at least one of the titanium chelate compound, titanium acylate compound, zirconium chelate compound, or zirconium acylate compound (B). Can also be high.
本発明で使用するポリエステル樹脂(A)は、その分子鎖に水酸基やカルボキシル基等の活性部位を導入してもよいが、特に導入しなくとも高温でエステル結合部位が可逆反応を起こすため、任意の場所で架橋反応が起こり、結果として緻密な膜が得られる。 In the polyester resin (A) used in the present invention, an active site such as a hydroxyl group or a carboxyl group may be introduced into the molecular chain. A cross-linking reaction takes place in this place, resulting in a dense film.
また、アクリル樹脂で同様な架橋性を持たせるためには、架橋性官能基を導入する必要がある。しかしながら、アクリル樹脂自体の屈折率が低いために、チタンキレート化合物、チタンアシレート化合物、ジルコニウムキレート化合物、またはジルコニウムアシレート化合物を併用しても、本発明の中間層と同様な屈折率に制御することは困難である。 Moreover, in order to give the same crosslinkability with an acrylic resin, it is necessary to introduce a crosslinkable functional group. However, since the refractive index of the acrylic resin itself is low, even when a titanium chelate compound, a titanium acylate compound, a zirconium chelate compound, or a zirconium acylate compound is used in combination, the refractive index is controlled to be the same as that of the intermediate layer of the present invention. It is difficult.
さらに、中間層の構成成分であるポリエステル樹脂(A)は基材ポリエステルフィルムとの密着性に関与するため、水性ポリエステル樹脂(A)と前記化合物(B)との組成比(A/B)が10/90未満の場合、基材フィルムとの密着性が低下し、かつ中間層としての延伸性が低下し、延伸時に均一にならない。そのため、光学用として必要な透明性が低下し、易接着層の上に形成させるハードコート層との密着性が問題となる。一方、水性ポリエステル樹脂(A)と前記化合物(B)との組成比(A/B)が95/5を越える場合、水溶性のチタンアシレート化合物、水溶性のジルコニウムキレート化合物、または水溶性のジルコニウムアシレート化合物(B)による架橋が乏しくなるとともに、屈折率も低下する。そのため、高温高湿下での密着性(耐湿熱性)が低下し、かつ蛍光灯下での虹彩状色彩の抑制効果が不十分となる。 Furthermore, since the polyester resin (A), which is a constituent component of the intermediate layer, is involved in adhesion to the base polyester film, the composition ratio (A / B) of the aqueous polyester resin (A) and the compound (B) is When the ratio is less than 10/90, the adhesion to the base film is lowered, and the stretchability as an intermediate layer is lowered, and it is not uniform during stretching. Therefore, the transparency required for optical use decreases, and the adhesion with the hard coat layer formed on the easy-adhesion layer becomes a problem. On the other hand, when the composition ratio (A / B) between the aqueous polyester resin (A) and the compound (B) exceeds 95/5, a water-soluble titanium acylate compound, a water-soluble zirconium chelate compound, or a water-soluble Crosslinking by the zirconium acylate compound (B) becomes poor, and the refractive index also decreases. For this reason, the adhesion (humidity and heat resistance) under high temperature and high humidity is lowered, and the effect of suppressing iris-like colors under a fluorescent lamp is insufficient.
本発明の水性ポリエステル樹脂(A)とは、水、または水溶性の有機溶剤(例えば、アルコール、アルキルセロソルブ、ケトン系、エーテル系を50質量%未満含む水溶液)、に対して溶解または分散することが可能なポリエステル樹脂を意味する。ポリエステル樹脂に水性を付与するためには、水酸基、カルボキシル基、スルホン酸基、リン酸基、エーテル基等の親水性基をポリエステル樹脂の分子鎖に導入することが重要である。前記の親水性基のなかでも、塗膜物性及び密着性の点からスルホン酸基が好ましい。 The aqueous polyester resin (A) of the present invention is dissolved or dispersed in water or a water-soluble organic solvent (for example, an aqueous solution containing less than 50% by mass of alcohol, alkyl cellosolve, ketone, or ether). Means a polyester resin capable of In order to impart water resistance to the polyester resin, it is important to introduce a hydrophilic group such as a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, or an ether group into the molecular chain of the polyester resin. Among the hydrophilic groups, sulfonic acid groups are preferable from the viewpoint of coating film properties and adhesion.
スルホン酸基をポリエステルに導入する場合、スルホン酸化合物は、ポリエステルの全酸成分中のうち、1〜10モル%とすることがより好ましい。スルホン酸基量が1モル%未満の場合、ポリエステル樹脂が水性を示さなくなり、水溶性のチタンキレート化合物、水溶性のチタンアシレート化合物、水溶性のジルコニウムキレート化合物、または水溶性のジルコニウムアシレート化合物の少なくとも1種(B)との相溶性も低下するため、均一かつ透明な中間層が得られにくくなる。また、スルホン酸基量が10モル%を超える場合には、高温高湿下での密着性(耐湿熱性)に劣りやすくなる。 When the sulfonic acid group is introduced into the polyester, the sulfonic acid compound is more preferably 1 to 10 mol% in the total acid component of the polyester. When the amount of the sulfonic acid group is less than 1 mol%, the polyester resin does not exhibit water, and a water-soluble titanium chelate compound, a water-soluble titanium acylate compound, a water-soluble zirconium chelate compound, or a water-soluble zirconium acylate compound Since the compatibility with at least one of (B) also decreases, it becomes difficult to obtain a uniform and transparent intermediate layer. Moreover, when the amount of sulfonic acid group exceeds 10 mol%, it becomes easy to be inferior to the adhesiveness (humidity heat resistance) under high temperature and high humidity.
さらに、前記の水性ポリエステル樹脂(A)は、ガラス転移温度が40℃以上であることが好ましい。そのため、ポリエステル樹脂(A)の酸成分としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族系を主成分とすることが好ましい。また、グリコール成分としては、エチレングリコール、プロパングリコール、1,4−ブタンジオール、ネオペンチルグリコール等の比較的炭素数の少ないグリコール、またはビスフェノールAのエチレンオキサイド付加物等の芳香族系が好ましい。また、ポリエステル樹脂(A)の原料として、ビフェニル等の剛直な成分、または臭素、イオウ等の屈折率の高い原子を有するジカルボン酸成分またはジオール成分をフィルムの物性が低下しない範囲で使用してもよい。ポリエステル樹脂(A)のガラス転移温度が40℃未満であると、高温高湿下での密着性(耐湿熱性)が不十分となりやすくなる。さらに、ポリエステル樹脂(A)の屈折率も低下するために中間層の屈折率も低下する。その結果、蛍光灯下での虹彩状色彩の抑制が不十分となりやすくなる。 Further, the aqueous polyester resin (A) preferably has a glass transition temperature of 40 ° C. or higher. For this reason, the acid component of the polyester resin (A) is preferably composed mainly of an aromatic group such as terephthalic acid, isophthalic acid, or naphthalenedicarboxylic acid. The glycol component is preferably a glycol having a relatively small carbon number such as ethylene glycol, propane glycol, 1,4-butanediol, or neopentyl glycol, or an aromatic system such as an ethylene oxide adduct of bisphenol A. Further, as a raw material of the polyester resin (A), a rigid component such as biphenyl or a dicarboxylic acid component or diol component having a high refractive index atom such as bromine or sulfur may be used within a range in which the physical properties of the film do not deteriorate. Good. When the glass transition temperature of the polyester resin (A) is less than 40 ° C., the adhesiveness (humidity heat resistance) under high temperature and high humidity tends to be insufficient. Furthermore, since the refractive index of the polyester resin (A) also decreases, the refractive index of the intermediate layer also decreases. As a result, the suppression of iris color under fluorescent lamps tends to be insufficient.
中間層の他の主成分は、水溶性のチタンキレート化合物、水溶性のチタンアシレート化合物、水溶性のジルコニウムキレート化合物、または水溶性のジルコニウムアシレート化合物の少なくとも1種(B)である。前記の水溶性とは、水、または水溶性の有機溶剤を50質量%未満含む水溶液、に対して溶解することを意味する。 The other main component of the intermediate layer is at least one (B) of a water-soluble titanium chelate compound, a water-soluble titanium acylate compound, a water-soluble zirconium chelate compound, or a water-soluble zirconium acylate compound. The above water-soluble means to dissolve in water or an aqueous solution containing less than 50% by mass of a water-soluble organic solvent.
水溶性のチタンキレート化合物としては、ジイソプロポキシビス(アセチルアセトナト)チタン、イソプロポキシ(2−エチル−1,3−ヘキサンジオラト)チタン、ジイソプロポキシビス(トリエタノールアミナト)チタン、ジ−n−ブトキシビス(トリエタノールアミナト)チタン、ヒドロキシビス(ラクタト)チタン、ヒドロキシビス(ラクタト)チタンのアンモニウム塩、チタンベロキソクエン酸アンモニウム塩等が挙げられる。 Examples of water-soluble titanium chelate compounds include diisopropoxybis (acetylacetonato) titanium, isopropoxy (2-ethyl-1,3-hexanediolato) titanium, diisopropoxybis (triethanolaminato) titanium, di -N-butoxybis (triethanolaminato) titanium, hydroxybis (lactato) titanium, ammonium salt of hydroxybis (lactato) titanium, titanium beloxocitrate ammonium salt and the like.
また、水溶性のチタンアシレート化合物としては、オキソチタンビス(モノアンモニウムオキサレート)等が、また水溶性のジルコニウム化合物としては、ジルコニウムテトラアセチルアセトナート、ジルコニウムアセテート等が挙げられる。 Examples of the water-soluble titanium acylate compound include oxotitanium bis (monoammonium oxalate), and examples of the water-soluble zirconium compound include zirconium tetraacetylacetonate and zirconium acetate.
前記の中間層には、前記の主成分以外の樹脂、例えばアクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、アルキッド樹脂、ポリビニルアルコールなどのビニル樹脂、を本発明の効果に影響を与えない範囲で併用してもかまわない。また、架橋剤の併用も本発明の効果に影響を与えない範囲で特に限定されない。使用できる架橋剤としては、尿素、メラミン、ベンゾグアナミンなどとホルムアルデヒドとの付加物、これらの付加物と炭素原子数が1〜6のアルコールからなるアルキルエーテル化合物などのアミノ樹脂、多官能性エポキシ化合物、多官能性イソシアネート化合物、ブロックイソシアネート化合物、多官能性アジリジン化合物、オキサゾリン化合物、などが挙げられる。 In the intermediate layer, a resin other than the main component, for example, an acrylic resin, a polyurethane resin, a polyester resin, an alkyd resin, a vinyl resin such as polyvinyl alcohol, or the like is used in a range that does not affect the effects of the present invention. It doesn't matter. Further, the combined use of the crosslinking agent is not particularly limited as long as the effect of the present invention is not affected. Examples of crosslinking agents that can be used include adducts of urea, melamine, benzoguanamine, and the like with formaldehyde, amino resins such as alkyl ether compounds composed of these adducts and alcohols having 1 to 6 carbon atoms, polyfunctional epoxy compounds, Examples thereof include a polyfunctional isocyanate compound, a blocked isocyanate compound, a polyfunctional aziridine compound, and an oxazoline compound.
本発明において、中間層形成のために使用する水系塗布液は、水性ポリエステル樹脂(A)と、水溶性のチタンキレート化合物、水溶性のチタンアシレート化合物、水溶性のジルコニウムキレート化合物、または水溶性のジルコニウムアシレート化合物の少なくとも1種(B)と、水系溶剤から主としてなる水系塗布液である。上記水系塗布液をポリエステルフィルム表面に塗布する際には、フィルムへの濡れ性を向上させ、水系塗布液を均一にコートするために、公知のアニオン系界面活性剤やノニオン系界面活性剤を適量添加することが好ましい。 In the present invention, the aqueous coating solution used for forming the intermediate layer includes an aqueous polyester resin (A), a water-soluble titanium chelate compound, a water-soluble titanium acylate compound, a water-soluble zirconium chelate compound, or a water-soluble An aqueous coating solution mainly composed of at least one (B) zirconium acylate compound and an aqueous solvent. When applying the aqueous coating solution to the surface of the polyester film, an appropriate amount of a known anionic surfactant or nonionic surfactant is used in order to improve the wettability to the film and coat the aqueous coating solution uniformly. It is preferable to add.
また、水系塗布液中には、ハンドリング性、帯電防止性、抗菌性など、他の機能性をフィルムに付与するために、無機及び/または耐熱性高分子粒子、帯電防止剤、紫外線吸収剤、有機潤滑剤、抗菌剤、光酸化触媒などの添加剤を含有させることができる。 In addition, in the aqueous coating solution, inorganic and / or heat-resistant polymer particles, antistatic agents, ultraviolet absorbers, etc. in order to impart other functions such as handling properties, antistatic properties and antibacterial properties to the film. Additives such as organic lubricants, antibacterial agents, and photo-oxidation catalysts can be included.
水系塗布液に用いる溶剤は、水以外にエタノール、イソプロピルアルコール、ベンジルアルコールなどのアルコール類を、全水系塗布液に対し50質量%未満の範囲で混合しても良い。さらに、10質量%未満であれば、アルコール類以外の有機溶剤を溶解可能な範囲で混合してもよい。但し、水系塗布液中のアルコール類とその他の有機溶剤との合計量は、50質量%未満とすることが好ましい。 As the solvent used in the aqueous coating solution, in addition to water, alcohols such as ethanol, isopropyl alcohol, and benzyl alcohol may be mixed in a range of less than 50% by mass with respect to the total aqueous coating solution. Furthermore, if it is less than 10 mass%, you may mix in the range which can melt | dissolve organic solvents other than alcohol. However, the total amount of alcohols and other organic solvents in the aqueous coating solution is preferably less than 50% by mass.
(ハードコート層)
本発明の成型用ハードコートフィルムは、基材フィルムの少なくとも片面に中間層を介してハードコート層が積層される。本発明においてハードコート層とは、基材フィルムからなる基材の表面硬度を補い、耐擦傷性を向上せしめるべく、基材よりも高硬度な被膜を有し、かつ、成型時の変形にも追随可能な優れた成型性を有する層を示す。より具体的には、本願発明の成型用ハードコートフィルムは表面硬度として少なくともH以上の鉛筆硬度を有し、かつ後述の評価法により少なくとも10%以上の伸度を有し、例えば家電などの銘板用または建材用の部材などとして好適に用いることができるものである。
(Hard coat layer)
In the hard coat film for molding of the present invention, a hard coat layer is laminated on at least one surface of a base film via an intermediate layer. In the present invention, the hard coat layer has a coating with a hardness higher than that of the base material in order to supplement the surface hardness of the base material made of the base film and improve the scratch resistance, and also to deformation during molding. The layer which has the outstanding moldability which can be followed is shown. More specifically, the hard coat film for molding of the present invention has a pencil hardness of at least H as the surface hardness, and an elongation of at least 10% according to the evaluation method described below. It can be suitably used as a member for use or for building materials.
本発明で使用可能なハードコート層は、電離放射線硬化型樹脂を主成分とすることが必要である。熱硬化型樹脂のように硬化時に加熱処理することを要せず、熱による基材フィルムの熱収縮を少なくすることができ好適である。本発明で電離放射線硬化型化合物とは、電子線、放射線、紫外線のいずれかを照射することによって重合、および/または反応する化合物のことを指し、かかる化合物が重合、および/または反応することによりハードコート層を構成する。本発明で用いられる電離放射線硬化型化合物としては、メラミン系、アクリル系、シリコン系の電離放射線硬化型化合物が挙げられるが、なかでも高い表面硬度を得る点でアクリレート系電離放射線硬化型化合物が好ましい。 The hard coat layer that can be used in the present invention needs to contain an ionizing radiation curable resin as a main component. Unlike the thermosetting resin, heat treatment at the time of curing is not required, and heat shrinkage of the base film due to heat can be reduced, which is preferable. In the present invention, the ionizing radiation curable compound refers to a compound that polymerizes and / or reacts when irradiated with an electron beam, radiation, or ultraviolet light, and the compound reacts and / or reacts. A hard coat layer is formed. Examples of the ionizing radiation curable compound used in the present invention include melamine-based, acrylic and silicon-based ionizing radiation curable compounds. Among them, acrylate-based ionizing radiation curable compounds are preferable in terms of obtaining high surface hardness. .
なお、本発明で電離放射線硬化型化合物とは、単量体、前駆体だけでなく、それらが重合、および/または反応した電離放射線硬化型樹脂も当然に含まれる。例えば、前記アクリレート系電離放射線硬化型化合物としては、ポリウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、ポリオールアクリレート等が挙げられるが特に限定するものではなく、任意のアクリレート系電離放射線硬化型化合物を使用してよい。 In the present invention, the ionizing radiation curable compound includes not only monomers and precursors but also ionizing radiation curable resins obtained by polymerization and / or reaction thereof. For example, examples of the acrylate ionizing radiation curable compound include polyurethane acrylate, polyester acrylate, epoxy acrylate, polyol acrylate and the like, but are not particularly limited, and any acrylate ionizing radiation curable compound may be used. .
本発明におけるハードコート層は、3以上の官能基を有する電離放射線硬化型化合物と、1および/または2官能の電離放射線硬化型化合物とを少なくとも含む塗布液を基材フィルムに塗布後、電子線、放射線、紫外線のいずれかを照射することによって重合、および/または反応せしめることにより硬化させる。 The hard coat layer in the present invention is applied to a base film with a coating solution containing at least an ionizing radiation curable compound having three or more functional groups and a monofunctional and / or bifunctional ionizing radiation curable compound, and then an electron beam. It is cured by polymerizing and / or reacting by irradiation with either radiation or ultraviolet rays.
電離放射線硬化型化合物としてアクリレート系電離放射線硬化型化合物を用いる場合、本発明における1官能(単官能)のアクリレート系電離放射線硬化型化合物としては、分子内に少なくとも1個の(メタ)アクリロイル基を含有する化合物であれば特に制限されるものではない。例えば、アクリルアミド、(メタ)アクリロイルモルホリン、7−アミノ−3,7−ジメチルオクチル(メタ)アクリレート、イソブトキシメチル(メタ)アクリルアミド、イソボルニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、エチルジエチレングリコール(メタ)アクリレート、t−オクチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ジシクロペンタジエン(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、N,N−ジメチル(メタ)アクリルアミドテトラクロロフェニル(メタ)アクリレート、2−テトラクロロフェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、テトラブロモフェニル(メタ)アクリレート、2−テトラブロモフェノキシエチル(メタ)アクリレート、2−トリクロロフェノキシエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、2−トリブロモフェノキシエチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ビニルカプロラクタム、N−ビニルピロリドン、N−ビニルホルムアミド、フェノキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ペンタクロロフェニル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ボルニル(メタ)アクリレート、メチルトリエチレンジグリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ノニルフェニル(メタ)アクリレート、およびそのカプロラクトン変成物などの誘導体、アクリル酸等及びそれらの混合物等が挙げられる。 When an acrylate ionizing radiation curable compound is used as the ionizing radiation curable compound, the monofunctional (monofunctional) acrylate ionizing radiation curable compound in the present invention has at least one (meth) acryloyl group in the molecule. If it is a compound to contain, it will not restrict | limit in particular. For example, acrylamide, (meth) acryloylmorpholine, 7-amino-3,7-dimethyloctyl (meth) acrylate, isobutoxymethyl (meth) acrylamide, isobornyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, 2 -Ethylhexyl (meth) acrylate, ethyl diethylene glycol (meth) acrylate, t-octyl (meth) acrylamide, diacetone (meth) acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, lauryl (meth) acrylate, di Cyclopentadiene (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, N, N-dimethyl (meth) Kurylamide tetrachlorophenyl (meth) acrylate, 2-tetrachlorophenoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, tetrabromophenyl (meth) acrylate, 2-tetrabromophenoxyethyl (meth) acrylate, 2-trichloro Phenoxyethyl (meth) acrylate, tribromophenyl (meth) acrylate, 2-tribromophenoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, vinyl caprolactam, N-vinyl Pyrrolidone, N-vinylformamide, phenoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, pentachlorophenyl (meth) acrylate, Tabromophenyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, bornyl (meth) acrylate, methyltriethylene diglycol (meth) acrylate, cyclohexyl (meth) acrylate, nonylphenyl (meth) ) Derivatives such as acrylate and its modified caprolactone, acrylic acid and the like, and mixtures thereof.
電離放射線硬化型化合物としてアクリレート系電離放射線硬化型化合物を用いる場合、本発明における2官能のアクリレート系電離放射線硬化型化合物としては、1分子中に2個以上のアルコール性水酸基を有する多価アルコールの該水酸基が2個の(メタ)アクリル酸のエステル化物となっている化合物などを用いることができる。具体的には、(a)炭素数2〜12のアルキレングリコールの(メタ)アクリル酸ジエステル類:エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオール(メタ)アクリレートなど、(b)ポリオキシアルキレングリコールの(メタ)アクリレート酸ジエステル類:ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートなど、(c)多価アルコールの(メタ)アクリル酸ジエステル類:ペンタエリスリトールジ(メタ)アクリレートなど、(d)ビスフェノールAあるいはビスフェノールAの水素化物のエチレンオキシド及びプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類:2,2'−ビス(4−アクリロキシエトキシフェニル)プロパン、2,2'−ビス(4−アクリロキシプロポキシフェニル)プロパンなど、(e)多価イソシアネート化合物と2個以上のアルコール性水酸基含有化合物を予め反応させて得られる末端イソシアネート基含有化合物に、更にアルコール性水酸基含有(メタ)アクリレートを反応させて得られる分子内に2個の(メタ)アクリロイルオキシ基を有するウレタン(メタ)アクリレート類、(f)分子内に2個以上のエポキシ基を有する化合物にアクリル酸又はメタクリル酸を反応させて得られる分子内に2個の(メタ)アクリロイルオキシ基を有するエポキシ(メタ)アクリレート類、などが挙げられる。 When an acrylate ionizing radiation curable compound is used as the ionizing radiation curable compound, the bifunctional acrylate ionizing radiation curable compound in the present invention is a polyhydric alcohol having two or more alcoholic hydroxyl groups in one molecule. A compound in which the hydroxyl group is an esterified product of two (meth) acrylic acids can be used. Specifically, (a) C2-C12 alkylene glycol (meth) acrylic acid diesters: ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) ) Acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol (meth) acrylate, etc. (b) (meth) acrylate diesters of polyoxyalkylene glycol: diethylene glycol di (meth) acrylate, triethylene glycol Di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate (C) (meth) acrylic acid diesters of polyhydric alcohols: (e) pentaerythritol di (meth) acrylate, etc. (d) bisphenol A or bisphenol A hydride ethylene oxide and propylene oxide adduct (meth) acrylic acid diester Class: 2,2′-bis (4-acryloxyethoxyphenyl) propane, 2,2′-bis (4-acryloxypropoxyphenyl) propane, etc. (e) a polyvalent isocyanate compound and two or more alcoholic hydroxyl groups Urethane (meth) acrylate having two (meth) acryloyloxy groups in the molecule obtained by further reacting an alcoholic hydroxyl group-containing (meth) acrylate with a terminal isocyanate group-containing compound obtained by reacting the containing compound in advance (F) two or more epoxies in the molecule Epoxy (meth) acrylates having two (meth) acryloyloxy groups in the resulting molecule to a compound having a sheet group by reacting acrylic acid or methacrylic acid, and the like.
電離放射線硬化型化合物としてアクリレート系電離放射線硬化型化合物を用いる場合、本発明における3官能以上のアクリレート系電離放射線硬化型化合物としては、(a)具体的には、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなど、(b)多価イソシアネート化合物と2個以上のアルコール性水酸基含有化合物を予め反応させて得られる末端イソシアネート基含有化合物に、更にアルコール性水酸基含有(メタ)アクリレートを反応させて得られる分子内に3個以上の(メタ)アクリロイルオキシ基を有するウレタン(メタ)アクリレート類、(c)分子内に3個以上のエポキシ基を有する化合物にアクリル酸又はメタクリル酸を反応させて得られる分子内に3個以上の(メタ)アクリロイルオキシ基を有するエポキシ(メタ)アクリレート類、などが挙げられる。 When an acrylate ionizing radiation curable compound is used as the ionizing radiation curable compound, the trifunctional or higher functional acrylate ionizing radiation curable compound in the present invention includes (a) specifically pentaerythritol tri (meth) acrylate, Pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meta) ) Such as acrylate, (b) a terminal isocyanate group-containing compound obtained by previously reacting a polyvalent isocyanate compound with two or more alcoholic hydroxyl group-containing compounds, and further containing an alcoholic hydroxyl group Urethane (meth) acrylates having 3 or more (meth) acryloyloxy groups in the molecule obtained by reacting (meth) acrylate, (c) Acrylic acid or a compound having 3 or more epoxy groups in the molecule Examples thereof include epoxy (meth) acrylates having 3 or more (meth) acryloyloxy groups in the molecule obtained by reacting methacrylic acid.
本発明において、前記塗布液中に含まれる電離放射線硬化型化合物中には、1または2官能の電離放射線硬化型化合物の他に3官能以上の電離放射線硬化型化合物が1種以上を含まれることが重要である。硬化後のハードコート層内に架橋密度の高い3官能以上の電離放射線硬化型化合物成分がハードセグメントとして、それらを結ぶ形で1および/または2官能の電離放射線硬化型化合物が反応し、1および/または2官能の電離放射線硬化型化合物成分がソフトセグメントとして存在するようになる。このように官能数の異なる2種類以上の電離放射線硬化型化合物を特定の濃度範囲で調整することで、ハードコート層にへテロな架橋構造を導入し、ハードセグメントによって表面硬度、耐擦傷性が付与し、かつ、ソフトセグメントの伸縮性により、成型性も付与するという二律背反した特性を両立するという顕著な効果をえることができたのである。 In the present invention, the ionizing radiation curable compound contained in the coating solution contains one or more ionizing radiation curable compounds having three or more functional groups in addition to the one or bifunctional ionizing radiation curable compound. is important. In the hard coat layer after curing, a tri- or higher functional ionizing radiation curable compound component having a high crosslinking density is used as a hard segment, and the mono- and / or bi-functional ionizing radiation curable compound reacts to form a hard segment, and 1 and A bifunctional ionizing radiation curable compound component is present as a soft segment. Thus, by adjusting two or more types of ionizing radiation curable compounds having different functional numbers within a specific concentration range, a hetero-crosslinked structure is introduced into the hard coat layer, and the surface hardness and scratch resistance are improved by the hard segment. It was possible to obtain a remarkable effect of providing both the contradictory properties of imparting and imparting moldability by the stretchability of the soft segment.
本発明では、高い表面硬度と優れた成型性、具体的にはH以上の鉛筆硬度と10%以上の伸度を両立するために、前記塗布液中に含まれる電離放射線硬化型化合物中の1および/または2官能の電離放射線硬化型化合物の含有量が5質量%以上95質量%以下であることが重要である。上記含有量が5質量%未満の場合には、被膜の可撓性が低下するだけでなく、成型時にハードコート層にクラックが発生するので好ましくない。また、上記含有量が95質量%を超える場合は、十分な表面硬度、耐擦傷性を有する硬化被膜が得られ難くい。上記含有量の下限は、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、上記含有量の上限は90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下がよりさらに好ましい。。電離放射線硬化型化合物中の1および/または2官能の電離放射線硬化型化合物の含有量が20質量%以上80質量%以下である場合は、より高度に表面高度と成型性の両立が図られ、具体的には2H以上の鉛筆硬度と20%以上の伸度を両立させることができ、例えば自動車などの銘板用や携帯機器などの筐体のように高い硬度と高い加工性とが同時に要求される成型用フィルムに好適である。 In the present invention, in order to achieve both high surface hardness and excellent moldability, specifically, pencil hardness of H or higher and elongation of 10% or higher, 1 in the ionizing radiation curable compound contained in the coating solution. It is important that the content of the bifunctional ionizing radiation curable compound is 5% by mass or more and 95% by mass or less. When the content is less than 5% by mass, not only the flexibility of the coating is lowered, but also cracks are generated in the hard coat layer during molding, which is not preferable. Moreover, when the said content exceeds 95 mass%, it is difficult to obtain the cured film which has sufficient surface hardness and abrasion resistance. The lower limit of the content is more preferably 10% by mass or more, and further preferably 20% by mass or more. Moreover, 90 mass% or less is more preferable, as for the upper limit of the said content, 80 mass% or less is more preferable, and 70 mass% or less is more preferable. . When the content of the monofunctional and / or bifunctional ionizing radiation curable compound in the ionizing radiation curable compound is 20% by mass or more and 80% by mass or less, both the surface height and the moldability are more highly balanced. Specifically, pencil hardness of 2H or more and elongation of 20% or more can be achieved at the same time, and high hardness and high workability are required at the same time, for example, for nameplates such as automobiles and casings for portable devices. It is suitable for a molding film.
さらに本願発明者は上記態様に加え、電離放射線硬化化合物としてアミノ基を有する電離放射線硬化化合物を用いることで、より高度に表面硬度と成型性を両立しえることを見出した。すなわち、前記塗布液に含まれる少なくとも1種の電離放射線硬化化合物がアミノ基を有することが好ましい。電離放射線硬化化合物としてアミノ基を有する化合物を用いることによる上記作用については以下のように考えられる。ハードコート層に部分的な硬度分布の差異がある場合、ハードコート層を伸張する際、局所的に割れ(クラック)が生じ易くなる。このような部分的な硬度分布の差異の要因として、酸素による電離放射線硬化樹脂の重合阻害(酸素阻害)がある。ここで、電離放射線硬化化合物としてアミノ基を有する化合物を用いた場合、アミノ基がラジカル酸素をトラップし、ハードコート層の表層部の硬化反応に及ぼす酸素阻害の影響が小さくなるため、層全体で均一な硬化反応が進行する。これにより成型時にハードコート層にかかる応力が層全体に分散され、成型時のクラックの発生が抑制される。そのため、より高度に表面高度と成型性の両立が図ることができると考えられる。また、上記効果に加え、電離放射線硬化樹脂としてアミノ基を含んでいることにより塗膜の速硬性の効果により、ハードコート層表面の硬化がアミノ基無含有時と比べ、より硬化が促進され表面硬度が向上することができる。 Furthermore, the present inventor has found that, in addition to the above-described embodiment, by using an ionizing radiation curable compound having an amino group as the ionizing radiation curable compound, both surface hardness and moldability can be achieved to a higher degree. That is, it is preferable that at least one ionizing radiation curable compound contained in the coating solution has an amino group. About the said effect | action by using the compound which has an amino group as an ionizing radiation hardening compound, it thinks as follows. When the hard coat layer has a partial hardness distribution difference, local cracking is likely to occur when the hard coat layer is stretched. As a factor of such a difference in the partial hardness distribution, there is polymerization inhibition (oxygen inhibition) of the ionizing radiation curable resin by oxygen. Here, when a compound having an amino group is used as the ionizing radiation curing compound, the amino group traps radical oxygen, and the influence of oxygen inhibition on the curing reaction of the surface layer portion of the hard coat layer is reduced. A uniform curing reaction proceeds. As a result, the stress applied to the hard coat layer during molding is dispersed throughout the layer, and the occurrence of cracks during molding is suppressed. Therefore, it is considered that the surface height and moldability can be achieved at a higher level. In addition to the above effects, the surface of the hard coat layer is hardened more than when no amino group is contained due to the effect of fast curing of the coating film due to the inclusion of amino groups as the ionizing radiation curable resin. Hardness can be improved.
前記塗布液中に含まれる電離放射線硬化型化合物中のアミノ基を含む電離放射線硬化型化合物の含有量は2.5質量%以上95質量%以下であること好ましい。前記塗布液中に含まれる電離放射線硬化型化合物中のアミノ基を含む電離放射線硬化型化合物の含有量の下限は5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。また上記含有量の上限は92.5質量%以下であることがより好ましく、90質量%以下であることがさらに好ましく、50質量%以下であることがよりさらに好ましい。前記塗布液中に含まれる電離放射線硬化型化合物中のアミノ基を含む電離放射線硬化型化合物の含有量が2.5質量%未満の場合、ハードコート層全体で均一に硬化され難くため、成型時のクラックに対する耐性が得られにくくなる。また、アミノ基を含む電離放射線硬化型化合物が高濃度になると、アミノ基に起因してハードコート層の黄変が強くなるため、上記含有量が95質量%を超えると、高透明性が損なわれる場合がある。例えば、ハードコート層を積層しない面に印刷加工を施す場合、フィルムのカラーb値として2以下であることが好ましく、この場合、上記アミノ基を含む電離放射線硬化型化合物は92.5質量%以下であることが好ましい。 The content of the ionizing radiation curable compound containing an amino group in the ionizing radiation curable compound contained in the coating solution is preferably 2.5% by mass or more and 95% by mass or less. The lower limit of the content of the ionizing radiation curable compound containing an amino group in the ionizing radiation curable compound contained in the coating solution is more preferably 5% by mass or more, and further preferably 10% by mass or more. . The upper limit of the content is more preferably 92.5% by mass or less, further preferably 90% by mass or less, and further preferably 50% by mass or less. When the content of the ionizing radiation curable compound containing an amino group in the ionizing radiation curable compound contained in the coating solution is less than 2.5% by mass, it is difficult to uniformly cure the entire hard coat layer. It becomes difficult to obtain resistance to cracks. Further, when the ionizing radiation curable compound containing an amino group becomes high in concentration, yellowing of the hard coat layer becomes strong due to the amino group. Therefore, when the content exceeds 95% by mass, high transparency is impaired. May be. For example, when printing is performed on the surface on which the hard coat layer is not laminated, the color b value of the film is preferably 2 or less. In this case, the ionizing radiation curable compound containing the amino group is 92.5% by mass or less. It is preferable that
本発明において前記塗布液には、1および/または2官能の電離放射線硬化型化合物、および3以上の官能基を有する電離放射線硬化型化合物が含まれるが、上記実施態様においては、このうちの一部の電離放射線硬化型化合物がアミノ基を含むものであればよい。また、1官能の電離放射線硬化型化合物、もしくは2官能の電離放射線硬化型化合物、もしくは3以上の官能基を有する電離放射線硬化型化合物のいずれかがアミノ基を含む電離放射線硬化型化合物であることも好ましい実施態様である。 In the present invention, the coating solution contains a monofunctional and / or bifunctional ionizing radiation curable compound and an ionizing radiation curable compound having three or more functional groups. The ionizing radiation curable compound of the part may be any one containing an amino group. Further, any one of a monofunctional ionizing radiation curable compound, a bifunctional ionizing radiation curable compound, or an ionizing radiation curable compound having three or more functional groups is an ionizing radiation curable compound containing an amino group. Is also a preferred embodiment.
アミノ基を有する電離放射線硬化型化合物としてアクリレート系電離放射線硬化型化合物を用いる場合、例えば、アミノ基を有するアクリレート系電離放射線硬化型化合物としては、アクリルアミド、7−アミノ−3,7−ジメチルオクチル(メタ)アクリレート、イソブトキシメチル(メタ)アクリルアミド、t−オクチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチル(メタ)アクリルアミドテトラクロロフェニル(メタ)アクリレート、N−ビニルホルムアミドなどがあげられる。 When an acrylate ionizing radiation curable compound is used as the ionizing radiation curable compound having an amino group, examples of the acrylate ionizing radiation curable compound having an amino group include acrylamide, 7-amino-3,7-dimethyloctyl ( (Meth) acrylate, isobutoxymethyl (meth) acrylamide, t-octyl (meth) acrylamide, diacetone (meth) acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, N, N-dimethyl (meth) acrylamide Examples include tetrachlorophenyl (meth) acrylate and N-vinylformamide.
また本願発明者は上記態様に加え、ハードコート層に粒子を含有することで、より成型性が向上し、さらに高度に表面硬度と成型性を両立しえることを見出した。ハードコート層に粒子を含有することで、より成型性が向上する作用については以下のように考えている。ハードコート層の硬度が上がると成型時の際に、硬度の高いハードコート層に一時に強い応力が生じることでハードコート層に一気に割れ(クラック)が生じる。ここで、ハードコート層内に粒子が存在することで、成型時にハードコート層にかかる内部応力を電離放射線硬化型化合物と粒子の界面で緩和し、クラックの発生が抑制されるほか、ハードコート層に外観を損ねない程度の目視では確認できない微小なクラックが先行して発生する効果があり、ハードコート層の致命的な割れの発生が遅れ、結果的に成型性が向上する効果が発現すると考えられる。 In addition to the above embodiment, the inventor of the present application has found that by including particles in the hard coat layer, the moldability can be further improved, and the surface hardness and the moldability can be enhanced at a high level. About the effect | action which a moldability improves more by containing particle | grains in a hard-coat layer, it thinks as follows. When the hardness of the hard coat layer is increased, a strong stress is temporarily generated in the hard coat layer having high hardness at the time of molding, so that the hard coat layer is cracked at once. Here, the presence of particles in the hard coat layer relieves internal stress applied to the hard coat layer at the time of molding at the interface between the ionizing radiation curable compound and the particles and suppresses the generation of cracks. It is thought that there is an effect that micro cracks that cannot be confirmed by visual inspection to the extent that it does not impair the appearance are generated in advance, the occurrence of fatal cracks in the hard coat layer is delayed, and as a result, the effect of improving moldability appears It is done.
ハードコート層に含有させる粒子としては、例えば、アモルファスシリカ、結晶性シリカ、シリカ−アルミナ複合酸化物、カオリナイト、タルク、炭酸カルシウム(カルサイト型、バテライト型)、ゼオライト、アルミナ、ヒドロキシアパタイト等の無機粒子、架橋アクリル粒子、架橋PMMA粒子、架橋ポリスチレン粒子、ナイロン粒子、ポリエステル粒子、ベンゾグアナミン・ホルマリン縮合物粒子、ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物粒子メラミン・ホルムアルデヒド縮合物粒子等の耐熱性高分子粒子、シリカ・アクリル複合化合物のような有機・無機ハイブリッド微粒子が挙げられるが、本発明では、粒子の種類は特に限定されない。 Examples of the particles included in the hard coat layer include amorphous silica, crystalline silica, silica-alumina composite oxide, kaolinite, talc, calcium carbonate (calcite type, vaterite type), zeolite, alumina, hydroxyapatite, and the like. Heat-resistant polymer particles such as inorganic particles, crosslinked acrylic particles, crosslinked PMMA particles, crosslinked polystyrene particles, nylon particles, polyester particles, benzoguanamine / formalin condensate particles, benzoguanamine / melamine / formaldehyde condensate particles, melamine / formaldehyde condensate particles, Organic / inorganic hybrid fine particles such as silica / acrylic composite compounds may be mentioned, but in the present invention, the type of particles is not particularly limited.
粒子の形状として、例えば、球状、塊状、板状、繊維状、あるいはフレーク状が挙げられるが、特に限定されるものではないが、中でも、分散性や他の部材に接触した際に粒子の脱落する点から球状の粒子が好ましい。 Examples of the shape of the particles include a spherical shape, a block shape, a plate shape, a fiber shape, and a flake shape. However, the shape of the particles is not particularly limited. In view of the above, spherical particles are preferable.
本発明では、粒子の平均粒子径が10nm以上300nm以下であることが好ましく、さらに下限は40nm以上、上限は200nm以下であることが好ましく、特に下限は50nm以上、上限は100nm以下であることが好ましい。粒子の平均粒子径が10nmより小さい場合、平均粒子径が小さすぎるため、前述した粒子添加による表面硬度、耐擦傷性、成型性の向上効果のいずれも、もしくはいずれかが少ない場合がある。また、300nmを超える場合、ハードコート層が脆弱となり、成型性が低下する場合がある。なお、前記の平均粒子径はコールターカウンター(ベックマン・コールター製、マルチサイザーII型)を用いて、粒子を膨潤させない溶媒に分散させて測定した平均粒子径である。 In the present invention, the average particle diameter of the particles is preferably 10 nm or more and 300 nm or less, the lower limit is preferably 40 nm or more, and the upper limit is preferably 200 nm or less, particularly the lower limit is 50 nm or more and the upper limit is 100 nm or less. preferable. When the average particle diameter of the particles is smaller than 10 nm, the average particle diameter is too small, and therefore, any or all of the effects of improving the surface hardness, scratch resistance, and moldability described above may be small. Moreover, when it exceeds 300 nm, a hard-coat layer becomes weak and a moldability may fall. The average particle diameter is an average particle diameter measured by dispersing the particles in a solvent that does not swell using a Coulter counter (manufactured by Beckman Coulter, Multisizer II type).
本発明では、ハードコート層に含有させる粒子の含有量はハードコート層中の固形成分として5質量%以上70質量%以下であることが好ましく、特に好ましくは、前記含有量の下限は15質量%以上、上限は50質量%以下である。粒子の含有量が5質量%より少ない場合、前述した粒子添加による表面硬度、耐擦傷性、成型性の向上効果いずれも、もしくはいずれかが少なくなる場合がある。一方、粒子の含有量が70質量%を超える場合、成型時に前述した微小なクラックが多量に発生し、ヘーズが上昇(白化)し成型体の透明性を損ねてしまう。 In the present invention, the content of the particles to be contained in the hard coat layer is preferably 5% by mass or more and 70% by mass or less as a solid component in the hard coat layer, and particularly preferably, the lower limit of the content is 15% by mass. The upper limit is 50% by mass or less. When the content of the particles is less than 5% by mass, any of the above-described effects of improving the surface hardness, scratch resistance, and moldability due to the addition of the particles may be reduced. On the other hand, when the content of the particles exceeds 70% by mass, a large amount of the fine cracks described above are generated at the time of molding, and haze increases (whitens), thereby impairing the transparency of the molded body.
さらに本願発明者は上記態様に加え、ハードコート層に電離放射線硬化型シリコーン樹脂を含有することで、滑り性が付与され、表面の耐擦傷性が向上し、さらに高度に表面硬度と成型性を両立しえることを見出した。また係る態様により、硬化反応によって電離放射線硬化型シリコーン樹脂自体が架橋すると共に、場合により、ハードコート層を構成する電離放射線硬化型樹脂とも架橋するので、金型成型でのシリコーン樹脂による金型の汚染防止や、本発明の成型用ハードコートフィルムを成型してなる成型体を長期間にわたって使用する際、経時による表面の耐擦傷性の機能が損なわれることがないという新たな効果を得ることができる。 Furthermore, in addition to the above embodiment, the inventor of the present application contains an ionizing radiation curable silicone resin in the hard coat layer, thereby imparting slipperiness, improving the scratch resistance of the surface, and further increasing the surface hardness and moldability. I found that they can be compatible. Further, according to such an embodiment, the ionizing radiation curable silicone resin itself is cross-linked by the curing reaction, and in some cases, the ionizing radiation curable resin constituting the hard coat layer is also cross-linked. When using a molded body formed by molding the hard coat film for molding of the present invention for a long period of time, it is possible to obtain a new effect that the function of the surface scratch resistance over time is not impaired. it can.
電離放射線硬化型シリコーン樹脂とは、例えば分子内に、アルケニル基とメルカプト基を有するラジカル付加型、アルケニル基と水素原子を有するヒドロシリル化反応型、エポキシ基を有するカチオン重合型、(メタ)アクリル基を有するラジカル重合型のシリコーン樹脂等が挙げられる。これらの中でエポキシ基を有するカチオン重合型や(メタ)アクリル基を有するラジカル重合型が好ましい。 The ionizing radiation curable silicone resin is, for example, a radical addition type having an alkenyl group and a mercapto group, a hydrosilylation reaction type having an alkenyl group and a hydrogen atom, a cationic polymerization type having an epoxy group, and a (meth) acryl group. A radical polymerization type silicone resin having Among these, a cationic polymerization type having an epoxy group and a radical polymerization type having a (meth) acryl group are preferable.
分子内にエポキシ基や(メタ)アクリル基を有するシリコーン樹脂としては、例えば、エポキシプロポキシプロピル末端ポリジメチルシロキサン、(エポキシシクロヘキシルエチル)メチルシロキサン−ジメチルシロキサンコポリマー、メタクリロキシプロピル末端ポリジメチルシロキサン、アクリロキシプロピル末端ポリジメチルシロキサン等が挙げられる。また、分子内にビニル基を有するシリコーン樹脂として、例えば、末端ビニルポリジメチルシロキサン、ビニルメチルシロキサンホモポリマー等を挙げることができる。 Examples of silicone resins having an epoxy group or (meth) acryl group in the molecule include epoxypropoxypropyl-terminated polydimethylsiloxane, (epoxycyclohexylethyl) methylsiloxane-dimethylsiloxane copolymer, methacryloxypropyl-terminated polydimethylsiloxane, and acryloxy. And propyl-terminated polydimethylsiloxane. Examples of the silicone resin having a vinyl group in the molecule include terminal vinyl polydimethylsiloxane and vinylmethylsiloxane homopolymer.
本発明では、ハードコート層に含有させる電離放射線硬化型シリコーン樹脂の添加量は、ハードコート層を構成するための前記電離放射線硬化型化合物100質量部に対し、好ましくは0.15〜15質量部、より好ましくは0.3〜13質量部、さらに好ましくは0.5〜5質量部を配合することが望ましい。電離放射線硬化型シリコーン樹脂の配合量が下限未満であると、成型体にした際の耐擦傷性の向上効果が乏しくなり、また、上限を超えると、ハードコート層形成時に、硬化が充分に行なわれない場合がある。なお、ハードコート層に含有させる電離放射線硬化型シリコーン樹脂は1種用いてもよいし、2種以上を組み合わせて用いてもよい。 In the present invention, the addition amount of the ionizing radiation curable silicone resin to be contained in the hard coat layer is preferably 0.15 to 15 parts by mass with respect to 100 parts by mass of the ionizing radiation curable compound for constituting the hard coat layer. More preferably, 0.3 to 13 parts by mass, and still more preferably 0.5 to 5 parts by mass are blended. When the blending amount of the ionizing radiation curable silicone resin is less than the lower limit, the effect of improving the scratch resistance when formed into a molded product is poor, and when it exceeds the upper limit, the hard coat layer is sufficiently cured when formed. It may not be possible. The ionizing radiation curable silicone resin contained in the hard coat layer may be used alone or in combination of two or more.
本願発明では、上記のように成型用フィルムの用途に応じて、電離放射線硬化化合物にアミノ基を有する化合物を用いること、およびハードコート層への粒子の添加することを適宜選択もしくは組み合わせることが望ましい。特に、好ましい実施態様としては、これらを組み合わせることである。これにより、ハードコート層の表面硬度と成型性を極めて高度に両立することができ、具体的には表面硬度が2H以上で、かつ20%以上の伸度、より好ましくは表面硬度が2H以上で、かつ30%以上の伸度を有する成型用ハードコートフィルムを得ることができ、例えば自動車などのカバー部材や深底の筐体、容器など用途に好適に用いることができる。 In the present invention, it is desirable to appropriately select or combine the use of a compound having an amino group as the ionizing radiation curable compound and the addition of particles to the hard coat layer according to the use of the film for molding as described above. . A particularly preferred embodiment is a combination thereof. As a result, the surface hardness and moldability of the hard coat layer can be made extremely highly compatible. Specifically, the surface hardness is 2H or higher and the elongation is 20% or higher, more preferably the surface hardness is 2H or higher. In addition, a molding hard coat film having an elongation of 30% or more can be obtained, and for example, it can be suitably used for applications such as a cover member for automobiles, a deep housing or container.
本発明では、前記塗布液を重合、および/または反応させる方法として、電子線、放射線、紫外線を照射する方法が挙げられるが、紫外線照射する場合には前記塗布液に光重合開始剤を加えることが望ましい。 In the present invention, as a method of polymerizing and / or reacting the coating solution, a method of irradiating with an electron beam, radiation, or ultraviolet rays may be mentioned. When ultraviolet rays are irradiated, a photopolymerization initiator is added to the coating solution. Is desirable.
光重合開始剤の具体的な例としては、アセトフェノン、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、p−ジメチルアミノプロピオフェノン、ベンゾフェノン、2−クロロベンゾフェノン、4,4'−ジクロロベンゾフェノン、4,4'−ビスジエチルアミノベンゾフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、メチルベンゾイルフォメート、p−イソプロピル−α−ヒドロキシイソブチルフェノン、α−ヒドロキシイソブチルフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン等のカルボニル化合物、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、チオキサントン、2−クロロチオキサントン、2−メチルチオキサントンなどの硫黄化合物、ベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイド等のパーオキサイド化合物が挙げられる。これらの光重合開始t−ブチルパーオキサイド等のパーオキサイド化合物が挙げられる。これらの光重合開始剤は単独で使用してもよいし、2種以上組み合わせてもよい。光重合開始剤の添加量は、前記塗布液中に含まれる電離放射線硬化型化合物100質量部当たり0.01質量部以上15質量部以下が適当であり、使用量が少ない場合は反応が遅く生産性が不良になるだけでなく、残存する未反応物により十分な表面硬度、耐擦傷性が得られない。逆に添加量が多い場合には、光重合開始剤によりハードコート層が黄変する問題が発生する。 Specific examples of the photopolymerization initiator include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, benzophenone, 2-chlorobenzophenone, 4,4′-dichlorobenzophenone, 4,4′-bisdiethylaminobenzophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, methylbenzoyl formate, p-isopropyl-α-hydroxyisobutylphenone, α-hydroxyisobutylphenone, 2, Carbonyl compounds such as 2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone, tetramethylthiuram monosulfide, tetramethylthiuramdis Examples thereof include sulfur compounds such as rufide, thioxanthone, 2-chlorothioxanthone, and 2-methylthioxanthone, and peroxide compounds such as benzoyl peroxide and di-t-butyl peroxide. Examples of these photopolymerization-initiated peroxide compounds such as t-butyl peroxide. These photopolymerization initiators may be used alone or in combination of two or more. The addition amount of the photopolymerization initiator is suitably 0.01 parts by weight or more and 15 parts by weight or less per 100 parts by weight of the ionizing radiation curable compound contained in the coating solution, and the reaction is slow when the amount used is small. In addition to the poor quality, the remaining unreacted material does not provide sufficient surface hardness and scratch resistance. On the other hand, when the addition amount is large, there is a problem that the hard coat layer is yellowed by the photopolymerization initiator.
本発明では、前記塗布液には、製造時の熱重合や貯蔵中の暗反応を防止するために、ハイドロキノン、ハイドロキノンモノメチルエーテル、2,5−t−ブチルハイドロキノンなど、公知の熱重合防止剤を加えることが好ましい。熱重合防止剤の添加量は、前記塗布液中に含まれる電離放射線硬化型化合物100質量部当たり0.005質量部以上0.05質量部以下が好ましい。 In the present invention, the coating solution contains a known thermal polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, 2,5-t-butyl hydroquinone, etc. in order to prevent thermal polymerization during production and dark reaction during storage. It is preferable to add. The addition amount of the thermal polymerization inhibitor is preferably 0.005 parts by mass or more and 0.05 parts by mass or less per 100 parts by mass of the ionizing radiation curable compound contained in the coating solution.
本発明では、前記塗布液には、塗工時の作業性の向上、塗工膜厚のコントロールを目的として、本発明の目的を損なわない範囲において、有機溶剤を配合することができる。 In the present invention, an organic solvent can be blended in the coating solution for the purpose of improving workability during coating and controlling the coating film thickness as long as the object of the present invention is not impaired.
有機溶剤としては、基材フィルムとして融点が低いものを用いる場合は塗布後の乾燥温度を150℃以下に調整することが必要な場合もあることから、有機溶媒の沸点は50℃以上150℃以下が好ましい。具体的な例としては、メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶剤、酢酸メチル、酢酸エチル、酢酸ブチルなどの酢酸エステル系溶剤、アセトン、メチルエチルケトンなどのケトン系溶剤、トルエンなどの芳香族系溶剤、ジオキサンなどの環状エーテル系溶剤などを挙げることができる。これらの溶剤は単独あるいは2種以上を混合して用いることもできる。 As the organic solvent, when a base film having a low melting point is used, it may be necessary to adjust the drying temperature after coating to 150 ° C. or lower, so the boiling point of the organic solvent is 50 ° C. or higher and 150 ° C. or lower. Is preferred. Specific examples include alcohol solvents such as methanol, ethanol and isopropyl alcohol, acetate solvents such as methyl acetate, ethyl acetate and butyl acetate, ketone solvents such as acetone and methyl ethyl ketone, and aromatic solvents such as toluene. And cyclic ether solvents such as dioxane. These solvents can be used alone or in admixture of two or more.
本発明では、前記塗布液には、塗布液の表面張力を下げ、ハードコート層の塗工外観、特に、微小な泡によるヌケ、異物等の付着よる凹み、乾燥工程でのハジキを改善することを目的として、界面活性剤を含有させることができる。 In the present invention, the coating liquid should have a surface tension lowered to improve the coating appearance of the hard coat layer, in particular, dents due to fine bubbles, dents due to adhesion of foreign matters, and repellency in the drying process. For the purpose, a surfactant can be contained.
界面活性剤は、カチオン系、アニオン系、ノニオン系の公知のものを好適に使用できるが、前記塗布液の変質やハードコート層の基材フィルムへの密着性不良等の問題から極性基を有していないノニオン系が好ましく、更には、界面活性能に優れるシリコーン系界面活性剤又はフッ素系界面活性剤が好ましい。 As the surfactant, known cationic, anionic, and nonionic surfactants can be suitably used, but they have polar groups due to problems such as alteration of the coating solution and poor adhesion of the hard coat layer to the base film. The nonionic type | system | group which is not carried out is preferable, and also the silicone type surfactant or fluorine-type surfactant which is excellent in surface active ability is preferable.
シリコーン系界面活性剤としては、ジメチルシリコン、アミノシラン、アクリルシラン、ビニルベンジルシラン、ビニルベンジシルアミノシラン、グリシドシラン、メルカプトシラン、ジメチルシラン、ポリジメチルシロキサン、ポリアルコキシシロキサン、ハイドロジエン変性シロキサン、ビニル変性シロキサン、ビトロキシ変性シロキサン、アミノ変性シロキサン、カルボキシル変性シロキサン、ハロゲン化変性シロキサン、エポキシ変性シロキサン、メタクリロキシ変性シロキサン、メルカプト変性シロキサン、フッ素変性シロキサン、アルキル基変性シロキサン、フェニル変性シロキサン、アルキレンオキシド変性シロキサンなどが挙げられる。 Silicone surfactants include dimethyl silicon, amino silane, acrylic silane, vinyl benzyl silane, vinyl benzyl silyl amino silane, glycid silane, mercapto silane, dimethyl silane, polydimethyl siloxane, polyalkoxy siloxane, hydrodiene modified siloxane, vinyl modified siloxane, Vitroxy modified siloxane, amino modified siloxane, carboxyl modified siloxane, halogenated modified siloxane, epoxy modified siloxane, methacryloxy modified siloxane, mercapto modified siloxane, fluorine modified siloxane, alkyl group modified siloxane, phenyl modified siloxane, alkylene oxide modified siloxane, etc. .
フッ素系界面活性剤としては、4フッ化エチレン、パーフルオロアルキルアンモニウム塩、パーフルオロアルキルスルホン酸アミド、パーフルオロアルキルスルホン酸ナトリウム、パーフルオロアルキルカリウム塩、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキルトリメチルアンモニウム塩、パーフルオロアルキルアミノスルホン酸塩、パーフルオロアルキルリン酸エステル、パーフルオロアルキルアルキル化合物、パーフルオロアルキルアルキルベタイン、パーフルオロアルキルハロゲン化物などが挙げられる。 Fluorosurfactants include ethylene tetrafluoride, perfluoroalkyl ammonium salt, perfluoroalkyl sulfonic acid amide, sodium perfluoroalkyl sulfonate, perfluoroalkyl potassium salt, perfluoroalkyl carboxylate, perfluoroalkyl sulfone. Acid salts, perfluoroalkyl ethylene oxide adducts, perfluoroalkyl trimethyl ammonium salts, perfluoroalkyl amino sulfonates, perfluoroalkyl phosphate esters, perfluoroalkyl alkyl compounds, perfluoroalkyl alkyl betaines, perfluoroalkyl halides, etc. Is mentioned.
塗布外観の向上や滑り性の点から、ハードコート層を構成する塗布液に対して界面活性剤の含有量を0.01質量%以上とすることが好ましい。一方、界面活性剤がハードコート層表面にブリードアウトし、ハードコート層に触れたものを汚染してしまうため、界面活性剤の含有量を2.00質量%以下とすることが好ましい。 From the viewpoint of improvement in coating appearance and slipperiness, the content of the surfactant is preferably 0.01% by mass or more with respect to the coating liquid constituting the hard coat layer. On the other hand, since the surfactant bleeds out to the surface of the hard coat layer and contaminates what touched the hard coat layer, the surfactant content is preferably 2.00% by mass or less.
また、用いる界面活性剤は、HLBが2以上12以下であることが好ましい。HLBが2以上の界面活性剤を使用することにより、界面活性能によるレベリング性を向上させることができる。界面活性剤のHLBは、3以上がさらに好ましく、特に好ましくは4以上である。一方、HLBが12以下の界面活性剤を使用することにより、滑り性の悪化を抑制することができる。 The surfactant used preferably has an HLB of 2 or more and 12 or less. By using a surfactant having an HLB of 2 or more, the leveling property due to the surface activity can be improved. The HLB of the surfactant is more preferably 3 or more, and particularly preferably 4 or more. On the other hand, by using a surfactant having an HLB of 12 or less, deterioration of slipperiness can be suppressed.
なお、HLBとは、アメリカのAtlas Powder社のW.C.GriffinがHydorophil Lyophile Balanceと名付け、界面活性剤の分子中に含まれる親水基と親油基のバランスを特性値として指標化した値である。このHLB値が低いほど親油性が、一方高いほど親水性が高くなる、ことを意味する。 Note that HLB means W.A. of Atlas Powder, Inc. of the United States. C. Griffin named Hydrophile Lyophile Balance and is a value obtained by indexing the balance between the hydrophilic group and the lipophilic group contained in the surfactant molecule as a characteristic value. It means that the lower the HLB value, the more lipophilic, while the higher the HLB value, the higher the hydrophilicity.
本発明のハードコート層には、必要に応じて種々の添加剤を配合することができる。例えば、撥水性を付与する為のフッ素やシリコン系の化合物、塗工性や外観向上の為の消泡剤、更には、帯電防止剤や着色用の染料や顔料が挙げられる。 Various additives can be blended in the hard coat layer of the present invention as required. Examples thereof include fluorine and silicon compounds for imparting water repellency, antifoaming agents for improving coatability and appearance, and antistatic agents and coloring dyes and pigments.
本発明において、ハードコート層は、有機溶剤中に、電離放射線硬化型化合物、粒子、光重合開始剤、界面活性剤を含む塗布液を、基材フィルム上に塗布乾燥後、硬化させて形成させることが好ましい。 In the present invention, the hard coat layer is formed by applying a coating liquid containing an ionizing radiation curable compound, particles, a photopolymerization initiator, and a surfactant in an organic solvent, followed by curing on a base film. It is preferable.
ハードコート層を積層する方法としては、公知の方法が挙げられるが、前記塗布液を基材フィルム上に塗布乾燥後、硬化させる方法が好適である。塗布法としては、グラビアコート方式、キスコート方式、ディップ方式、スプレイコート方式、カーテンコート方式、エアナイフコート方式、ブレードコート方式、リバースロールコート方式、バーコート方式、リップコート方式などの公知の塗布方法が挙げられる。これらのなかで、ロール・トゥ・ロール方式で塗工可能で、均一に塗布することのできるグラビアコート方式、特にリバースグラビア方式が好ましい。 As a method for laminating the hard coat layer, a known method may be mentioned, and a method in which the coating liquid is applied and dried on a base film and then cured is preferable. As a coating method, there are known coating methods such as a gravure coating method, a kiss coating method, a dip method, a spray coating method, a curtain coating method, an air knife coating method, a blade coating method, a reverse roll coating method, a bar coating method, and a lip coating method. Can be mentioned. Among these, a gravure coating method, particularly a reverse gravure method, which can be applied by a roll-to-roll method and can be applied uniformly, is preferable.
前記塗布液に含まれる電離放射線硬化型化合物、粒子、光重合開始剤等を有機溶剤中に溶解あるいは分散する方法としては、加温下で、これらを攪拌、分散する方法が好適である。塗布液を加温することにより、電離放射線硬化型化合物、粒子および光重合開始剤の溶解性を向上させることができる。そのため、未溶解物等による塗工外観の悪化を抑えることができる。 As a method of dissolving or dispersing the ionizing radiation curable compound, particles, photopolymerization initiator and the like contained in the coating solution in an organic solvent, a method of stirring and dispersing them under heating is preferable. By heating the coating solution, the solubility of the ionizing radiation curable compound, particles and photopolymerization initiator can be improved. Therefore, the deterioration of the coating appearance due to undissolved materials can be suppressed.
分散機は、公知のものを用いることができる。具体的には、ボールミル、サンドミル、アトライター、ロールミル、アジテータ、コロイドミル、超音波ホモジナイザー、ホモミキサー、パールミル、湿式ジェットミル、ペイントシェーカー、バタフライミキサー、プラネタリーミキサー、ヘンシェルミキサー等が挙げられる。 A well-known thing can be used for a disperser. Specific examples include a ball mill, a sand mill, an attritor, a roll mill, an agitator, a colloid mill, an ultrasonic homogenizer, a homomixer, a pearl mill, a wet jet mill, a paint shaker, a butterfly mixer, a planetary mixer, and a Henschel mixer.
前記塗布液に含まれる電離放射線硬化型化合物、粒子、光重合開始剤等の固形分の濃度は、5質量%以上70質量%が好ましい。塗布液の固形分の濃度を5質量%以上に調整することにより、塗布後の乾燥時間が長くなることによる生産性の低下を抑えることができる。一方、塗布液の固形分の濃度を70質量%以下に調整することにより、塗布液の粘度の上昇によるレベリング性の悪化、及びそれにともなう塗布外観の悪化を防ぐことができる。また、塗布外観の点から、塗布液の粘度を0.5cps以上300cps以下の範囲になるように、塗布液の固形分濃度、あるいは有機溶剤の種類、界面活性剤の種類は配合量を調整することが好ましい。 The concentration of the solid content of the ionizing radiation curable compound, particles, photopolymerization initiator and the like contained in the coating solution is preferably 5% by mass or more and 70% by mass. By adjusting the concentration of the solid content of the coating liquid to 5% by mass or more, it is possible to suppress a decrease in productivity due to a long drying time after coating. On the other hand, by adjusting the concentration of the solid content of the coating solution to 70% by mass or less, it is possible to prevent deterioration in leveling properties due to an increase in the viscosity of the coating solution and accompanying deterioration in coating appearance. From the viewpoint of coating appearance, the solid content concentration of the coating liquid, the type of organic solvent, and the type of surfactant are adjusted so that the viscosity of the coating liquid is in the range of 0.5 cps to 300 cps. It is preferable.
塗布、硬化後のハードコート層の厚みは、成型時の伸長の程度によるが、成型後のハードコート層の厚みが0.5μm以上50μm以下になるようにすることが好ましい。具体的には、成型前のハードコート層の厚みの下限は0.6μm以上が好ましく、1.0μm以上がさらに好ましい。また、成型前のハードコート層の厚みの上限は100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましく、20μm以下がよりさらに好ましい。ハードコート層の厚みが0.6μmより薄い場合はハードコート性が得られ難く、逆に100μmを超える場合は、ハードコート層の硬化不良や硬化収縮によるカールが悪い傾向を示す。 The thickness of the hard coat layer after coating and curing depends on the degree of elongation during molding, but it is preferable that the thickness of the hard coat layer after molding be 0.5 μm or more and 50 μm or less. Specifically, the lower limit of the thickness of the hard coat layer before molding is preferably 0.6 μm or more, and more preferably 1.0 μm or more. Further, the upper limit of the thickness of the hard coat layer before molding is preferably 100 μm or less, more preferably 80 μm or less, further preferably 60 μm or less, and further preferably 20 μm or less. When the thickness of the hard coat layer is less than 0.6 μm, it is difficult to obtain hard coat properties. Conversely, when the thickness exceeds 100 μm, the hard coat layer tends to be poorly cured or curled due to cure shrinkage.
塗布液に有機溶剤を配合した場合等、予備乾燥が必要な場合、基材フィルム上に塗布し、乾燥する方法としては、公知の熱風乾燥、赤外線ヒーター等が挙げられるが、乾燥速度が早い熱風乾燥が好ましい。 When pre-drying is required, such as when an organic solvent is blended in the coating solution, known hot air drying, infrared heaters and the like can be used as a method of applying on the base film and drying, but hot air with a fast drying speed is used. Drying is preferred.
塗布後の乾燥温度は40℃以上120℃以下の条件下で行うことが好ましく、特には下限が45℃以上、上限が80℃以下が好ましい。40℃未満では、塗布液に含まれる有機溶剤が十分に除去できない他、ブラッシング等の問題が発生する場合がある。逆に120℃を超える温度では、泡由来の微小なコートヌケ、微小なハジキ、クラック等の塗膜の微小な欠点が発生しやすくなり、外観が不良になる場合がある。さらには、熱によりフィルムが強く収縮し、熱シワによりフィルムの平面性が悪化するため、成型時に均一な伸長が得られない、または、局部的な伸長が起こり、フィルムが破断する等の成型性が不良となる。 The drying temperature after coating is preferably 40 ° C. or higher and 120 ° C. or lower, and particularly preferably the lower limit is 45 ° C. or higher and the upper limit is 80 ° C. or lower. If it is less than 40 degreeC, the organic solvent contained in a coating liquid cannot fully be removed, and problems, such as brushing, may generate | occur | produce. On the other hand, when the temperature exceeds 120 ° C., minute defects of the coating film such as minute coating removal from bubbles, minute repellency, and cracks are likely to occur, and the appearance may be poor. In addition, the film shrinks strongly due to heat, and the flatness of the film deteriorates due to heat wrinkles, so that uniform stretching cannot be obtained during molding, or local stretching occurs and the film breaks. Becomes defective.
乾燥中にかかるフィルムの張力は50N/m以上300N/m以下が好ましく、特には下限が100N/m以上、上限が250N/m以下が好ましい。フィルムの張力は50N/m未満では、走行するフィルムが蛇行し、塗布液を塗工することは不可能である。逆に、300N/mを超える場合、フィルムにシワが発生し、平面性の悪化や、巻き取ったフィルムの外観が悪くなる。さらには、基材フィルムが低温で成型性に優れたものである場合は乾燥中にフィルムの進行方向に延伸され幅方向は収縮し、最悪の場合、破断する等の生産性に問題が生じる。 The tension of the film applied during drying is preferably 50 N / m or more and 300 N / m or less, particularly preferably the lower limit is 100 N / m or more and the upper limit is 250 N / m or less. When the tension of the film is less than 50 N / m, the traveling film meanders and it is impossible to apply the coating solution. On the other hand, when it exceeds 300 N / m, wrinkles are generated in the film, and the flatness is deteriorated and the appearance of the wound film is deteriorated. Furthermore, when the base film is a film having a low temperature and excellent moldability, the film is stretched in the traveling direction during drying and contracts in the width direction, and in the worst case, a problem arises in productivity such as breaking.
本発明において、ハードコート層を設けていない面に本発明の効果を阻害しない範囲でハードコート層、帯電防止層、易接着層、粘着層、易滑層、電磁波吸収層、染料や顔料等の色素を含有した樹脂層などの他の機能を付与しても構わない。 In the present invention, a hard coat layer, an antistatic layer, an easy adhesion layer, an adhesive layer, an easy slip layer, an electromagnetic wave absorption layer, a dye, a pigment, etc., as long as the effect of the present invention is not impaired on the surface not provided with the hard coat layer. Other functions such as a resin layer containing a dye may be added.
本発明では、塗布液に紫外線を照射する事によりハードコート層を形成させる。照射する積算光量として、好ましくは50mJ/cm2以上1000mJ/cm2以下、より好ましくは下限が300mJ/cm2以上、上限が700mJ/cm2以下である。なお、照射する際、窒素ガス雰囲気下で行なうことが酸素阻害が低減され、耐擦傷性が向上することから望ましい。積算光量が50mJ/cm2未満である場合、電離放射線硬化型化合物の重合反応が促進されず、ハードコート層の表面硬度が著しく低下する。積算光量が1000mJ/cm2を超える場合は、熱の影響により基材フィルムが変形する場合がある。なお、本発明における積算光量は、トプコン製「UVR−T35」により測定することができる。 In the present invention, the hard coat layer is formed by irradiating the coating solution with ultraviolet rays. As the integrated quantity of light to be irradiated, preferably 50 mJ / cm 2 or more 1000 mJ / cm 2 or less, and more preferably the lower limit is 300 mJ / cm 2 or more, the upper limit is 700 mJ / cm 2 or less. Note that it is desirable to perform irradiation in a nitrogen gas atmosphere because oxygen inhibition is reduced and scratch resistance is improved. When the integrated light quantity is less than 50 mJ / cm 2 , the polymerization reaction of the ionizing radiation curable compound is not promoted, and the surface hardness of the hard coat layer is significantly reduced. When the integrated light quantity exceeds 1000 mJ / cm 2 , the base film may be deformed due to the influence of heat. The integrated light amount in the present invention can be measured by “UVR-T35” manufactured by Topcon.
また、電子線により塗布液を硬化させる場合には、照射線量は5kGy以上100kGy以下が好ましく、特には上限が30kGy以上、下限が70kGy以下がより好ましい。5kGy未満である場合、電離放射線硬化型化合物の重合反応が促進されず、ハードコート層の表面硬度が著しく低下する。100kGyを超える場合は、電子線照射管の寿命低下が著しく、生産コスト面で好ましくない。 Further, when the coating solution is cured with an electron beam, the irradiation dose is preferably 5 kGy or more and 100 kGy or less, and more preferably the upper limit is 30 kGy or more and the lower limit is 70 kGy or less. When it is less than 5 kGy, the polymerization reaction of the ionizing radiation curable compound is not promoted, and the surface hardness of the hard coat layer is significantly reduced. When it exceeds 100 kGy, the lifetime of the electron beam irradiation tube is remarkably reduced, which is not preferable in terms of production cost.
(成型用ハードコートフィルム)
本発明の成型用ハードコートフィルムは、表面硬度に優れるフィルムである。具体的には、共重合ポリエステルを含む二軸配向ポリエステルフィルムを基材フィルムとした成型用ハードコートフィルムの場合、鉛筆硬度の測定値がH以上であることが好ましく、さらに2H以上であることが特に好ましい。ここで鉛筆硬度の評価はJIS−K5600に準拠して行った。
(Hard coat film for molding)
The molding hard coat film of the present invention is a film having excellent surface hardness. Specifically, in the case of a molding hard coat film using a biaxially oriented polyester film containing a copolymerized polyester as a base film, the measured value of pencil hardness is preferably H or more, and more preferably 2H or more. Particularly preferred. Here, the pencil hardness was evaluated according to JIS-K5600.
表面硬度を調整する方法としては、ハードコート層を形成する塗布液に含まれる電離放射線硬化型化合物中の1または2官能の電離放射線硬化型化合物の含有量やアミノ基を有する電離放射線硬化型化合物の含有量、ハードコート層中の粒子の存在量、ハードコート層の厚みにより変更することができる。 As a method for adjusting the surface hardness, the content of mono- or bifunctional ionizing radiation-curable compounds in the ionizing radiation-curable compound contained in the coating solution for forming the hard coat layer and the ionizing radiation-curable compound having an amino group The content can be changed depending on the amount of particles, the amount of particles in the hard coat layer, and the thickness of the hard coat layer.
本発明の成型用ハードコートフィルムとは、耐擦傷性に優れるフィルムである。具体的には、基材フィルムによって異なるが、共重合ポリエステルを含む二軸配向ポリエステルフィルムを基材フィルムとした成型用ハードコートフィルムの場合、JIS−K5600に準拠し、荷重500gfで#0000のスチールウールで表面を20往復し、傷の発生の有無及び傷の程度を目視により観察し、深いキズが10本以下の少量であることが好ましく、さらに深いキズが全く無いことが特に好ましい。 The hard coat film for molding of the present invention is a film having excellent scratch resistance. Specifically, in the case of a molding hard coat film using a biaxially oriented polyester film containing a copolymerized polyester as a base film, although it depends on the base film, steel of # 0000 with a load of 500 gf in accordance with JIS-K5600. The surface is reciprocated 20 times with wool, and the presence or absence of scratches and the extent of the scratches are visually observed. The deep scratches are preferably a small amount of 10 or less, and more preferably no deep scratches at all.
耐擦傷性を調整する方法としては、ハードコート層を形成する塗布液に含まれる電離放射線硬化型化合物中の1または2官能の電離放射線硬化型化合物の含有量やアミノ基を有する電離放射線硬化型化合物の含有量、ハードコート層中の粒子の存在量により変更することができる。 As a method for adjusting the scratch resistance, the content of the monofunctional or bifunctional ionizing radiation curable compound in the ionizing radiation curable compound contained in the coating solution for forming the hard coat layer or the ionizing radiation curable type having an amino group. It can be changed depending on the content of the compound and the amount of particles present in the hard coat layer.
本発明の成型用ハードコートフィルムは、成型性に優れるフィルムである。具体的には、基材フィルムによって異なるが、共重合ポリエステルを含む二軸配向ポリエステルフィルムを基材フィルムとした成型用ハードコートフィルムの場合、室温、フィルム実温が160℃時ともに伸度が10%以上であることが好ましく、20%以上であることがさらに好ましく、30%以上であることが特に好ましい。ここで伸度とは、長さ10mm、幅150mmの短冊状に成型用ハードコートフィルムを切り出し、フィルム実温が160℃時のそれぞれで引っ張った時に、ハードコート層にクラック、または白化が発生した時の延伸率を伸度(%)とした。 The molding hard coat film of the present invention is a film excellent in moldability. Specifically, in the case of a hard coat film for molding using a biaxially oriented polyester film containing a copolymerized polyester as a base film, the elongation is 10 at both room temperature and the actual film temperature of 160 ° C. % Or more, preferably 20% or more, and particularly preferably 30% or more. Here, the elongation means that a hard coat film for molding was cut into a strip shape having a length of 10 mm and a width of 150 mm, and when the actual film temperature was pulled at 160 ° C., cracks or whitening occurred in the hard coat layer. The stretching ratio at the time was defined as the degree of elongation (%).
成型性(伸度)を調整する方法としては、ハードコート層を形成する塗布液に含まれる電離放射線硬化型化合物中の1または2官能の電離放射線硬化型化合物の含有量やアミノ基を有する電離放射線硬化型化合物の含有量、ハードコート層中の粒子の存在量により変更することができる。 As a method for adjusting the moldability (elongation), the content of mono- or bifunctional ionizing radiation-curable compound in the ionizing radiation-curable compound contained in the coating solution for forming the hard coat layer or ionization having an amino group It can be changed depending on the content of the radiation curable compound and the amount of particles present in the hard coat layer.
本発明の成型用ハードコートフィルムは、ハードコート層を積層しない面に印刷加工を施す場合は、透明性があることが好ましい。具体的には、基材フィルムによって異なるが、共重合ポリエステルを含む二軸配向ポリエステルフィルムを基材フィルムとした成型用ハードコートフィルムの場合、ヘーズが5%以下であることが好ましい。ヘーズを調整する方法としては、ハードコート層中の粒子の存在量により変更することができる。 The molding hard coat film of the present invention preferably has transparency when printing is performed on the surface on which the hard coat layer is not laminated. Specifically, although it varies depending on the base film, in the case of a molding hard coat film using a biaxially oriented polyester film containing a copolymerized polyester as the base film, the haze is preferably 5% or less. The method for adjusting the haze can be changed depending on the abundance of particles in the hard coat layer.
本発明の成型用ハードコートフィルムは、ハードコート層を積層しない面に印刷加工を施す場合は、着色がないことが好ましい。具体的には、基材フィルムによって異なるが、共重合ポリエステルを含む二軸配向ポリエステルフィルムを基材フィルムとした成型用ハードコートフィルムの場合、色調b*の値が2.0以下であることが好ましい。色調b*を調整する方法として、ハードコート層を形成する塗布液に含まれる電離放射線硬化型化合物中のアミノ基を有する電離放射線硬化型化合物の含有量や光開始重合剤の添加量により変更することができる。ここで色調b*は色差計(日本電色工業製、ZE−2000)を用いて、C光源、2度の視野角で色調b*値を測定し、5回の測定値を平均して求めた値である。 When the hard coat film for molding of the present invention is subjected to a printing process on a surface on which the hard coat layer is not laminated, it is preferable that there is no coloring. Specifically, although it varies depending on the base film, in the case of a hard coat film for molding using a biaxially oriented polyester film containing a copolyester as a base film, the value of the color tone b * may be 2.0 or less. preferable. As a method for adjusting the color tone b *, the color tone b * is changed depending on the content of the ionizing radiation-curable compound having an amino group in the ionizing radiation-curable compound contained in the coating solution for forming the hard coat layer and the amount of the photoinitiating polymer added. be able to. Here, the color tone b * is obtained by measuring the color tone b * value with a C light source and a viewing angle of 2 degrees using a color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., ZE-2000), and averaging the five measurement values. Value.
(成型用ハードコートフィルムロール)
本発明の成型用ハードコートフィルムロールは、長尺の成型用ハードコートフィルムを円筒状コアにロール状に連続的に巻き取る工程を経て得られる。成型用ハードコートフィルムロールを用いることにより、加工時の生産性が向上し、さらに成型体の品質の安定性に寄与しうる。長尺の成型用ハードコートフィルムを円筒状コアにロール状に連続的に巻き取られた成型用ハードコートフィルムロールの長さは用途により特に限定されないが、50m以上5000m以下であることが好ましく、100m以上3000m以下がより好ましい。巻長が短い場合には、例えば後工程での印刷層加工時の成型用ハードコートフィルムの切り替え頻度が高くなり作業性が悪化する。逆に、巻長が長い場合には、外部の環境温度により成型用ハードコートフィルムが膨張及び収縮し、巻き締まりが発生して、巻芯部の外観が不良となる。
(Hard coat film roll for molding)
The molding hard coat film roll of the present invention is obtained through a step of continuously winding a long molding hard coat film in a roll shape around a cylindrical core. By using the hard coat film roll for molding, productivity at the time of processing can be improved, and further, it can contribute to the stability of the quality of the molded body. The length of the molding hard coat film roll obtained by continuously winding the long molding hard coat film into a roll on a cylindrical core is not particularly limited depending on the application, but is preferably 50 m or more and 5000 m or less, 100 m or more and 3000 m or less is more preferable. When the winding length is short, for example, the frequency of switching the hard coat film for molding at the time of processing the printed layer in the subsequent process is increased and workability is deteriorated. On the other hand, when the winding length is long, the molding hard coat film expands and contracts due to the external environmental temperature, and winding tightening occurs, resulting in a poor appearance of the core.
成型用ハードコートフィルムロールの幅は用途により異なり、特に限定されないが、加工性の点からは100mm以上2000mm以下が好ましく、500mm以上1500mm以下がさらに好ましい。 The width of the hard coat film roll for molding varies depending on the application and is not particularly limited, but is preferably 100 mm or more and 2000 mm or less, more preferably 500 mm or more and 1500 mm or less from the viewpoint of workability.
成型用ハードコートフィルムを巻きつける円筒状コアは、プラスチック製コアが好ましい。一般的に使用される紙製のコアを用いた場合には、紙粉等が発生してハードコート層に付着して不良となりやすい。プラスチック製コアとしては、公知のものが好適に使用できるが、ポリプロピレン製コアやFRP製コアが強度の点で好ましい。円筒状コアのサイズは、直径が3インチ以上6インチ以下が好ましい。直径の小さいコアを用いた場合には、巻芯部で巻き癖が付き、後工程での取り扱い性が不良となる。一方、直径が大きい場合には、ロール径が大きくなり、ハンドリング性が不良となる。 The cylindrical core around which the hard coat film for molding is wound is preferably a plastic core. When a commonly used paper core is used, paper dust or the like is generated and tends to adhere to the hard coat layer and become defective. As the plastic core, known ones can be preferably used, but a polypropylene core and an FRP core are preferable in terms of strength. The size of the cylindrical core is preferably 3 to 6 inches in diameter. When a core having a small diameter is used, the winding core is wrinkled and the handling property in the subsequent process becomes poor. On the other hand, when the diameter is large, the roll diameter becomes large and the handling property becomes poor.
コアに成型用ハードコートフィルムを巻きつけるためには、コアに両面テープを介して成型用ハードコートフィルムを固定してから巻き始めることが好ましい。両面テープを用いない場合には、巻き途中や運搬時に巻ズレが発生しやすくなる。両面テープとしては公知のものが使用できるが、プラスチックフィルムの両面に粘着層を有するものが、紙粉の発生や強度の点で好ましい。両面テープの厚みは、5μm以上50μm以下が好ましい。薄い場合には強度が低下して作業性が悪くなるとともに、フィルムの固定力が低下する。逆に、厚い場合には、テープによる段差で、巻芯部の成型用ハードコートフィルムの平面性が不良となる。 In order to wind the molding hard coat film around the core, it is preferable to start winding after fixing the molding hard coat film to the core via a double-sided tape. When a double-sided tape is not used, winding deviation is likely to occur during winding or during transportation. Although a well-known thing can be used as a double-sided tape, what has an adhesion layer on both surfaces of a plastic film is preferable at the point of generation | occurrence | production of paper dust, and an intensity | strength. The thickness of the double-sided tape is preferably 5 μm or more and 50 μm or less. When it is thin, the strength is lowered and workability is deteriorated, and the fixing force of the film is lowered. On the other hand, when the thickness is thick, the flatness of the hard coat film for molding the core portion becomes poor due to a step due to the tape.
本発明において、成型用ハードコートフィルムの巾方向の両端に凹凸(エンボス)を付与することが好ましい。凹凸を付与することで、巻芯部の両面テープによる跡が付きにくくなるとともに、ハードコート層とその反対面の基材フィルム表層、または基材フィルム上に積層した前述したような機能性を付与した層との接触する箇所が低下して、ロール形態での保存安定性が良好となる。凹凸の高さの下限は、10μmが好ましく、さらに好ましくは15μmである。一方、凹凸の高さの上限は、40μmが好ましく、さらに好ましくは35μmである。凹凸の高さが低すぎると、凹凸によるロール形態での保存安定性の改善効果が小さくなる。一方、凹凸の高さが高すぎると、運送時に巻ズレ等が発生しやすくなる。凹凸を付与する方法としては、公知の方法を使用できる。具体的には、表面に突起のある金属ロールを押し付けて凹凸を付与する方法が挙げられる。なお、凹凸加工は基材フィルム上にハードコート層を形成する前に、予め基材フィルムに付与しておくことが好ましい。 In this invention, it is preferable to provide an unevenness | corrugation (emboss) to the both ends of the width direction of the hard-coat film for a shaping | molding. By imparting irregularities, it becomes difficult to leave marks due to the double-sided tape at the core, and the functionality described above laminated on the hard coat layer and the base film surface layer on the opposite side or on the base film is given. The part which contacts with the layer which fell is reduced, and the storage stability in a roll form becomes favorable. The lower limit of the height of the unevenness is preferably 10 μm, more preferably 15 μm. On the other hand, the upper limit of the height of the unevenness is preferably 40 μm, more preferably 35 μm. When the height of the unevenness is too low, the effect of improving the storage stability in the roll form due to the unevenness is reduced. On the other hand, if the height of the unevenness is too high, winding deviation or the like is likely to occur during transportation. A publicly known method can be used as a method of giving unevenness. Specifically, a method of pressing the metal roll having protrusions on the surface to give irregularities can be mentioned. In addition, it is preferable to give uneven | corrugated processing to a base film previously, before forming a hard-coat layer on a base film.
(成型体)
本発明の成型用ハードコートフィルムは、真空成型、圧空成型、金型成型、プレス成型、ラミネート成型、インモールド成型、絞り成型、折り曲げ成型、延伸成型などの成型方法を用いて成型する成型用材料として好適である。本発明の成型用ハードコートフィルムを用いて成型した場合、成型時の変形にハードコート層が追随しクラックが発生せず、かつ、表面硬度、耐擦傷性を維持することができる。
(Molded body)
The molding hard coat film of the present invention is a molding material that is molded using a molding method such as vacuum molding, pressure molding, mold molding, press molding, laminate molding, in-mold molding, drawing molding, bending molding, and stretch molding. It is suitable as. In the case of molding using the molding hard coat film of the present invention, the hard coat layer follows the deformation during molding and no cracks are generated, and the surface hardness and scratch resistance can be maintained.
上記の成型用ハードコートフィルムを成型してなる成型体のハードコート層の厚みは、0.5μm以上50μm以下が好ましく、特に好ましくは0.5μm以上10μm以下がよい。成型体のハードコート層の厚みが0.5μmより薄い場合はハードコート性が得られないことや、耐熱性の点で成型体に熱が加わった際、基材フィルムの収縮に追随できずハードコート層表面が波打つように荒れ、外観を損ねてしまう。逆に50μmを超える場合は、それ以上のハードコート層の厚みでの表面硬度に優位差が無く、品質の点でメリットは小さくなる。 The thickness of the hard coat layer of the molded body formed by molding the above-described hard coat film for molding is preferably 0.5 μm or more and 50 μm or less, and particularly preferably 0.5 μm or more and 10 μm or less. When the thickness of the hard coat layer of the molded body is less than 0.5 μm, hard coat properties cannot be obtained, and when heat is applied to the molded body in terms of heat resistance, the hard film cannot follow the shrinkage of the base film. The surface of the coat layer becomes rough like a wave, and the appearance is impaired. On the other hand, when it exceeds 50 μm, there is no difference in the surface hardness at the thickness of the hard coat layer beyond that, and the merit is reduced in terms of quality.
このように成型された成型体は、ハードコート層を有することにより表面硬度を補っているため、外部に触れる位置に装着され、耐擦傷性が要求される家電用銘板、自動車用銘板、ダミー缶、建材、化粧板、化粧鋼鈑、転写シートなどの成型部材として好適に使用することができる。 The molded body molded in this way has a hard coat layer to compensate for surface hardness, so it is mounted at a position where it touches the outside and is required to have scratch resistance. It can be suitably used as a molding member such as a building material, a decorative board, a decorative steel plate, and a transfer sheet.
以下、実施例によって本発明を詳細に説明する。なお、各実施例で得られたフィルム特性は以下の方法により測定、評価した。 Hereinafter, the present invention will be described in detail by way of examples. The film properties obtained in each example were measured and evaluated by the following methods.
(1)伸度
得られた成型用ハードコートフィルムから長さ10mm、幅150mmの短冊状の試料片に切り出した。フィルム試料片の実温が160℃の環境下で、外観を目視観察しながら、フィルム両端を把持して試験速度250mm/分で引張り、ハードコート層にクラック、または白化が発生した時のフィルムの長さを測定した。
試験前のフィルム試料片長をa、試験後のフィルム試料片長をbとしたとき、下記式により伸度を算出した。
伸度(%)=(b−a)×100/a
ここで伸度が10%以上のものを成型性に優れているとし、30%以上のものを特に成型性に優れていると判断した。
(1) Elongation The obtained hard coat film for molding was cut into a strip-shaped sample piece having a length of 10 mm and a width of 150 mm. In an environment where the actual temperature of the film sample piece is 160 ° C., while visually observing the appearance, the film is gripped at both ends and pulled at a test speed of 250 mm / min, and when the hard coat layer is cracked or whitened, The length was measured.
When the length of the film sample piece before the test was a and the length of the film sample piece after the test was b, the elongation was calculated by the following formula.
Elongation (%) = (b−a) × 100 / a
Here, it was judged that those having an elongation of 10% or more were excellent in moldability, and those having an elongation of 30% or more were particularly excellent in moldability.
(2)鉛筆硬度
得られた成型用ハードコートフィルムのハードコート層の鉛筆硬度をJIS−K5600に準拠して測定した。圧こん(痕)は目視で判定した。
ここで鉛筆硬度がH以上のものを優れた表面硬度があるものとし、2H以上であるものを特に優れた表面硬度があるものと判断した。
(2) Pencil hardness The pencil hardness of the hard coat layer of the obtained molding hard coat film was measured according to JIS-K5600. The indentation (scratch) was judged visually.
Here, those having a pencil hardness of H or higher were judged to have excellent surface hardness, and those having a pencil hardness of 2H or higher were judged to have particularly excellent surface hardness.
(3)耐擦傷性
得られた成型用ハードコートフィルムのハードコート層の耐擦傷性をJIS−K5600に準拠して測定した。ハードコート層表面を荷重500gfで#0000のスチールウールで20往復し、傷の発生の有無及び傷の程度を目視により観察した。観察結果をもとに以下の判定基準に従ってランクを判定した。この耐擦傷性のランクがC以上で耐擦傷性があるとし、B以上のものを耐擦傷性が良好と判断した。
A:傷の発生が無い、もしくは細い傷が少量程度観察される。
B:細い傷が観察されるが、深い傷は観察されない。
C:細い傷が観察され、深い傷も少量程度観察される。
D:深い傷が多量に観察される。
(3) Scratch resistance The scratch resistance of the hard coat layer of the obtained molding hard coat film was measured according to JIS-K5600. The hard coat layer surface was reciprocated 20 times with # 0000 steel wool at a load of 500 gf, and the presence or absence of scratches and the extent of the scratches were visually observed. The rank was determined according to the following criteria based on the observation results. The scratch resistance rank was C or higher, and there was scratch resistance, and those of B or higher were judged to have good scratch resistance.
A: There is no generation of scratches or thin scratches are observed in a small amount.
B: Although a thin wound is observed, a deep wound is not observed.
C: Narrow scratches are observed, and a small amount of deep scratches are also observed.
D: A lot of deep scratches are observed.
(4)色調b*
得られた成型用ハードコートフィルムの色調b*値を色差計(日本電色工業製、ZE−2000)を用いて、C光源、2度の視野角で色調b*値を測定し、5回の測定値を平均して求めた。
(4) Color tone b *
The color tone b * value of the obtained hard coat film for molding was measured using a color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., ZE-2000), and the color tone b * value was measured at a viewing angle of 2 degrees with a C light source. The measured values were averaged.
(5)成型後の鉛筆硬度、ハードコート層の厚み
前記(1)の伸度評価において、クラックが発生する直前で引っ張ることをやめることにより、延伸成型後の成型体を得た。成型後の鉛筆硬度を前記(2)の評価方法により評価した。また、成型後のフィルム試料片(成型体)の中央部における分光反射率を分光光度計(島津製作所製、UV−3150型)よりを求め、波長400nm以上600nm以下での波形からピークバレー法を用いてハードコート層の厚みを算出した。その際に必要とするハードコート層の屈折率は、各実施例、比較例のハードコート塗布液からハードコート層の単膜を作成し、アッベ屈折計(アタゴ製、NAR−1T SOLID)を用いて求めた。
(5) Pencil hardness after molding, thickness of hard coat layer In the elongation evaluation of (1) above, by stopping pulling immediately before the occurrence of cracks, a molded body after stretch molding was obtained. The pencil hardness after molding was evaluated by the evaluation method (2). Further, the spectral reflectance at the center of the film sample piece (molded body) after molding is obtained from a spectrophotometer (manufactured by Shimadzu Corporation, UV-3150 type), and the peak valley method is calculated from the waveform at a wavelength of 400 nm to 600 nm. Using this, the thickness of the hard coat layer was calculated. The refractive index of the hard coat layer required at that time is to prepare a single film of the hard coat layer from the hard coat coating solution of each example and comparative example, and use an Abbe refractometer (NAR-1T SOLID, manufactured by Atago). Asked.
(6)ガラス転移温度
JIS K7121に準拠し、示差走査熱量計(セイコーインスツルメンツ株式会社製、DSC6200)を使用して、25〜300℃の温度範囲にわたって20℃/minで昇温させ、DSC曲線から得られた補外ガラス転移開始温度をガラス転移温度とした。
(6) Glass transition temperature Based on JIS K7121, using a differential scanning calorimeter (Seiko Instruments Co., Ltd., DSC6200), the temperature was raised at a rate of 20 ° C / min over a temperature range of 25 to 300 ° C, and from the DSC curve The obtained extrapolated glass transition start temperature was defined as the glass transition temperature.
(7)干渉縞改善性(虹彩状色彩)
得られた成型用ハードコートフィルムを10cm(フィルム幅方向)×15cm(フィルム長手方向)の面積に切り出し、試料フィルムを作成した。得られた試料フィルムのハードコート層面とは反対面に、黒色光沢テープ(日東電工株式会社製、ビニルテープ No21;黒)を貼り合わせた。この試料フィルムのハードコート面を上面にして、3波長形昼白色(ナショナル パルック、F.L 15EX-N 15W)を光源として観察した。目視で観察した結果を、下記の基準でランク分けをした。
○:虹彩状色彩が見られない
△:僅かに虹彩状色彩が見られる
×:はっきりとした虹彩状色彩が観察される
(7) Interference fringe improvement (iris color)
The obtained hard coat film for molding was cut into an area of 10 cm (film width direction) × 15 cm (film longitudinal direction) to prepare a sample film. A black glossy tape (manufactured by Nitto Denko Corporation, vinyl tape No. 21; black) was bonded to the surface opposite to the hard coat layer surface of the obtained sample film. The sample film was observed with the hard coat surface as the upper surface and a three-wavelength daylight white color (National Palook, FL 15EX-N 15W) as a light source. The results of visual observation were ranked according to the following criteria.
○: Iridescent color is not seen △: Slightly irisy color is seen ×: Clear iris-like color is observed
(ポリエステル樹脂の重合)
撹拌機、温度計、および部分還流式冷却器を具備するステンレススチール製オートクレーブに、ジメチルテレフタレート186質量部、ジメチルイソフタレート186質量部、ジメチル 5−ナトリウムスルホイソフタレート23.7部、ネオペンチルグリコール137質量部、エチレングリコール191質量部、およびテトラ−n−ブチルチタネート0.5質量部を仕込み、160℃から220℃まで、4時間かけてエステル交換反応を行った。次いで255℃まで昇温し、反応系を徐々に減圧した後、29Paの減圧下で1時間30分反応させ、共重合ポリエステル樹脂(A−1)を得た。得られた共重合ポリエステル樹脂は淡黄色透明であった。
(Polyester resin polymerization)
In a stainless steel autoclave equipped with a stirrer, a thermometer, and a partial reflux condenser, 186 parts by mass of dimethyl terephthalate, 186 parts by mass of dimethyl isophthalate, 23.7 parts of dimethyl 5-sodium sulfoisophthalate, 137 of neopentyl glycol Mass parts, 191 parts by mass of ethylene glycol, and 0.5 parts by mass of tetra-n-butyl titanate were charged, and a transesterification reaction was performed from 160 ° C. to 220 ° C. over 4 hours. Next, the temperature was raised to 255 ° C., and the pressure of the reaction system was gradually reduced, followed by reaction for 1 hour 30 minutes under a reduced pressure of 29 Pa to obtain a copolymerized polyester resin (A-1). The obtained copolyester resin was light yellow and transparent.
同様の方法で、別の組成の共重合ポリエステル樹脂(A−2、A−3、A−4)を得た。これらの共重合ポリエステル樹脂に対し、NMRで測定した組成および重量平均分子量の結果を表1に示す。 In the same manner, copolymer polyester resins (A-2, A-3, A-4) having different compositions were obtained. Table 1 shows the results of the composition and weight average molecular weight measured by NMR for these copolyester resins.
以後、実施例6及び7は、参考例6及び7と各々読み替えることとする。
実施例1
(1)ポリエステルの水分散液の調整
撹拌機、温度計と還流装置を備えた反応器に、ポリエステル樹脂(A−1)20質量部、エチレングリコールモノブチルエーテル15質量部を入れ、100℃で加熱、撹拌し、樹脂を溶解した。樹脂が完全に溶解した後、水65質量部をポリエステル溶液に攪拌しつつ徐々に添加した。添加後、液を攪拌しつつ室温まで冷却して、固形分20質量%の乳白色のポリエステルの水分散液(B−1)を作成した。同様にポリエステル樹脂(A−1)の代わりにポリエステル樹脂(A−2)〜(A−4)を使用して、水分散液を作成し、それぞれ水分散液(B−2)〜(B−4)とした。
Hereinafter, Examples 6 and 7 will be read as Reference Examples 6 and 7, respectively.
Example 1
(1) Preparation of polyester aqueous dispersion In a reactor equipped with a stirrer, a thermometer and a reflux device, 20 parts by mass of polyester resin (A-1) and 15 parts by mass of ethylene glycol monobutyl ether are added and heated at 100 ° C. , Stirred to dissolve the resin. After the resin was completely dissolved, 65 parts by mass of water was gradually added to the polyester solution while stirring. After the addition, the solution was cooled to room temperature while stirring to prepare an aqueous dispersion (B-1) of milky white polyester having a solid content of 20% by mass. Similarly, using the polyester resins (A-2) to (A-4) instead of the polyester resin (A-1), an aqueous dispersion was prepared, and the aqueous dispersions (B-2) to (B-) were respectively obtained. 4).
(2)水系塗布液の調整
得られたポリエステル水分散液(B−1)40質量部、ヒドロキシビス(ラクタト)チタンの44質量%溶液(松本製薬(株)製、TC310)18質量部、水150質量部およびイソプロピルアルコール100質量部をそれぞれ混合し、さらにアニオン系界面活性剤(花王株式会社製、ネオペレックス No6Fパウダー)をそれぞれ塗布液に対し1質量%、コロイダルシリカ微粒子(触媒化成工業製、カタロイドSI80P;平均粒径80nm)水分散液を樹脂固形分に対しシリカとして2質量%添加し、水系塗布液を調製した(以下、水系塗布液(C−1)と略記する)。
(2) Preparation of aqueous coating liquid 40 parts by mass of the obtained polyester aqueous dispersion (B-1), 44 parts by mass of hydroxybis (lactato) titanium (manufactured by Matsumoto Pharmaceutical Co., Ltd., TC310) 18 parts by mass, water 150 parts by mass and 100 parts by mass of isopropyl alcohol were mixed, and 1% by mass of anionic surfactant (Naopelex No6F powder, manufactured by Kao Corporation), colloidal silica fine particles (manufactured by Catalyst Kasei Kogyo, Cataloid SI80P (average particle size 80 nm) 2% by mass of an aqueous dispersion was added as silica to the resin solids to prepare an aqueous coating solution (hereinafter abbreviated as aqueous coating solution (C-1)).
(2)フィルム原料の製造
芳香族ジカルボン酸成分としてテレフタル酸単位100モル%、ジオール成分としてエチレングリコール単位40モル%及びネオペンチルグリコール単位60モル%を構成成分とする、固有粘度が0.69dl/gの共重合ポリエステルのチップ(A)と、固有粘度が0.69dl/gで、かつ平均粒子径(SEM法、以下同じ)が2.7μmのシリカを0.04質量%含有するポリエチレンテレフタレートのチップ(B)をそれぞれ乾燥させた。さらに、チップ(A)とチップ(B)を25:75の質量比となるように混合した。
(2) Manufacture of film raw material The intrinsic viscosity is 0.69 dl / with 100 mol% of terephthalic acid unit as an aromatic dicarboxylic acid component and 40 mol% of ethylene glycol unit and 60 mol% of neopentyl glycol unit as diol components. g of copolymer polyester chip (A) and polyethylene terephthalate containing 0.04% by mass of silica having an intrinsic viscosity of 0.69 dl / g and an average particle diameter (SEM method, the same applies hereinafter) of 2.7 μm. Each chip (B) was dried. Furthermore, the chip (A) and the chip (B) were mixed so as to have a mass ratio of 25:75.
(3)ポリエステルフィルムの製造
次いで、これらのチップ混合物を押出し機によりTダイのスリットから270℃で溶融押出し、表面温度40℃のチルロール上で急冷固化させ、同時に静電印加法を用いてチルロールに密着させながら無定形の未延伸シートを得た。
(3) Manufacture of polyester film Next, these chip mixtures were melt-extruded from the slit of the T-die at 270 ° C. with an extruder, rapidly cooled and solidified on a chill roll having a surface temperature of 40 ° C., and simultaneously applied to a chill roll using an electrostatic application method. An amorphous unstretched sheet was obtained while closely contacting.
得られた未延伸シートを加熱ロールと冷却ロールの間で縦方向に90℃で3.3倍に延伸した。 The obtained unstretched sheet was stretched 3.3 times at 90 ° C. in the longitudinal direction between the heating roll and the cooling roll.
続いて、得られた一軸延伸フィルムに水系塗布液(C−1)を乾燥後重量が0.5g/m2になるようにロールコート法でフィルムの片面に塗布し、130℃で3秒間乾燥し水分を除去した。 Subsequently, the aqueous uniaxially stretched film (C-1) was dried on the obtained uniaxially stretched film and then applied to one side of the film by a roll coating method so that the weight became 0.5 g / m 2 and dried at 130 ° C. for 3 seconds. Water was removed.
引続いてテンターで、100℃の設定で加熱して3.8倍に横延伸し、幅固定しながら230℃で5秒間の熱処理を施し、更に205℃で幅方向に5%緩和させることにより、厚みが100μmのポリエステルフィルムを得た。 Subsequently, by heating with a tenter at a setting of 100 ° C. and transversely stretching 3.8 times, heat treatment at 230 ° C. for 5 seconds while fixing the width, and further relaxing by 5% in the width direction at 205 ° C. A polyester film having a thickness of 100 μm was obtained.
(4)成型用ハードコートフィルムの製造
得られたフィルムの中間層側に下記のハードコート塗布液Aをワイヤーバーを用いて乾燥後の塗工厚が2μmになるように塗布し、温度80℃の熱風で60秒乾燥し、出力120W/cmの高圧水銀灯下20cmの位置を10m/minのスピードで通過させて成型用ハードコートフィルムを得た。ハードコート層の屈折率は1.48であった。
(ハードコート塗布液A)
下記の材料を下記に示す質量比で混合し、30分以上攪拌して溶解させた。次いで、公称ろ過精度が1μmのフィルターを用いて未溶解物を除去して、ハードコート塗布液Aを作成した。
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(4) Production of molding hard coat film The following hard coat coating solution A was applied to the intermediate layer side of the obtained film using a wire bar so that the coating thickness after drying was 2 μm, and the temperature was 80 ° C. Was dried with hot air for 60 seconds and passed through a position 20 cm under a high-pressure mercury lamp with an output of 120 W / cm at a speed of 10 m / min to obtain a hard coat film for molding. The refractive index of the hard coat layer was 1.48.
(Hard coat coating solution A)
The following materials were mixed at the mass ratio shown below, and dissolved by stirring for 30 minutes or more. Subsequently, the undissolved material was removed using a filter having a nominal filtration accuracy of 1 μm to prepare a hard coat coating solution A.
・ Methyl ethyl ketone 64.48% by mass
・ Pentaerythritol triacrylate 11.45% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.73% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.72% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例2)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Bに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液B)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 17.18質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 2.86質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 2.86質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 2)
In Example 1, a molding hard coat film was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution B.
(Hard coat coating solution B)
・ Methyl ethyl ketone 64.48% by mass
-Pentaerythritol triacrylate 17.18% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 2.86% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 2.86% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例3)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Cに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液C)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 8.02質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 7.44質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 7.44質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 3)
In Example 1, a molding hard coat film was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution C.
(Hard coat coating solution C)
・ Methyl ethyl ketone 64.48% by mass
-Pentaerythritol triacrylate 8.02 mass%
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 7.44% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 7.44% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例4)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Dに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液D)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 21.75質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 0.58質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 0.57質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
Example 4
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution D.
(Hard coat coating solution D)
・ Methyl ethyl ketone 64.48% by mass
-Pentaerythritol triacrylate 21.75 mass%
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 0.58% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 0.57% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例5)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Eに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液E)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 1.15質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 0.58質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 21.17質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 5)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution E.
(Hard coat coating solution E)
・ Methyl ethyl ketone 64.48% by mass
-Pentaerythritol triacrylate 1.15% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 0.58% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 21.17% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例6)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Fに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液F)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 21.75質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 1.15質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 6)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution F.
(Hard coat coating solution F)
・ Methyl ethyl ketone 64.48% by mass
-Pentaerythritol triacrylate 21.75 mass%
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 1.15% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例7)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Gに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液G)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 1.15質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 21.75質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 7)
In Example 1, a molding hard coat film was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution G.
(Hard coat coating solution G)
・ Methyl ethyl ketone 64.48% by mass
-Pentaerythritol triacrylate 1.15% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 21.75% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例8)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Hに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液H)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 1.15質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・ジメチルアミノエチルメタクリレート 21.75質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 8)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution H.
(Hard coat coating solution H)
・ Methyl ethyl ketone 64.48% by mass
-Pentaerythritol triacrylate 1.15% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Dimethylaminoethyl methacrylate 21.75% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムはアミン化合物の添加量が多いため着色が目立ちやや好ましくないが、成型性、表面硬度、耐擦傷性はともに良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained hard coat film for molding had a large amount of added amine compound, so that coloring was noticeably not preferred, but the moldability, surface hardness, and scratch resistance were all good. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例9)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Iに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液I)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジエチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDE、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
Example 9
In Example 1, a molding hard coat film was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution I.
(Hard coat coating solution I)
・ Methyl ethyl ketone 64.48% by mass
・ Pentaerythritol triacrylate 11.45% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.73% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Diethylaminoethyl methacrylate 5.72% by mass
(Kyoeisha Chemical Co., Ltd., light ester DE, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例10)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Jに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液J)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・N−ビニルホルムアミド 5.72質量%
(荒川化学製、ビームセット770、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 10)
A hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer in Example 1 was changed to the following hard coat coating solution J.
(Hard coat coating solution J)
・ Methyl ethyl ketone 64.48% by mass
・ Pentaerythritol triacrylate 11.45% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.73% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ N-vinylformamide 5.72% by mass
(Arakawa Chemical, Beam Set 770, 1 functional group)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例11)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Kに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液K)
・メチルエチルケトン 67.93質量%
・ペンタエリスリトールトリアクリレート 11.58質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.79質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.79質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 7.72質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.16質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 11)
A hard coat film for molding was obtained in the same manner as in Example 1, except that the hard coat coating solution for forming the hard coat layer in Example 1 was changed to the following hard coat coating solution K.
(Hard coat coating solution K)
・ Methyl ethyl ketone 67.93 mass%
-Pentaerythritol triacrylate 11.58 mass%
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.79% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.79% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 7.72% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.16% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例12)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Lに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液L)
・メチルエチルケトン 4.24質量%
・ペンタエリスリトールトリアクリレート 6.22質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 3.12質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 3.12質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 82.73質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 0.55質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.02質量%
(東レ・ダウコーニング製、DC57)
(Example 12)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution L.
(Hard coat coating solution L)
・ Methyl ethyl ketone 4.24% by mass
-Pentaerythritol triacrylate 6.22 mass%
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 3.12% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 3.12% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
Silica fine particles 82.73% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 0.55% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicon surfactant 0.02% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例13)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Mに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液M)
・メチルエチルケトン 71.46質量%
・ペンタエリスリトールトリアクリレート 11.72質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.86質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.86質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 3.90質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.17質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 13)
A hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer in Example 1 was changed to the following hard coat coating solution M.
(Hard coat coating solution M)
・ Methyl ethyl ketone 71.46% by mass
-Pentaerythritol triacrylate 11.72% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.86% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.86% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
Silica fine particles 3.90% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.17% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例14)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Nに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液N)
・ペンタエリスリトールトリアクリレート 5.28質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 2.64質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 2.64質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 88.88質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 0.55質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.02質量%
(東レ・ダウコーニング製、DC57)
(Example 14)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution N.
(Hard coat coating solution N)
-Pentaerythritol triacrylate 5.28% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 2.64% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 2.64% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 88.88% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 0.55% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicon surfactant 0.02% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例15)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Oに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液O)
・メチルエチルケトン 58.76質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 17.17質量%
(扶桑化学工業製、PL2L−MEK、固形分比率:20%、平均粒径:20nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 15)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution O.
(Hard coat coating solution O)
・ Methyl ethyl ketone 58.76% by mass
・ Pentaerythritol triacrylate 11.45% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.73% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.72% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 17.17% by mass
(Made by Fuso Chemical Industries, PL2L-MEK, solid content ratio: 20%, average particle size: 20 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例16)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Pに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液P)
・メチルエチルケトン 58.76質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 17.17質量%
(扶桑化学工業製、PL30L−MEK、固形分比率:20%、平均粒径:297nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 16)
A hard coat film for molding was obtained in the same manner as in Example 1, except that the hard coat coating solution for forming the hard coat layer in Example 1 was changed to the following hard coat coating solution P.
(Hard coat coating solution P)
・ Methyl ethyl ketone 58.76% by mass
・ Pentaerythritol triacrylate 11.45% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.73% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.72% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 17.17% by mass
(Manufactured by Fuso Chemical Industries, PL30L-MEK, solid content ratio: 20%, average particle size: 297 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例17)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Qに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液Q)
・メチルエチルケトン 58.76質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 17.17質量%
(日本触媒製、シーホスターKE−E50、固形分比率:20%、平均粒径:511nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 17)
In Example 1, a molding hard coat film was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution Q.
(Hard coat coating solution Q)
・ Methyl ethyl ketone 58.76% by mass
・ Pentaerythritol triacrylate 11.45% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.73% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.72% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 17.17% by mass
(Nippon Shokubai Co., Ltd., Seahoster KE-E50, solid content ratio: 20%, average particle size: 511 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例18)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Rに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液R)
・メチルエチルケトン 72.50質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・メラミン・ホルムアルデヒド縮合物微粒子 3.43質量%
(日本触媒製、エポスターS、平均粒径:196nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 18)
In Example 1, a molding hard coat film was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution R.
(Hard coat coating solution R)
・ Methyl ethyl ketone 72.50% by mass
・ Pentaerythritol triacrylate 11.45% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.73% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.72% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Melamine / formaldehyde condensate fine particles 3.43 mass%
(Nippon Shokubai, Eposter S, average particle size: 196 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例19)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Sに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液S)
・メチルエチルケトン 75.08質量%
・ペンタエリスリトールトリアクリレート 11.85質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.93質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.92質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・光重合開始剤 1.19質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 19)
In Example 1, a molding hard coat film was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution S.
(Hard coat coating solution S)
・ Methyl ethyl ketone 75.08 mass%
・ Pentaerythritol triacrylate 11.85% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.93 mass%
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.92% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
-Photopolymerization initiator 1.19% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例20)
実施例1において、塗布硬化後のハードコート層の厚みが1.1μmになるように塗布すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(Example 20)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1, except that the thickness of the hard coat layer after application and curing was 1.1 μm.
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例21)
実施例1において、塗布硬化後のハードコート層の厚みが50μmになるように塗布すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(Example 21)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1, except that the thickness of the hard coat layer after coating and curing was 50 μm.
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例22)
実施例1において、塗布硬化後のハードコート層の厚みが0.5μmになるように塗布すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(Example 22)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1, except that the thickness of the hard coat layer after coating and curing was 0.5 μm.
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。しかし、得られた成型用ハードコートフィルムより成型した成型体の表面硬度は、若干不良であった。これは成型によりハードコート層の厚みが表面硬度を維持できる範囲以外まで薄くことなったことが原因である。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. However, the surface hardness of the molded body molded from the obtained molding hard coat film was slightly poor. This is due to the fact that the thickness of the hard coat layer is reduced to a value outside the range where the surface hardness can be maintained by molding. The obtained results are shown in Table 2.
(実施例23)
実施例1において、塗布硬化後のハードコート層の厚みが60μmになるように塗布すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(Example 23)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1, except that the thickness of the hard coat layer after coating and curing was 60 μm.
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 2.
(実施例24)
ポリエステル水分散液(B−2)48質量部、ヒドロキシビス(ラクタト)チタンの44質量%溶液(松本製薬(株)製、TC310)15質量部、水150質量部およびイソプロピルアルコール100質量部をそれぞれ混合し、さらにアニオン系界面活性剤(花王株式会社製、ネオペレックス No6Fパウダー)をそれぞれ塗布液に対し1質量%、コロイダルシリカ微粒子(触媒化成工業製、カタロイドSI80P;平均粒径80nm)水分散液を樹脂固形分に対しシリカとして2質量%添加し、水系塗布液を調製した(以下、水系塗布液(C−2)と略記する)。この水系塗布液を用いて、実施例1と同様の方法で、片面に中間層を有する二軸延伸フィルムおよびハードコートフィルムを得た。評価結果を表2に示す。
(Example 24)
48 parts by mass of polyester aqueous dispersion (B-2), 44 parts by mass of hydroxybis (lactato) titanium (manufactured by Matsumoto Pharmaceutical Co., Ltd., TC310) 15 parts by mass, 150 parts by mass of water and 100 parts by mass of isopropyl alcohol Furthermore, 1% by mass of anionic surfactant (Naopelex No6F powder, manufactured by Kao Corporation) and colloidal silica fine particles (manufactured by Catalytic Chemical Industry, Cataloid SI80P; average particle size 80 nm) in water dispersion Was added in an amount of 2% by mass as silica with respect to the resin solid content to prepare an aqueous coating solution (hereinafter abbreviated as aqueous coating solution (C-2)). Using this aqueous coating solution, a biaxially stretched film and a hard coat film having an intermediate layer on one side were obtained in the same manner as in Example 1. The evaluation results are shown in Table 2.
(実施例25)
ポリエステル水分散液(B−3)12質量部、ジイソプロポキシビス(トリエタノールアミナト)チタンの80質量%溶液(松本製薬(株)製、TC400)17質量部、水150質量部およびイソプロピルアルコール100質量部をそれぞれ混合し、さらにアニオン系界面活性剤(花王株式会社製、ネオペレックス No6Fパウダー)をそれぞれ塗布液に対し1質量%、コロイダルシリカ微粒子(触媒化成工業製、カタロイドSI80P;平均粒径80nm)水分散液を樹脂固形分に対しシリカとして2質量%添加し、水系塗布液を調製した(以下、水系塗布液(C−3)と略記する)。この水系塗布液を用いて、実施例1と同様の方法で、片面に中間層を有する二軸延伸フィルムおよびハードコートフィルムを得た。評価結果を表2に示す。
(Example 25)
Polyester aqueous dispersion (B-3) 12 parts by mass, diisopropoxybis (triethanolaminato) titanium 80% by mass solution (manufactured by Matsumoto Pharmaceutical Co., Ltd., TC400) 17 parts by mass, water 150 parts by mass and isopropyl alcohol 100 parts by mass were mixed, and anionic surfactant (Neopelex No6F powder, manufactured by Kao Corporation) was 1% by mass with respect to the coating liquid, colloidal silica fine particles (catalyst chemical industry, Cataloid SI80P; average particle size) 80 nm) An aqueous dispersion was added in an amount of 2% by mass as silica with respect to the resin solids to prepare an aqueous coating solution (hereinafter abbreviated as an aqueous coating solution (C-3)). Using this aqueous coating solution, a biaxially stretched film and a hard coat film having an intermediate layer on one side were obtained in the same manner as in Example 1. The evaluation results are shown in Table 2.
(実施例26)
ポリエステル水分散液(B−4)24質量部、ジイソプロポキシビス(アセチルアセナト)チタンの11質量部、水150質量部およびイソプロピルアルコール100質量部をそれぞれ混合し、さらにアニオン系界面活性剤(花王株式会社製、ネオペレックス No6Fパウダー)をそれぞれ塗布液に対し1質量%、コロイダルシリカ微粒子(触媒化成工業製、カタロイドSI80P;平均粒径80nm)水分散液を樹脂固形分に対しシリカとして2質量%添加し、水系塗布液を調製した(以下、水系塗布液(C−4)と略記する)。この塗布液を用いて、実施例1と同様の方法で、片面に中間層を有する二軸延伸フィルムおよびハードコートフィルムを得た。評価結果を表2に示す。
(Example 26)
24 parts by weight of polyester aqueous dispersion (B-4), 11 parts by weight of diisopropoxybis (acetylacetonate) titanium, 150 parts by weight of water and 100 parts by weight of isopropyl alcohol were mixed, respectively, and an anionic surfactant ( 1% by mass of Neoperex No6F powder made by Kao Corporation and 2% by weight of colloidal silica fine particles (catalyst chemical industry, Cataloid SI80P; average particle size of 80 nm) as a silica with respect to the resin solid content. % Was added to prepare an aqueous coating solution (hereinafter abbreviated as aqueous coating solution (C-4)). Using this coating solution, a biaxially stretched film and a hard coat film having an intermediate layer on one side were obtained in the same manner as in Example 1. The evaluation results are shown in Table 2.
(実施例27)
ポリエステル水分散液(B−4)32質量部、ジルコニウムアセテート10質量部、水150質量部およびイソプロピルアルコール100質量部をそれぞれ混合し、さらにアニオン系界面活性剤(花王株式会社製、ネオペレックス No6Fパウダー)をそれぞれ塗布液に対し1質量%、コロイダルシリカ微粒子(触媒化成工業製、カタロイドSI80P;平均粒径80nm)水分散液を樹脂固形分に対しシリカとして2質量%添加し、水系塗布液を調製した(以下、水系塗布液(C−5)と略記する)。この塗布液を用いて、実施例1と同様の方法で、片面に中間層を有する二軸延伸フィルムおよびハードコートフィルムを得た。評価結果を表2に示す。
(Example 27)
32 parts by mass of a polyester aqueous dispersion (B-4), 10 parts by mass of zirconium acetate, 150 parts by mass of water and 100 parts by mass of isopropyl alcohol were mixed, and an anionic surfactant (Neopelex No6F powder manufactured by Kao Corporation) was mixed. ) 1% by mass with respect to the coating solution, and 2% by mass of colloidal silica fine particles (catalyst chemical industry, Cataloid SI80P; average particle size 80 nm) aqueous dispersion as silica with respect to the resin solids to prepare an aqueous coating solution. (Hereinafter abbreviated as aqueous coating solution (C-5)). Using this coating solution, a biaxially stretched film and a hard coat film having an intermediate layer on one side were obtained in the same manner as in Example 1. The evaluation results are shown in Table 2.
(比較例1)
実施例1において、ハードコート層を形成する塗布液を下記のハードコート塗布液Tに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液T)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 22.90質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャリティー製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Comparative Example 1)
In Example 1, a molding hard coat film was obtained in the same manner as in Example 1 except that the coating liquid for forming the hard coat layer was changed to the following hard coat coating liquid T.
(Hard coat coating solution T)
・ Methyl ethyl ketone 64.48% by mass
-Pentaerythritol triacrylate 22.90% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 made by Ciba Specialty)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは表面硬度、耐擦傷性、着色の程度ともに良好であったが成型性が不良で、成型用ハードコートフィルムとして不良であった。得られた結果を表2に示す。 The obtained molding hard coat film had good surface hardness, scratch resistance, and coloring, but had poor moldability and was poor as a molding hard coat film. The obtained results are shown in Table 2.
(比較例2)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Uに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液U)
・メチルエチルケトン 64.48質量%
・トリプロピレングリコールジアクリレート 11.45質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 11.45質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャリティー製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Comparative Example 2)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution U.
(Hard coat coating solution U)
・ Methyl ethyl ketone 64.48% by mass
・ Tripropylene glycol diacrylate 11.45% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 11.45% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 made by Ciba Specialty)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、着色の程度ともに良好であったが、表面硬度、耐擦傷性が不良で、成型用ハードコートフィルムとして不良であった。得られた結果を表2に示す。 The obtained molding hard coat film had good moldability and coloring degree, but had poor surface hardness and scratch resistance, and was poor as a molding hard coat film. The obtained results are shown in Table 2.
(比較例3)
ポリエステル水分散液(B−1)58質量部、水150質量部およびイソプロピルアルコール100質量部をそれぞれ混合し、さらにアニオン系界面活性剤(花王株式会社製、ネオペレックス No6Fパウダー)をそれぞれ塗布液に対し1質量%、コロイダルシリカ微粒子(触媒化成工業製、カタロイドSI80P;平均粒径80nm)水分散液を樹脂固形分に対しシリカとして2質量%添加し、水系塗布液を調製した(以下、水系塗布液(C−6)と略記する)。この塗布液を用いて、実施例1と同様の方法で、片面に中間層を有する二軸延伸フィルムおよびハードコートフィルムを得た。評価結果を表2に示す。
(Comparative Example 3)
58 parts by mass of polyester aqueous dispersion (B-1), 150 parts by mass of water and 100 parts by mass of isopropyl alcohol were mixed, and an anionic surfactant (Naopelex No6F powder, manufactured by Kao Corporation) was added to the coating liquid. 1% by mass, colloidal silica fine particles (catalyst chemical industry, Cataloid SI80P; average particle size 80 nm) in water dispersion was added in an amount of 2% by mass as silica with respect to the resin solids to prepare an aqueous coating solution (hereinafter referred to as aqueous coating). Liquid (C-6)). Using this coating solution, a biaxially stretched film and a hard coat film having an intermediate layer on one side were obtained in the same manner as in Example 1. The evaluation results are shown in Table 2.
(実施例28)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Vに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液V)
・メチルエチルケトン 63.62質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・電離放射線硬化型シリコーン化合物ポリエーテルアクリレート 0.86質量%
(ドイツケミーサービス社製、TEGO Rad2200N)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 28)
In Example 1, a molding hard coat film was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution V.
(Hard coat coating solution V)
・ Methyl ethyl ketone 63.62% by mass
・ Pentaerythritol triacrylate 11.45% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.73% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.72% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
・ Ionizing radiation curable silicone compound polyether acrylate 0.86% by mass
(Germany Chemie Service, TEGO Rad2200N)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表3に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 3.
(実施例29)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Wに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液W)
・メチルエチルケトン 64.42質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・電離放射線硬化型シリコーン化合物ポリエーテルアクリレート 0.06質量%
(ドイツケミーサービス社製、TEGO Rad2200N)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 29)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution W.
(Hard coat coating solution W)
・ Methyl ethyl ketone 64.42% by mass
・ Pentaerythritol triacrylate 11.45% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.73% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.72% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
・ Ionizing radiation curable silicone compound polyether acrylate 0.06% by mass
(Germany Chemie Service, TEGO Rad2200N)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表3に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 3.
(実施例30)
実施例1において、ハードコート層を形成するハードコート塗布液を下記のハードコート塗布液Xに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液X)
・メチルエチルケトン 61.62質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・電離放射線硬化型シリコーン化合物ポリエーテルアクリレート 2.86質量%
(ドイツケミーサービス社製、TEGO Rad2200N)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
(Example 30)
In Example 1, a hard coat film for molding was obtained in the same manner as in Example 1 except that the hard coat coating solution for forming the hard coat layer was changed to the following hard coat coating solution X.
(Hard coat coating solution X)
・ Methyl ethyl ketone 61.62% by mass
・ Pentaerythritol triacrylate 11.45% by mass
(Manufactured by Shin-Nakamura Chemical, NK ester A-TMM-3LM-N, functional group number 3)
・ Tripropylene glycol diacrylate 5.73% by mass
(Shin Nakamura Chemical, NK Ester APG-200, 2 functional groups)
・ Dimethylaminoethyl methacrylate 5.72% by mass
(Kyoeisha Chemical Co., Ltd., light ester DM, functional group number 1)
・ Silica fine particles 11.45% by mass
(Nissan Chemical Industries, MEK-ST-L, solid content ratio: 30%, average particle size: 50 nm)
・ Ionizing radiation curable silicone compound polyether acrylate 2.86% by mass
(Germany Chemie Service, TEGO Rad2200N)
-Photopolymerization initiator 1.14% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)
・ Silicone-based surfactant 0.03% by mass
(Toray Dow Corning DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表3に示す。 The obtained molding hard coat film had good moldability, surface hardness, scratch resistance, and degree of coloring, and was good as a molding hard coat film. Moreover, the surface hardness of the molded object molded from the obtained molding hard coat film was also good. The obtained results are shown in Table 3.
本発明の成型用ハードコートフィルムはハードコート層を有することにより基材フィルムの表面硬度を補っているため、本発明の成型用ハードコートフィルムを成型してなる成型体は、耐擦傷性が要求される家電、自動車の銘板用または建材用部材、携帯電話、オーディオ、ポータブルプレーヤー/レコーダー、ICレコーダー、カーナビ、PDAなどの携帯機器やノートPCなどの筐体として好適である。また、成型加工の製造面でも、成型前に基材フィルムにハードコート層を加工、積層させることで、生産性、品質の安定性を向上に寄与することができ、産業界への寄与は大きい。 Since the hard coat film for molding of the present invention has a hard coat layer to compensate for the surface hardness of the base film, the molded body formed by molding the hard coat film for molding of the present invention requires scratch resistance. It is suitable as a housing for portable appliances such as home appliances, automobile nameplates or building materials, mobile phones, audio, portable players / recorders, IC recorders, car navigation systems, PDAs, and notebook PCs. Also, in the manufacturing process of molding, by processing and laminating a hard coat layer on the base film before molding, it can contribute to improving productivity and quality stability, making a significant contribution to the industry. .
Claims (6)
基材フィルムが共重合ポリエステルを含む二軸配向ポリエステルフィルムであり、
中間層が水性ポリエステル樹脂(A)と、水溶性のチタンキレート化合物、水溶性のチタンアシレート化合物、水溶性のジルコニウムキレート化合物、または水溶性のジルコニウムアシレート化合物の少なくとも1種(B)とを主たる構成成分とし、(A)/(B)の混合比(質量比)が10/90〜95/5である樹脂組成物を含む水系塗布液を塗布、乾燥してなり、
ハードコート層は、基材フィルムの中間層面に塗布液を塗布硬化させてなり、
前記塗布液が、3以上の官能基を有する電離放射線硬化型化合物と、1および/または2官能の電離放射線硬化型化合物とを少なくとも含み、
前記塗布液に含まれる電離放射線硬化型化合物中の1および/または2官能の電離放射線硬化型化合物の含有量が5質量%以上95質量%以下であり、
前記塗布液に含まれる電離放射線硬化型化合物の少なくとも1種がアミノ基を有する電離放射線硬化型化合物である、成型用ハードコートフィルム。 It is a hard coat film for molding laminated in the order of at least a base film, an intermediate layer, and a hard coat layer,
The base film is a biaxially oriented polyester film containing a copolymerized polyester,
The intermediate layer comprises an aqueous polyester resin (A) and at least one of a water-soluble titanium chelate compound, a water-soluble titanium acylate compound, a water-soluble zirconium chelate compound, or a water-soluble zirconium acylate compound (B). Applying and drying an aqueous coating solution containing a resin composition having a mixing ratio (mass ratio) of (A) / (B) of 10/90 to 95/5 as a main constituent component,
The hard coat layer is formed by applying and curing a coating solution on the intermediate layer surface of the base film,
The coating solution contains at least an ionizing radiation curable compound having three or more functional groups, and a monofunctional and / or bifunctional ionizing radiation curable compound,
Wherein Ri der content of 5 wt% to 95 wt% of one and / or two functional ionizing radiation curable compound in the coating liquid ionizing radiation-curable compound contained in,
At least one is Ru der ionizing radiation curable compound having an amino group, a hard coat film for molding of ionizing radiation curable compounds contained in the coating liquid.
前記粒子のハードコート層中の含有量が5質量%以上70質量%以下である請求項1に記載の成型用ハードコートフィルム。 In the hard coat layer, containing particles having an average particle size of 10 nm to 300 nm,
The hard coat film for molding according to claim 1, wherein the content of the particles in the hard coat layer is 5% by mass or more and 70% by mass or less.
前記電離放射線硬化型シリコーン樹脂のハードコート層中の含有量が前記電離放射線硬化型化合物100質量部に対して0.15質量部以上15質量部以下である請求項1または2に記載の成型用ハードコートフィルム。 Including the ionizing radiation curable silicone resin in the hard coat layer,
The molding according to claim 1 or 2 , wherein the content of the ionizing radiation curable silicone resin in the hard coat layer is 0.15 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the ionizing radiation curable compound. Hard coat film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009287454A JP5428829B2 (en) | 2009-12-18 | 2009-12-18 | Hard coat film for molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009287454A JP5428829B2 (en) | 2009-12-18 | 2009-12-18 | Hard coat film for molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011126157A JP2011126157A (en) | 2011-06-30 |
JP5428829B2 true JP5428829B2 (en) | 2014-02-26 |
Family
ID=44289280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009287454A Active JP5428829B2 (en) | 2009-12-18 | 2009-12-18 | Hard coat film for molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5428829B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2641539T3 (en) | 2013-09-27 | 2017-11-10 | Covestro Deutschland Ag | PC / PMMA coextruded films with moldable hard coating |
JP6491394B2 (en) | 2016-03-30 | 2019-03-27 | 日本ペイント・オートモーティブコーティングス株式会社 | Molded decorative laminated film |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3632044B1 (en) * | 2003-08-21 | 2005-03-23 | 東洋紡績株式会社 | Optically easy-adhesive polyester film and optical laminated polyester film |
KR101111040B1 (en) * | 2006-09-06 | 2012-03-13 | 도요 보세키 가부시키가이샤 | Polyester film for molding |
JP5736101B2 (en) * | 2008-03-28 | 2015-06-17 | 大日本印刷株式会社 | Decorative sheet for vacuum forming |
WO2009154042A1 (en) * | 2008-06-18 | 2009-12-23 | 東洋紡績株式会社 | Hardcoat film for molding |
-
2009
- 2009-12-18 JP JP2009287454A patent/JP5428829B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011126157A (en) | 2011-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4392626B1 (en) | Hard coat film for molding | |
JP5471419B2 (en) | Hard coat film for molding with protective film | |
JP2011148301A (en) | Mat hard coat film for molding | |
JP5428830B2 (en) | Hard coat film for molding | |
WO2019202992A1 (en) | Polyester film for surface protection film of foldable display and use thereof | |
JP2011131409A (en) | Polyester film for molding and hard coat film for molding | |
JP2011126165A (en) | Hard coat film for molding | |
JP5370124B2 (en) | Polyester film for molding and hard coat film for molding | |
JP2011131407A (en) | Hard coat film for molding | |
JP5471077B2 (en) | Polyester film for molding and hard coat film for molding | |
JP2011131404A (en) | Hard coat film for molding | |
JP2011126164A (en) | Antistatic hard coat film for molding | |
JP4766122B2 (en) | Hard coat film for molding | |
JP5428829B2 (en) | Hard coat film for molding | |
JP2011148964A (en) | Hardcoat film for molding | |
JP2011131403A (en) | Hard coat film for molding | |
JP2011131406A (en) | Hard coat film for molding | |
JP2011131408A (en) | Hard coat film for molding | |
JP5605489B2 (en) | Hard coat film for molding with protective film | |
JP5304484B2 (en) | Polyester film for molding and hard coat film for molding | |
JP5428831B2 (en) | Hard coat film for molding | |
JP2011126161A (en) | Hard coat film for molding | |
JP5716810B2 (en) | Hard coat film for molding with protective film | |
JP2011131405A (en) | Hard coat film for molding | |
JP2014162215A (en) | Polyester film for decorative molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131118 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5428829 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |