JP5428540B2 - SAPO-34 having high water resistance and large particles, synthesis method thereof and use thereof - Google Patents

SAPO-34 having high water resistance and large particles, synthesis method thereof and use thereof Download PDF

Info

Publication number
JP5428540B2
JP5428540B2 JP2009133104A JP2009133104A JP5428540B2 JP 5428540 B2 JP5428540 B2 JP 5428540B2 JP 2009133104 A JP2009133104 A JP 2009133104A JP 2009133104 A JP2009133104 A JP 2009133104A JP 5428540 B2 JP5428540 B2 JP 5428540B2
Authority
JP
Japan
Prior art keywords
sapo
mmol
treatment
temperature
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009133104A
Other languages
Japanese (ja)
Other versions
JP2010280516A (en
Inventor
吉田  智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009133104A priority Critical patent/JP5428540B2/en
Publication of JP2010280516A publication Critical patent/JP2010280516A/en
Application granted granted Critical
Publication of JP5428540B2 publication Critical patent/JP5428540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、触媒、吸着剤、イオン交換体などとして利用される高耐水性且つ大粒子のSAPO−34に関するものである。   The present invention relates to a highly water-resistant and large-particle SAPO-34 used as a catalyst, an adsorbent, an ion exchanger and the like.

SAPO−34は、構造コードCHAで表されるシリコアルミノホスフェート系ゼオライトの一種である。   SAPO-34 is a kind of silicoaluminophosphate zeolite represented by the structure code CHA.

SAPO−34は、メタノール、エタノール、ジメチルエーテルなどの低級の有機酸素化合物からエチレン、プロピレン等の低級オレフィンとする触媒、自動車排ガス中の窒素酸化物を浄化する触媒、軽質炭化水素の吸着分離剤などとして有用なゼオライトである。   SAPO-34 is a catalyst for converting lower organic oxygen compounds such as methanol, ethanol and dimethyl ether into lower olefins such as ethylene and propylene, a catalyst for purifying nitrogen oxides in automobile exhaust gas, and a light hydrocarbon adsorption / separation agent. It is a useful zeolite.

SAPO−34は、様々な有機系の構造指向剤を用いて合成されている。例えば、特許文献1ではテトラエチルアンモニウムイオンを構造指向剤としたSAPO−34が、特許文献2ではモルホリンを構造指向剤としたSAPO−34が報告されている。   SAPO-34 is synthesized using various organic structure directing agents. For example, Patent Document 1 reports SAPO-34 using tetraethylammonium ions as a structure directing agent, and Patent Document 2 reports SAPO-34 using morpholine as a structure directing agent.

SAPO−34は、粒子径などの物性、および耐水性、耐熱性、耐熱水性などの耐久性、製造コストが用いる構造指向剤によって大きく異なることが知られている。   SAPO-34 is known to vary greatly depending on physical properties such as particle size, durability such as water resistance, heat resistance and hot water resistance, and structure directing agent used in production costs.

例えば、テトラエチルアンモニウムイオンを構造指向剤として用いて合成したSAPO−34は、粒子径が小さいため合成後の固液分離が困難である(特許文献3)。そのためSAPO−34は遠心分離という効率の低い方法で分離操作が行われることが報告されている(特許文献4)。   For example, SAPO-34 synthesized using tetraethylammonium ions as a structure directing agent has a small particle size, and thus it is difficult to separate solid and liquid after synthesis (Patent Document 3). For this reason, it has been reported that SAPO-34 is subjected to a separation operation by a low efficiency method called centrifugation (Patent Document 4).

一方、構造指向剤としてモルホリンを用いることにより、粒子径が比較的大きいSAPO−34が得られることが報告されている(特許文献2)。しかし、その様な方法で得られたSAPO−34は耐水性が低く、構造指向剤の除去後の水和室温での保存において、2年で細孔のほとんどが消失することが報告されている(例えば非特許文献1)。また活性化されたSAPO−34では、水分含有環境下(20℃、相対湿度80%)において、僅か1日で触媒活性の損失が確認され、3日間の貯蔵後の触媒活性は0%となることが報告されている(特許文献5)。   On the other hand, it has been reported that SAPO-34 having a relatively large particle size can be obtained by using morpholine as a structure directing agent (Patent Document 2). However, SAPO-34 obtained by such a method has low water resistance, and it has been reported that most of the pores disappear in 2 years in storage at room temperature after hydration after removal of the structure directing agent. (For example, Non-Patent Document 1). In the activated SAPO-34, in a moisture-containing environment (20 ° C., relative humidity 80%), a loss of catalytic activity was confirmed in only one day, and the catalytic activity after storage for 3 days was 0%. (Patent Document 5).

この様に、耐水性が低い従来のSAPO−34は、吸着した水分を除去(特許文献6)、水分との接触を極力避ける(特許文献7)、アンモニウム型として保存(非特許文献2)等、水による劣化に対して特殊な取扱が必要であった。   Thus, conventional SAPO-34 having low water resistance removes adsorbed water (Patent Document 6), avoids contact with water as much as possible (Patent Document 7), preserves as an ammonium type (Non-Patent Document 2), etc. Special handling was necessary for deterioration caused by water.

さらにSAPO−34を触媒、吸着剤、イオン交換体として機能する際に最も重要な物性である酸点の量(酸量)は、表面積、細孔容積、X線回折強度等と比べてさらに耐久性が低いことが知られている。例えば、テトラエチルアンモニウムイオンを用いて合成したSAPO−34は、耐熱水性処理(900℃、相対湿度80%、16時間)において、表面積は90〜94%、細孔容積は81〜93%保持されるのに対して、酸量は40〜57%まで低下することが報告されている(特許文献8)。   Furthermore, the amount of acid sites (acid amount), which is the most important physical property when SAPO-34 functions as a catalyst, adsorbent, or ion exchanger, is more durable than surface area, pore volume, X-ray diffraction intensity, etc. It is known that the nature is low. For example, SAPO-34 synthesized using tetraethylammonium ions retains a surface area of 90 to 94% and a pore volume of 81 to 93% in hot water treatment (900 ° C., relative humidity 80%, 16 hours). On the other hand, it is reported that the acid amount is reduced to 40 to 57% (Patent Document 8).

この様に、SAPO−34は触媒、吸着剤、イオン交換体としての用途が期待されているが、耐水性、耐熱水性に優れ、なおかつ固液分離性に優れた粒子径の大きいSAPO−34は得られていなかった。   As described above, SAPO-34 is expected to be used as a catalyst, an adsorbent, and an ion exchanger. However, SAPO-34, which has excellent water resistance and hot water resistance, and excellent solid-liquid separation, has a large particle size. It was not obtained.

特公平03−072010号(例33など)Japanese Patent Publication No. 03-072010 (Example 33 etc.) 特許1811353号(実施例1など)Patent No. 1811353 (Example 1 etc.) 特許4212287号([0003]欄)Japanese Patent No. 4212287 (column [0003]) 米国特許5095163(例1)US Pat. No. 5,095,163 (Example 1) 特表2003−501406([0011]欄、実施例1,2など)Special table 2003-501406 ([0011] column, Examples 1 and 2 etc.) 特表2007−503375([課題][請求項1]など)Special Table 2007-503375 ([Problem] [Claim 1] etc.) 世界特許2005000468号(要旨、請求項など)World Patent No. 2005000468 (summary, claims, etc.) 世界特許2008118434A1号(請求項、表1など)World Patent No. 20080081434A1 (Claims, Table 1, etc.)

J.Phys.Chem.,99,8270−8276(1995)(要旨、表1、図12など)J. et al. Phys. Chem. , 99, 8270-8276 (1995) (Summary, Table 1, FIG. 12, etc.) Chemical Communication,44−45(2003)(要旨、図3など)Chemical Communication, 44-45 (2003) (summary, FIG. 3 etc.)

本発明は、高い耐水性(室温及び熱水)を有し、なおかつ合成後の分離が容易な大きな粒子径の大きいSAPO−34を提供するものである。   The present invention provides SAPO-34 having a large particle size that has high water resistance (room temperature and hot water) and is easy to separate after synthesis.

本発明者らは、SAPO−34について鋭意検討を重ねた結果、少なくともリン酸、アルコキシドを含まないアルミニウム源、シリカ源、テトラエチルアンモニウムイオン及び水を含み、なおかつP/Alモル比が1.1より小さい組成物を、180℃を超える温度、静置下で結晶化することにより得られるSAPO−34は耐水性が高く、当該SAPO−34は飽和水和耐久処理時(例えば25℃、相対湿度80%、90日間処理後)のアンモニア昇温脱離法により測定される酸量が0.8mmol/g以上であり、且つ平均結晶径が1.0μm以上の大粒径であることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies on SAPO-34, the present inventors have found that at least a phosphoric acid, an aluminum source not containing an alkoxide, a silica source, tetraethylammonium ions and water, and a P / Al molar ratio of 1.1 or more. SAPO-34 obtained by crystallizing a small composition at a temperature exceeding 180 ° C. at a standing temperature has high water resistance, and SAPO-34 is subjected to a saturated hydration endurance treatment (for example, 25 ° C., relative humidity 80 %, After 90 days treatment), the acid amount measured by the ammonia temperature programmed desorption method is 0.8 mmol / g or more, and the average crystal diameter is 1.0 μm or more. The invention has been completed.

以下、本発明のSAPO−34について説明する。   Hereinafter, SAPO-34 of the present invention will be described.

本発明のSAPO−34は、アンモニア昇温脱離法により測定される酸量が飽和水和耐久処理時(例えば25℃、相対湿度80%、90日間処理後)において0.8mmol/g以上であり、特に1.0mmol/g以上が好ましく、更に1.2mmol/g以上が好ましい。酸量が0.8mmol/gより小さいと、触媒、吸着剤、イオン交換体としての特性が不十分であり、水に対する特殊な取扱いが必要となる。また、1年間の飽和水和耐久処理後の酸量が0.8mmol/g以上あることが好ましく、2年間の水蒸気処理後の酸量が0.8mmol/g以上あることが更に好ましい。   In the SAPO-34 of the present invention, the acid amount measured by the ammonia temperature programmed desorption method is 0.8 mmol / g or more at the time of saturated hydration endurance treatment (for example, after treatment at 25 ° C., relative humidity 80%, 90 days). In particular, 1.0 mmol / g or more is preferable, and 1.2 mmol / g or more is more preferable. When the acid amount is less than 0.8 mmol / g, the characteristics as a catalyst, an adsorbent and an ion exchanger are insufficient, and special handling for water is required. In addition, the acid amount after one year of saturated hydration durability treatment is preferably 0.8 mmol / g or more, and the acid amount after two years of steam treatment is more preferably 0.8 mmol / g or more.

本発明における飽和水和耐久処理時とは、脱気後のSAPO−34を25℃、相対湿度80%の雰囲気下で90日間保存処理後の状態をいう。25℃、相対湿度80%の雰囲気下は、硝子皿等に広げた脱気後のSAPO−34を恒温恒湿器、或いは塩化アンモニウムの飽和水溶液を浸したデシケータ内で処理する等の方法で実施できる。   In the present invention, the saturated hydration endurance treatment refers to a state after SAPO-34 after deaeration is stored for 90 days in an atmosphere of 25 ° C. and 80% relative humidity. In an atmosphere of 25 ° C and relative humidity of 80%, the degassed SAPO-34 spread in a glass dish or the like is treated in a constant temperature and humidity chamber or in a desiccator immersed in a saturated aqueous solution of ammonium chloride. it can.

本発明のSAPO−34は、アンモニア昇温脱離法により測定される酸量が、熱水耐久処理時(例えば水蒸気を10体積%含有湿潤空気100mL/min流通、900℃、1時間)において0.7mmol/g以上であり、特に0.9mmol/g以上、さらに1.3mmol/g以上であることが好ましい。   In the SAPO-34 of the present invention, the acid amount measured by the ammonia temperature-programmed desorption method is 0 at the time of hot water endurance treatment (for example, 10% by volume of steam containing 100% / min flow of wet air, 900 ° C., 1 hour). 0.7 mmol / g or more, particularly 0.9 mmol / g or more, more preferably 1.3 mmol / g or more.

本発明における熱水耐久処理時とは、例えば試料を加圧成形後、粉砕して12〜20メッシュに整粒し、整粒した試料1ccを常圧固定床流通式反応管に充填し、水蒸気を10体積%含有した湿潤空気を100mL/minで流通させながら900℃まで昇温し、1時間保持した後の状態として実施できる。   In the hot water endurance treatment in the present invention, for example, a sample is pressure-molded, pulverized and sized to 12 to 20 mesh, 1 cc of the sized sample is charged into an atmospheric pressure fixed bed flow type reaction tube, water vapor Can be implemented as a state after the temperature is raised to 900 ° C. and kept for 1 hour while flowing humid air containing 10% by volume at 100 mL / min.

本発明のアンモニア昇温脱離法による酸量とは、100℃以下で吸着させたアンモニアを100℃から700℃への昇温で脱離したアンモニアの量から算出される酸量のことである。具体的には、0.1g程度の試料を500℃、不活性ガス(ヘリウム)中で吸着成分を除去し、不活性ガス(ヘリウム)90%、アンモニア10%の混合気体を25℃でアンモニアを飽和吸着させ、次に700℃まで昇温し、昇温の過程で脱離したアンモニア量(但し、25〜100℃の温度範囲で脱離するものを除く)を熱伝導度検出器にて定量することによって測定する。   The acid amount by the ammonia temperature-programmed desorption method of the present invention is an acid amount calculated from the amount of ammonia desorbed by raising the temperature of the adsorbed ammonia at 100 ° C. or less from 100 ° C. to 700 ° C. . Specifically, an adsorbed component was removed from a sample of about 0.1 g in an inert gas (helium) at 500 ° C., and a mixed gas of 90% inert gas (helium) and 10% ammonia was added at 25 ° C. with ammonia. Adsorbed saturated, then heated to 700 ° C, and the amount of ammonia desorbed in the course of the temperature rise (excluding those desorbed in the temperature range of 25-100 ° C) was determined with a thermal conductivity detector. Measure by doing.

本発明のSAPO−34は平均結晶径が1.0μm以上、より好ましくは2.0μm以上、更に3.0μm以上より大きいことが好ましい。平均結晶径が1.0μm未満であると、合成後の固液分離し難く、耐水性に劣るものとなる。   The SAPO-34 of the present invention preferably has an average crystal diameter of 1.0 μm or more, more preferably 2.0 μm or more, and even more preferably 3.0 μm or more. When the average crystal diameter is less than 1.0 μm, solid-liquid separation after synthesis is difficult and water resistance is poor.

本発明における平均結晶径は、SEM写真において任意に選択した10個以上の結晶粒子を測った結晶径を加重平均することによって得られる平均結晶径をいう。   The average crystal diameter in the present invention refers to an average crystal diameter obtained by weighted averaging of crystal diameters obtained by measuring 10 or more crystal particles arbitrarily selected in an SEM photograph.

本発明のSAPO−34のSi/Alのモル比は特に限定されないが、例えば0.2〜1.1が例示でき、0.4〜0.8が好ましい。その理由は、0.4より小さい又は0.8を超えると飽和水和耐久処理前から既に酸量が小さいからである。 Although the molar ratio of Si / Al 2 in SAPO-34 of the present invention is not particularly limited, for example, 0.2 to 1.1 can be exemplified, and 0.4 to 0.8 is preferable. The reason is that if the amount is less than 0.4 or exceeds 0.8, the acid amount is already small before the saturated hydration durability treatment.

本発明のSAPO−34の交換イオンは特に限定されないが、触媒、吸着剤、イオン交換体としての用途においてはプロトンが好ましい。アンモニウムイオン、ナトリウムイオン、カルシウムイオンなどの他のイオンは耐久性向上効果があるが、プロトンと共存しても良い。但し、これらの共存イオンは酸量を低下させるので、交換量はプロトンよりも少なくすることが好ましい。   The exchange ion of SAPO-34 of the present invention is not particularly limited, but proton is preferred for use as a catalyst, an adsorbent, or an ion exchanger. Other ions such as ammonium ion, sodium ion and calcium ion have an effect of improving durability, but may coexist with protons. However, since these coexisting ions decrease the acid amount, the exchange amount is preferably less than that of protons.

次に本発明のSAPO−34の製造方法について説明する。   Next, the manufacturing method of SAPO-34 of this invention is demonstrated.

本発明のSAPO−34の製造方法は、上記の物性を満足するSAPO−34が得られるものであれば特に限定されるものではないが、例えば少なくともリン酸、アルコキシドを含まないアルミニウム源、シリカ源、テトラエチルアンモニウムイオン及び水を含み、なおかつP/Alモル比が1.1より小さい組成物を、180℃を超える温度、静置下で結晶化することによって特に高品質のSAPO−34を製造することができる。   The method for producing SAPO-34 of the present invention is not particularly limited as long as SAPO-34 satisfying the above physical properties can be obtained. For example, at least phosphoric acid, an aluminum source containing no alkoxide, a silica source A particularly high-quality SAPO-34 is produced by crystallizing a composition containing tetraethylammonium ions and water and having a P / Al molar ratio of less than 1.1 under standing at a temperature exceeding 180 ° C. be able to.

リン酸としては、一般的な工業用リン酸を使用することができ、通常は75〜89%濃度のリン酸を使用することができる。   As the phosphoric acid, general industrial phosphoric acid can be used, and usually 75 to 89% phosphoric acid can be used.

アルミニウム源としては、擬ベーマイト、水酸化アルミニウム、アルミナ、アルミニウムイソプロポキシドが例示できる。特に、擬ベーマイト、水酸化アルミニウムが好ましい。アルミニウムイソプロポキシドなどのアルコキシドを含むアルミニウム源は、高価で、且つ合成系に対するイソプロピルアルコールなどのアルコール成分が結晶化時の圧力および反応に影響を与えるため好ましくない。   Examples of the aluminum source include pseudoboehmite, aluminum hydroxide, alumina, and aluminum isopropoxide. In particular, pseudoboehmite and aluminum hydroxide are preferable. An aluminum source containing an alkoxide such as aluminum isopropoxide is not preferable because it is expensive and an alcohol component such as isopropyl alcohol for the synthesis system affects the pressure and reaction during crystallization.

シリカ源は特に限定はなく、例えばシリカゾル、沈降法シリカ、ゲル法シリカ、テトラエトキシシランなどが例示できる。シリカゾル、沈降法シリカが好ましい。テトラエトキシシランは、高価で、且つ合成系に対するエタノール成分が反応に影響を与えるため好ましくない。   The silica source is not particularly limited, and examples thereof include silica sol, precipitated silica, gel silica, and tetraethoxysilane. Silica sol and precipitated silica are preferred. Tetraethoxysilane is not preferred because it is expensive and the ethanol component for the synthesis system affects the reaction.

構造指向剤としてはテトラエチルアンモニウムイオンを用いる。その理由は、テトラエチルアンモニウムイオンを使用すると耐水性の高いSAPO−34が合成できるからである。テトラエチルアンモニウムイオンを含む原料としては、テトラエチルアンモニウムヒドロキシド、テトラエチルアンモニウムクロリド、テトラエチルアンモニウムブロミドなどが例示できる。   Tetraethylammonium ions are used as the structure directing agent. This is because SAPO-34 having high water resistance can be synthesized by using tetraethylammonium ions. Examples of raw materials containing tetraethylammonium ions include tetraethylammonium hydroxide, tetraethylammonium chloride, and tetraethylammonium bromide.

さらに反応組成物の反応性、ハンドリングのために水を添加する。   Further, water is added for the reactivity and handling of the reaction composition.

また、pHを調整するなどのために、ジプロピルアミンなどの構造指向剤としての影響がない各種アミンの添加が例示できる。   Moreover, in order to adjust pH etc., addition of the various amines which do not have influence as structure directing agents, such as a dipropylamine, can be illustrated.

本発明の方法で反応に用いる上記の組成物は、P/Alモル比は1.1未満であり、0.6から1.1未満が例示でき、さらに0.7以上0.9以下が好ましい。何故ならば、1.1以上、または0.6未満ではSAPO−34が生成し難く、0.6以上0.7未満ではアモルファスアルミナが副生し易い。また、1.0より小さい、更にP/Alモル比が0.7以上0.9以下であることにより結晶径が大きなSAPO−34が得られる。   The composition used for the reaction in the method of the present invention has a P / Al molar ratio of less than 1.1, and can be exemplified by 0.6 to less than 1.1, and more preferably 0.7 or more and 0.9 or less. . This is because SAPO-34 is difficult to be formed at 1.1 or more or less than 0.6, and amorphous alumina is easily produced as a by-product at 0.6 or more and less than 0.7. Further, SAPO-34 having a large crystal diameter is obtained when the P / Al molar ratio is less than 1.0 and the P / Al molar ratio is 0.7 or more and 0.9 or less.

本発明の方法で反応に用いる上記の組成物の仕込のSi/Alモル比は特に限定はないが特に0.3から1.0、構造指向剤であるテトラエチルアンモニウムイオン/Al比は0.1から2.0、HO/Al比としては10から100が好ましい。 The Si / Al 2 molar ratio of the above composition used for the reaction in the method of the present invention is not particularly limited, but is particularly 0.3 to 1.0, and the structure directing agent tetraethylammonium ion / Al ratio is 0.00. 1 to 2.0 and the H 2 O / Al ratio is preferably 10 to 100.

本発明の方法では、上記の組成物を180℃を超える温度で結晶化する。
結晶化温度が高すぎると結晶化時の圧力が大きくなり特殊な反応釜が必要となるため、結晶化温度は220℃以下が好ましい。また、結晶化温度に昇温するまでの間は、温度の均一性を図るため攪拌又は回転しても良いが、結晶化温度に達した後は、粒子径を大きくするために攪拌又は回転を停止し静置下とすることが必要である。
In the method of the present invention, the above composition is crystallized at a temperature in excess of 180 ° C.
If the crystallization temperature is too high, the pressure during crystallization increases and a special reaction kettle is required, so the crystallization temperature is preferably 220 ° C. or lower. In addition, stirring or rotation may be performed until the temperature reaches the crystallization temperature in order to make the temperature uniform, but after reaching the crystallization temperature, stirring or rotation is performed to increase the particle size. It is necessary to stop and stand still.

結晶化時間(結晶化温度に達してから静置する時間)は4〜240時間が好ましい。   The crystallization time (the time for standing after reaching the crystallization temperature) is preferably 4 to 240 hours.

結晶化終了後、濾過等で固液分離を行い、純水で洗浄し、80〜200℃の任意の温度で乾燥して、構造指向剤を含んだSAPO−34が得られる。固液分離操作は、フィルタープレス、ベルトフィルター等のデッドエンド式の濾過が好ましい。   After completion of crystallization, solid-liquid separation is performed by filtration or the like, washed with pure water, and dried at an arbitrary temperature of 80 to 200 ° C. to obtain SAPO-34 containing a structure directing agent. The solid-liquid separation operation is preferably dead-end filtration such as a filter press or a belt filter.

得られたSAPO−34は構造指向剤を含んでいるため、構造指向剤(テトラエチルアンモニウムイオン)を取り除いて用いる。取り除く方法としては、窒素若しくは空気中での熱処理、又は塩酸若しくは硫酸などの酸との接触による処理が例示できる。特に、窒素若しくは空気中での熱処理が好ましい。熱処理の温度としては、500℃以上1200℃以下が好ましい。   Since the obtained SAPO-34 contains a structure directing agent, the structure directing agent (tetraethylammonium ion) is removed before use. Examples of the removal method include heat treatment in nitrogen or air, or treatment by contact with an acid such as hydrochloric acid or sulfuric acid. In particular, heat treatment in nitrogen or air is preferable. The heat treatment temperature is preferably 500 ° C. or higher and 1200 ° C. or lower.

得られたSAPO−34は、そのままの状態、もしくはイオン交換及び/または金属担持により適宜修飾し、触媒、吸着剤、イオン交換体として利用することができる。   The obtained SAPO-34 can be used as a catalyst, an adsorbent, or an ion exchanger as it is, or appropriately modified by ion exchange and / or metal loading.

本発明のSAPO−34は、特にディーゼル車等の内燃機関の排ガス浄化の際のアンモニア吸着剤としての利用が有用である。例えば、排ガス中の窒素酸化物を吸着してアンモニアに転化する部分と、触媒内で転化されたアンモニアを吸着して排気ガス中の窒素酸化物を窒素に浄化する部分を有する複合触媒の中で、高い耐水性、耐熱性、耐熱水性を持つアンモニア吸着剤として利用できる。   The SAPO-34 of the present invention is particularly useful as an ammonia adsorbent when purifying exhaust gas from an internal combustion engine such as a diesel vehicle. For example, in a composite catalyst having a part that adsorbs nitrogen oxide in exhaust gas and converts it to ammonia, and a part that adsorbs ammonia converted in the catalyst and purifies nitrogen oxide in exhaust gas to nitrogen It can be used as an ammonia adsorbent having high water resistance, heat resistance and hot water resistance.

触媒、吸着剤、イオン交換体などとして利用される高耐水性且つ大粒子のSAPO−34を提供する。 Provided is SAPO-34 having high water resistance and large particles used as a catalyst, an adsorbent, an ion exchanger and the like.

実施例1で得られたSAPO−34のSEM写真SEM photograph of SAPO-34 obtained in Example 1 実施例2で得られたSAPO−34のSEM写真SEM photograph of SAPO-34 obtained in Example 2 実施例3で得られたSAPO−34のSEM写真SEM photograph of SAPO-34 obtained in Example 3 実施例3で得られたSAPO−34のSEM写真SEM photograph of SAPO-34 obtained in Example 3 実施例4で得られたSAPO−34のSEM写真SEM photograph of SAPO-34 obtained in Example 4 実施例4で得られたSAPO−34のSEM写真SEM photograph of SAPO-34 obtained in Example 4 比較例2で得られたSAPO−34のSEM写真SEM photograph of SAPO-34 obtained in Comparative Example 2. 実施例1〜4のXRD図XRD diagrams of Examples 1 to 4

以下の実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定される
ものではない。尚、実施例、比較例における各測定方法は、以下の通りである。各測定における試料は、何れも構造指向剤を熱処理して除去したSAPO−34である。
(平均結晶径)
試料をSEM観察・撮影し、SEM写真から任意の10個以上の結晶粒子を選択し、その径を平均して平均結晶径とした。
(平均粒子径)
試料に純水を加えて固形分1%のスラリーとし、超音波分散を2分間施した後にレーザー回折散乱法により粒子径分布測定(体積平均)を行い、平均粒子径(50%粒子径)を得た。
(アンモニア吸着量)
精秤した0.1g程度の試料を500℃、不活性ガス(ヘリウム)中で吸着成分を除去し、不活性ガス(ヘリウム)90%、アンモニア10%の混合気体を25℃でアンモニアを飽和吸着させ、次に700℃まで昇温し、昇温の過程で脱離したアンモニア量(但し、25〜100℃の温度範囲で脱離するものを除く)をTCD検出器にて定量し、別途測定した試料の固形分濃度で補正した試料量で割ったものを、酸量=アンモニア吸着量(単位:mmol/g)とした。
(飽和水和耐久処理)
試料を硝子皿に薄くした状態にし、塩化アンモニウムの飽和水溶液(相対湿度80%に相当)を浸したデシケータに硝子皿ごと入れた。それから、真空ポンプを用いて、水蒸気圧のみの圧力になるまでデシケータを脱気し、その後、デシケータを密閉した。そのままの状態で、25℃で90日間保持した。
(熱水耐久処理)
試料を加圧成形後、粉砕して12〜20メッシュに整粒した。整粒した試料1ccを常圧固定床流通式反応管に充填し、水蒸気を10体積%含有した湿潤空気を100mL/minで流通させながら900℃まで昇温し、1時間保持した。
The present invention will be specifically described by the following examples, but the present invention is not limited to these examples. In addition, each measuring method in an Example and a comparative example is as follows. The sample in each measurement is SAPO-34 from which the structure directing agent has been removed by heat treatment.
(Average crystal diameter)
The sample was observed and photographed by SEM, arbitrary 10 or more crystal particles were selected from the SEM photograph, and the diameters were averaged to obtain an average crystal diameter.
(Average particle size)
Pure water is added to the sample to make a slurry with a solid content of 1%, ultrasonic dispersion is performed for 2 minutes, particle size distribution measurement (volume average) is performed by laser diffraction scattering method, and average particle size (50% particle size) is calculated. Obtained.
(Ammonia adsorption amount)
About 0.1g of precisely weighed sample was removed adsorbed component in inert gas (helium) at 500 ° C, and a mixed gas of 90% inert gas (helium) and 10% ammonia was saturated adsorbed at 25 ° C. Next, the temperature is raised to 700 ° C., and the amount of ammonia desorbed in the course of temperature rise (excluding those desorbed in the temperature range of 25 to 100 ° C.) is quantified with a TCD detector and measured separately. The amount divided by the sample amount corrected by the solid content concentration of the prepared sample was defined as acid amount = ammonia adsorption amount (unit: mmol / g).
(Saturated hydration endurance treatment)
The sample was thinned in a glass dish, and the glass dish was placed in a desiccator immersed in a saturated aqueous solution of ammonium chloride (corresponding to a relative humidity of 80%). Then, using a vacuum pump, the desiccator was degassed until the water vapor pressure alone was reached, and then the desiccator was sealed. The state was kept at 25 ° C. for 90 days.
(Hot water endurance treatment)
The sample was pressed and then pulverized and sized to 12 to 20 mesh. 1 cc of the sized sample was charged into an atmospheric pressure fixed bed flow type reaction tube, heated to 900 ° C. while flowing wet air containing 10% by volume of water vapor at 100 mL / min, and held for 1 hour.

実施例1
擬ベーマイト(Al=74%)、85%リン酸、シリカ(シリカゾル)、テトラエチルアンモニウムヒドロキシド(TEAOH)、純水を以下の仕込組成比の混合スラリー100gを調製した。
Al:1.0P:0.5SiO:2.0TEAOH:50H
混合スラリーをオートクレーブ中、室温から200℃まで攪拌下で約40分かけて昇温し、更に攪拌を止めて静置下で120時間保持し結晶化させた。結晶化後のスラリーは、濾過速度が遅いものの5C濾紙でデッドエンド式の効率の高い固液分離ができた。引き続き、5C濾紙で純水洗浄を行い、その後110℃で乾燥した。更に空気流通下、600℃で焼成することにより、構造指向剤のTEAOHを除去した。
Example 1
Pseudoboehmite (Al 2 O 3 = 74%), 85% phosphoric acid, silica (silica sol), tetraethylammonium hydroxide (TEAOH), and pure water 100 g of a mixed slurry having the following charging composition ratio were prepared.
Al 2 O 3 : 1.0P 2 O 5 : 0.5SiO 2 : 2.0TEAOH: 50H 2 O
The mixed slurry was heated in an autoclave from room temperature to 200 ° C. with stirring for about 40 minutes, and further stirred and kept standing for 120 hours for crystallization. Although the slurry after crystallization had a slow filtration rate, the solid-liquid separation of dead-end type high efficiency could be achieved with 5C filter paper. Subsequently, pure water was washed with 5C filter paper, and then dried at 110 ° C. Further, the structure directing agent TEAOH was removed by firing at 600 ° C. under air flow.

粉末X線回折によりSAPO−34に対応するX線ピークのみが観測され、Si/Al=0.44、P/Al=0.89であった。また、平均結晶径は1.1μmであった(図1参照)。 Only X-ray peaks corresponding to SAPO-34 were observed by powder X-ray diffraction. Si / Al 2 = 0.44 and P / Al = 0.89. The average crystal diameter was 1.1 μm (see FIG. 1).

酸量は、SAPO−34(以下、フレッシュ品)で1.48mmol/g、飽和水和耐久処理時(25℃,相対湿度80%,90日間)で1.43mmol/g、熱水耐久処理時(900℃,相対湿度10%,1時間)で1.31mmol/gであった。   Acid amount is 1.48 mmol / g for SAPO-34 (hereinafter referred to as “fresh product”), 1.43 mmol / g for saturated hydration durability treatment (25 ° C., relative humidity 80%, 90 days), and hot water durability treatment It was 1.31 mmol / g (900 ° C., relative humidity 10%, 1 hour).

得られたSAPO−34は、飽和水和耐久処理時及び熱水耐久処理時のアンモニア吸着量、即ち酸量が大きいものであった。   The obtained SAPO-34 had a large ammonia adsorption amount, that is, an acid amount during the saturation hydration durability treatment and the hot water durability treatment.

実施例2
擬ベーマイト(Al=74%)、85%リン酸、シリカ(シリカゾル)、テトラエチルアンモニウムヒドロキシド(TEAOH)、純水を以下の仕込組成比の混合スラリー100gを調製した。
Al:1.0P:0.5SiO:1.0TEAOH:50H
混合スラリーをオートクレーブ中、室温から200℃まで攪拌下で約40分かけて昇温し、更に攪拌を止めて静置下で120時間保持し結晶化させた。結晶化後のスラリーは、濾過速度が若干遅いものの5C濾紙でデッドエンド式の効率の高い固液分離ができた。引き続き、5C濾紙で純水洗浄を行い、その後110℃で乾燥した。更に空気流通下、600℃で焼成することにより、構造指向剤のTEAOHを除去した。
Example 2
Pseudoboehmite (Al 2 O 3 = 74%), 85% phosphoric acid, silica (silica sol), tetraethylammonium hydroxide (TEAOH), and pure water 100 g of a mixed slurry having the following charging composition ratio were prepared.
Al 2 O 3 : 1.0P 2 O 5 : 0.5SiO 2 : 1.0TEAOH: 50H 2 O
The mixed slurry was heated in an autoclave from room temperature to 200 ° C. with stirring for about 40 minutes, and further stirred and kept standing for 120 hours for crystallization. Although the slurry after crystallization had a slightly slow filtration rate, the solid-liquid separation of dead-end type high efficiency could be achieved with 5C filter paper. Subsequently, pure water was washed with 5C filter paper, and then dried at 110 ° C. Further, the structure directing agent TEAOH was removed by firing at 600 ° C. under air flow.

粉末X線回折においてSAPO−34に対応するX線ピークのみが観測され、組成分析ではSi/Al=1.03、P/Al=1.29であった。また、平均結晶径は1.2μmであった{図2参照(図1と同倍率)}。 In powder X-ray diffraction, only the X-ray peak corresponding to SAPO-34 was observed, and in the composition analysis, Si / Al 2 = 1.03 and P / Al = 1.29. The average crystal diameter was 1.2 μm {see FIG. 2 (same magnification as in FIG. 1)}.

酸量は、フレッシュ品で0.88mmol/g、飽和水和耐久処理時(25℃,相対湿度80%,90日間)で0.85mmol/g、熱水耐久処理時(900℃,相対湿度10%,1時間)で0.73mmol/gであった。   Acid amount is 0.88 mmol / g for fresh products, 0.85 mmol / g for saturated hydration endurance treatment (25 ° C., relative humidity 80%, 90 days), and for hot water endurance treatment (900 ° C., relative humidity 10%). %, 1 hour) and 0.73 mmol / g.

得られたSAPO−34は、飽和水和耐久処理時及び熱水耐久処理時のアンモニア吸着量、即ち酸量が大きいものであった。   The obtained SAPO-34 had a large ammonia adsorption amount, that is, an acid amount during the saturation hydration durability treatment and the hot water durability treatment.

実施例3
擬ベーマイト(Al=74%)、85%リン酸、シリカ(シリカゾル)、テトラエチルアンモニウムヒドロキシド(TEAOH)、純水を以下の仕込組成比の混合スラリー100gを調製した。
Al:0.88P:0.5SiO:2.0TEAOH:50H
混合スラリーをオートクレーブ中、室温から200℃まで攪拌下で約40分かけて昇温し、更に攪拌を止めて静置下で84時間保持し結晶化させた。結晶化後のスラリーは、5C濾紙でデッドエンド式の効率の高い固液分離ができた。濾過速度は速かった。引き続き、5C濾紙で純水洗浄を行い、その後110℃で乾燥した。更に空気流通下、600℃で焼成することにより、構造指向剤のTEAOHを除去した。
Example 3
Pseudoboehmite (Al 2 O 3 = 74%), 85% phosphoric acid, silica (silica sol), tetraethylammonium hydroxide (TEAOH), and pure water 100 g of a mixed slurry having the following charging composition ratio were prepared.
Al 2 O 3 : 0.88P 2 O 5 : 0.5SiO 2 : 2.0TEAOH: 50H 2 O
The mixed slurry was heated in an autoclave from room temperature to 200 ° C. with stirring over about 40 minutes, and further stirred and kept standing for 84 hours for crystallization. The slurry after crystallization was able to perform solid-liquid separation of dead end type with 5C filter paper with high efficiency. The filtration rate was fast. Subsequently, pure water was washed with 5C filter paper, and then dried at 110 ° C. Further, the structure directing agent TEAOH was removed by firing at 600 ° C. under air flow.

粉末X線回折においてSAPO−34に対応するX線ピークのみが観測され、組成分析においてSi/Al=0.43、P/Al=0.79であった。また、平均結晶径は2.5μmであった{図3(図1の1/10倍率)及び図4(図1と同倍率)参照}。 In powder X-ray diffraction, only X-ray peaks corresponding to SAPO-34 were observed, and in composition analysis, Si / Al 2 = 0.43 and P / Al = 0.79. The average crystal diameter was 2.5 μm {see FIG. 3 (1/10 magnification of FIG. 1) and FIG. 4 (same magnification as FIG. 1)}.

酸量は、フレッシュ品で1.22mmol/g、飽和水和耐久処理時(25℃,相対湿度80%,90日間)で1.20mmol/g、熱水耐久処理時(900℃,相対湿度10%,1時間)で0.95mmol/gであった。   Acid amount is 1.22 mmol / g for fresh product, 1.20 mmol / g for saturated hydration durability treatment (25 ° C., relative humidity 80%, 90 days), and for hot water durability treatment (900 ° C., relative humidity 10) %, 1 hour) and 0.95 mmol / g.

得られたSAPO−34は、飽和水和耐久処理時及び熱水耐久処理時のアンモニア吸着量、即ち酸量が大きいものであった。   The obtained SAPO-34 had a large ammonia adsorption amount, that is, an acid amount during the saturation hydration durability treatment and the hot water durability treatment.

実施例4
擬ベーマイト(Al=74%)、85%リン酸、シリカ(シリカゾル)、テトラエチルアンモニウムヒドロキシド(TEAOH)、純水を以下の仕込組成比の混合スラリー100gを調製した。
Al:0.75P:0.5SiO:2.0TEAOH:50H
混合スラリーをオートクレーブ中、室温から200℃まで攪拌下で約40分かけて昇温し、更に攪拌を止めて84時間保持し静置下で結晶化させた。結晶化後のスラリーは、5C濾紙でデッドエンド式の効率の高い固液分離ができた。濾過速度は速かった。引き続き、5C濾紙で純水洗浄を行い、その後110℃で乾燥した。更に空気流通下、600℃で焼成することにより、構造指向剤のTEAOHを除去した。
Example 4
Pseudoboehmite (Al 2 O 3 = 74%), 85% phosphoric acid, silica (silica sol), tetraethylammonium hydroxide (TEAOH), and pure water 100 g of a mixed slurry having the following charging composition ratio were prepared.
Al 2 O 3 : 0.75P 2 O 5 : 0.5SiO 2 : 2.0TEAOH: 50H 2 O
The mixed slurry was heated in an autoclave from room temperature to 200 ° C. with stirring over about 40 minutes, and further stirred and held for 84 hours to crystallize while standing. The slurry after crystallization was able to perform solid-liquid separation of dead end type with 5C filter paper with high efficiency. The filtration rate was fast. Subsequently, pure water was washed with 5C filter paper, and then dried at 110 ° C. Further, the structure directing agent TEAOH was removed by firing at 600 ° C. under air flow.

粉末X線回折においてSAPO−34に対応するX線ピークのみが観測され、組成分析ではSi/Al=0.29、P/Al=0.47であった。また平均結晶径は3.8μmであった{図5(図1の1/10倍率)及び図6(図1と同倍率)参照}。 In the powder X-ray diffraction, only the X-ray peak corresponding to SAPO-34 was observed, and in the composition analysis, Si / Al 2 = 0.29 and P / Al = 0.47. The average crystal diameter was 3.8 μm {see FIG. 5 (1/10 magnification of FIG. 1) and FIG. 6 (same magnification as FIG. 1)}.

酸量は、フレッシュ品で0.82mmol/g、飽和水和耐久処理時(25℃,相対湿度80%,90日間)で0.80mmol/gであった。   The amount of acid was 0.82 mmol / g in a fresh product, and 0.80 mmol / g during saturated hydration durability treatment (25 ° C., relative humidity 80%, 90 days).

本実施例のSAPO−34は、水蒸気処理後のアンモニア吸着量=酸量が大きいため、高い耐水性を持つアンモニア吸着剤として利用できる。   The SAPO-34 of this example can be used as an ammonia adsorbent having high water resistance since the ammonia adsorption amount after the steam treatment = the acid amount is large.

比較例1
擬ベーマイト(Al=74%)、85%リン酸、シリカ(シリカゾル)、モルホリン、純水を以下の仕込組成比の混合スラリー100gを調製した。
Al:0.80P:0.6SiO:2.0モルホリン:50H
混合スラリーをオートクレーブ中、室温から200℃まで攪拌下で約40分かけて昇温し、更に攪拌を止めて静置下で26時間保持し結晶化させた。結晶化後のスラリーは、5C濾紙でデッドエンド式の効率の高い固液分離ができた。濾過速度は速かった。引き続き、5C濾紙で純水洗浄を行い、その後110℃で乾燥した。更に空気流通下、600℃で焼成することにより、構造指向剤のモルホリンを除去した。
Comparative Example 1
Pseudoboehmite (Al 2 O 3 = 74%), 85% phosphoric acid, silica (silica sol), morpholine, and pure water 100 g of a mixed slurry having the following composition ratio were prepared.
Al 2 O 3 : 0.80P 2 O 5 : 0.6SiO 2 : 2.0 Morpholine: 50H 2 O
The mixed slurry was heated in an autoclave from room temperature to 200 ° C. with stirring over about 40 minutes, and further stirred and kept standing for 26 hours for crystallization. The slurry after crystallization was able to perform solid-liquid separation of dead end type with 5C filter paper with high efficiency. The filtration rate was fast. Subsequently, pure water was washed with 5C filter paper, and then dried at 110 ° C. Furthermore, the structure directing agent morpholine was removed by baking at 600 ° C. under air flow.

粉末X線回折ではSAPO−34に対応するX線ピークのみが観測され、組成分析ではSi/Al=0.46、P/Al=0.71であった平均結晶径は5.6μmであった。 In powder X-ray diffraction, only an X-ray peak corresponding to SAPO-34 was observed, and in compositional analysis, the average crystal diameter was 5.6 μm, which was Si / Al 2 = 0.46 and P / Al = 0.71. It was.

酸量は、フレッシュ品で1.38mmol/gと大きかったが、飽和水和耐久処理時(25℃,相対湿度80%,90日間)で0.19mmol/gと低いものであった。   The acid amount was as large as 1.38 mmol / g in the fresh product, but was as low as 0.19 mmol / g during the saturation hydration endurance treatment (25 ° C., relative humidity 80%, 90 days).

得られたSAPO−34は、平均結晶径は大きいが、飽和水和耐久処理時のアンモニア吸着量、即ち酸量が著しく小さいものであった。   The obtained SAPO-34 had a large average crystal diameter, but the ammonia adsorption amount during the saturation hydration durability treatment, that is, the acid amount was extremely small.

比較例2
擬ベーマイト(Al=74%)、85%リン酸、シリカ(シリカゾル)、テトラエチルアンモニウムヒドロキシド(TEAOH)、純水を以下の仕込組成比の混合スラリー100gを調製した。
Al:1.00P:0.9SiO:2.0TEAOH:50H
混合スラリーをオートクレーブ中、攪拌下で約35分かけて室温から180℃まで昇温し、攪拌をし続けたままで120時間保持し結晶化させた。結晶化後のスラリーは、5C濾紙のデッドエンド式固液分離を試みたが、SAPO−34が濾紙を通過したため、分離できなかった。また、孔径0.025μmのニトロセルロース系フィルターを用いてデッドエンド式固液分離では分離できなかったため、遠心沈降器を用いて固液分離を行った。引き続き、純水添加と遠心沈降を繰り返すことにより純水洗浄を行い、その後110℃で乾燥した。更に空気流通下、600℃で焼成することにより、構造指向剤のTEAOHを除去した。
Comparative Example 2
Pseudoboehmite (Al 2 O 3 = 74%), 85% phosphoric acid, silica (silica sol), tetraethylammonium hydroxide (TEAOH), and pure water 100 g of a mixed slurry having the following charging composition ratio were prepared.
Al 2 O 3 : 1.00P 2 O 5 : 0.9SiO 2 : 2.0TEAOH: 50H 2 O
The mixed slurry was heated from room temperature to 180 ° C. over about 35 minutes under stirring in an autoclave, and kept for 120 hours for crystallization while continuing stirring. The slurry after crystallization was subjected to dead-end solid-liquid separation of 5C filter paper, but could not be separated because SAPO-34 passed through the filter paper. Moreover, since it could not be separated by dead-end solid-liquid separation using a nitrocellulose-based filter having a pore size of 0.025 μm, solid-liquid separation was performed using a centrifugal sedimentator. Subsequently, pure water was washed by repeating the addition of pure water and centrifugal sedimentation, and then dried at 110 ° C. Further, the structure directing agent TEAOH was removed by firing at 600 ° C. under air flow.

粉末X線回折においてSAPO−34に対応するX線ピークのみが観測され、組成分析ではSi/Al=0.58、P/Al=0.73であった。また平均結晶径は0.28μmと小さいものであった{図7(図1と同倍率)参照}。 In powder X-ray diffraction, only the X-ray peak corresponding to SAPO-34 was observed, and Si / Al 2 = 0.58 and P / Al = 0.73 were found in the composition analysis. The average crystal diameter was as small as 0.28 μm {see FIG. 7 (same magnification as FIG. 1)}.

酸量は、フレッシュ品で1.28mmol/g、飽和水和耐久処理時(25℃,相対湿度80%,90日間)で1.22mmol/gであり、熱水耐久処理時(900℃,相対湿度10%,1時間)では0.68mmol/gと急激に低下するものであった。   The acid amount is 1.28 mmol / g for fresh products, 1.22 mmol / g for saturated hydration durability treatment (25 ° C., relative humidity 80%, 90 days), and for hot water durability treatment (900 ° C., relative At a humidity of 10% for 1 hour, it was abruptly reduced to 0.68 mmol / g.

実施例及び比較例で得られたSAPO−34の固液分離可能方法、組成分析、平均結晶径、平均結晶径、酸量(=アンモニア吸着量)を以下の表1に示す。   Table 1 below shows the solid-liquid separation method, composition analysis, average crystal diameter, average crystal diameter, and acid amount (= ammonia adsorption amount) of SAPO-34 obtained in Examples and Comparative Examples.

Figure 0005428540
Figure 0005428540

比較例1のSAPO−34は、平均結晶径は大きいが、低温での水和(飽和水和耐久処理時)によって既に酸量(=アンモニア吸着量)が大きく低下し、比較例2のSAPO−34は、室温における水和の影響は比較的小さいが、高温(熱水耐久処理時)における水の影響により、酸量(=アンモニア吸着量)が大きく低下するものであった。一方、実施例1〜4で得られたSAPO−34は、平均結晶径が大きいためにハンドリング性(ろ過性等)に優れ、なおかつ室温及び高温における水の影響による酸量(=アンモニア吸着量)の低下がないものであった。   SAPO-34 of Comparative Example 1 has a large average crystal diameter, but the acid amount (= ammonia adsorption amount) is already greatly reduced by hydration at low temperature (during saturated hydration durability treatment), and SAPO- of Comparative Example 2 No. 34 had a relatively small influence of hydration at room temperature, but the acid amount (= ammonia adsorption amount) was greatly reduced due to the influence of water at a high temperature (during hydrothermal durability treatment). On the other hand, SAPO-34 obtained in Examples 1 to 4 is excellent in handling properties (filterability, etc.) due to its large average crystal diameter, and also has an acid amount (= ammonia adsorption amount) due to the influence of water at room temperature and high temperature. It was a thing without the fall of.

本発明のSAPO−34は、水(水蒸気)の存在する雰囲気で使用される触媒、吸着剤、イオン交換体などとして利用できる。   The SAPO-34 of the present invention can be used as a catalyst, adsorbent, ion exchanger, etc. used in an atmosphere in which water (water vapor) is present.

Claims (4)

アンモニア昇温脱離法により測定される酸量が、25℃、相対湿度80%の雰囲気下で90日間保存処理後の飽和水和耐久処理時において0.8mmol/g以上、水蒸気を10体積%含有湿潤空気100mL/min流通、900℃、1時間の熱水耐久処理時において0.7mmol/g以上であり、且つ平均結晶径が1.0μm以上のSAPO−34。 The amount of acid measured by the ammonia temperature-programmed desorption method is 0.8 mmol / g or more at the time of saturated hydration endurance treatment after storage for 90 days in an atmosphere of 25 ° C. and 80% relative humidity , and 10% by volume of water vapor. SAPO-34 containing 0.7 mmol / g or more and an average crystal diameter of 1.0 μm or more at the time of hot water endurance treatment at 100 ° C. for 1 hour, containing flowing humid air at 100 mL / min . アンモニア昇温脱離法により測定される酸量が、25℃、相対湿度80%の雰囲気下で90日間保存処理後の飽和水和耐久処理時において1.2mmol/g以上であることを特徴とする請求項1に記載のSAPO−34。  The acid amount measured by the ammonia temperature-programmed desorption method is 1.2 mmol / g or more at the time of saturated hydration endurance treatment after storage treatment for 90 days in an atmosphere of 25 ° C. and 80% relative humidity. The SAPO-34 of claim 1. 少なくともリン酸、アルコキシドを含まないアルミニウム源、シリカ源、テトラエチルアンモニウムイオン及び水を含み、なおかつP/Alモル比が1.1未満の組成物を、180℃を超える温度、静置下で結晶化することを特徴とする請求項1又は2に記載のSAPO−34の製造方法。 Crystallize a composition containing at least phosphoric acid, an alkoxide-free aluminum source, a silica source, tetraethylammonium ions and water, and having a P / Al molar ratio of less than 1.1 at a temperature exceeding 180 ° C. The method for producing SAPO-34 according to claim 1 or 2, wherein: 請求項1または2記載のSAPO−34を含有することを特徴とするアンモニア吸着剤。 An ammonia adsorbent comprising the SAPO-34 according to claim 1 or 2.
JP2009133104A 2009-06-02 2009-06-02 SAPO-34 having high water resistance and large particles, synthesis method thereof and use thereof Active JP5428540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133104A JP5428540B2 (en) 2009-06-02 2009-06-02 SAPO-34 having high water resistance and large particles, synthesis method thereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133104A JP5428540B2 (en) 2009-06-02 2009-06-02 SAPO-34 having high water resistance and large particles, synthesis method thereof and use thereof

Publications (2)

Publication Number Publication Date
JP2010280516A JP2010280516A (en) 2010-12-16
JP5428540B2 true JP5428540B2 (en) 2014-02-26

Family

ID=43537653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133104A Active JP5428540B2 (en) 2009-06-02 2009-06-02 SAPO-34 having high water resistance and large particles, synthesis method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP5428540B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5756714B2 (en) * 2010-09-02 2015-07-29 イビデン株式会社 Silicoaluminophosphate, honeycomb structure and exhaust gas purification device
WO2012029159A1 (en) * 2010-09-02 2012-03-08 イビデン株式会社 Silicoalumina phosphate salt, honeycomb structure, and exhaust gas purification device
JP5895510B2 (en) * 2010-12-22 2016-03-30 東ソー株式会社 Chabazite-type zeolite and method for producing the same, low-silica zeolite supporting copper, nitrogen oxide reduction and removal catalyst containing the zeolite, and nitrogen oxide reduction and removal method using the catalyst
JPWO2013024547A1 (en) * 2011-08-18 2015-03-05 イビデン株式会社 Honeycomb structure and manufacturing method thereof, exhaust gas purification device, and silicoaluminophosphate particles
JP5772387B2 (en) 2011-08-23 2015-09-02 トヨタ自動車株式会社 Silicoaluminophosphate molecular sieve having magnesium and method for producing the same
CN115072738B (en) * 2022-05-05 2024-02-09 南京大学 Preparation method and application of microporous SAPO-11 molecular sieve

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
ZA849729B (en) * 1983-12-19 1986-07-30 Mobil Oil Corp Crystalline silicophosphoaluminate
JPS60161322A (en) * 1984-02-02 1985-08-23 Mitsubishi Chem Ind Ltd Composition of crystalline porous body
FR2645141B1 (en) * 1989-03-31 1992-05-29 Elf France PROCESS FOR THE SYNTHESIS OF PRECURSORS OF MOLECULAR SIEVES OF THE SILICOALUMINOPHOSPHATE TYPE, PRECURSORS OBTAINED AND THEIR APPLICATION FOR OBTAINING SAID MOLECULAR SIEVES
US5095163A (en) * 1991-02-28 1992-03-10 Uop Methanol conversion process using SAPO catalysts
US5126308A (en) * 1991-11-13 1992-06-30 Uop Metal aluminophosphate catalyst for converting methanol to light olefins
JP4168214B2 (en) * 1998-10-15 2008-10-22 三菱瓦斯化学株式会社 Methylamine production catalyst and method for producing the catalyst
US6316683B1 (en) * 1999-06-07 2001-11-13 Exxonmobil Chemical Patents Inc. Protecting catalytic activity of a SAPO molecular sieve
JP4212287B2 (en) * 2001-10-11 2009-01-21 三菱化学株式会社 Method for producing zeolite
JP2005514319A (en) * 2002-10-24 2005-05-19 エクソンモービル・ケミカル・パテンツ・インク Stabilization of acid catalyst
US6897179B2 (en) * 2003-06-13 2005-05-24 Exxonmobil Chemical Patents Inc. Method of protecting SAPO molecular sieve from loss of catalytic activity
US7015174B2 (en) * 2003-06-20 2006-03-21 Exxonmobil Chemical Patents Inc. Maintaining molecular sieve catalytic activity under water vapor conditions
JP2006089300A (en) * 2004-09-21 2006-04-06 Nippon Gas Gosei Kk Production method for sapo-34, and method of producing liquefied petroleum gas composed mainly of propane
MY146586A (en) * 2007-03-26 2012-08-30 Pq Corp Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same

Also Published As

Publication number Publication date
JP2010280516A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5428540B2 (en) SAPO-34 having high water resistance and large particles, synthesis method thereof and use thereof
JP4904417B2 (en) Beta-type zeolite and method for producing the same
EP2659973B1 (en) Zeolite having copper and alkali earth metal supported thereon
JP5983843B2 (en) Transition metal-containing zeolite
WO2013002059A1 (en) Transition metal-containing zeolite
JP6070230B2 (en) AFX type silicoaluminophosphate, method for producing the same, and nitrogen oxide reduction method using the same
KR102194141B1 (en) Carbon dioxide adsorbent comprising mesoporous chabazite zeolite and methods for preparing the same
JP2015044720A (en) Metal-containing copper-sapo zeolite
WO2017002745A1 (en) Copper-supported zeolite and exhaust-gas purification treatment catalyst containing said zeolite
JP2014122142A (en) Transition metal-containing zeolite, and method for producing the same
JP2022510847A (en) Silica-alumina composition with improved stability and its preparation method
WO2015146482A1 (en) Method for producing transition metal-containing zeolite, transition metal-containing zeolite obtained by said method, and exhaust gas purifying catalyst using said zeolite
JP6058433B2 (en) Hydrocarbon reformer trap material and hydrocarbon removal method
JP5261875B2 (en) Aluminophosphate zeolite adsorbent comprising oxygen 6-membered ring, production method thereof and use thereof
JP2018089571A (en) Hydrocarbon adsorbent containing szr zeolite and hydrocarbon adsorbing method
JP2020528869A (en) Zeolite material with skeletal CHA, transition metals, and one or more of potassium and cesium
JP5983290B2 (en) Silicoaluminophosphate and nitrogen oxide reduction catalyst using the same
JP2011148678A (en) Novel metallosilicate and catalyst for removing nitrogen oxide
WO2023182344A1 (en) Zeolite, production method thereof, hydrocarbon adsorbent and exhaust gas purifying catalyst
WO2018221194A1 (en) Cha aluminosilicate and production method therefor, and exhaust gas purification catalyst, exhaust gas purification apparatus and exhaust gas purification method using same
JP2014148442A (en) Method for producing silico-alumino-phosphate containing copper or iron
JP6123419B2 (en) Method for producing fine zeolite
WO2023038085A1 (en) Hydrocarbon adsorbent and hydrocarbon adsorption method
WO2022030593A1 (en) Adsorption method and mesoporous alumina for use in said method
JP6070229B2 (en) SAV type silicoaluminophosphate, method for producing the same, and nitrogen oxide reduction method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151