JP5427487B2 - Fuel cell - Google Patents
Fuel cell Download PDFInfo
- Publication number
- JP5427487B2 JP5427487B2 JP2009154520A JP2009154520A JP5427487B2 JP 5427487 B2 JP5427487 B2 JP 5427487B2 JP 2009154520 A JP2009154520 A JP 2009154520A JP 2009154520 A JP2009154520 A JP 2009154520A JP 5427487 B2 JP5427487 B2 JP 5427487B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- cathode
- anode
- electrolyte
- electrode assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は、燃料電池に係り、特に、電解質膜に塗布された触媒電極層を有するものである。 The present invention relates to a fuel cell, and in particular, has a catalyst electrode layer applied to an electrolyte membrane.
燃料電池は、化学エネルギーを直接電気エネルギーに変換する装置である。 A fuel cell is a device that converts chemical energy directly into electrical energy.
燃料としての水素,メタノールなどの還元性物質と、酸化剤としての空気,酸素などの酸化性ガスとを、それぞれ燃料極(アノード),空気極(カソード)に供給する。そして、電極層に含まれる触媒上で進行する酸化還元反応によって生じる電子を取り出し、電気エネルギーとするものである。 Reducing substances such as hydrogen and methanol as fuel, and oxidizing gases such as air and oxygen as oxidants are supplied to the fuel electrode (anode) and the air electrode (cathode), respectively. And the electron which arises by the oxidation-reduction reaction which advances on the catalyst contained in an electrode layer is taken out, and it makes it electrical energy.
燃料電池は、電解質膜の材料や作動温度などによって、固体高分子型,リン酸型,溶融炭酸塩型,固体酸化物型などにわけることができる。 The fuel cell can be divided into a solid polymer type, a phosphoric acid type, a molten carbonate type, a solid oxide type, etc., depending on the material of the electrolyte membrane and the operating temperature.
この中で、パーフルオロスルホン酸系樹脂,スルホン化芳香族炭化水素系樹脂などに代表されるプロトン伝導性を有する固体高分子電解質膜を用い、アノード側で水素を酸化し、カソード側で酸素を還元することで発電を行う固体高分子型燃料電池(Polymer Electrolyte Fuel Cell;PEFC)は、比較的低温で発電でき、出力密度の高い電池として知られている。 Among them, a solid polymer electrolyte membrane having proton conductivity represented by perfluorosulfonic acid resin, sulfonated aromatic hydrocarbon resin, etc. is used to oxidize hydrogen on the anode side and oxygen on the cathode side. A polymer electrolyte fuel cell (PEFC) that generates electricity by reduction is known as a battery that can generate electricity at a relatively low temperature and has a high output density.
また、燃料として水素の代わりに液体であるメタノール,メタノール水溶液を用いた直接メタノール型燃料電池(Direct Methanol Fuel Cell;DMFC)も、近年になって脚光を浴びている。DMFCは、燃料,空気の供給方法によって、アクティブタイプ(燃料,空気を強制的に供給),セミアクティブタイプ(燃料,空気の一方を強制的に供給),パッシブタイプ(燃料,空気を自然供給)などに分類される。 In addition, direct methanol fuel cells (DMFC) using methanol as a fuel instead of hydrogen and methanol aqueous solution as a fuel have recently been attracting attention. DMFC is active type (forced supply of fuel and air), semi-active type (forced supply of either fuel or air), passive type (natural supply of fuel or air) depending on the fuel and air supply method And so on.
PEFC,DMFCの発電は、アノードとカソードで固体高分子電解質膜をはさんだ構成の膜電極接合体(Membrane-Electrode Assembly;MEA)で行われる。このMEAにはPEFC,DMFCの連続発電に対し、耐久性に優れることが望ましい。 The power generation of PEFC and DMFC is performed by a membrane-electrode assembly (MEA) having a configuration in which a solid polymer electrolyte membrane is sandwiched between an anode and a cathode. This MEA desirably has excellent durability against continuous power generation of PEFC and DMFC.
しかし、PEFC,DMFCの連続発電中に、電極外周域の電解質膜の一部に破損が生じ、燃料がクロスリークするため安定した発電が継続できないことがある。 However, during continuous power generation of PEFC and DMFC, a part of the electrolyte membrane in the electrode outer peripheral region is damaged, and fuel may cross-leak, so that stable power generation may not be continued.
破損部の電解質膜を分析すると、膜組成やイオン交換容量には変化がなく、その分子量が半減していることを突き止めた。これは、特にDMFC発電で顕著に見られる傾向である。 Analysis of the damaged electrolyte membrane revealed that there was no change in membrane composition or ion exchange capacity, and that its molecular weight was halved. This is particularly the case with DMFC power generation.
このような、PEFC用,DMFC用のMEAにおける、電極周辺部分の電解質膜の損傷や破損については、特許文献1から3においても課題として指摘している。 In such MEAs for PEFC and DMFC, damage or breakage of the electrolyte membrane in the electrode peripheral portion is pointed out as a problem in Patent Documents 1 to 3.
特許文献1では膜破損の要因を電極端部への応力集中としているが、DMFCで見られる破損は固体高分子の分子量低下が要因であり、課題の解決法とならない。 In Patent Document 1, the cause of the film breakage is stress concentration at the end of the electrode. However, the breakage observed in DMFC is caused by a decrease in the molecular weight of the solid polymer, and does not solve the problem.
特許文献2では、クロスリークした水素燃料と空気が触媒のない電極周辺で直接燃料反応を起こし、この燃焼熱により電解質膜を劣化させることを課題とし、電極周辺部にカーボンからなる耐火層を付与する膜電極接合体を提案している。しかし、DMFC発電時の膜劣化部位では燃焼反応による炭化領域は確認されておらず、前記構成の膜電極接合体を用いても、膜破損が起きることを確認した。 In Patent Document 2, cross-leaked hydrogen fuel and air cause a fuel reaction directly around the electrode without a catalyst, and the problem is to deteriorate the electrolyte membrane by this combustion heat, and a refractory layer made of carbon is provided around the electrode. A membrane electrode assembly is proposed. However, the carbonization region due to the combustion reaction was not confirmed at the membrane degradation site at the time of DMFC power generation, and it was confirmed that the membrane breakage occurred even when the membrane electrode assembly having the above configuration was used.
また、特許文献3では、メタノール燃料が直接固体高分子電解質膜に触れることによる損傷を防ぐため、電極よりも大面積の領域に可塑剤を添加した高分子皮膜を付与した膜電極接合体を用いているが、電解質膜の損傷のメカニズムについての記載はなく、前記構成の膜電極接合体でも本課題を解決する有効な手段とはいえない。 Moreover, in patent document 3, in order to prevent the damage by direct contact of methanol fuel with a solid polymer electrolyte membrane, the membrane electrode assembly which provided the polymer membrane which added the plasticizer to the area | region larger than an electrode was used. However, there is no description about the mechanism of damage to the electrolyte membrane, and the membrane electrode assembly having the above-described configuration is not an effective means for solving this problem.
我々は、鋭意検討の結果、PEFC、DMFC連続発電中に生じる電極外周域での膜破損は、電極端部において過酸化水素が多く発生し、過酸化水素および過酸化水素ラジカルが電極外周の固体高分子電解質を分解することで、電極外周域における電解質膜の機械的強度を低減させたことに由来することを突き止めた。 As a result of intensive studies, we found that hydrogen peroxide is generated at the electrode edge, and hydrogen peroxide and hydrogen peroxide radicals are solid around the electrode. It was ascertained that the degradation was caused by reducing the mechanical strength of the electrolyte membrane in the electrode outer peripheral region by decomposing the polymer electrolyte.
アノードとカソードで電解質膜を挟み込んだ膜電極接合体をガスケット、セパレータで挟み込んだ場合、電極外周と、ガスケット、セパレータで囲まれた領域に空隙が生じやすい。このような構成でDMFC運転を行うと、アノードから透過したメタノール水溶液がカソード側の電極外周域の空隙に滞留しやすくなる。この場合、メタノールによるPt触媒被毒や水によるフラッディング現象に起因して、カソード端部の電気化学的な電位が下がりやすく、カソードガス中の酸素が完全に酸化されず過酸化水素となりやすい。 When a membrane electrode assembly in which an electrolyte membrane is sandwiched between an anode and a cathode is sandwiched between a gasket and a separator, voids are likely to be generated in the electrode outer periphery and in a region surrounded by the gasket and the separator. When the DMFC operation is performed in such a configuration, the methanol aqueous solution that has permeated from the anode tends to stay in the gap in the outer peripheral region of the electrode on the cathode side. In this case, due to the Pt catalyst poisoning by methanol and the flooding phenomenon by water, the electrochemical potential at the cathode end tends to decrease, and the oxygen in the cathode gas is not completely oxidized and tends to be hydrogen peroxide.
また、過酸化水素は水に溶けやすいため、カソード外周の空隙に滞留するメタノール水溶液を経由して電極外周域の電解質に到達し、そのラジカルが固体高分子を分解する。 In addition, since hydrogen peroxide is easily dissolved in water, it reaches the electrolyte in the outer periphery of the electrode via an aqueous methanol solution staying in the void around the cathode, and the radical decomposes the solid polymer.
さらに、電極外周部の電解質膜表面上に電極端部から欠落した触媒粒子が存在すると、その触媒上でのカソード電位は特に下がりやすく、過酸化水素発生による電解質膜劣化を助長することを確認しており、このような電極端部での触媒粒子の欠落も防ぐ必要がある。 Furthermore, it was confirmed that the presence of catalyst particles missing from the electrode end on the electrolyte membrane surface on the outer periphery of the electrode tends to lower the cathode potential particularly on the catalyst and promotes electrolyte membrane degradation due to the generation of hydrogen peroxide. Therefore, it is necessary to prevent the catalyst particles from being lost at the end portions of the electrodes.
一方、PEFC発電においても電極外周の空隙に水が滞留すると、電極で発生した過酸化水素が分解せずとどまりやすいため、滞留した水が接する領域において電解質劣化が進行しやすい。これは、アノード,カソードのどちらにおいても発生しうる。 On the other hand, in the PEFC power generation, if water stays in the gap around the electrode, the hydrogen peroxide generated at the electrode is likely to stay without being decomposed, so that the electrolyte deterioration is likely to proceed in a region where the staying water is in contact. This can occur at both the anode and the cathode.
さらに、PEFC発電中のカソードでは高電位に曝されたPt触媒が溶出しやすく、電解質膜中に自然拡散したPtカチオンがアノードより透過してきた水素分子と反応することで、膜中に還元析出することが報告されている。これも上記に示した、電極から孤立した触媒粒子であり、過酸化水素を発生させやすい。アノード,カソードの外周はこれら電極で挟まれた電解質膜に比べてガス透過量が多いため、再析出したPtが電極外周部に存在すると、過酸化水素がより多く生成され、電解質劣化が加速される。 Furthermore, the Pt catalyst exposed to a high potential tends to elute at the cathode during PEFC power generation, and the Pt cations naturally diffused in the electrolyte membrane react with the hydrogen molecules that have permeated from the anode, thereby reducing and depositing in the membrane. It has been reported. This is also the catalyst particles isolated from the electrode as described above, and easily generates hydrogen peroxide. Since the outer peripheries of the anode and cathode have a larger gas permeation amount than the electrolyte membrane sandwiched between these electrodes, if re-deposited Pt exists in the outer peripheries of the electrode, more hydrogen peroxide is generated and the deterioration of the electrolyte is accelerated. The
そこで、本発明の目的は、PEFCおよびDMFC用の膜電極接合体において、電極外周部における過酸化水素の発生および滞留を防ぎ、電極外周部での電解質分解を抑制するための膜電極接合体の構成と、その製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a membrane electrode assembly for PEFC and DMFC that prevents the generation and retention of hydrogen peroxide at the outer periphery of the electrode and suppresses electrolyte decomposition at the outer periphery of the electrode. It is in providing a structure and its manufacturing method.
本発明に係る実施態様の1つである燃料電池用膜電極接合体は、触媒と固体高分子電解質からなるアノードと、触媒と固体高分子電解質からなるカソードが固体高分子電解質膜を挟むように形成される燃料電池用の膜電極接合体において、アノード,カソードが電解質膜に対し、その膜面鉛直方向に埋め込まれた構成からなるものであり、アノードおよびカソードで挟まれた領域の電解質膜の厚みtinと、アノード,カソードの外周域に位置する電解質膜の厚みをtoutの間に、
tout>tin
が成り立つものである。本発明における、アノードおよびカソードで挟まれた領域の電解質膜とは、膜電極接合体をその法線を含む面で切った場合、その両側にアノード触媒層およびカソード触媒層が配置されている電解質膜のことを指す。また、アノード触媒層,カソード触媒層の外周域に位置する電解質膜とは、膜電極接合体をその法線を含む面で切った場合、両側にアノード触媒層もカソード触媒層も配置されていない電解質膜のことを指す。tINは、膜電極接合体の法線を含む断面における、電解質膜とアノード触媒層の境界線および電解質膜とカソード触媒層の境界線の距離で表すことができる。アノード触媒層あるいはカソード触媒層と電解質膜の間に存在する境界線はアノード触媒層あるいはカソード触媒層に含まれる触媒の有無によって決定される。各領域の厚みは、膜電極接合体の法線を含んだ断面観察像で測定可能であり、該当領域中の任意の3点以上について厚みを測定し、その算術平均値をtin、toutとする。また、toutは、該当する膜電極接合体におけるアノード触媒層もカソード触媒層も配置されていない電解質膜の厚さとして定義でき、マイクロメータを用いて測定することができる。
A fuel cell membrane electrode assembly which is one of the embodiments according to the present invention is such that an anode comprising a catalyst and a solid polymer electrolyte and a cathode comprising a catalyst and a solid polymer electrolyte sandwich the solid polymer electrolyte membrane. In the membrane electrode assembly for a fuel cell to be formed, the anode and the cathode are embedded in the vertical direction of the membrane surface with respect to the electrolyte membrane, and the electrolyte membrane in the region sandwiched between the anode and the cathode The thickness t in and the thickness of the electrolyte membrane located in the outer peripheral area of the anode and cathode are between t out ,
t out > t in
Is established. In the present invention, the electrolyte membrane in the region sandwiched between the anode and the cathode is an electrolyte in which the anode catalyst layer and the cathode catalyst layer are arranged on both sides when the membrane electrode assembly is cut along the plane including the normal line. Refers to the membrane. In addition, when the membrane electrode assembly is cut along the plane including the normal line, the anode catalyst layer and the cathode catalyst layer are not arranged on both sides of the electrolyte membrane located in the outer peripheral region of the anode catalyst layer and the cathode catalyst layer. It refers to the electrolyte membrane. t IN can be represented by the distance between the boundary line between the electrolyte membrane and the anode catalyst layer and the boundary line between the electrolyte membrane and the cathode catalyst layer in the cross section including the normal line of the membrane electrode assembly. The boundary line existing between the anode catalyst layer or cathode catalyst layer and the electrolyte membrane is determined by the presence or absence of a catalyst contained in the anode catalyst layer or cathode catalyst layer. The thickness of each region can be measured by a cross-sectional observation image including the normal line of the membrane electrode assembly. The thickness is measured at any three or more points in the corresponding region, and the arithmetic average value is expressed as t in , t out And Moreover, t out can be defined as the thickness of the electrolyte membrane in which neither the anode catalyst layer nor the cathode catalyst layer is disposed in the relevant membrane electrode assembly, and can be measured using a micrometer.
また、カソード触媒層が完全に電解質膜内に埋め込まれた構成ではカソード触媒層周囲にメタノール水溶液が滞留することを完全に抑制できるため、特に効果を有する。この場合、カソード触媒層の厚みをtCAとするとtout≧tCA+tinの関係が成り立つ。 In addition, the configuration in which the cathode catalyst layer is completely embedded in the electrolyte membrane is particularly effective because the methanol aqueous solution can be completely prevented from staying around the cathode catalyst layer. In this case, when the thickness of the cathode catalyst layer and t CA t out ≧ t CA + t relationship in holds.
また、アノード触媒層が完全に電解質膜に埋め込まれた構成でもメタノール透過を抑制するため、効果を有する。この場合、アノード触媒層の厚みをtANとすると、tout≧tAN+tinの関係が成り立つ。 Further, even in a configuration in which the anode catalyst layer is completely embedded in the electrolyte membrane, methanol permeation is suppressed, so that it has an effect. In this case, when the thickness of the anode catalyst layer and t AN, relationships t out ≧ t AN + t in is established.
また、アノード触媒層,カソード触媒層電極双方が完全に電解質膜中に埋め込まれていることが最も好ましく、アノード触媒層,カソード触媒層の外周域に位置する電解質膜の厚みをtout、カソード触媒層の厚みをtCA、アノード触媒層の厚みをtAN、アノード触媒層とカソード触媒層で挟まれた電解質膜の厚みをtinとするとtout≧tCA+tAN+tinの関係が成り立つものである。 It is most preferable that both the anode catalyst layer and the cathode catalyst layer electrode are completely embedded in the electrolyte membrane. The thickness of the electrolyte membrane located in the outer peripheral area of the anode catalyst layer and the cathode catalyst layer is t out , that the thickness of the layer t CA, the thickness t aN of the anode catalyst layer, the relationship between the anode catalyst layer and the thickness of the electrolyte film sandwiched between the cathode catalyst layer When t in t out ≧ t CA + t aN + t in established It is.
本発明に係る実施態様の1つである燃料電池用膜電極接合体において、アノード触媒層とカソード触媒層で挟まれた領域の電解質膜を構成する固体高分子電解質樹脂と電極の外周に配置される固体高分子電解質樹脂は同一であっても、異なっていてもよい。ここで電極の外周領域に位置する固体高分子電解質とは、膜電極接合体をアノード側あるいはカソード側から見た平面図において電極が配置されていない領域に配置され、かつ、膜電極接合体の断面像においてアノード触媒層あるいはカソード触媒層の側壁部に接している電解質のことである。電解質が同一であるということは、核磁気共鳴分光法(NMR)で分析されるポリマーの骨格が同じであり、イオン交換容量が5%以内の差であり、ゲル浸透クロマトグラフィー(GPC)で分析されるポリマーの数平均分子量と重量平均分子量が10%以内の差であることを意味する。 In a membrane electrode assembly for a fuel cell which is one of the embodiments according to the present invention, the fuel cell membrane electrode assembly is disposed on the outer periphery of a solid polymer electrolyte resin and an electrode constituting an electrolyte membrane in a region sandwiched between an anode catalyst layer and a cathode catalyst layer. The solid polymer electrolyte resins may be the same or different. Here, the solid polymer electrolyte located in the outer peripheral region of the electrode is arranged in a region where no electrode is arranged in a plan view of the membrane electrode assembly viewed from the anode side or the cathode side, and the membrane electrode assembly It is an electrolyte in contact with the side wall of the anode catalyst layer or the cathode catalyst layer in the cross-sectional image. The same electrolyte means that the polymer skeleton analyzed by nuclear magnetic resonance spectroscopy (NMR) is the same, the ion exchange capacity is within 5%, and analyzed by gel permeation chromatography (GPC). It means that the number average molecular weight and the weight average molecular weight of the polymer to be produced are within 10%.
本発明に係る実施態様の1つである燃料電池用膜電極接合体において、対向するアノードとカソードで挟まれた電解質膜を構成する固体高分子電解質と電極外周域に位置する固体高分子電解質が異なっている場合、電極の外周域に位置する固体高分子電解質のイオン交換容量がアノードとカソードで挟まれた部分の固体高分子電解質のイオン交換容量よりも小さいと、電極外周部におけるガス透過量やメタノール透過量を低減できるため、望ましく、具体的には、電極の外周領域に位置する固体高分子電解質のイオン交換容量がアノードとカソードで挟まれた固体高分子電解質のイオン交換容量の95%以下であることが望ましい。なお、イオン交換容量は、NMR法や酸塩基滴定法により測定できる。 In a fuel cell membrane electrode assembly which is one of the embodiments according to the present invention, a solid polymer electrolyte constituting an electrolyte membrane sandwiched between opposing anodes and cathodes and a solid polymer electrolyte located in the electrode outer peripheral region are If the ion exchange capacity of the solid polymer electrolyte located in the outer peripheral area of the electrode is smaller than the ion exchange capacity of the solid polymer electrolyte sandwiched between the anode and the cathode, More specifically, the ion exchange capacity of the solid polymer electrolyte located in the outer peripheral region of the electrode is 95% of the ion exchange capacity of the solid polymer electrolyte sandwiched between the anode and the cathode. The following is desirable. The ion exchange capacity can be measured by NMR method or acid-base titration method.
本発明に係る実施態様の1つである燃料電池用膜電極接合体において、電極の外周領域に位置する固体高分子電解質の水に対する接触角がアノードとカソードで挟まれた部分の固体高分子電解質の水に対する接触角よりも大きいと、電極外周部を通るメタノール透過量を低減でき、望ましい。なお、ここでいう水に対する接触角とは、該当する固体高分子電解質をワニス状とし10μm以上の厚みで膜化し、水洗,乾燥を施した後、その表面に垂らした水滴を断面方向から観察したときの水滴と膜面とのなす角のことである。 In a membrane electrode assembly for a fuel cell which is one of the embodiments according to the present invention, the solid polymer electrolyte in a portion where the contact angle of water with respect to the solid polymer electrolyte located in the outer peripheral region of the electrode is sandwiched between the anode and the cathode If it is larger than the contact angle with respect to water, the amount of methanol permeated through the outer periphery of the electrode can be reduced, which is desirable. In addition, the contact angle with water here means that the corresponding solid polymer electrolyte is varnished, formed into a film with a thickness of 10 μm or more, washed with water and dried, and then water droplets hung on the surface were observed from the cross-sectional direction. It is the angle between the water droplet and the film surface.
本発明に係る実施態様の1つである燃料電池用膜電極接合体において、電極の外周領域に位置する固体高分子電解質が、π共役系高分子あるいは、スルホン化されたπ共役系高分子を含むことが望ましい。π共役高分子が含まれることで、カソード触媒層外周部において触媒粒子が孤立して存在した場合でも、電極と孤立粒子の電子伝導が確保され、孤立粒子の電位が下がらず過酸化水素の発生を抑えることが出来る。 In a fuel cell membrane electrode assembly which is one of the embodiments according to the present invention, the solid polymer electrolyte located in the outer peripheral region of the electrode is a π-conjugated polymer or a sulfonated π-conjugated polymer. It is desirable to include. By including π-conjugated polymer, even if the catalyst particles are isolated on the outer periphery of the cathode catalyst layer, the electron conduction between the electrode and the isolated particles is ensured, and the potential of the isolated particles does not decrease and hydrogen peroxide is generated. Can be suppressed.
本発明に係る実施態様の1つである燃料電池用膜電極接合体において、電極の外周領域に位置する固体高分子電解質が、過酸化水素ラジカルを捕捉,分解する効果を有する金属イオンやその酸化物微粒子を含んでいることが望ましい。このような構成の膜電極接合体では、膜電極接合体とガスケット、ガス拡散層の間にできる空隙に水がたまり、そこへ過酸化水素が滞留したとしても、電極外周部の電解質が過酸化水素ラジカルに分解されることを防ぐことができる。ここで、過酸化水素ラジカルを捕捉,分解する効果を有する金属イオンやその酸化物微粒子は、アノードとカソード触媒層とで挟まれた電解質膜中に含まれていても良いし、含まれていなくてもよいが、膜電極接合体のプロトン伝導抵抗の観点からは含まれていない方が望ましい。 In a fuel cell membrane electrode assembly which is one of the embodiments according to the present invention, a solid polymer electrolyte located in the outer peripheral region of the electrode has a metal ion having an effect of capturing and decomposing hydrogen peroxide radicals and its oxidation. It is desirable to contain physical particles. In the membrane electrode assembly having such a configuration, even if water accumulates in a gap formed between the membrane electrode assembly, the gasket, and the gas diffusion layer, and hydrogen peroxide stays there, the electrolyte on the outer periphery of the electrode is overoxidized. It can be prevented from being decomposed into hydrogen radicals. Here, the metal ions having the effect of capturing and decomposing hydrogen peroxide radicals and oxide fine particles thereof may or may not be contained in the electrolyte membrane sandwiched between the anode and the cathode catalyst layer. However, it is desirable that it is not included from the viewpoint of proton conduction resistance of the membrane electrode assembly.
本発明に係る実施態様の1つである燃料電池用膜電極接合体において、電極の外周領域に位置する固体高分子電解質が、Ptカチオンを捕捉する効果を有する電解質、あるいは添加物を含んでいると、電極から溶出し、拡散してきたPtカチオンが電極外周部の電解質膜中で還元析出することを防ぎ、過酸化水素の発生を抑制するため、望ましい。ここで、Ptカチオンを捕捉する効果を有する電解質および添加物は、アノードとカソード触媒層とで挟まれた電解質膜中に含まれていても良いし、含まれていなくてもよいが、膜電極接合体のプロトン伝導抵抗の観点からは含まれていない方が望ましい。 In a fuel cell membrane electrode assembly which is one of the embodiments according to the present invention, the solid polymer electrolyte located in the outer peripheral region of the electrode contains an electrolyte or an additive having an effect of capturing Pt cations. It is desirable to prevent Pt cations that have been eluted and diffused from the electrode from being reduced and deposited in the electrolyte membrane on the outer periphery of the electrode, and to suppress the generation of hydrogen peroxide. Here, the electrolyte and additive having the effect of capturing the Pt cation may or may not be contained in the electrolyte membrane sandwiched between the anode and the cathode catalyst layer. From the viewpoint of proton conduction resistance of the joined body, it is desirable that it is not included.
また、本発明に係る膜電極接合体において、電極の外周領域に位置する固体高分子電解質がスルホ化あるいはアルキルスルホン化された芳香族炭化水素系電解質であると、電極外周部でのガス透過量,メタノール透過量を抑えることができるため望ましい。 Further, in the membrane electrode assembly according to the present invention, when the solid polymer electrolyte located in the outer peripheral region of the electrode is an aromatic hydrocarbon electrolyte sulfonated or alkylsulfonated, the gas permeation amount at the outer peripheral portion of the electrode , It is desirable because the amount of methanol permeation can be suppressed.
また、本発明に係る膜電極接合体において、アノード触媒層とカソード触媒層で挟まれた領域がスルホ化あるいはアルキルスルホン化された芳香族炭化水素系電解質であると、電極外周部に配置された低ガス透過量,低メタノール透過量の電解質との接合性が高まるため、望ましい。 Further, in the membrane electrode assembly according to the present invention, the region sandwiched between the anode catalyst layer and the cathode catalyst layer is an aromatic hydrocarbon electrolyte that is sulfonated or alkylsulfonated, and is disposed on the outer periphery of the electrode. This is desirable because the bondability with an electrolyte having a low gas permeation amount and a low methanol permeation amount is enhanced.
本発明の実施態様の1つである膜電極接合体のうち、電極の外周領域に配置される電解質中の樹脂組成とアノード触媒層とカソード触媒層で挟まれた電解質膜中の樹脂組成が同一であるものについては、固体高分子電解質が溶解したワニスを塗工して得られる電解質膜に対し、その水洗浄工程前にアノード触媒層,カソード触媒層の少なくとも一方を電解質膜上に形成して熱圧着,乾燥,洗浄することで、製造することができる。 In the membrane electrode assembly which is one embodiment of the present invention, the resin composition in the electrolyte disposed in the outer peripheral region of the electrode and the resin composition in the electrolyte membrane sandwiched between the anode catalyst layer and the cathode catalyst layer are the same. For an electrolyte membrane obtained by applying a varnish in which a solid polymer electrolyte is dissolved, at least one of an anode catalyst layer and a cathode catalyst layer is formed on the electrolyte membrane before the water washing step. It can be manufactured by thermocompression bonding, drying, and washing.
本発明の実施態様の1つである膜電極接合体のうち、電極の外周領域に配置される電解質中の樹脂組成とアノード触媒層とカソード触媒層で挟まれた電解質膜中の樹脂組成が異なるものについては、アノード触媒層あるいはカソード触媒層の少なくとも一方が配置される領域の外周に異なる固体高分子電解質を選択的に塗布し、電解質膜上の凹部にアノード触媒層、およびカソード触媒層を塗布することで、製造することができる。 Among membrane electrode assemblies that are one embodiment of the present invention, the resin composition in the electrolyte disposed in the outer peripheral region of the electrode and the resin composition in the electrolyte membrane sandwiched between the anode catalyst layer and the cathode catalyst layer are different. For those, a different solid polymer electrolyte is selectively applied to the outer periphery of the region where at least one of the anode catalyst layer and the cathode catalyst layer is disposed, and the anode catalyst layer and the cathode catalyst layer are applied to the recesses on the electrolyte membrane. By doing so, it can be manufactured.
本発明の実施態様の1つである膜電極接合体と、ガス拡散層,空気(酸素)を供給する部材と、集電用部材とを用いて構成される燃料電池において、ガス拡散層がアノード触媒層およびカソード触媒層の面積よりも大きいと、膜電極接合体とガス拡散層とガスケットの間に形成される水滞留部分と電極端部とが接触せず、過酸化水素の発生、滞留を防ぐことができるため望ましい。ここで、燃料を供給する部材としては、ポンプ等により導入された燃料を、セパレータを介してガス拡散層に供給する一連の部材を、また、空気(酸素)を供給する部材としては、ブロア等により導入された空気(酸素)を、セパレータを介して拡散層に供給する一連の部材を示すものである。なお、燃料はメタノール水溶液あるいは水素ガスが用いられる。 In a fuel cell configured using a membrane electrode assembly, which is one embodiment of the present invention, a gas diffusion layer, a member for supplying air (oxygen), and a current collecting member, the gas diffusion layer is an anode. If the area is larger than the area of the catalyst layer and the cathode catalyst layer, the water retention portion formed between the membrane electrode assembly, the gas diffusion layer, and the gasket does not come into contact with the electrode end, and hydrogen peroxide is generated and retained. This is desirable because it can be prevented. Here, as a member for supplying fuel, a series of members for supplying fuel introduced by a pump or the like to the gas diffusion layer through the separator, and as a member for supplying air (oxygen), a blower or the like is used. 1 shows a series of members that supply air (oxygen) introduced by the above to a diffusion layer through a separator. The fuel is an aqueous methanol solution or hydrogen gas.
燃料はアノードで電気化学的に酸化され、カソードでは酸素が還元され、両電極間には電気的なポテンシャルの差が生じる。このときに外部回路として負荷が両電極間にかけられると、電解質中にイオンの移動が生起し、外部負荷には電気エネルギーが取り出される。このために各種の燃料電池は、大型発電システム,小型分散型コージェネレーションシステム,電気自動車電源システム等に期待は高く、実用化開発が活発に展開されている。 Fuel is electrochemically oxidized at the anode, oxygen is reduced at the cathode, and a difference in electrical potential occurs between the electrodes. At this time, when a load is applied as an external circuit between the two electrodes, ion migration occurs in the electrolyte, and electric energy is extracted from the external load. For this reason, various fuel cells have high expectations for large power generation systems, small distributed cogeneration systems, electric vehicle power supply systems, and the like, and practical development is actively being developed.
このように本発明の実施態様では、電極外周部での過酸化水素の発生や滞留を抑制し、電極外周での電解質の劣化,破損を抑制するための膜電極接合体の構造、その構成材料、その製造方法、およびこれを用いた燃料電池を提供するものである。 As described above, in the embodiment of the present invention, the structure of the membrane electrode assembly for suppressing the generation and retention of hydrogen peroxide at the outer periphery of the electrode and the deterioration and breakage of the electrolyte at the outer periphery of the electrode, and its constituent materials The present invention provides a manufacturing method thereof and a fuel cell using the same.
本発明によって、連続発電に伴う電極外周部の電解質膜の劣化、破損を防ぎ、寿命の長い燃料電池用膜電極接合体を提供することができる。 According to the present invention, a membrane electrode assembly for a fuel cell having a long life can be provided by preventing deterioration and breakage of the electrolyte membrane on the electrode outer peripheral portion due to continuous power generation.
以下に本発明による実施例について、図面を用いて記述する。 Embodiments according to the present invention will be described below with reference to the drawings.
図1に、膜電極接合体を用いた燃料電池のセル構成の一例を示す。 FIG. 1 shows an example of a cell configuration of a fuel cell using a membrane electrode assembly.
図1において、11がセパレータ、13がアノード触媒層、12がアノード拡散層、14がプロトン伝導性を有する固体高分子電解質膜、15がカソード触媒層、16がカソード拡散層、17がガスケットである。 In FIG. 1, 11 is a separator, 13 is an anode catalyst layer, 12 is an anode diffusion layer, 14 is a solid polymer electrolyte membrane having proton conductivity, 15 is a cathode catalyst layer, 16 is a cathode diffusion layer, and 17 is a gasket. .
セパレータ11は、電子伝導性を有し、その材質としては、緻密黒鉛プレート,黒鉛やカーボンブラックなどの炭素材料を樹脂によって成型したカーボンプレート,ステンレスやチタンなどの金属、あるいはそれを耐食性,耐熱性に優れた導電性塗料や貴金属めっきで被覆したものを用いることが望ましい。
The
アノード触媒層13とカソード触媒層15および固体高分子電解質膜14を一体化したものを膜電極接合体(Membrane-Electrode-Assembly)と称す。この場合、触媒層と拡散層とが一体化していることもある。
A combination of the
図2には従来のMEA構成を示す。電解質膜を挟むようにアノード触媒層とカソード触媒層が配置されるが、この構成では、アノード触媒層とカソード触媒層の電極外周域と拡散層、ガスケットによるシール部分の間に空隙が生じ、ここにメタノールや水が滞留する。この電極外周部でのメタノールや水の滞留は、カソード触媒層端部での電位低下の要因となり、さらに、発生した過酸化水素が電極外周部に滞留する要因にもなる。 FIG. 2 shows a conventional MEA configuration. The anode catalyst layer and the cathode catalyst layer are arranged so as to sandwich the electrolyte membrane. In this configuration, a gap is generated between the electrode outer peripheral area of the anode catalyst layer and the cathode catalyst layer, the diffusion layer, and the seal portion by the gasket. Methanol and water stay in the tank. The stagnation of methanol or water at the outer periphery of the electrode causes a decrease in potential at the end of the cathode catalyst layer, and further causes the generated hydrogen peroxide to stay at the outer periphery of the electrode.
本実施例は、膜電極接合体の構造および構成材料に関するものである。 This example relates to the structure and constituent materials of a membrane electrode assembly.
図3〜図8を用いて本実施例の構成を示す。
図3では、カソード触媒層(33)が電解質膜(32)中に一部埋め込まれた構造となっており、アノード触媒層,カソード触媒層の外周部に位置する電解質膜の厚みをtoutアノード触媒層とカソード触媒層で挟まれた電解質膜の厚みをtinとするとtout>tinの関係が成り立つものである。このような構造にすることで電極周辺部に滞留するメタノールや水量を低減できるため、電極端部でのカソード電位の低下や、過酸化水素滞留を緩和することができる。また、電極外周部の電解質厚が増加することでガス透過量、メタノール透過量、水透過量を低減できる。
The configuration of this embodiment will be described with reference to FIGS.
In FIG. 3, the cathode catalyst layer (33) is partly embedded in the electrolyte membrane (32), and the thickness of the electrolyte membrane located on the outer periphery of the anode catalyst layer and the cathode catalyst layer is expressed as t out anode. relationship t out> t in the thickness of the electrolyte membrane sandwiched between the catalyst layer and the cathode catalyst layer and t in those that holds. With such a structure, the amount of methanol and water remaining in the periphery of the electrode can be reduced, so that a decrease in cathode potential at the electrode end and a hydrogen peroxide retention can be mitigated. Moreover, the gas permeation amount, methanol permeation amount, and water permeation amount can be reduced by increasing the electrolyte thickness at the outer periphery of the electrode.
また、アノード触媒層のみが電解質膜中に一部埋め込まれた構造、あるいはアノード触媒層および、カソード触媒層が一部電解質膜中に埋め込まれた構造でも同様に効果が現れる。 The same effect can be obtained by a structure in which only the anode catalyst layer is partially embedded in the electrolyte membrane, or a structure in which the anode catalyst layer and the cathode catalyst layer are partially embedded in the electrolyte membrane.
図4では、カソード触媒層(43)が電解質膜(42)中に完全に埋め込まれた構造となっており、アノード触媒層,カソード触媒層の外周域に位置する電解質膜の厚みをtout、カソード触媒層の厚みをtCA、アノード触媒層とカソード触媒層で挟まれた電解質膜の厚みをtinとするとtout≧tCA+tinの関係が成り立つものである。このような構造にすることでカソード触媒層外周部には水やメタノールが滞留せず、電極端部でのカソード電位の低下を防ぐことができる。また、発生した過酸化水素の電極外周部への拡散、滞留も防ぐことができる。 In FIG. 4, the cathode catalyst layer (43) is completely embedded in the electrolyte membrane (42), and the thickness of the electrolyte membrane located in the outer peripheral area of the anode catalyst layer and the cathode catalyst layer is t out , the thickness t CA of the cathode catalyst layer, in which relationship t out ≧ t CA + t in the thickness of the sandwiched electrolyte membrane an anode catalyst layer and cathode catalyst layer and t in holds. By adopting such a structure, water and methanol do not stay in the outer periphery of the cathode catalyst layer, and a decrease in cathode potential at the electrode end can be prevented. Further, the generated hydrogen peroxide can be prevented from diffusing and staying around the outer periphery of the electrode.
また、アノード触媒層のみが電解質膜中に完全に埋め込まれた構造の膜電極接合体でも、アノード電極周辺部からの燃料透過を抑制し、さらにアノード電極外周部への過酸化水素滞留も抑制できるため、効果が現れる。この場合、アノード触媒層の厚みをtANとすると、tout≧tAN+tinの関係が成り立つ。 Further, even in a membrane / electrode assembly having a structure in which only the anode catalyst layer is completely embedded in the electrolyte membrane, fuel permeation from the anode electrode periphery can be suppressed, and hydrogen peroxide retention on the anode electrode periphery can also be suppressed. Therefore, the effect appears. In this case, when the thickness of the anode catalyst layer and t AN, relationships t out ≧ t AN + t in is established.
本実施例にかかるアノードおよびカソードに用いられる触媒として、燃料の酸化反応および酸素の還元反応を促進する金属であればいずれのものでもよく、例えば、白金,金,銀,パラジウム,イリジウム,ロジウム,ルテニウム,鉄,コバルト,ニッケル,クロム,タングステン,マンガン,バナジウム,チタンあるいはそれらの合金が挙げられる。 The catalyst used for the anode and cathode according to the present embodiment may be any metal that promotes the oxidation reaction of fuel and the reduction reaction of oxygen, such as platinum, gold, silver, palladium, iridium, rhodium, Examples include ruthenium, iron, cobalt, nickel, chromium, tungsten, manganese, vanadium, titanium, or alloys thereof.
このような触媒の中で、特に、PEFC電極用触媒,DMFCカソード触媒層用触媒として白金(Pt)触媒が、DMFCアノード触媒層用触媒として白金/ルテニウム(Pt/Ru)触媒が、用いられる。触媒となる金属の粒径は、通常は2〜30nmである。 Among such catalysts, in particular, a platinum (Pt) catalyst is used as a PEFC electrode catalyst and a DMFC cathode catalyst layer catalyst, and a platinum / ruthenium (Pt / Ru) catalyst is used as a DMFC anode catalyst layer catalyst. The particle size of the metal serving as the catalyst is usually 2 to 30 nm.
本実施例にかかる触媒金属は、比表面積の大きなカーボン材料に担持されることが望ましい。触媒は微粒子化した方が、比表面積が増えるため、単位重量あたりの活性が高くなる。カーボンブラックに担持することで、触媒を凝集させること無く、微粒子として維持することができる。用いるカーボンブラックの比表面積は、10〜1000m2/gの範囲から選ばれることが望ましい。比表面積が小さすぎると、カーボンブラックを添加する効果があまり得られず、比表面積が大きすぎると、カーボンブラックの表面に形成されている細孔が多く、この細孔に触媒粒子が入り込み、細孔に入り込んだ触媒粒子は、電池作動時、反応に寄与しにくくなるためである。例えば、ケッチェンブラック,ファーネスブラック,チャンネルブラック,アセチレンブラック等のカーボンブラックや、カーボンナノチューブなどの繊維状炭素、あるいは、活性炭,黒鉛等を用いることができ、これらは単独あるいは混合して使用することができる。 The catalyst metal according to this example is desirably supported on a carbon material having a large specific surface area. When the catalyst is finely divided, the specific surface area increases, so that the activity per unit weight increases. By supporting on carbon black, the catalyst can be maintained as fine particles without agglomerating. The specific surface area of the carbon black to be used is preferably selected from the range of 10 to 1000 m 2 / g. If the specific surface area is too small, the effect of adding carbon black will not be obtained so much. If the specific surface area is too large, there will be many pores formed on the surface of the carbon black, and catalyst particles will enter the pores and become fine. This is because the catalyst particles that have entered the pores are less likely to contribute to the reaction during battery operation. For example, carbon black such as ketjen black, furnace black, channel black, acetylene black, fibrous carbon such as carbon nanotubes, activated carbon, graphite, etc. can be used, and these should be used alone or in combination. Can do.
以上の中で大きな比表面積を有するケッチェンブラックを使用することが触媒電極層の活性増大に望ましい。 Among these, it is desirable to use ketjen black having a large specific surface area in order to increase the activity of the catalyst electrode layer.
カソード触媒層(43)とアノード触媒層(41)に用いられる固体高分子電解質および固体高分子電解質膜(42)に用いられる固体高分子電解質としては、酸性の水素イオン伝導材料を用いると、大気中の炭酸ガスの影響を受けることなく、安定な燃料電池を実現できるため好ましい。このような例として、パーフルオロアルキルスルホン酸電解質やプロトン伝導性を示す極性基を有する炭化水素系電解質を挙げることができる。特に炭化水素系電解質膜は耐メタノール膨潤性や対メタノール透過性に優れており、これを用いることが望ましい。プロトン伝導性を示す極性基としては、スルホン酸基,リン酸基,カルボキシルキ基などが挙げられるが、プロトン伝導度の観点から特にスルホン酸基が望ましい。 When an acidic hydrogen ion conductive material is used as the solid polymer electrolyte used for the cathode catalyst layer (43) and the anode catalyst layer (41) and the solid polymer electrolyte used for the solid polymer electrolyte membrane (42), This is preferable because a stable fuel cell can be realized without being affected by the carbon dioxide gas contained therein. Examples thereof include perfluoroalkyl sulfonic acid electrolytes and hydrocarbon electrolytes having polar groups exhibiting proton conductivity. In particular, the hydrocarbon electrolyte membrane is excellent in methanol swelling resistance and methanol permeability, and it is desirable to use this. Examples of the polar group exhibiting proton conductivity include a sulfonic acid group, a phosphoric acid group, and a carboxyl group, and a sulfonic acid group is particularly desirable from the viewpoint of proton conductivity.
炭化水素系電解質としては、例えば、スルホン化ポリエーテルエーテルケトン,スルホン化ポリエーテルスルホン,スルホン化アクリロニトリル・ブタジエン・スチレン,スルホン化ポリスルフィッド,スルホン化ポリフェニレン等のスルホン化エンジニアプラスチック系電解質や、スルホアルキル化ポリエーテルエーテルケトン,スルホアルキル化ポリエーテルスルホン,スルホアルキル化ポリエーテルエーテルスルホン,スルホアルキル化ポリスルホン,スルホアルキル化ポリスルフィッド,スルホアルキル化ポリフェニレン,スルホアルキル化ポリエーテルエーテルスルホン等のスルホアルキル化エンジニアプラスチック系電解質を用いることができる。 Examples of hydrocarbon electrolytes include sulfonated engineering plastic electrolytes such as sulfonated polyetheretherketone, sulfonated polyethersulfone, sulfonated acrylonitrile / butadiene / styrene, sulfonated polysulfide, and sulfonated polyphenylene, and sulfoalkylation. Sulfoalkylated engineering plastics such as polyetheretherketone, sulfoalkylated polyethersulfone, sulfoalkylated polyetherethersulfone, sulfoalkylated polysulfone, sulfoalkylated polysulfide, sulfoalkylated polyphenylene, sulfoalkylated polyetherethersulfone, etc. An electrolyte can be used.
また、電解質膜の強度や耐燃料透過性を向上させるために電解質膜中に多孔質基材を含めた構造にすることもできる。 Further, in order to improve the strength of the electrolyte membrane and the fuel permeation resistance, a structure in which a porous substrate is included in the electrolyte membrane can also be used.
図5では、カソード触媒層(53)だけでなくアノード触媒層(51)も電解質膜(52)中に埋め込まれた構造となっており、アノード触媒層,カソード触媒層の外周域に位置する電解質膜の厚みをtout、カソード触媒層の厚みをtCA、アノード触媒層の厚みをtAN、アノード触媒層とカソード触媒層で挟まれた電解質膜の厚みをtinとするとtout≧tCA+tAN+tinの関係が成り立つものである。電極外周域へのメタノールや水の滞留を防ぎ、カソード端部の電位低下に伴う過酸化水素の発生や、発生した過酸化水素の滞留を抑制できるため、最も望ましい。 In FIG. 5, not only the cathode catalyst layer (53) but also the anode catalyst layer (51) is embedded in the electrolyte membrane (52), and the electrolyte located in the outer peripheral area of the anode catalyst layer and the cathode catalyst layer. the thickness of the film t out, the thickness t CA of the cathode catalyst layer, the thickness t aN of the anode catalyst layer, an anode catalyst layer and the thickness of the electrolyte film sandwiched between the cathode catalyst layer When t in t out ≧ t CA relationship + t AN + t in is what is true. This is most desirable because it prevents the retention of methanol or water in the outer peripheral area of the electrode and suppresses the generation of hydrogen peroxide accompanying the potential drop at the cathode end and the retention of the generated hydrogen peroxide.
図4,図5では、電極周囲の固体高分子電解質とアノード触媒層とカソード触媒層で挟まれた電解質膜の固体高分子電解質は同一のものであるが、図6のように、カソード触媒層(63)の周辺が固体高分子電解質(64)で取り囲まれた構造となり、この周囲の固体高分子電解質(64)とアノード触媒層およびカソード触媒層で挟まれた電解質膜(62)の固体高分子とは化学組成,イオン交換容量が異なるものとすることもできる。以降、62を電極間の固体高分子電解質膜、64を電極周囲の固体高分子電解質と呼ぶこととする。 4 and 5, the solid polymer electrolyte around the electrode, the anode catalyst layer, and the electrolyte membrane sandwiched between the cathode catalyst layers are the same, but the cathode catalyst layer as shown in FIG. (63) is surrounded by a solid polymer electrolyte (64), and the solid height of the electrolyte membrane (62) sandwiched between the solid polymer electrolyte (64), the anode catalyst layer, and the cathode catalyst layer. It may be different from the molecule in chemical composition and ion exchange capacity. Hereinafter, 62 is referred to as a solid polymer electrolyte membrane between electrodes, and 64 is referred to as a solid polymer electrolyte around the electrodes.
電極外周域におけるメタノール水溶液や水素,酸素ガスの透過を抑制するために、電極周囲の固体高分子電解質(64)には、これら物質の透過性が低い材料を用いることが望ましく、そのイオン交換容量が電解質膜のイオン交換容量よりも低いことが望ましい。一方、イオン交換容量を過度に下げると電解質膜との密着性が低下し、剥離する恐れがある。以上の観点から、電極周囲の固体高分子電解質(64)のイオン交換容量は、0.1〜2の範囲であることが望ましく、特に0.5〜1.0の範囲にあることが望ましい。 In order to suppress permeation of aqueous methanol solution, hydrogen, and oxygen gas in the electrode outer peripheral region, it is desirable to use a material having low permeability of these substances for the solid polymer electrolyte (64) around the electrode, and its ion exchange capacity. Is preferably lower than the ion exchange capacity of the electrolyte membrane. On the other hand, if the ion exchange capacity is excessively lowered, the adhesion with the electrolyte membrane is lowered and there is a risk of peeling. From the above viewpoint, the ion exchange capacity of the solid polymer electrolyte (64) around the electrode is preferably in the range of 0.1 to 2, and more preferably in the range of 0.5 to 1.0.
また、電極周辺の固体高分子電解質(64)は、電極外周域からのメタノール水溶液透過の抑制の観点から、電極間の電解質膜(62)に比べて疎水性の高い材料を用いることが望ましい。疎水性については、それぞれの電解質を10μm以上の厚みで膜化し、これに水滴を垂らしてその液滴と膜表面のなす角度(接触角)を観測することで評価できる。疎水性の高い材料を用いることで、メタノール透過を抑制し、さらに、本発明の構造による電極周辺部の水の滞留抑制効果を上げることができる。ただし、電解質膜および電極との密着性を確保する観点から、過度の疎水性材料を用いることは望ましくない。 The solid polymer electrolyte (64) around the electrode is preferably made of a material having higher hydrophobicity than the electrolyte membrane (62) between the electrodes from the viewpoint of suppressing permeation of aqueous methanol solution from the electrode outer peripheral region. Hydrophobicity can be evaluated by forming each electrolyte into a film with a thickness of 10 μm or more, dropping a water drop on the electrolyte, and observing the angle (contact angle) formed by the liquid drop and the film surface. By using a highly hydrophobic material, methanol permeation can be suppressed, and further, the effect of suppressing water retention around the electrode by the structure of the present invention can be increased. However, it is not desirable to use an excessively hydrophobic material from the viewpoint of ensuring adhesion between the electrolyte membrane and the electrode.
このような材料としては、前述のエンジニアプラスチック系電解質の他、基本骨格となる芳香族間が(4,4′−ヘキサフルオロイソプロピリデン)ジフェノールやデカフルオロビフェノールなどのフッ素含有基で結合された芳香族炭化水素電解質を用いることもできる。 As such a material, in addition to the aforementioned engineered plastic electrolyte, the aromatic skeleton that is the basic skeleton is bonded with a fluorine-containing group such as (4,4'-hexafluoroisopropylidene) diphenol or decafluorobiphenol. Aromatic hydrocarbon electrolytes can also be used.
また、電極周辺の固体高分子電解質(64)には、π共役系固体高分子あるいはスルホン化されたπ共役系固体高分子を含ませることもできる。これら材料はメタノール透過抑制の観点で望ましい。また、これら材料は、スルホン酸などがドープされると高い電子伝導性を示すため、電極周辺の固体高分子電解質(64)が電子伝導性を示すようになり、発電中に電極の一部と固体高分子電解質(64)の間で一部剥離が生じ、固体高分子電解質に孤立した触媒粒子が発生した場合でも、電子伝導性を示す固体高分子電解質(64)を介して孤立した触媒粒子のカソード電位を高く保つことができ、過酸化水素発生を抑制できる。 Further, the solid polymer electrolyte (64) around the electrode may contain a π-conjugated solid polymer or a sulfonated π-conjugated solid polymer. These materials are desirable from the viewpoint of methanol permeation suppression. In addition, since these materials exhibit high electron conductivity when doped with sulfonic acid or the like, the solid polymer electrolyte (64) around the electrode exhibits electron conductivity. Even when some separation occurs between the solid polymer electrolyte (64) and isolated catalyst particles are generated in the solid polymer electrolyte, the isolated catalyst particles are interposed via the solid polymer electrolyte (64) showing electron conductivity. The cathode potential can be kept high, and the generation of hydrogen peroxide can be suppressed.
このような材料としては、例えばポリアニリン,ポリピロール,ポリチオフェン,ポリフルオレン,ポリフェニレン、およびそのスルホン酸化物を挙げることができる。 Examples of such materials include polyaniline, polypyrrole, polythiophene, polyfluorene, polyphenylene, and sulfone oxides thereof.
また、電極周辺の固体高分子電解質(64)は、過酸化水素ラジカルを捕捉、あるいは分解できる材料を含むことが望ましい。このような構成にすることで、発生した過酸化水素が拡散層中の水を経由して電極外周部に移動してきた際にも、電極周辺の固体高分子電解質層がそのラジカルを捕捉,分解できるため、電極外周部の電解質劣化を防ぐことができる。 Moreover, it is desirable that the solid polymer electrolyte (64) around the electrode contains a material capable of capturing or decomposing hydrogen peroxide radicals. With this configuration, even when the generated hydrogen peroxide moves to the outer periphery of the electrode via the water in the diffusion layer, the solid polymer electrolyte layer around the electrode captures and decomposes the radicals. Therefore, it is possible to prevent the deterioration of the electrolyte in the outer periphery of the electrode.
ラジカル捕捉剤の例としてヒンダートフェノール系のラジカル捕捉剤が挙げられる。ヒンダートフェノール系ラジカル捕捉剤としては、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2−[1−(2−ヒドロキシ−3,5−ジ‐t−ペンチルフェニル)エチル]‐4,6−ジ‐t−ペンチルフェニルアクリレート、N,N′−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、3,9−ビス[2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]1,1−ジメチルエチル]2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、4,4′−チオビス(6−t−ブチル−3−メチルフェノール)、6−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−t−ブチルジベンズ[d,f][1,3,2]ジオキサフォスフェピンなどが挙げられ、特に限定はされない。 An example of the radical scavenger is a hindered phenol radical scavenger. Examples of hindered phenol radical scavengers include 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, pentaerythrityl-tetrakis [3. -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate 2- [1- (2-hydroxy-3,5-di-t-pentylphenyl) ethyl] -4,6-di-t-pentylphenyl acrylate, N, N′-hexamethylenebis (3,5- Di-t-butyl-4-hydroxy-hydrocinnamamide), 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propione 3,9-bis [2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] 1,1-dimethylethyl] 2,4,8,10-tetraoxa Spiro [5.5] undecane, tris- (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate 4,4'-thiobis (6-tert-butyl-3-methylphenol), 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8, Examples thereof include 10-tetra-t-butyldibenz [d, f] [1,3,2] dioxaphosphine, and are not particularly limited.
また、ラジカル分解剤としては、Mn,Cr,Co,Cu,Ce,Rb,Co,Ir,Ag,Rh,Ti,Zr,Al,Sbなどの金属カチオンあるいはこれら金属の酸化物粒子を用いることができる。 Further, as the radical decomposing agent, metal cations such as Mn, Cr, Co, Cu, Ce, Rb, Co, Ir, Ag, Rh, Ti, Zr, Al, and Sb or oxide particles of these metals may be used. it can.
本発明におけるラジカル捕捉剤およびラジカル分解剤の添加量については特に限定されるものではないが、ラジカル捕捉剤とラジカル分解剤の総添加量は、高分子電解質材料100重量部に対して1重量部から50重量部が好ましい。総添加量が1重量部未満では過酸化水素ラジカルに対する耐久性が不十分であり、50重量部を越えると外周部の電解質の機械的特性や、電極間の電解質(62)との接合性が低下するため好ましくない。 The amount of radical scavenger and radical decomposer added in the present invention is not particularly limited, but the total amount of radical scavenger and radical decomposer added is 1 part by weight with respect to 100 parts by weight of the polymer electrolyte material. To 50 parts by weight is preferred. If the total addition amount is less than 1 part by weight, the durability against hydrogen peroxide radicals is insufficient, and if it exceeds 50 parts by weight, the mechanical properties of the electrolyte in the outer peripheral part and the bondability with the electrolyte (62) between the electrodes are poor. Since it falls, it is not preferable.
また、電極間の電解質膜(62)に前記のラジカル捕捉剤、ラジカル分解剤の添加量についても特に限定されないが、これら添加物は電極間の電解質膜(62)のプロトン伝導性を阻害するものであるので、ゼロであることが望ましい。 Further, the amount of the radical scavenger and radical decomposer added to the electrolyte membrane (62) between the electrodes is not particularly limited, but these additives inhibit the proton conductivity of the electrolyte membrane (62) between the electrodes. Therefore, zero is desirable.
また、電極周辺の固体高分子電解質(64)には、Ptカチオンを捕捉しうるPtカチオン捕捉剤を含むことが望ましい。このような材料としては、Ptカチオンに配位することができる官能基を含むものであれば特に限定はされない。その例としては、2,2′−ビピリジンや1,10′−フェナントロリン,フタロシアニン,ポルフィリンなど、窒素原子が配位子となるものや、クエン酸,コハク酸,リンゴ酸,酒石酸、などカルボキシル基を配位子とするものなどが挙げられる。これらに加え、窒素元素を含むポリアニリンやポリピロール,カルボキシル基を含むカルボキシメチルセルロースなどのポリマを用いても同様の効果が得られ、さらに高分子量体であるため連続発電中の溶出が抑制されるため望ましい。 Moreover, it is desirable that the solid polymer electrolyte (64) around the electrode contains a Pt cation scavenger that can trap Pt cations. Such a material is not particularly limited as long as it includes a functional group capable of coordinating with a Pt cation. Examples include 2,2'-bipyridine, 1,10'-phenanthroline, phthalocyanine, porphyrin, etc., where the nitrogen atom is a ligand, citric acid, succinic acid, malic acid, tartaric acid, etc. The thing made into a ligand etc. are mentioned. In addition to these, the use of a polymer such as polyaniline containing nitrogen element, polypyrrole, or carboxymethylcellulose containing a carboxyl group is also desirable because it is a high molecular weight substance, so that elution during continuous power generation is suppressed. .
また、図7のように、アノード触媒層の外周域にも電解質とは異なる化学組成,イオン交換容量の固体高分子電解質(75)を設けることもできる。この際、アノード触媒層とカソード触媒層における電極周囲の固体高分子電解質の構成は同一でも異なっていてもよいが、アノード,カソード両面での応力の均衡の観点からは、同一であることが望ましい。 In addition, as shown in FIG. 7, a solid polymer electrolyte (75) having a chemical composition different from that of the electrolyte and an ion exchange capacity may be provided in the outer peripheral region of the anode catalyst layer. At this time, the structures of the solid polymer electrolytes around the electrodes in the anode catalyst layer and the cathode catalyst layer may be the same or different, but are preferably the same from the viewpoint of the balance of stress on both the anode and cathode. .
また、図8のように、本発明にかかる膜電極接合体のアノード触媒層およびカソード触媒層に対し、これらよりも大面積のガス拡散層を配置させることで、膜電極接合体と拡散層、ガスケットの間にできる空隙に水が滞留した場合でも滞留した水と電極外周部との接触を防ぐことができるため、望ましい。ガス拡散層の大きさは特に限定されないが、ガス拡散層の外周がアノード触媒層およびカソード触媒層の外周との距離が1mm以上離れていることが望ましい。 In addition, as shown in FIG. 8, by arranging a gas diffusion layer having a larger area than the anode catalyst layer and the cathode catalyst layer of the membrane electrode assembly according to the present invention, the membrane electrode assembly and the diffusion layer, Even when water stays in the gap formed between the gaskets, contact between the staying water and the outer periphery of the electrode can be prevented, which is desirable. The size of the gas diffusion layer is not particularly limited, but it is preferable that the outer periphery of the gas diffusion layer is 1 mm or more away from the outer periphery of the anode catalyst layer and the cathode catalyst layer.
以下に、本実施例にかかる膜電極接合体の製造方法の一例を示す。ただし、製造方法は下記に限定されるものではない。 Below, an example of the manufacturing method of the membrane electrode assembly concerning a present Example is shown. However, the manufacturing method is not limited to the following.
図3から図5のようにアノード触媒層あるいはカソード触媒層が電解質膜の中に埋め込まれたような膜−電極接合体の構造を得るには、ワニスを平坦な基板上に塗工・乾燥して、電解質膜を作製し、その水洗浄工程の前にアノード触媒層,カソード触媒層の少なくとも一方を電解質膜上に形成して熱圧着すればよい。電解質膜の水洗浄前は電解質膜中に残存溶媒が残っており、熱圧着工程で電解質膜が塑性変形し、電極が埋め込まれた構造とすることができる。熱圧着において電解質膜を塑性変形させるのに必要な残存溶媒をそのまま水洗すると、電解質膜に多くの空孔が生じ、そこへ自由水が取り込まれてしまうため、熱圧着後は再度乾燥し、膜電極接合体ごと水洗する。 In order to obtain a membrane-electrode assembly structure in which the anode catalyst layer or the cathode catalyst layer is embedded in the electrolyte membrane as shown in FIGS. 3 to 5, the varnish is applied to a flat substrate and dried. Then, an electrolyte membrane is prepared, and at least one of the anode catalyst layer and the cathode catalyst layer may be formed on the electrolyte membrane and thermocompression bonded before the water washing step. Before the electrolyte membrane is washed with water, the residual solvent remains in the electrolyte membrane, and the electrolyte membrane is plastically deformed in the thermocompression bonding process, so that the electrode is embedded. If the residual solvent necessary for plastic deformation of the electrolyte membrane in thermocompression bonding is washed with water as it is, many pores are generated in the electrolyte membrane, and free water is taken into the electrolyte membrane. Wash the entire electrode assembly with water.
この製造工程で電解質膜塗布に使用する溶媒としては、電解質ポリマーを溶解し、さらに洗浄後に触媒を被毒しないものであれば、特に限定されない。例えば、水の他に、エチレングリコールモノメチルエーテル,エチレングリコールモノエチルエーテル,プロピレングリコールモノメチルエーテル,プロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテルや、n−プロパノール,iso−プロパノール,t−ブチルアルコール等のアルコール類、及び1−メチル−2−ピロリドンなどの高極性溶媒を用いることができる。またはこれらの2つ以上を混合して使用することもできる。 The solvent used for coating the electrolyte membrane in this production process is not particularly limited as long as it dissolves the electrolyte polymer and does not poison the catalyst after washing. For example, in addition to water, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether, n-propanol, iso-propanol, t-butyl alcohol, etc. Alcohols and highly polar solvents such as 1-methyl-2-pyrrolidone can be used. Alternatively, a mixture of two or more of these can be used.
電極の形成は、触媒と固体高分子電解質が分散したアルコール溶液を用いて、スプレー塗布法やスリットダイコーター法による直接塗布で行うこともでき、また、テフロン(登録商標)シート状に電極を塗布したものを未洗浄の電解質膜に押し当て熱圧着することもできる。 The electrode can be formed by direct application using a spray coating method or slit die coater method using an alcohol solution in which a catalyst and a solid polymer electrolyte are dispersed, and the electrode is applied in the form of a Teflon (registered trademark) sheet. It is also possible to press and heat the pressed product against an unwashed electrolyte membrane.
また、電解質膜塗工時に電極サイズに相当した凸部のある基板上に電解質ワニスを塗工・乾燥させることで、片面に凹部のある電解質膜を形成し、凹部周辺をマスクしながら凹部に直接電極を塗布することでも本発明の膜電極接合体を得ることができる。 In addition, by applying and drying the electrolyte varnish on the substrate with the projections corresponding to the electrode size during coating of the electrolyte membrane, an electrolyte membrane with depressions on one side is formed, and the periphery of the depressions is masked and directly in the depressions The membrane electrode assembly of the present invention can also be obtained by applying an electrode.
また、図6,図7のように電極周辺部(図6の64)に電解質膜(図6の65)とは異なる固体高分子電解質が配置された膜電極接合体を得るには、塗工,乾燥,水洗済みの電解質膜に対し、電極サイズに相当した部分が抜けた電解質膜を張りあわせることで、電極配置部に凹んだ複合電解質膜を得、その後、凹部周辺をマスクしながら凹部に直接電極を塗布すればよい。 In addition, as shown in FIGS. 6 and 7, in order to obtain a membrane electrode assembly in which a solid polymer electrolyte different from the electrolyte membrane (65 in FIG. 6) is arranged in the electrode peripheral portion (64 in FIG. 6), coating is performed. A composite electrolyte membrane that is recessed in the electrode placement area is obtained by pasting the electrolyte membrane that has been removed from the electrode membrane in a portion that corresponds to the electrode size to the dried and washed electrolyte membrane. What is necessary is just to apply | coat an electrode directly.
製造した膜電極接合体が本発明の実施様態の通りであるかの確認のためには、得られた膜電極接合体の断面を走査型電子顕微鏡(SEM)で観察すればよい。SEMに付属されているエネルギー分散型X線分光装置(EDX)で組成のマッピングを行うことで、電解質膜厚み,アノード触媒層厚み,カソード触媒層厚みを評価することができる。 In order to confirm whether the manufactured membrane electrode assembly is as in the embodiment of the present invention, a cross section of the obtained membrane electrode assembly may be observed with a scanning electron microscope (SEM). By mapping the composition with an energy dispersive X-ray spectrometer (EDX) attached to the SEM, the thickness of the electrolyte membrane, the thickness of the anode catalyst layer, and the thickness of the cathode catalyst layer can be evaluated.
また、カソード触媒層,アノード触媒層,電解質膜の厚みの和はマイクロメータで測定することができる。 The sum of the thicknesses of the cathode catalyst layer, the anode catalyst layer, and the electrolyte membrane can be measured with a micrometer.
電解質膜および電極周辺の固体高分子電解質の化学組成,イオン交換容量は、該当部のみを抽出して核磁気共鳴(NMR)法で分析できる。 The chemical composition and ion exchange capacity of the solid polymer electrolyte around the electrolyte membrane and the electrode can be analyzed by nuclear magnetic resonance (NMR) method by extracting only the relevant part.
また、その分子量分布は、ゲル浸透クロマトグラフィー(GPC)を用いて評価できる。 The molecular weight distribution can be evaluated using gel permeation chromatography (GPC).
また、電極間、および電極周辺の固体高分子電解質中に含まれる添加物の組成、結晶構造などは、NMRや誘導結合プラズマ(ICP),X線分光法(XRD)などで評価可能である。 Further, the composition and crystal structure of additives contained in the solid polymer electrolyte between and around the electrodes can be evaluated by NMR, inductively coupled plasma (ICP), X-ray spectroscopy (XRD), or the like.
本実施例では、カソード触媒層およびアノード触媒層の周辺部の電解質膜厚みをカソード−アノード間の電解質厚みよりも増大させることで、電極周辺部のガス透過やメタノール透過を抑制でき、また、電極周辺部に水やメタノールが滞留することを防ぐことができる。そのため、電極端部での過酸化水素の発生や電極外周部への過酸化水素の拡散,滞留を抑えられ、結果として、電極外周部での電解質膜の劣化,破損を防ぐことができる。 In this embodiment, the gas permeation and methanol permeation at the electrode periphery can be suppressed by increasing the thickness of the electrolyte membrane at the periphery of the cathode catalyst layer and the anode catalyst layer, compared with the thickness of the electrolyte between the cathode and the anode. It is possible to prevent water and methanol from staying in the periphery. Therefore, generation of hydrogen peroxide at the electrode end and diffusion and retention of hydrogen peroxide on the electrode outer periphery can be suppressed, and as a result, deterioration and breakage of the electrolyte membrane on the electrode outer periphery can be prevented.
以下、本実施例をさらに詳しく説明するが、ここに開示した実施例のみに限定されるものではない。 Hereinafter, the present embodiment will be described in more detail. However, the present embodiment is not limited to the embodiment disclosed herein.
(Pt/C触媒スラリーの作製)
プロパノールを主成分とする溶媒に、白金が67重量%担持されたケッチェンブラックと、Nafion(登録商標)を、重量比で1:0.2となるように添加し、マグネッチックスターラーにて12時間、攪拌し、Pt/C触媒スラリーとした。
(Preparation of Pt / C catalyst slurry)
Ketjen Black carrying 67% by weight of platinum and Nafion (registered trademark) in a solvent containing propanol as a main component and Nafion (registered trademark) were added at a weight ratio of 1: 0.2, and the mixture was mixed with a magnetic stirrer. The mixture was stirred for a time to obtain a Pt / C catalyst slurry.
(PtRu/C触媒スラリーの作製)
プロパノールを主成分とする溶媒に、白金ルテニウムが55重量%担持されたケッチェンブラックと、Nafion(登録商標)を、重量比で1:0.6となるように添加し、マグネッチックスターラーにて12時間、攪拌し、PtRu/C触媒スラリーとした。
(Preparation of PtRu / C catalyst slurry)
Ketjen Black carrying 55% by weight of platinum ruthenium and Nafion (registered trademark) were added to a solvent containing propanol as a main component so that the weight ratio was 1: 0.6, and a magnetic stirrer was used. The mixture was stirred for 12 hours to obtain a PtRu / C catalyst slurry.
(実施例1)
(1−1)スルホアルキル化ポリエーテルスルホン(ポリマーA)を合成した。ポリマーAの数平均分子量は72,000であり、重量平均分子量は261,000であった。イオン交換容量は1.4meg/gであった。
(1−2)(1−1)で作製したポリマーA25gをN−メチル−2−ピロリドン(NMP)75gに溶解させ、ワニスを作製した(ワニスA)。
(1−3)(1−2)で作製したポリマーAのワニスをPETフィルム上に塗布し、80℃で10分乾燥させ、形成した電解質膜AをPETフィルムよりはがした。
(1−4)厚み100μm、50mm×50mmのPTFEシート上にPt/C触媒スラリーを塗布し、単位面積あたりの白金重量が2mg/cm2となるようにカソード触媒層を形成した。電極サイズは30mm×30mmとした。
(1−5)(1−3)で得た電解質膜Aの片面に(1−4)で得たカソード触媒層つきPTFEシートをカソード触媒層と電解質膜Aが接触するようにはり合わせ、もう片面にPTFEシートをはり合わせ、これを120℃、2分間,12.5MPaの条件でプレスした。その後空冷し、減圧下で残存溶媒を除去した後、水洗,希硫酸処理を施した。
(1−6)(1−5)で得たカソード付電解質膜のカソード触媒層のない方の面に30mm×30mmのPtRu/C触媒スラリーを白金ルテニウム重量が2mg/cm2となるようにスプレー塗布し、再度120℃,2分間,5MPaの条件でプレス、これをアノード触媒層とした。
(1−7)得られたMEAの断面をミクロトーム法で切削し、SEMで観察したところ、電極で挟まれていない電解質部分の平均厚みtoutが74μm、電解質膜部分の厚みtinが49μm、カソード触媒層厚み(tCA)が30μm、アノード触媒層厚みが25μmであった。
Example 1
(1-1) A sulfoalkylated polyethersulfone (Polymer A) was synthesized. The number average molecular weight of the polymer A was 72,000, and the weight average molecular weight was 261,000. The ion exchange capacity was 1.4 meg / g.
(1-2) 25 g of the polymer A prepared in (1-1) was dissolved in 75 g of N-methyl-2-pyrrolidone (NMP) to prepare a varnish (varnish A).
(1-3) The polymer A varnish produced in (1-2) was applied onto a PET film, dried at 80 ° C. for 10 minutes, and the formed electrolyte membrane A was peeled off from the PET film.
(1-4) A Pt / C catalyst slurry was applied on a PTFE sheet having a thickness of 100 μm and 50 mm × 50 mm, and a cathode catalyst layer was formed so that the platinum weight per unit area was 2 mg / cm 2 . The electrode size was 30 mm × 30 mm.
(1-5) The PTFE sheet with the cathode catalyst layer obtained in (1-4) is bonded to one surface of the electrolyte membrane A obtained in (1-3) so that the cathode catalyst layer and the electrolyte membrane A are in contact with each other. A PTFE sheet was laminated on one side and pressed under the conditions of 120 ° C., 2 minutes, 12.5 MPa. Thereafter, the mixture was air-cooled, the residual solvent was removed under reduced pressure, and then washed with water and treated with diluted sulfuric acid.
(1-6) A 30 mm × 30 mm PtRu / C catalyst slurry is sprayed on the surface of the electrolyte membrane with a cathode obtained in (1-5) where there is no cathode catalyst layer so that the weight of platinum ruthenium is 2 mg / cm 2. This was applied and pressed again under the conditions of 120 ° C., 2 minutes, 5 MPa, and this was used as an anode catalyst layer.
(1-7) of a cross-section of the MEA by cutting with a microtome method, was observed by SEM, the average thickness t out of the electrolyte part not sandwiched by
(実施例2)
(2−1)(1−5)におけるプレス時間を5分とした以外は全て実施例1と同様に膜電極接合体を作製した。
(2−2)得られたMEAの断面をミクロトーム法で切削し、SEMで観察したところ、電極で挟まれていない電解質部分の平均厚みtoutが75μm、電解質膜部分の厚みtinが46μm、カソード触媒層厚み(tCA)が29μm、アノード触媒層厚みが25μmであった。
(Example 2)
(2-1) A membrane / electrode assembly was produced in the same manner as in Example 1 except that the pressing time in (1-5) was changed to 5 minutes.
(2-2) of a cross-section of the MEA by cutting with a microtome method, was observed by SEM, the average thickness t out is 75μm of electrolyte portion not sandwiched by electrodes, the thickness t in the electrolyte membrane portion 46 [mu] m, The cathode catalyst layer thickness (t CA ) was 29 μm, and the anode catalyst layer thickness was 25 μm.
(実施例3)
(3−1)PETフィルムに対し、30mm×30mm,30μm厚のシートを貼り付け、この上より(1−2)で作製したポリマーAのワニスをPETフィルム上に塗布し、80℃で30分、120℃で30分乾燥させた後、PETフィルムよりはがし、水洗,希硫酸処理を施すことで、片面に凹部の存在する電解質膜Bを作製した。
(3−2)電解質膜Bの凹部以外をマスキングし、この上よりカソード触媒スラリーをスプレー法にて塗布し、凹部にカソード触媒層を形成した。
(3−3)(3−2)で得られたカソード触媒層付電解質膜のカソード触媒層のない方の面にPtRu触媒スラリーを白金ルテニウム重量が2mg/cm2となるように30mm×30mmの大きさでスプレー塗布し、再度120℃,2分間,5MPaの条件でプレスした。
(3−4)得られたMEAの断面をミクロトーム法で切削し、SEMで観察したところ、電極で挟まれていない電解質部分の平均厚みtoutが81μm、電解質膜部分の厚みtinが50μm、カソード触媒層厚み(tCA)が30μm、アノード触媒層厚みが25μmであった。
(Example 3)
(3-1) A 30 mm × 30 mm, 30 μm thick sheet was attached to the PET film. From this, the polymer A varnish produced in (1-2) was applied onto the PET film, and then at 80 ° C. for 30 minutes. After drying at 120 ° C. for 30 minutes, the membrane was peeled off from the PET film, washed with water and diluted with sulfuric acid to prepare an electrolyte membrane B having a recess on one side.
(3-2) Masking was performed on portions other than the recesses of the electrolyte membrane B, and a cathode catalyst slurry was applied thereon by a spray method to form a cathode catalyst layer in the recesses.
(3-3) A PtRu catalyst slurry is applied to the surface of the electrolyte membrane with a cathode catalyst layer obtained in (3-2) without a cathode catalyst layer so that the weight of platinum ruthenium is 2 mg / cm 2 and is 30 mm × 30 mm. It spray-coated by the magnitude | size, and it pressed on the conditions of 120 degreeC, 2 minutes, and 5 MPa again.
(3-4) of a cross-section of the MEA by cutting with a microtome method, was observed by SEM, the average thickness t out of the electrolyte part not sandwiched by electrodes 81Myuemu, the thickness t in the electrolyte membrane portion 50 [mu] m, The cathode catalyst layer thickness (t CA ) was 30 μm, and the anode catalyst layer thickness was 25 μm.
(実施例4)
(4−1)厚み100μm,50mm×50mmのPTFEフィルム上にPtRu/Cスラリーを塗布し、単位面積あたりの白金ルテニウム重量が2mg/cm2となるようにアノード電極層を形成した。電極サイズは30mm×30mmとした。
(4−2)(1−3)で得た電解質膜Aの両面から(1−4)で得たPt/C触媒層つきPTFEシートと(4−1)で得たPtRu/C触媒層つきPTFEシートをアノード触媒層,カソード触媒層と電解質膜Aが接触するようにはり合わせ、これを120℃,5分間,12.5MPaの条件でプレスした。減圧下で残存溶媒を除去した後、水洗,希硫酸処理を施した。
(4−4)得られたMEAの断面をミクロトーム法で切削し、SEMで観察したところ、電極で挟まれていない電解質部分の平均厚みtoutが115μm、電解質膜部分の厚みtinが50μm、カソード触媒層厚み(tCA)が35μm、アノード触媒層厚みが30μmであった。
Example 4
(4-1) A PtRu / C slurry was applied on a PTFE film having a thickness of 100 μm and 50 mm × 50 mm, and an anode electrode layer was formed so that the weight of platinum ruthenium per unit area was 2 mg / cm 2 . The electrode size was 30 mm × 30 mm.
(4-2) A PTFE sheet with a Pt / C catalyst layer obtained in (1-4) and a PtRu / C catalyst layer obtained in (4-1) from both sides of the electrolyte membrane A obtained in (1-3). The PTFE sheet was laminated so that the anode catalyst layer, the cathode catalyst layer, and the electrolyte membrane A were in contact with each other, and this was pressed at 120 ° C. for 5 minutes under the conditions of 12.5 MPa. The residual solvent was removed under reduced pressure, followed by washing with water and dilute sulfuric acid treatment.
(4-4) of a cross-section of the MEA by cutting with a microtome method, was observed by SEM, the average thickness t out of the electrolyte part not sandwiched by electrodes 115 .mu.m, the thickness t in the electrolyte membrane portion 50 [mu] m, The cathode catalyst layer thickness (t CA ) was 35 μm, and the anode catalyst layer thickness was 30 μm.
(実施例5)
(5−1)(1−2)で作製したポリマーAのワニスをPETフィルム上に塗布し、80℃で30分、120℃で30分乾燥させることで電解質膜Bを得た。電解質膜BをPETフィルムよりはがし、水洗,酸処理を施した。マイクロメータで測定した電解質膜Bの厚みは50μmであった。
(5−2)スルホアルキル化ポリエーテルスルホン(ポリマーB)を合成した。ポリマーBの数平均分子量は73,000であり、重量平均分子量は251,000であった。イオン交換容量は1.0meg/gであった。
(5−3)(5−2)で作製したポリマーB25gをN−メチル−2−ピロリドン(NMP)75gに溶解させ、ワニスを作製した(ワニスB)。
(5−4)(5−3)で作製したワニスBをPETフィルム上に塗布し、80℃で30分乾燥させ、PETフィルム付の電解質膜Cを得た。その膜厚はPETフィルムを除いて30μmであった。
(5−5)(5−4)で得たPETフィルム付の電解質膜Cを50mm×50mmに切断し、その中心から30mm×30mmの領域を切り、取り除いた。
(5−6)(5−4)で得たPETフィルム付の電解質膜Cを電解質膜Bの両面より貼り付け、120℃,5分間,12MPaの条件でプレスし、複合電解質膜Dを得た。
(5−7)(5−4)で得た複合電解質膜Dの両面のうち、電解質膜Bが露出した部分にそれぞれ乾燥後の厚みが30μmになるようにPt/C触媒スラリー,PtRu/C触媒スラリーを塗布した。乾燥後、両面に取り付けたPETフィルムを取り除き、120℃,5分間,5MPaの条件でプレスした。
(Example 5)
(5-1) The polymer A varnish produced in (1-2) was applied on a PET film and dried at 80 ° C. for 30 minutes and 120 ° C. for 30 minutes to obtain an electrolyte membrane B. The electrolyte membrane B was peeled off from the PET film, washed with water, and acid-treated. The thickness of the electrolyte membrane B measured with a micrometer was 50 μm.
(5-2) A sulfoalkylated polyethersulfone (Polymer B) was synthesized. The number average molecular weight of the polymer B was 73,000, and the weight average molecular weight was 251,000. The ion exchange capacity was 1.0 meg / g.
(5-3) 25 g of the polymer B prepared in (5-2) was dissolved in 75 g of N-methyl-2-pyrrolidone (NMP) to prepare a varnish (varnish B).
(5-4) Varnish B prepared in (5-3) was applied on a PET film and dried at 80 ° C. for 30 minutes to obtain an electrolyte membrane C with a PET film. The film thickness was 30 μm excluding the PET film.
(5-5) The electrolyte membrane C with a PET film obtained in (5-4) was cut into 50 mm × 50 mm, and a 30 mm × 30 mm region was cut from the center and removed.
(5-6) The electrolyte membrane C with the PET film obtained in (5-4) was attached from both surfaces of the electrolyte membrane B, and pressed under the conditions of 120 ° C., 5 minutes, 12 MPa to obtain a composite electrolyte membrane D. .
(5-7) Pt / C catalyst slurry, PtRu / C so that the thickness after drying is 30 μm at the portion where the electrolyte membrane B is exposed on both surfaces of the composite electrolyte membrane D obtained in (5-4). A catalyst slurry was applied. After drying, the PET film attached to both sides was removed and pressed under conditions of 120 ° C., 5 minutes, 5 MPa.
(実施例6)
(6−1)スルホン化ポリエーテルスルホン中に(4,4′−ヘキサフルオロイソプロピリデン)ジフェノールを導入したポリマーを合成した(以下ポリマーC)。得られたポリマーAの数平均分子量は59000であり、重量平均分子量は155000であった。イオン交換容量は1.3meq/gであった。
(6−2)(6−1)で作製したポリマーC25gをN−メチル−2−ピロリドン(NMP)75gに溶解させ、ワニスを作製した。
(6−3)(6−2)で作製したポリマーCのワニスをPETフィルム上に塗布し、80℃で30分乾燥させ、PETフィルム付の電解質膜Eを得た。その膜厚はPETフィルムを除いて30μmであった。
(6−4)(6−3)で得たPETフィルム付の電解質膜Eを50mm×50mmに切断し、その中心から30mm×30mmの領域を切り、取り除いた。
(6−5)(6−4)で得たPETフィルム付の電解質膜Eを電解質膜Bの両面より貼り付け、120℃,5分間,12.5MPaの条件でプレスし、複合電解質膜Fを得た。
(6−6)(6−5)で得た複合電解質膜Fの両面のうち、電解質膜Bが露出した部分にそれぞれ乾燥後の厚みが30μmになるようにPt/C触媒スラリー、PtRu/C触媒スラリーを塗布した。乾燥後、両面に取り付けたPETフィルムを取り除き、120℃,5分間,5MPaの条件でプレスした。
(Example 6)
(6-1) A polymer in which (4,4'-hexafluoroisopropylidene) diphenol was introduced into sulfonated polyethersulfone was synthesized (hereinafter referred to as polymer C). The number average molecular weight of the obtained polymer A was 59000, and the weight average molecular weight was 155000. The ion exchange capacity was 1.3 meq / g.
(6-2) 25 g of the polymer C prepared in (6-1) was dissolved in 75 g of N-methyl-2-pyrrolidone (NMP) to prepare a varnish.
(6-3) The polymer C varnish produced in (6-2) was applied onto a PET film and dried at 80 ° C. for 30 minutes to obtain an electrolyte membrane E with a PET film. The film thickness was 30 μm excluding the PET film.
(6-4) The electrolyte membrane E with a PET film obtained in (6-3) was cut to 50 mm × 50 mm, and a 30 mm × 30 mm region was cut from the center and removed.
(6-5) The electrolyte membrane E with the PET film obtained in (6-4) is attached from both surfaces of the electrolyte membrane B, and pressed under the conditions of 120 ° C., 5 minutes, 12.5 MPa, and the composite electrolyte membrane F is Obtained.
(6-6) Pt / C catalyst slurry, PtRu / C so that the thickness after drying of each part of the composite electrolyte membrane F obtained in (6-5) is 30 μm at the portion where the electrolyte membrane B is exposed. A catalyst slurry was applied. After drying, the PET film attached to both sides was removed and pressed under conditions of 120 ° C., 5 minutes, 5 MPa.
(実施例7)
(7−1)分子量10000のポリアニリン(Aldrich社製)25gをN−メチル−2−ピロリドン(NMP)75gに分散させた。
(7−2)(7−1)で得たポリアニリンの分散溶液と、(5−3)で得たポリマーBのワニスと20:80の重量比になるように混合させ、混合ワニスCを得た。ポリマーBのワニスを混合ワニスに変えた以外は、実施例4と同様にして膜電極接合体を得た。
(Example 7)
(7-1) 25 g of polyaniline (manufactured by Aldrich) having a molecular weight of 10,000 was dispersed in 75 g of N-methyl-2-pyrrolidone (NMP).
(7-2) The polyaniline dispersion obtained in (7-1) and the polymer B varnish obtained in (5-3) were mixed at a weight ratio of 20:80 to obtain a mixed varnish C. It was. A membrane / electrode assembly was obtained in the same manner as in Example 4 except that the varnish of polymer B was changed to a mixed varnish.
(実施例8)
(8−1)硝酸マンガン水和物(Mn(NO3)2・6H2O)10mgを1Lの蒸留水に溶解させた(水溶液A)。
(8−2)(5−1)で得たポリマーBの粉末30gを水溶液Aに浸漬させ、室温で24時間攪拌子を用いて攪拌した。濾過物を水洗,乾燥させたものを25gをN−メチル−2−ピロリドン(NMP)75gに分散させた(ワニスD)。
(8−3)(8−2)で得たワニスDをPETフィルム上に塗布し、80℃で30分乾燥させ、PETフィルム付の電解質膜Gを得た。その膜厚はPETフィルムを除いて15μmであった。
(8−4)(8−3)で得たPETフィルム付の電解質膜Gを50mm×50mmに切断し、その中心から30mm×30mmの領域を切り取った。
(8−5)(8−4)で得たPETフィルム付の電解質膜Gを(5−1)で得た電解質膜Bの両面より貼り付け、120℃,5分間,12MPaの条件でプレスし、複合電解質膜Hを得た。
(8−6)(8−5)で得た複合電解質膜Hの両面のうち、電解質膜Bが露出した部分にそれぞれ乾燥後の厚みが15μmになるようにPt/C触媒スラリーを塗布した。乾燥後、両面に取り付けたPETフィルムを取り除き、120℃,5分間,5MPaの条件でプレスした。
(Example 8)
(8-1) 10 mg of manganese nitrate hydrate (Mn (NO 3 ) 2 .6H 2 O) was dissolved in 1 L of distilled water (aqueous solution A).
(8-2) 30 g of the polymer B powder obtained in (5-1) was immersed in the aqueous solution A and stirred at room temperature for 24 hours using a stirrer. 25 g of the filtrated product washed with water and dried was dispersed in 75 g of N-methyl-2-pyrrolidone (NMP) (varnish D).
(8-3) Varnish D obtained in (8-2) was applied onto a PET film and dried at 80 ° C. for 30 minutes to obtain an electrolyte membrane G with a PET film. The film thickness was 15 μm excluding the PET film.
(8-4) The electrolyte membrane G with a PET film obtained in (8-3) was cut into 50 mm × 50 mm, and a region of 30 mm × 30 mm was cut from the center.
(8-5) The electrolyte membrane G with the PET film obtained in (8-4) was attached from both sides of the electrolyte membrane B obtained in (5-1), and pressed under the conditions of 120 ° C., 5 minutes, 12 MPa. A composite electrolyte membrane H was obtained.
(8-6) The Pt / C catalyst slurry was applied to the exposed portions of the electrolyte membrane B in both surfaces of the composite electrolyte membrane H obtained in (8-5) so that the thickness after drying was 15 μm. After drying, the PET film attached to both sides was removed and pressed under conditions of 120 ° C., 5 minutes, 5 MPa.
(実施例9)
(9−1)分子量10000のポリチオフェン(Aldrich社製)25gをN−メチル−2−ピロリドン(NMP)75gに分散させた。
(9−2)(9−1)で得たポリチオフェンの分散溶液と、(5−3)で得たワニスBと20:80の重量比になるように混合させ、混合ワニスEを得た。ワニスDを混合ワニスEに変更した以外は、実施例8と同様にして膜電極接合体を得た。
Example 9
(9-1) 25 g of polythiophene (manufactured by Aldrich) having a molecular weight of 10,000 was dispersed in 75 g of N-methyl-2-pyrrolidone (NMP).
(9-2) A dispersion solution of polythiophene obtained in (9-1) and varnish B obtained in (5-3) were mixed at a weight ratio of 20:80 to obtain a mixed varnish E. A membrane / electrode assembly was obtained in the same manner as in Example 8 except that the varnish D was changed to the mixed varnish E.
(比較例1)
(10−1)電解質膜Bの両面にそれぞれアノード触媒スラリーとカソード触媒スラリーをスプレー塗布した。電極サイズは30mm×30mmとし、アノード触媒層の白金ルテニウム重量,カソード触媒層の白金重量はそれぞれ2mg/cm2とした。
(10−2)得られた膜電極接合体を120℃,2分間,5MPaの条件でプレスした。
(10−3)得られた膜電極接合体の厚みを測定したところ、tout=tin=50μm,tAN=25μm,tCA=30μmであった。
(Comparative Example 1)
(10-1) The anode catalyst slurry and the cathode catalyst slurry were spray-coated on both surfaces of the electrolyte membrane B, respectively. The electrode size was 30 mm × 30 mm, the platinum ruthenium weight of the anode catalyst layer and the platinum weight of the cathode catalyst layer were 2 mg / cm 2 , respectively.
(10-2) The obtained membrane / electrode assembly was pressed at 120 ° C. for 2 minutes under the condition of 5 MPa.
(10-3) When the thickness of the membrane electrode assembly obtained was measured, t out = t in = 50 μm, t AN = 25 μm, and t CA = 30 μm.
(比較例2)
(11−1)比較例1と同様に、電解質膜Bの両面にそれぞれアノード触媒スラリーとカソード触媒スラリーをスプレー塗布した。電極サイズは30mm×30mmとし、アノード触媒層の白金ルテニウム重量,カソード触媒層の白金重量はそれぞれ2mg/cm2とした。この際、スプレー塗布工程でのマスキングの不備によりカソード側の電極の周辺部に触媒担持カーボンがにじみのように形成されてしまったものを比較例2とした。
(Comparative Example 2)
(11-1) Similarly to Comparative Example 1, the anode catalyst slurry and the cathode catalyst slurry were spray-coated on both surfaces of the electrolyte membrane B, respectively. The electrode size was 30 mm × 30 mm, the platinum ruthenium weight of the anode catalyst layer and the platinum weight of the cathode catalyst layer were 2 mg / cm 2 , respectively. At this time, Comparative Example 2 was obtained in which catalyst-supported carbon was formed in the periphery of the cathode-side electrode due to inadequate masking in the spray coating process.
(比較例3)
(12−1)プロパノールを主成分とする溶媒に、カーボンブラックであるケッチェンブラック((株)ライオン製、比表面積800m2/g)と、固体高分子電解質であるNafion(登録商標、イオン交換容量0.9)を、重量比で1:0.6となるように添加し、マグネッチックスターラーにて12時間、攪拌した。
(12−2)電解質膜Bの両面にそれぞれ(12−1)で得たカーボンと固体高分子の混合溶液をスプレー塗布し、35mm×35mm、厚み10μmの厚みの中間層を作製した。
(12−3)(12−2)で得た電解質膜B上のカーボン中間層にそれぞれアノード触媒スラリーとカソード触媒スラリーをスプレー塗布した。電極サイズは30mm×30mmとし、アノード触媒層の白金ルテニウム重量,カソードの白金重量はそれぞれ2mg/cm2とした。中間層とアノード触媒層およびカソード触媒層の中心が同じになるように位置あわせした。
(12−4)得られた膜電極接合体を120℃,2分間,5MPaの条件でプレスした。
(Comparative Example 3)
(12-1) Ketjen Black (made by Lion Co., Ltd., specific surface area 800 m 2 / g), which is a main component of propanol, and Nafion (registered trademark, ion exchange) which is a solid polymer electrolyte A volume of 0.9) was added at a weight ratio of 1: 0.6, and the mixture was stirred with a magnetic stirrer for 12 hours.
(12-2) The carbon and solid polymer mixed solution obtained in (12-1) was spray-coated on both surfaces of the electrolyte membrane B to prepare an intermediate layer having a thickness of 35 mm × 35 mm and a thickness of 10 μm.
(12-3) The anode catalyst slurry and the cathode catalyst slurry were spray-coated on the carbon intermediate layer on the electrolyte membrane B obtained in (12-2), respectively. The electrode size was 30 mm × 30 mm, the weight of platinum ruthenium in the anode catalyst layer and the weight of platinum in the cathode were 2 mg / cm 2 , respectively. The middle layer, the anode catalyst layer, and the cathode catalyst layer were aligned so that their centers were the same.
(12-4) The obtained membrane / electrode assembly was pressed at 120 ° C. for 2 minutes under the condition of 5 MPa.
(比較例4)
(13−1)(5−2)で作製したポリマーB10gをN−メチル−2−ピロリドン(NMP)90gに溶解させ、ワニスを作製した。
(13−2)(13−1)で得たワニスを電解質膜上に35mm×35mm角サイズで10μm厚になるようにポリマー中間層を塗布した。
(13−3)(13−2)で得たポリマー中間層にそれぞれアノード触媒スラリーとカソード触媒スラリーをスプレー塗布した。電極サイズは30mm×30mmとし、アノード触媒層の白金ルテニウム重量,カソード触媒層の白金重量はそれぞれ2mg/cm2とした。ポリマー中間層とアノード触媒層およびカソード触媒層の中心が同じになるように位置あわせした。
(13−4)得られた膜電極接合体を120℃,2分間,5MPaの条件でプレスした。
(Comparative Example 4)
(13-1) 10 g of the polymer B prepared in (5-2) was dissolved in 90 g of N-methyl-2-pyrrolidone (NMP) to prepare a varnish.
(13-2) A polymer intermediate layer was applied on the electrolyte membrane so that the varnish obtained in (13-1) had a thickness of 35 mm × 35 mm and a thickness of 10 μm.
(13-3) The anode catalyst slurry and the cathode catalyst slurry were spray-coated on the polymer intermediate layer obtained in (13-2), respectively. The electrode size was 30 mm × 30 mm, the platinum ruthenium weight of the anode catalyst layer and the platinum weight of the cathode catalyst layer were 2 mg / cm 2 , respectively. The polymer intermediate layer, the anode catalyst layer, and the cathode catalyst layer were aligned so that their centers were the same.
(13-4) The obtained membrane / electrode assembly was pressed at 120 ° C. for 2 minutes under the condition of 5 MPa.
(比較例5)
(14−1)電解質膜Bの両面にそれぞれPt/C触媒スラリーをスプレー塗布した。電極サイズは30mm×30mmとし、アノード触媒層の白金ルテニウム重量,カソード触媒層の白金重量はそれぞれ1 mg/cm2とした。
(14−2)得られた膜電極接合体を120℃,2分間,5MPaの条件でプレスした。
(14−3)得られた膜電極接合体の厚みを測定したところ、tout=tin=50μm,tAN=tCA=15μmであった。
(Comparative Example 5)
(14-1) A Pt / C catalyst slurry was sprayed onto both surfaces of the electrolyte membrane B. The electrode size was 30 mm × 30 mm, the platinum ruthenium weight of the anode catalyst layer and the platinum weight of the cathode catalyst layer were each 1 mg / cm 2 .
(14-2) The obtained membrane / electrode assembly was pressed at 120 ° C. for 2 minutes under the condition of 5 MPa.
(14-3) When the thickness of the obtained membrane electrode assembly was measured, t out = t in = 50 μm and t AN = t CA = 15 μm.
(膜電極接合体のDMFC耐久性評価)
実施例1〜6および比較例1〜4の膜電極接合体のDMFC耐久性を評価した。燃料と空気の流路を有するカーボン製のセパレータの間に、各燃料電池用膜/電極接合体を、多孔質カーボンの拡散層を介して挟み込み、評価用の燃料電池とした。この際、拡散層の大きさは35mm角とし、アノード触媒層,カソード触媒層よりも大面積とした。評価用燃料電池のアノード側には、4mol/lのメタノール水溶液を0.5ml/minで供給し、カソード側には、乾燥空気(露点−20〜−15℃)を500ml/minで供給しながら、単セルの温度を60℃とした。連続発電は0.2A/cm2の条件で行った。最長1000時間行い、経過時間に対するセル電圧のプロットを直線近似し、電圧低下率を算出した。また、途中で膜が破損したものについては、破損による燃料・空気のクロスリークの急激な上昇が確認された時点で測定を中断した。評価を終了したMEAについては、断面観察を行い、電極外周域における電解質減肉の有無を確認した。また、電極の外周部,電極内周部の電解質の分子量分布をGPCで測定し、電解質膜劣化の有無を確認した。尚、実施例6,7については、電極周辺の固体高分子電解質部分を取り除いたものの数平均分子量である。
(DMFC durability evaluation of membrane electrode assemblies)
DMFC durability of the membrane electrode assemblies of Examples 1 to 6 and Comparative Examples 1 to 4 was evaluated. Each fuel cell membrane / electrode assembly was sandwiched between carbon separators having fuel and air passages through a porous carbon diffusion layer to obtain a fuel cell for evaluation. At this time, the size of the diffusion layer was 35 mm square, and the area was larger than that of the anode catalyst layer and the cathode catalyst layer. A 4 mol / l aqueous methanol solution is supplied at 0.5 ml / min to the anode side of the evaluation fuel cell, and dry air (dew point -20 to -15 ° C.) is supplied to the cathode side at 500 ml / min. The temperature of the single cell was 60 ° C. Continuous power generation was performed under the condition of 0.2 A / cm 2 . The maximum voltage was 1000 hours, and a plot of the cell voltage against the elapsed time was linearly approximated to calculate the voltage drop rate. In addition, when the membrane was broken during the measurement, the measurement was interrupted when a rapid increase in the fuel / air cross leak due to the breakage was confirmed. About MEA which completed evaluation, cross-sectional observation was performed and the presence or absence of the electrolyte thinning in the electrode outer peripheral area was confirmed. Moreover, the molecular weight distribution of the electrolyte of the outer peripheral part of an electrode and an electrode inner peripheral part was measured by GPC, and the presence or absence of electrolyte membrane deterioration was confirmed. In Examples 6 and 7, the number average molecular weight is obtained by removing the solid polymer electrolyte portion around the electrode.
(膜電極接合体のPEFC耐久性評価)
実施例8〜9および比較例5の膜電極接合体のPEFC耐久性を評価した。燃料と空気の流路を有するカーボン製のセパレータの間に、各燃料電池用膜/電極接合体を、多孔質カーボンの拡散層を介して挟み込み、評価用の燃料電池とした。この際、拡散層の大きさは35mm角とし、アノード触媒層,カソード触媒層よりも大面積とした。アノード側には、加湿水素ガス(露点80℃)を60mL/minで供給し、カソード側には、加湿空気(露点80℃)を260mL/minで供給した。セル温度を80℃に保った状態で、0.25A/cm2で連続発電を実施した。100時間連続発電した後のOCVを測定し、急激なOCV低下が見られた時点で評価を終了した。
(PEFC durability evaluation of membrane electrode assemblies)
The PEFC durability of the membrane electrode assemblies of Examples 8 to 9 and Comparative Example 5 was evaluated. Each fuel cell membrane / electrode assembly was sandwiched between carbon separators having fuel and air passages through a porous carbon diffusion layer to obtain a fuel cell for evaluation. At this time, the size of the diffusion layer was 35 mm square, and the area was larger than that of the anode catalyst layer and the cathode catalyst layer. Humidified hydrogen gas (dew point 80 ° C.) was supplied to the anode side at 60 mL / min, and humidified air (dew point 80 ° C.) was supplied to the cathode side at 260 mL / min. With the cell temperature kept at 80 ° C., continuous power generation was performed at 0.25 A / cm 2 . The OCV after 100 hours of continuous power generation was measured, and the evaluation was terminated when a rapid drop in OCV was observed.
(考察)
表1に実施例1〜6および比較例1〜4の膜電極接合体を用いたDMFCの耐久性評価結果を示す。表2に実施例8〜9および比較例5の膜電極接合体を用いたPEFCの耐久性評価結果を示す。
(Discussion)
Table 1 shows the durability evaluation results of DMFCs using the membrane electrode assemblies of Examples 1 to 6 and Comparative Examples 1 to 4. Table 2 shows the durability evaluation results of PEFCs using the membrane electrode assemblies of Examples 8 to 9 and Comparative Example 5.
比較例1から3では、発電試験途中にカソード排ガスから多量のメタノール水溶液が出てくるようになったため、表1に示した時間で発電を停止した。それぞれを解体し、電解質膜の破損を確認したところ、触媒電極層周辺での膜破損が確認された。電極端部での電解質膜の分子量は試験前の半分以下となっており、膜分解が進んだことで膜強度が低下し、破損が生じたと考えられる。 In Comparative Examples 1 to 3, since a large amount of methanol aqueous solution came out from the cathode exhaust gas during the power generation test, power generation was stopped at the time shown in Table 1. Each was disassembled and the electrolyte membrane was confirmed to be broken. As a result, the membrane was broken around the catalyst electrode layer. The molecular weight of the electrolyte membrane at the end of the electrode is less than half that before the test, and it is considered that the membrane strength decreased due to the progress of membrane decomposition, resulting in breakage.
カソード触媒層周囲に孤立した触媒粒子が存在した比較例2では比較例1に比べて短時間で膜破損が見られているが、これは、孤立した触媒粒子では透過メタノールによるカソード電位の低下が顕著に起きるためと考えられる。 In Comparative Example 2 in which isolated catalyst particles existed around the cathode catalyst layer, the membrane breakage was observed in a shorter time than in Comparative Example 1. This is because the cathode potential is decreased by permeated methanol in the isolated catalyst particles. It is thought that it occurs remarkably.
大面積のカーボン中間層を電解質膜とアノード触媒層,カソード触媒層に挿入した比較例3では、膜破損が生じるまでの期間が長くなっているが、800時間で破損が生じた。この構成では、電極端部からのメタノール透過を抑制できるものの、多孔質であるため、カソード触媒層周辺での液体滞留の抑制が不十分であることを意味していることを示している。 In Comparative Example 3 in which the carbon intermediate layer having a large area was inserted into the electrolyte membrane, the anode catalyst layer, and the cathode catalyst layer, the period until the membrane breakage was long, but the breakage occurred in 800 hours. Although this structure can suppress methanol permeation from the electrode end, it is porous, which means that suppression of liquid retention around the cathode catalyst layer is insufficient.
大面積の固体高分子中間層を適用した比較例4では、1000時間の継続発電が可能であったが、断面SEM像からは電解質膜の減肉が確認され、電極端部での分子量低下も見られていた。大面積の固体高分子中間層の適用で、メタノール透過が抑制されているものの、固体高分子中間層が多孔質となっているため、その効果が不十分であったと考察する。 In Comparative Example 4 in which a solid polymer intermediate layer having a large area was applied, continuous power generation for 1000 hours was possible, but thinning of the electrolyte membrane was confirmed from the cross-sectional SEM image, and the molecular weight at the end of the electrode was also reduced. It was seen. Although the methanol permeation is suppressed by application of a large area solid polymer intermediate layer, the effect is insufficient because the solid polymer intermediate layer is porous.
本発明の実施態様である実施例1〜7では、1000時間の継続発電では膜破損は確認されない。これは、カソード触媒層およびアノード触媒層の外周域が電解質で保護されているため、電極周囲からのメタノール透過が抑制され、また、カソード外周域におけるメタノールや水の滞留が抑制されるためである。カソード触媒層の一部が電解質膜Bに埋め込まれた構成の実施例1では電極端部での電解質膜破損は見られていないものの、電極外周部での平均分子量が約20%低減している。これに対し、カソード触媒層が完全に電解質膜Bに埋め込まれた構成の実施例2,3では電極外周部の電解質の分子量低下を抑制できている。さらに、アノード触媒層の外周域にも固体高分子電解質を配置した実施例4〜7では、分子量低下がほぼ確認されない。 In Examples 1 to 7, which are embodiments of the present invention, no membrane breakage is confirmed after 1000 hours of continuous power generation. This is because the outer peripheries of the cathode catalyst layer and the anode catalyst layer are protected by the electrolyte, so that methanol permeation from the periphery of the electrode is suppressed, and retention of methanol and water in the outer periphery of the cathode is suppressed. . In Example 1 in which a part of the cathode catalyst layer was embedded in the electrolyte membrane B, the electrolyte membrane was not damaged at the end of the electrode, but the average molecular weight at the outer periphery of the electrode was reduced by about 20%. . On the other hand, in Examples 2 and 3 in which the cathode catalyst layer is completely embedded in the electrolyte membrane B, it is possible to suppress a decrease in the molecular weight of the electrolyte on the outer periphery of the electrode. Further, in Examples 4 to 7 in which the solid polymer electrolyte is disposed also in the outer peripheral region of the anode catalyst layer, a decrease in molecular weight is hardly confirmed.
表2において、電極外周部の電解質が過酸化水素ラジカル分解能のあるMnカチオンを含む実施例8、Ptカチオン捕捉能のあるポリチオフェンを含む実施例9では、2500時間のPEFC連続発電後においても電極外周域の電解質膜破損は生じず、OCVも950mVと高い値を維持する。一方、比較例5では、1000時間発電経過後にOCVの急激な低下が見られ、セルを解体したところ、電極外周部での膜破損が確認された。 In Table 2, in Example 8 in which the electrolyte in the electrode outer peripheral portion contains Mn cations having hydrogen peroxide radical decomposability, and in Example 9 in which polythiophene capable of trapping Pt cations is used, the electrode outer periphery even after continuous PEFC power generation for 2500 hours The electrolyte membrane in the region does not break, and the OCV maintains a high value of 950 mV. On the other hand, in Comparative Example 5, a rapid decrease in OCV was observed after 1000 hours of power generation, and when the cell was disassembled, film breakage at the electrode outer periphery was confirmed.
本発明の実施態様のひとつである膜電極接合体を、燃料電池発電システムの一例として、携帯用情報端末に実装した例を図9に示す。 FIG. 9 shows an example in which a membrane electrode assembly that is one embodiment of the present invention is mounted on a portable information terminal as an example of a fuel cell power generation system.
この携帯用情報端末は、2つの部分を、燃料カートリッジ(96)のホルダーをかねたヒンジ(97)で連結された折たたみ式の構造をとっている。 This portable information terminal has a foldable structure in which two parts are connected by a hinge (97) that also serves as a holder for the fuel cartridge (96).
1つの部分は、タッチパネル式入力装置が一体化された表示装置(91),アンテナ(92)を内蔵した部分を有する。 One portion includes a display device (91) in which a touch panel type input device is integrated and a portion in which an antenna (92) is incorporated.
1つの部分は、燃料電池(93),プロセッサ,揮発及び不揮発メモリ,電力制御部,燃料電池及び二次電池ハイブリッド制御,燃料モニタなどの電子機器及び電子回路などを実装したメインボード(94),リチウムイオン二次電池(95)を搭載した部分を有する。 One part is a main board (94) on which a fuel cell (93), a processor, a volatile and nonvolatile memory, a power control unit, a fuel cell and secondary battery hybrid control, an electronic device such as a fuel monitor, and an electronic circuit are mounted. It has a portion on which a lithium ion secondary battery (95) is mounted.
このようにして得られる携帯用情報端末は、燃料電池(93)の寿命が長いため、長く使うことができる。 The portable information terminal thus obtained can be used for a long time because the life of the fuel cell (93) is long.
本発明は、PEFCやDMFCに代表される燃料電池に利用可能である。 The present invention can be used for fuel cells represented by PEFC and DMFC.
11 セパレータ
12,71 アノード拡散層
13,21,31,41,51,61,71,82 アノード触媒層
14,22,32,42,52,83 固体高分子電解質膜
15,23,33,43,53,63,73,84 カソード触媒層
16,85 カソード拡散層
17 ガスケット
62,72 電極間の固体高分子電解質膜
64,74 電極周囲の固体高分子電解質
91 表示装置
92 アンテナ
93 燃料電池
94 メインボード
95 リチウムイオン二次電池
96 燃料カートリッジ
97 ヒンジ
11
Claims (9)
触媒と、触媒を覆うように形成される固体高分子電解質からなるカソードが、
固体高分子電解質膜を挟んで形成される燃料電池用の膜電極接合体において、
対向するアノードおよびカソードで挟まれた領域の電解質膜の厚みtinと、アノードおよびカソードの外周域に位置する電解質膜の厚みtoutの間に、
tout>tinの関係が成り立ち、
アノードとカソードで挟まれた電解質膜部分の固体高分子電解質のイオン交換容量が、アノードあるいはカソードの少なくとも一方の外周域に配置された固体高分子電解質のイオン交換容量よりも大きく、
アノードあるいはカソードの少なくとも一方の外周域に位置する固体高分子電解質膜がπ共役系芳香族高分子を含むことを特徴とする膜電極接合体。 A catalyst and an anode made of a solid polymer electrolyte formed to cover the catalyst;
A cathode comprising a catalyst and a solid polymer electrolyte formed so as to cover the catalyst,
In a membrane electrode assembly for a fuel cell formed by sandwiching a solid polymer electrolyte membrane,
Between the thickness t in of the electrolyte membrane in the region sandwiched between the opposing anode and cathode and the thickness t out of the electrolyte membrane located in the outer peripheral region of the anode and cathode,
The relationship t out > t in holds,
The ion exchange capacity of the solid polymer electrolyte in the electrolyte membrane portion sandwiched between the anode and the cathode is larger than the ion exchange capacity of the solid polymer electrolyte disposed in the outer peripheral region of at least one of the anode and the cathode,
A membrane / electrode assembly, wherein the solid polymer electrolyte membrane located in the outer peripheral region of at least one of the anode and the cathode contains a π-conjugated aromatic polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009154520A JP5427487B2 (en) | 2008-09-30 | 2009-06-30 | Fuel cell |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008252148 | 2008-09-30 | ||
JP2008252148 | 2008-09-30 | ||
JP2009154520A JP5427487B2 (en) | 2008-09-30 | 2009-06-30 | Fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010108908A JP2010108908A (en) | 2010-05-13 |
JP5427487B2 true JP5427487B2 (en) | 2014-02-26 |
Family
ID=42298120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009154520A Expired - Fee Related JP5427487B2 (en) | 2008-09-30 | 2009-06-30 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5427487B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5470211B2 (en) * | 2010-09-30 | 2014-04-16 | 株式会社日立製作所 | Membrane electrode assembly and fuel cell |
JP5389768B2 (en) * | 2010-11-02 | 2014-01-15 | 株式会社日立製作所 | POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE ASSEMBLY USING SAME, AND SOLID POLYMER FUEL CELL |
JP6319940B2 (en) * | 2013-03-12 | 2018-05-09 | 凸版印刷株式会社 | Method for producing electrolyte membrane with catalyst layer |
JP6819982B2 (en) * | 2016-02-26 | 2021-01-27 | 日清紡ホールディングス株式会社 | Carbon catalyst for redox flow battery electrodes |
JP6729889B2 (en) | 2016-02-26 | 2020-07-29 | 日清紡ホールディングス株式会社 | Carbon catalyst for redox flow battery electrodes |
JP7456374B2 (en) * | 2020-12-25 | 2024-03-27 | トヨタ自動車株式会社 | Method for manufacturing fuel cell and membrane electrode assembly plate |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000215903A (en) * | 1999-01-25 | 2000-08-04 | Toshiba Corp | Solid high-molecular electrolyte type fuel cell |
JP2000223136A (en) * | 1999-01-27 | 2000-08-11 | Aisin Seiki Co Ltd | Solid polymer electrolyte film for fuel cell, its manufacture and fuel cell |
JP2001081220A (en) * | 1999-09-20 | 2001-03-27 | Honda Motor Co Ltd | Polymer composite film, its preparation and polymer solid electrolyte film |
KR100684734B1 (en) * | 2005-06-28 | 2007-02-20 | 삼성에스디아이 주식회사 | Polymer electrolyte for fuel cell, method of producing same and fuel cell apparatus comprising same |
JP2007087728A (en) * | 2005-09-21 | 2007-04-05 | Toyota Motor Corp | Laminate, method of manufacturing it, as well as fuel cell |
-
2009
- 2009-06-30 JP JP2009154520A patent/JP5427487B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010108908A (en) | 2010-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2750226B1 (en) | Electrode catalyst layer for fuel cells, electrode for fuel cells, membrane electrode assembly for fuel cells, and fuel cell | |
EP2782174B1 (en) | Electrode catalyst layer for fuel cells | |
US5523177A (en) | Membrane-electrode assembly for a direct methanol fuel cell | |
Durst et al. | Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces | |
KR102300275B1 (en) | Ion-conducting membrane | |
US20150064610A1 (en) | Fuel cell membrane-electrode assembly and production method therefor | |
WO2014002756A1 (en) | Ion conductor, and electrochemical device using same | |
US9799903B2 (en) | Electrocatalyst for solid polymer fuel cell | |
EP2990109A1 (en) | Electrode and fuel cell electrode catalyst layer containing same | |
US20100075203A1 (en) | Membrane-electrode unit comprising a barrier junction | |
CN105142784A (en) | Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell | |
JP5427487B2 (en) | Fuel cell | |
US20120122016A1 (en) | Fuel Cell Durability Through Oxide Supported Precious Metals in Membrane | |
CN105142778A (en) | Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell | |
EP3214680A1 (en) | Electrode catalyst for fuel cell, electrode catalyst layer for fuel cell, method for producing same, and membrane electrode assembly and fuel cell using catalyst layer | |
US20150162619A1 (en) | Electrode catalyst, method for preparing same, and membrane electrode assembly and fuel cell including same | |
EP4261955A1 (en) | Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell | |
JP5470211B2 (en) | Membrane electrode assembly and fuel cell | |
CN102742056B (en) | Use in solid polymer fuel cell membrane electrode structure and polymer electrolyte fuel cell | |
JP2020057516A (en) | Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell | |
JP2006209999A (en) | Electrode for polymer electrolyte fuel cell and its manufacturing method | |
JP5535773B2 (en) | Membrane-electrode structure for polymer electrolyte fuel cell | |
JP5458774B2 (en) | Electrolyte membrane-electrode assembly | |
JP5431296B2 (en) | Fuel cell | |
JP2008218131A (en) | Membrane-electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131202 |
|
LAPS | Cancellation because of no payment of annual fees |