JP5425557B2 - Neutralizer - Google Patents

Neutralizer Download PDF

Info

Publication number
JP5425557B2
JP5425557B2 JP2009182018A JP2009182018A JP5425557B2 JP 5425557 B2 JP5425557 B2 JP 5425557B2 JP 2009182018 A JP2009182018 A JP 2009182018A JP 2009182018 A JP2009182018 A JP 2009182018A JP 5425557 B2 JP5425557 B2 JP 5425557B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
water
drainage
flowing water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009182018A
Other languages
Japanese (ja)
Other versions
JP2011031210A (en
Inventor
慶一 桝岡
晴久 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2009182018A priority Critical patent/JP5425557B2/en
Publication of JP2011031210A publication Critical patent/JP2011031210A/en
Application granted granted Critical
Publication of JP5425557B2 publication Critical patent/JP5425557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、中和処理装置に関する。   The present invention relates to a neutralization processing apparatus.

従来、工事現場等で発生するアルカリ性排水は、当該排水に炭酸ガスを混入させる中和処理装置によりpH値を規制値以下に低下させた後、排出するという中和処理が施されている。   Conventionally, the alkaline drainage generated at a construction site or the like has been subjected to a neutralization treatment in which the pH value is lowered to a regulation value or less by a neutralization processing device that mixes carbon dioxide gas into the drainage and then discharged.

上記中和処理装置としては、例えば、アルカリ性排水に炭酸ガスを混入して中和するようにした炭酸ガス中和装置において、アルカリ性排水の貯水槽よりポンプで排水を汲み上げて流路に給送し、流路内でノズルから炭酸ガスを吹き込んでミキサによって混合(攪拌)するものが知られている(例えば、特許文献1参照)。   As the neutralization treatment device, for example, in the carbon dioxide neutralization device in which carbon dioxide gas is mixed into the alkaline wastewater and neutralized, the wastewater is pumped from the alkaline wastewater storage tank and fed to the flow path. There is known a method in which carbon dioxide gas is blown from a nozzle in a flow path and mixed (stirred) by a mixer (see, for example, Patent Document 1).

特開平5−23674号公報Japanese Patent Laid-Open No. 5-23674

ここで、上記特許文献1に記載の中和処理装置においては、ポンプを駆動させて中和処理を施す排水を所定量汲み上げ、当該汲み上げた量の排水と炭酸ガスを中和しているため、ポンプの駆動力を必要としていた。さらに、当該中和処理装置は、ミキサによって排水と炭酸ガスを攪拌しているため、ミキサの駆動力も必要としていた。   Here, in the neutralization treatment apparatus described in Patent Document 1, the pump is driven to pump up a predetermined amount of wastewater to be neutralized, and the pumped amount of wastewater and carbon dioxide are neutralized. The driving force of the pump was required. Further, since the neutralization apparatus agitates the waste water and carbon dioxide gas by the mixer, the driving force of the mixer is also required.

また、上記特許文献1に記載の中和処理装置において、一般的に、例えば、pH9.3程度以上のアルカリ性排水を中和処理する場合、当該中和処理が短時間で複数回繰り返し行われるため、一度に大量の炭酸ガスが用いられる。つまり、ボンベ内で蒸発により気化した炭酸ガスのみならず、ボンベ内に混在する気化前の液化炭酸ガスをも気化器等を用いて気化する必要がある。さらに、その気化器による気化の際になされる炭酸ガスの減圧による凍結を防止するために、気化器にヒータを取り付けて加熱する必要があった。   Moreover, in the neutralization processing apparatus described in Patent Document 1, generally, for example, when neutralizing alkaline drainage having a pH of about 9.3 or more, the neutralization treatment is repeatedly performed a plurality of times in a short time. A large amount of carbon dioxide gas is used at one time. That is, it is necessary to vaporize not only carbon dioxide vaporized by evaporation in the cylinder but also liquefied carbon dioxide gas before vaporization mixed in the cylinder using a vaporizer or the like. Furthermore, in order to prevent freezing due to decompression of the carbon dioxide gas that is performed during the vaporization by the vaporizer, it is necessary to heat the vaporizer by attaching a heater.

つまり、従来の中和処理装置では、ヒータ、ポンプ、ミキサ、等を駆動する駆動源を要していた。   That is, the conventional neutralization apparatus requires a drive source for driving a heater, a pump, a mixer, and the like.

ところで、このような中和処理装置は一般的に工事の終了とともに撤去されるため、工事等の終了後に残留する、例えば、pH9.3程度以下のアルカリ性の排水に対して、上記中和処理を施すためには再度中和処理装置を設置する必要がある。
しかしながら、上述のように従来の中和処理装置の設置に際しては、駆動源を確保しなければならないため、工事が終了し諸設備が撤去された状況では、その駆動源確保が困難となる場合が存在し、容易に上記排水の中和処理を実施し得ないという問題があった。
By the way, since such a neutralization processing apparatus is generally removed with the completion of construction, the neutralization treatment is performed on, for example, alkaline drainage having a pH of about 9.3 or less remaining after the completion of construction. In order to apply, it is necessary to install a neutralization apparatus again.
However, as described above, when installing a conventional neutralization treatment apparatus, it is necessary to secure a drive source. Therefore, in a situation where construction has been completed and various facilities have been removed, it may be difficult to secure the drive source. There existed a problem that it existed and the neutralization process of the said waste_water | drain cannot be implemented easily.

本発明の課題は、駆動源を用いることなく、容易にアルカリ性の排水の中和処理を実現可能な中和処理装置を提供することにある。   The subject of this invention is providing the neutralization processing apparatus which can implement | achieve the neutralization process of alkaline waste_water | drain easily without using a drive source.

以上の課題を解決するため、請求項1に記載の発明は、
炭酸ガスを充填したボンベより気化された炭酸ガスを抽出し、前記抽出された炭酸ガス
を圧力調整器で減圧調整し、前記減圧調整された炭酸ガスをアルカリ性の排水に混入して中和する中和処理装置において、
前記圧力調整器に取り付けられ、前記圧力調整器により減圧調整された炭酸ガスを大気熱により熱交換する熱交換部と、
外部から前記排水を導入する導水口と、導入した排水を外部に排出する排水口と、を連通し、前記導水口側が前記排水口側よりも上方に位置するように傾斜する配管による流水部と、
前記熱交換部にて熱交換された炭酸ガスを前記流水部内の排水に混入する混入部と、
を備え、
前記混入部は、
前記圧力調整器と前記流水部を連通し、前記炭酸ガスを前記流水部に導入する導入管と、
前記導入管の流水部側の端部と接続され、前記流水部における排水の流下方向に延伸した延伸部と、
前記延伸部に前記排水の流下方向に沿って所定間隔で複数個備えられ、前記炭酸ガスを分散して放出させる放出部と、を備えて構成されることを特徴とする。
In order to solve the above problems, the invention described in claim 1
Extracting carbon dioxide vaporized from a cylinder filled with carbon dioxide, adjusting the pressure of the extracted carbon dioxide with a pressure regulator, and neutralizing the carbon dioxide that has been subjected to pressure reduction into alkaline drainage. In the sum processing device,
A heat exchanging unit that is attached to the pressure regulator and exchanges heat of the carbon dioxide gas that has been pressure-reduced by the pressure regulator by atmospheric heat;
A water flow portion formed by piping that communicates with a water inlet for introducing the waste water from the outside and a water outlet for discharging the introduced waste water to the outside, and that is inclined so that the water inlet side is located above the side of the water outlet. ,
A mixing section for mixing the carbon dioxide gas heat-exchanged in the heat exchange section into the waste water in the flowing water section;
With
The mixing part is
An introduction pipe for communicating the pressure regulator and the flowing water part and introducing the carbon dioxide gas into the flowing water part;
An extension part connected to the end part of the introduction pipe on the side of the flowing water part and extending in the flow-down direction of the drainage in the flowing water part,
A plurality of the extending portions are provided at predetermined intervals along the flow-down direction of the drainage, and the discharging portions are configured to disperse and release the carbon dioxide gas.

さらに、請求項1に記載の発明は、
前記流水部の配管内には、前記延伸部の下流側に、高さが前記放出部よりも高くなるように設定された、前記排水を堰止める堰を備えることを特徴とする。
Furthermore, the invention of claim 1
In the pipe of the flowing water part, a weir for blocking the drainage is provided on the downstream side of the extending part, the height of which is set higher than that of the discharge part.

本発明によると、中和処理装置において、圧力調整器によって減圧調整された炭酸ガスは温度低下を伴うが、熱交換部により大気熱との熱交換がなされるのでヒータを用いることなく凍結を防止することができる。また、配管による流水部の導水口側が排水口側よりも上方に位置するように傾斜しているので、ポンプにより中和処理を施す排水を所定量汲み上げる必要がない。さらに、放出部により炭酸ガスを分散して放出させ、排水に混入させることができるので、ミキサによって排水と炭酸ガスを攪拌させる必要も無い。つまり、ヒータ、ポンプ、ミキサ、等の駆動源を用いることなく、アルカリ性の排水の中和処理が実現できる。
したがって、本発明は、駆動源を用いることなく、容易にアルカリ性の排水の中和処理を実現可能な中和処理装置であるといえる。
しかも、流水部の配管内には、延伸部の下流側に排水を堰止める堰を備え、堰の高さは、延伸部に設けられた放出部よりも高くなるように設定されているため、延伸部の下方を流下する排水は、堰により水位が上昇するので、放出部から放出される炭酸ガスの混入が可能となる。
また、排水は堰を通過するために上方及び下方向きの流れを形成するので、流水部の配管内を傾斜方向に直線的に流下する場合に比べ、炭酸ガスとの攪拌性が高まる。
According to the present invention, in the neutralization apparatus, the carbon dioxide gas that has been pressure-reduced by the pressure regulator is accompanied by a decrease in temperature, but heat exchange with the atmospheric heat is performed by the heat exchange unit, so freezing is prevented without using a heater. can do. In addition, since the water inlet side of the flowing water portion by piping is inclined so as to be positioned above the drain port side, there is no need to pump up a predetermined amount of waste water to be neutralized by the pump. Further, since the carbon dioxide gas can be dispersed and discharged by the discharge portion and mixed into the waste water, it is not necessary to stir the waste water and the carbon dioxide gas by the mixer. That is, neutralization treatment of alkaline wastewater can be realized without using a drive source such as a heater, pump, mixer, or the like.
Therefore, it can be said that the present invention is a neutralization treatment apparatus that can easily achieve neutralization treatment of alkaline wastewater without using a drive source.
Moreover, in the pipe of the flowing water part, a weir for blocking drainage is provided downstream of the extending part, and the height of the weir is set to be higher than the discharge part provided in the extending part, Since the water level of the waste water flowing below the extending portion is raised by the weir, the carbon dioxide gas released from the discharge portion can be mixed.
Further, since the drainage flows upward and downward in order to pass through the weir, the stirrability with the carbon dioxide gas is enhanced as compared with the case where it flows linearly in the inclined direction in the pipe of the flowing water part.

本発明に係る中和処理装置の概略構成を示す正面図である。It is a front view which shows schematic structure of the neutralization processing apparatus which concerns on this invention. 本発明に係る圧力調整器を上面視した状態を示す図である。It is a figure which shows the state which looked at the pressure regulator which concerns on this invention from the top.

以下、図を参照して、本発明に係る中和処理装置の具体的な態様を詳細に説明する。ただし、発明の範囲は、図示例に限定されない。
なお、以下の説明では、図1における中和処理装置1の左右方向をX軸方向として、前後方向をY軸方向として、上下方向をZ軸方向とする。
Hereinafter, specific embodiments of the neutralization processing apparatus according to the present invention will be described in detail with reference to the drawings. However, the scope of the invention is not limited to the illustrated examples.
In the following description, the left-right direction of the neutralizing apparatus 1 in FIG. 1 is defined as the X-axis direction, the front-rear direction is defined as the Y-axis direction, and the vertical direction is defined as the Z-axis direction.

図1に示すように、中和処理装置1は、例えば、炭酸ガスをアルカリ性(例えば、pH値9.3程度)の排水に混入して中和する複数の中和部5と、上流側より下流側へ向けて(矢印Aの方向に)流下する排水の流下断面積を制限する遮水コンクリート60(導水口)と、遮水コンクリート60の下流側に設けられ、排水を流下させる流水部50と、流水部50内の排水を採取する上流側採水管70及び下流側採水管80と、流水部50を流下する排水を外部に排出する排水口90と、等を備えて構成され、上流側より流入する工事施設等から排出されるアルカリ性排水に中和処理を施して排出する。   As shown in FIG. 1, the neutralization treatment apparatus 1 includes, for example, a plurality of neutralization units 5 that neutralize carbon dioxide mixed with alkaline (for example, a pH value of about 9.3) wastewater, and from the upstream side. Impermeable concrete 60 (water inlet) that restricts the cross-sectional area of the drainage flowing down toward the downstream side (in the direction of arrow A), and a flowing water section 50 that is provided downstream of the impermeable concrete 60 and allows the drainage to flow down. And an upstream side sampling pipe 70 and a downstream side sampling pipe 80 for collecting the drainage in the flowing water part 50, a drain outlet 90 for discharging the drainage flowing down the flowing water part 50 to the outside, and the like. The alkaline drainage discharged from construction facilities that flow in more is neutralized and discharged.

中和部5は、炭酸ガスを充填したボンベ10と、ボンベ10より噴出した炭酸ガスの圧力調整を実行する圧力調整器20と、圧力調整器20を通過した炭酸ガスの流量を測定する流量計30と、流量計30を通過した炭酸ガスを排水に混入する混入部40と、等を備えて構成され、排水の流下方向に沿って直列に複数配置されている。   The neutralization unit 5 includes a cylinder 10 filled with carbon dioxide gas, a pressure regulator 20 that performs pressure adjustment of the carbon dioxide gas ejected from the cylinder 10, and a flow meter that measures the flow rate of carbon dioxide gas that has passed through the pressure regulator 20. 30, a mixing unit 40 that mixes carbon dioxide gas that has passed through the flow meter 30 into the wastewater, and the like, and a plurality of them are arranged in series along the flow direction of the wastewater.

ボンベ10は、容器弁11を含んで構成され、液化炭酸ガス及び当該液化炭酸ガスが蒸発により気化した炭酸ガスを充填したガスボンベである。
容器弁11は、ボンベ10内の炭酸ガスを開閉によって取り出すバルブである。つまり、容器弁11の開閉量を調整することで、ボンベ10内の気化した炭酸ガスのみを取り出し、当該取り出した炭酸ガスを圧力調整器20に対して導入することが出来る。
The cylinder 10 includes a container valve 11 and is a gas cylinder filled with a liquefied carbon dioxide gas and a carbon dioxide gas vaporized by evaporation of the liquefied carbon dioxide gas.
The container valve 11 is a valve for taking out the carbon dioxide gas in the cylinder 10 by opening and closing. That is, by adjusting the opening / closing amount of the container valve 11, it is possible to take out only the carbon dioxide gas evaporated in the cylinder 10 and introduce the taken carbon dioxide gas into the pressure regulator 20.

図2は、本発明に係る圧力調整器を上面視した状態を示す図である。
圧力調整器20は、図2に示すように、圧力調整部21と、熱交換部25と、を含んで構成され、ボンベ10より導入した炭酸ガスの圧力調整(減圧調整)を行い流量計30に導入する。
圧力調整部21は、導入したガスの圧力を所定値に調整する圧力調整ハンドル(図示省略)や当該ガスの圧力を計測して表示する圧力計(図示省略)を含んで構成され、ボンベ10より導入した炭酸ガスの減圧調整を行う。
熱交換部25は、圧力調整部21の後方(Y軸正方向)に取り付けられ、円筒状の部材の周面に所定間隔で複数の伝熱フィンを有し、大気熱を熱源として圧力調整部21にて減圧調整される炭酸ガスの熱交換を行う熱交換器である。
つまり、圧力調整部21により減圧調整された炭酸ガスは、減圧に伴う温度低下により凍結するおそれがあるが、熱交換部25によって大気熱との熱交換を行うことにより、上記凍結を防止することが可能となる。
なお、工事施設等より排出されるアルカリ性の排水は、例えば、pH値が9.3以下程度の弱アルカリ性を示す場合が多い。したがって、ボンベ10内で気化した炭酸ガスを混入することで上記排水に対する中和処理を達成し得るため、ボンベ10に充填された液化炭酸ガスを取り出して気化器等で気化させる必要はないので、圧力調整器20による減圧調整のみを行う。
FIG. 2 is a diagram showing a state in which the pressure regulator according to the present invention is viewed from above.
As shown in FIG. 2, the pressure regulator 20 includes a pressure regulator 21 and a heat exchanger 25, and performs pressure regulation (decompression regulation) of carbon dioxide introduced from the cylinder 10 to perform the flow meter 30. To introduce.
The pressure adjustment unit 21 includes a pressure adjustment handle (not shown) that adjusts the pressure of the introduced gas to a predetermined value and a pressure gauge (not shown) that measures and displays the pressure of the gas. The reduced pressure of the introduced carbon dioxide gas is adjusted.
The heat exchanging unit 25 is attached to the rear of the pressure adjusting unit 21 (Y-axis positive direction), has a plurality of heat transfer fins at predetermined intervals on the peripheral surface of the cylindrical member, and uses the atmospheric heat as a heat source as a pressure adjusting unit. 21 is a heat exchanger that performs heat exchange of carbon dioxide gas whose pressure is adjusted at 21.
That is, the carbon dioxide gas whose pressure is adjusted by the pressure adjusting unit 21 may be frozen due to a temperature drop caused by the pressure reduction, but the heat exchange with the atmospheric heat is performed by the heat exchanging unit 25 to prevent the freezing. Is possible.
In addition, the alkaline drainage discharged | emitted from construction facilities etc. shows the weak alkalinity whose pH value is about 9.3 or less in many cases, for example. Therefore, it is not necessary to take out the liquefied carbon dioxide filled in the cylinder 10 and vaporize it with a vaporizer or the like because the neutralization treatment for the waste water can be achieved by mixing the carbon dioxide vaporized in the cylinder 10. Only pressure reduction adjustment by the pressure regulator 20 is performed.

流量計30は、圧力調整器20にて減圧調整された炭酸ガスの流量を計測する。   The flow meter 30 measures the flow rate of the carbon dioxide gas whose pressure is adjusted by the pressure regulator 20.

混入部40は、導入管41と、分散器42と、を含んで構成され、流量計30を通過した炭酸ガスを後述の流水部50へ導入して、流水部50を流下する排水に混入する。   The mixing unit 40 includes an introduction pipe 41 and a disperser 42, introduces carbon dioxide gas that has passed through the flow meter 30 into the flowing water unit 50 described later, and mixes the waste water flowing down the flowing water unit 50. .

導入管41は、圧力調整器20と流水部50を連通し、炭酸ガスを流水部50内に導入する配管である。   The introduction pipe 41 is a pipe that communicates the pressure regulator 20 and the flowing water part 50 and introduces carbon dioxide into the flowing water part 50.

分散器42は、例えば、管状のセラミック材等に微細な孔を複数備えたエアストーンであり、延伸部43と、複数の放出部44と、を含んで構成され、導入管41より導入される炭酸ガスを分散発泡させて流水部50内に放出する。   The disperser 42 is, for example, an air stone provided with a plurality of fine holes in a tubular ceramic material or the like, and includes an extending portion 43 and a plurality of discharge portions 44, and is introduced from the introduction pipe 41. Carbon dioxide gas is dispersed and foamed and discharged into the flowing water part 50.

延伸部43は、導入管41の流水部50側の端部に接続され、排水の流下方向に延伸したセラミック材等で形成される配管である。   The extending portion 43 is a pipe formed of a ceramic material or the like that is connected to the end portion of the introduction pipe 41 on the flowing water portion 50 side and extends in the direction in which the drainage flows.

放出部44は、例えば、延伸部43の上端に設けられ、排水の流下方向に沿って所定間隔で複数個備えられている。放出部44は、導入管41にて流水部50に導入され、延伸部43により排水の流下方向に運搬される炭酸ガスを、微細な気泡として分散させて(分散発泡させて)上方(Z軸正方向)に放出させる放出口である。なお、放出部44より放出される気泡の大きさは、放出部44の口径を所望する大きさにすることで調整できる。
つまり、流水部50に導入された炭酸ガスを一箇所から直接排水に混入する場合に比べ、炭酸ガスを複数の放出部44により排水の流下方向に沿って分散して混入させることで、排水と炭酸ガスとの接触面積を増加させることが可能となり、それによって排水と炭酸ガスとの溶解率を向上させることができる。
For example, a plurality of discharge portions 44 are provided at the upper end of the extending portion 43, and a plurality of discharge portions 44 are provided at predetermined intervals along the direction in which the drainage flows. The discharge part 44 is introduced into the flowing water part 50 by the introduction pipe 41, and the carbon dioxide gas conveyed in the flow direction of the wastewater by the extending part 43 is dispersed as fine bubbles (dispersed and foamed) and is upward (Z axis). This is a discharge port for discharging in the positive direction. Note that the size of the bubbles released from the discharge portion 44 can be adjusted by making the diameter of the discharge portion 44 a desired size.
In other words, compared with the case where the carbon dioxide gas introduced into the flowing water part 50 is directly mixed into the wastewater from one place, the carbon dioxide gas is dispersed and mixed along the flow direction of the wastewater by the plurality of discharge parts 44, so that the wastewater and It is possible to increase the contact area with the carbon dioxide gas, thereby improving the dissolution rate between the waste water and the carbon dioxide gas.

遮水コンクリート60は、後述の流水部50の管断面積と合致した径を有する円筒状の空洞部61を備え、上流側より流下する排水を当該空洞部61にて流入制限するコンクリート部材である。   The impermeable concrete 60 is a concrete member that includes a cylindrical cavity portion 61 having a diameter that matches a pipe cross-sectional area of the flowing water portion 50 to be described later, and restricts the inflow of drainage that flows down from the upstream side. .

流水部50は、例えば、サイホン部55と、堰58と、を含んで構成され、遮水コンクリート60と、後述の排水口90と、を連通し、遮水コンクリート60側が排水口90側よりも上方に位置するように傾斜した配管である。そのため、遮水コンクリート60側より流入した排水を排水口90へと流下させ、その間に放出部42より放出される炭酸ガスを混入させることで中和処理を行うことが出来る。   The flowing water part 50 is configured to include, for example, a siphon part 55 and a weir 58, and communicates with the water-impervious concrete 60 and a later-described drain port 90, and the impermeable concrete 60 side is more than the drain port 90 side. It is piping inclined so that it may be located upwards. Therefore, the neutralization can be performed by flowing the waste water flowing in from the impermeable concrete 60 side to the drain port 90 and mixing the carbon dioxide gas released from the discharge part 42 in the meantime.

堰58は、流水部50内で、分散器42の下流側に設置されており、上流側より接触した排水を堰止め、上方(Z軸正方向)に押し流し、当該堰58を通過した排水を下方(Z軸負方向)に引き込む。
堰58の高さは、例えば、延伸部43に設けられた放出部44よりも高くなるように設定されている。
そのため、延伸部43の下方を流下する排水は、上記堰58により水位が上昇するので、放出部44から放出される炭酸ガスの混入が可能となる。
また、排水は堰58を通過するために上方及び下方向きの流れを形成するので、流水部50の傾斜方向に直線的に流下する場合に比べ、炭酸ガスとの攪拌性が高まる。
The weir 58 is installed on the downstream side of the disperser 42 in the flowing water part 50, stops the drainage contacted from the upstream side, pushes it upward (Z-axis positive direction), and drains the wastewater that has passed through the weir 58. Pull downward (Z-axis negative direction).
For example, the height of the weir 58 is set to be higher than the discharge portion 44 provided in the extending portion 43.
Therefore, since the water level of the waste water flowing below the extending portion 43 is raised by the weir 58, carbon dioxide gas released from the discharge portion 44 can be mixed.
Further, since the drainage flows upward and downward in order to pass through the weir 58, the stirrability with the carbon dioxide gas is enhanced as compared with the case where the drainage flows linearly in the inclined direction of the flowing water part 50.

サイホン部55は、排水の導入側の水位が導出側よりも高く、かつ、導入側と導出側の間を双方の水位よりも高くなるように屈曲させた配管部である。
つまり、排水がサイホン部55を通過する際に、サイホン部55の導入側から最も水位の高い頂上地点までの区間が満流となるため、排水と炭酸ガスの接触時間が長くなり、炭酸ガスの混入を促進することが可能となる。また、上記サイホン部55における水位変化によって排水の圧力が上昇するので、炭酸ガスを混入し易くなり、溶解率の向上を図れる。
The siphon portion 55 is a piping portion that is bent so that the water level on the introduction side of the wastewater is higher than that on the outlet side and between the introduction side and outlet side is higher than both water levels.
That is, when drainage passes through the siphon part 55, the section from the introduction side of the siphon part 55 to the highest point of the highest water level becomes full, so the contact time between the drainage and carbon dioxide increases, It becomes possible to promote mixing. Further, since the pressure of the drainage increases due to the change of the water level in the siphon part 55, it becomes easy to mix carbon dioxide gas and the dissolution rate can be improved.

上流側採水管70は、外部と遮水コンクリート60の空洞部61を連通し、空洞部61を流下する排水を採取する管である。
下流側採水管80は、排水口90近傍に設けられ、外部と流水部50を連通し、排水口90近傍を流下する排水を採取する管である。
つまり、上流側採水管70と下流側採水管80の上端側(Z軸正方向)にpHセンサ等(図示省略)を取り付け、上流側採水管70と下流側採水管80の各々にて採取された排水のpH値を当該pHセンサで測定することにより、中和処理装置1による中和処理前後の排水のpH値の変化量を容易に把握することが可能となる。
The upstream water sampling pipe 70 is a pipe that communicates the cavity 61 of the impermeable concrete 60 with the outside and collects drainage flowing down the cavity 61.
The downstream side sampling pipe 80 is a pipe that is provided near the drain outlet 90 and collects drainage flowing through the vicinity of the drain outlet 90 through the outside and the flowing water section 50.
That is, a pH sensor or the like (not shown) is attached to the upper end side (Z-axis positive direction) of the upstream-side water sampling pipe 70 and the downstream-side water sampling pipe 80, and is collected at each of the upstream-side water sampling pipe 70 and the downstream-side water sampling pipe 80. By measuring the pH value of the wastewater with the pH sensor, it is possible to easily grasp the amount of change in the pH value of the wastewater before and after the neutralization treatment by the neutralization treatment apparatus 1.

排水口90は、流水部50を流下し、中和部5により中和処理が施された排水を下流側に排水する。   The drainage port 90 flows down the flowing water part 50 and drains the wastewater neutralized by the neutralizing part 5 to the downstream side.

次に、中和処理装置1の動作について説明する。
ここで、工事施設等より排出されるアルカリ性の排水は、例えば、pH値が9.3以下程度の弱アルカリ性を示す場合が多い。そのため、ここでは上流側採水管70の位置にて測定されるpH値を例えば9.3とし、目標とするpH値(規制値)を例えば6.5〜8.5程度とする。また、中和部5は一組のみ配置されているものとする。
Next, operation | movement of the neutralization processing apparatus 1 is demonstrated.
Here, alkaline drainage discharged from construction facilities or the like often exhibits weak alkalinity having a pH value of about 9.3 or less, for example. Therefore, here, the pH value measured at the position of the upstream side sampling pipe 70 is, for example, 9.3, and the target pH value (regulation value) is, for example, about 6.5 to 8.5. Moreover, only one set of the neutralization part 5 shall be arrange | positioned.

まず、ボンベ10より容器弁11を調整して所定量(例えば、0.25m3/min)の気化した炭酸ガスが取り出される。
次いで、上記炭酸ガスは、圧力調整部21にて減圧調整され、熱交換部25にて大気熱による熱交換が施され、流量計30にて流量測定が行われる。
次いで、上記炭酸ガスは、混入部40の導入管41により流水部50内に導入され、所定間隔で複数(例えば、1m間隔で4箇所)設けられた分散器42の放出部44により分散発泡されて流水部50内に放出される。
First, the container valve 11 is adjusted from the cylinder 10 to take out a predetermined amount (for example, 0.25 m 3 / min) of vaporized carbon dioxide gas.
Next, the carbon dioxide gas is pressure-reduced by the pressure adjusting unit 21, heat exchange by atmospheric heat is performed by the heat exchanging unit 25, and the flow rate is measured by the flow meter 30.
Next, the carbon dioxide gas is introduced into the flowing water part 50 through the introduction pipe 41 of the mixing part 40, and dispersed and foamed by the discharge parts 44 of the disperser 42 provided at a predetermined interval (for example, four places at 1m intervals). And discharged into the flowing water part 50.

次いで、当該炭酸ガスは、遮水コンクリート60より流入し、流水部50を流下する排水(例えば、流量35m3/h)に混入(中和)される。そして、炭酸ガスと排水の溶解率は堰58及びサイホン部55を通過することにより高められる。
次いで、ユーザは、下流側採水管80の位置にてpH値を測定し、上記中和処理により目標とするpH値に到達しているか否かを判断する。なお、排水と炭酸ガスの溶解率を1と仮定すると、上記設定値に基づく中和処理により排水のpH値は7まで低下し、十分に目標とするpH値に到達させることができる。
Next, the carbon dioxide gas flows in from the impermeable concrete 60 and is mixed (neutralized) into drainage (for example, a flow rate of 35 m 3 / h) flowing down the flowing water part 50. The dissolution rate of carbon dioxide and waste water is increased by passing through the weir 58 and the siphon unit 55.
Next, the user measures the pH value at the position of the downstream side sampling pipe 80, and determines whether or not the target pH value has been reached by the neutralization process. Assuming that the dissolution rate of waste water and carbon dioxide gas is 1, the pH value of the waste water is lowered to 7 by the neutralization treatment based on the set value, and can sufficiently reach the target pH value.

ここで、ユーザは目標とするpH値に到達していないと判断した場合、例えば、図1に示すように、中和部5を排水の流下方向に沿って直列に複数配置することにより、目標とするpH値を取得することが出来るように調整する。   Here, when it is determined that the user has not reached the target pH value, for example, as shown in FIG. 1, a plurality of neutralization units 5 are arranged in series along the flow direction of the waste water, thereby achieving the target Adjust so that the pH value can be obtained.

そして、上記調整が施され目標とするpH値に到達した排水は、排水口90より外部へ排出される。   Then, the waste water that has been adjusted and reaches the target pH value is discharged to the outside through the drain port 90.

以上説明した本実施形態における中和処理装置1は、圧力調整器20に取り付けられ、大気熱を熱源として圧力調整部21にて減圧調整される炭酸ガスの熱交換を行う熱交換部25と、遮水コンクリート60側が排水口90よりも上方に位置するように傾斜する流水部50と、熱交換部25にて熱交換された炭酸ガスを流水部50内の排水に混入する混入部40と、を備え、混入部40は、圧力調整器20と流水部50を連通し、炭酸ガスを流水部50に導入する導入管41と、導入管41の流水部50側の端部と接続され、流水部50における排水の流下方向に延伸した延伸部43と、延伸部43に排水の流下方向に沿って所定間隔で複数個備えられ、炭酸ガスを分散して放出させる放出部44と、を備えて構成されている。
つまり、ボンベ10より取り出された炭酸ガスは、圧力調整器20にて減圧調整されると温度低下を伴うが、熱交換部25により大気熱を熱源として熱交換されるので凍結を防止することができる。また、流水部50の遮水コンクリート60側が排水口90側よりも上方に位置するように傾斜しているので、ポンプ等により中和処理を施す排水を所定量汲み上げる必要がない。さらに、放出部44により炭酸ガスを分散して放出させ、排水に混入させることができるので、ミキサ等によって排水と炭酸ガスを攪拌させる必要も無い。つまり、ヒータ、ポンプ、ミキサ、等の駆動源を用いることなく、アルカリ性の排水の中和処理が実現できる。
したがって、本発明は、駆動源を用いることなく、容易にアルカリ性排水の中和処理を実現可能な中和処理装置であるといえる。
The neutralization processing apparatus 1 according to the present embodiment described above is attached to the pressure regulator 20, and a heat exchange unit 25 that performs heat exchange of carbon dioxide gas that is pressure-reduced by the pressure regulator 21 using atmospheric heat as a heat source; A flowing water part 50 that inclines so that the impermeable concrete 60 side is positioned above the drain outlet 90, and a mixing part 40 that mixes carbon dioxide heat-exchanged in the heat exchange part 25 into the waste water in the flowing water part 50; The mixing unit 40 communicates with the pressure regulator 20 and the flowing water unit 50 and is connected to an introduction pipe 41 that introduces carbon dioxide into the flowing water part 50 and an end of the introducing pipe 41 on the flowing water part 50 side. A plurality of extending portions 43 extending in the drainage direction of the waste water in the portion 50; and a plurality of discharge portions 44 provided in the extension portion 43 at predetermined intervals along the drainage direction of the drainage and dispersing and releasing carbon dioxide gas. It is configured.
That is, the carbon dioxide gas taken out from the cylinder 10 is accompanied by a temperature drop when the pressure regulator 20 is adjusted to reduce the pressure. However, since the heat exchange is performed by the heat exchanger 25 using the atmospheric heat as a heat source, freezing can be prevented. it can. Moreover, since the water-impregnated concrete 60 side of the flowing water part 50 is inclined so as to be positioned above the drain outlet 90 side, it is not necessary to pump up a predetermined amount of waste water to be neutralized by a pump or the like. Further, since carbon dioxide gas can be dispersed and released by the discharge portion 44 and mixed into the wastewater, there is no need to stir the wastewater and carbon dioxide gas by a mixer or the like. That is, neutralization treatment of alkaline wastewater can be realized without using a drive source such as a heater, pump, mixer, or the like.
Therefore, it can be said that the present invention is a neutralization treatment apparatus that can easily achieve neutralization treatment of alkaline wastewater without using a drive source.

また、放出部44は、炭酸ガスを分散発泡させて放出する。
つまり、放出部44によって炭酸ガスを微細な気泡として分散して排水に混入することができるので、排水と炭酸ガスとの接触面積を増加することが可能となり、それによって排水と炭酸ガスとの溶解率を向上させることができる。
The discharge part 44 discharges carbon dioxide gas by dispersing and foaming.
That is, since the carbon dioxide gas can be dispersed as fine bubbles by the discharge portion 44 and mixed into the wastewater, the contact area between the wastewater and the carbon dioxide gas can be increased, thereby dissolving the wastewater and the carbon dioxide gas. The rate can be improved.

また、流水部50は、延伸部43の下流側にサイホン部55を備えている。
つまり、排水がサイホン部55を通過する際に、サイホン部55の導入側から最も水位の高い頂上地点までの区間が満流となるため、排水と炭酸ガスの接触時間が長くなり、炭酸ガスの混入を促進することが可能となる。また、上記サイホン部55における水位変化によって排水の圧力が上昇するので、炭酸ガスを混入し易くなり、溶解率の向上を図れる。
In addition, the flowing water part 50 includes a siphon part 55 on the downstream side of the extending part 43.
That is, when drainage passes through the siphon part 55, the section from the introduction side of the siphon part 55 to the highest point of the highest water level becomes full, so the contact time between the drainage and carbon dioxide increases, It becomes possible to promote mixing. Further, since the pressure of the drainage increases due to the change of the water level in the siphon part 55, it becomes easy to mix carbon dioxide gas and the dissolution rate can be improved.

また、流水部50は、延伸部43の下流側に排水を堰止める堰58を備え、堰58の高さは、例えば、延伸部43に設けられた放出部44よりも高くなるように設定されている。
そのため、延伸部43の下方を流下する排水は、上記堰58により水位が上昇するので、放出部44から放出される炭酸ガスの混入が可能となる。
また、排水は堰58を通過するために上方及び下方向きの流れを形成するので、流水部50の傾斜方向に直線的に流下する場合に比べ、炭酸ガスとの攪拌性が高まる。
Further, the flowing water part 50 includes a weir 58 that dams the drainage downstream of the extending part 43, and the height of the weir 58 is set to be higher than the discharge part 44 provided in the extending part 43, for example. ing.
Therefore, since the water level of the waste water flowing below the extending portion 43 is raised by the weir 58, carbon dioxide gas released from the discharge portion 44 can be mixed.
Further, since the drainage flows upward and downward in order to pass through the weir 58, the stirrability with the carbon dioxide gas is enhanced as compared with the case where the drainage flows linearly in the inclined direction of the flowing water part 50.

また、熱交換部25及び混入部40を含んだ中和部5が、排水の流下方向に沿って直列に複数備えられている。
つまり、排水に中和部5による中和処理を施しても、目標とする排水のpH値に到達しない場合、中和部5の設置数を増加させることにより、容易に上記pH値に到達するように調整することができる。
Moreover, the neutralization part 5 containing the heat exchange part 25 and the mixing part 40 is provided with two or more in series along the flow direction of waste_water | drain.
That is, even if the neutralization treatment by the neutralization unit 5 is performed on the wastewater, if the target drainage pH value is not reached, the pH value is easily reached by increasing the number of neutralization units 5 installed. Can be adjusted as follows.

なお、本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において、種々の改良並びに設計の変更を行っても良い。
例えば、堰やサイホン部の配置数は適宜増減可能であるし、また、堰やサイホン部のうち少なくとも何れか一方のみを備えたものであっても勿論よい。
The present invention is not limited to the above-described embodiment, and various improvements and design changes may be made without departing from the spirit of the present invention.
For example, the number of arrangements of the weirs and siphon units can be appropriately increased or decreased, and it is of course possible to provide only at least one of the weirs and siphon units.

1 中和処理装置
5 中和部
10 ボンベ
20 圧力調整器
25 熱交換器
40 混入部
41 導入管
42 分散器
43 延伸部
44 放出部
50 流水部
55 サイホン部
58 堰
60 遮水コンクリート(導水口)
90 排水口
DESCRIPTION OF SYMBOLS 1 Neutralization processing apparatus 5 Neutralization part 10 Cylinder 20 Pressure regulator 25 Heat exchanger 40 Mixing part 41 Introducing pipe 42 Dispersor 43 Extending part 44 Discharge part 50 Flowing part 55 Siphon part 58 Weir 60 Impermeable concrete (water inlet)
90 Drainage port

Claims (1)

炭酸ガスを充填したボンベより気化された炭酸ガスを抽出し、前記抽出された炭酸ガスを圧力調整器で減圧調整し、前記減圧調整された炭酸ガスをアルカリ性の排水に混入して中和する中和処理装置において、
前記圧力調整器に取り付けられ、前記圧力調整器により減圧調整された炭酸ガスを大気熱により熱交換する熱交換部と、
外部から前記排水を導入する導水口と、導入した排水を外部に排出する排水口と、を連通し、前記導水口側が前記排水口側よりも上方に位置するように傾斜する配管による流水部と、
前記熱交換部にて熱交換された炭酸ガスを前記流水部内の排水に混入する混入部と、
を備え、
前記混入部は、
前記圧力調整器と前記流水部を連通し、前記炭酸ガスを前記流水部に導入する導入管と、
前記導入管の流水部側の端部と接続され、前記流水部における排水の流下方向に延伸した延伸部と、
前記延伸部に前記排水の流下方向に沿って所定間隔で複数個備えられ、前記炭酸ガスを分散して放出させる放出部と、
を備えて構成される中和処理装置であって、
前記流水部の配管内には、前記延伸部の下流側に、高さが前記放出部よりも高くなるように設定された、前記排水を堰止める堰を備えることを特徴とする中和処理装置。
Extracting carbon dioxide vaporized from a cylinder filled with carbon dioxide, adjusting the pressure of the extracted carbon dioxide with a pressure regulator, and neutralizing the carbon dioxide that has been subjected to pressure reduction into alkaline drainage. In the sum processing device,
A heat exchanging unit that is attached to the pressure regulator and exchanges heat of the carbon dioxide gas that has been pressure-reduced by the pressure regulator by atmospheric heat;
A water flow portion formed by piping that communicates with a water inlet for introducing the waste water from the outside and a water outlet for discharging the introduced waste water to the outside, and that is inclined so that the water inlet side is located above the side of the water outlet. ,
A mixing section for mixing the carbon dioxide gas heat-exchanged in the heat exchange section into the waste water in the flowing water section;
With
The mixing part is
An introduction pipe for communicating the pressure regulator and the flowing water part and introducing the carbon dioxide gas into the flowing water part;
An extension part connected to the end part of the introduction pipe on the side of the flowing water part and extending in the flow-down direction of the drainage in the flowing water part,
A plurality of discharge portions provided at predetermined intervals along the flow direction of the drainage in the extending portion, and discharging the carbon dioxide gas;
A neutralization processing apparatus comprising:
The neutralization apparatus characterized by including a weir for damming the drainage, which is set so that the height is higher than the discharge part, in the pipe of the flowing water part , on the downstream side of the extending part. .
JP2009182018A 2009-08-05 2009-08-05 Neutralizer Expired - Fee Related JP5425557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182018A JP5425557B2 (en) 2009-08-05 2009-08-05 Neutralizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182018A JP5425557B2 (en) 2009-08-05 2009-08-05 Neutralizer

Publications (2)

Publication Number Publication Date
JP2011031210A JP2011031210A (en) 2011-02-17
JP5425557B2 true JP5425557B2 (en) 2014-02-26

Family

ID=43760811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182018A Expired - Fee Related JP5425557B2 (en) 2009-08-05 2009-08-05 Neutralizer

Country Status (1)

Country Link
JP (1) JP5425557B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247617B2 (en) * 2019-02-01 2023-03-29 株式会社Ihi Neutralization device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174287A (en) * 1983-03-28 1983-10-13 Takenaka Komuten Co Ltd Neutralyzing device for waste alkali water
JP3108869B2 (en) * 1997-08-04 2000-11-13 有限会社吉田製作所 Non-power supply / drainage device
JP3515366B2 (en) * 1998-04-24 2004-04-05 リンナイ株式会社 Drain neutralizer
JP3146693U (en) * 2008-09-13 2008-11-27 新日本リース株式会社 Alkaline wastewater treatment equipment

Also Published As

Publication number Publication date
JP2011031210A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
TWI381874B (en) A static devolatilisation apparatus for a liquid containing polymers
KR20170104005A (en) Aeration device, operation method therefor, and water treatment apparatus
KR20120028065A (en) The micro jet pump for wastewater treatment
EP1369903A2 (en) Liquid vaporizing and gas feeding apparatus
JP3758471B2 (en) Gas dissolving device
JP5736607B2 (en) Chemical injection control method and chemical injection control device
JP2007167856A (en) Air diffusion device
JP5425557B2 (en) Neutralizer
JP2004188246A (en) System for manufacturing ozonized water
JP3819732B2 (en) Gas dissolving device
JP2013043113A (en) Dissolving separation tank and gas-liquid mixing dissolving apparatus
JP2010247121A (en) Gas-liquid dissolving tank
KR101166457B1 (en) Apparatus for generating micro bubbles with two stage complex structure including vortex generating part and vortex removing part and method for generating micro bubbles using that
TW201240743A (en) Multiply-nozzle and substrate processing apparatus having the multiply-nozzle
KR100336865B1 (en) Auto Mixing and Diffusing System of Liquid Chemicals for Water Treatment Plant
JP4930340B2 (en) Pressure levitation device
JP4215548B2 (en) Oil / water separator
JP5436350B2 (en) Air lift pump device and sewage treatment facility
JP3478142B2 (en) Method for producing pressurized water and apparatus for producing pressurized water
JP2012024703A (en) Injection nozzle for scum removing apparatus
KR100961655B1 (en) Carbon dioxide dissolving system by using high speed inline jet mixer and dissolving method thereof
KR20030045321A (en) A Micro-Bubble Generator And Liquid Treatments Using The Micro-Bubble Generator
JP2007190463A (en) Gas dissolver and circulation type bathtub apparatus using the same
JP6478699B2 (en) Underwater combustion type vaporizer
JP7431447B2 (en) Distilled water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5425557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees