JP5425486B2 - Zinc separation from zinc steel scrap - Google Patents

Zinc separation from zinc steel scrap Download PDF

Info

Publication number
JP5425486B2
JP5425486B2 JP2009027668A JP2009027668A JP5425486B2 JP 5425486 B2 JP5425486 B2 JP 5425486B2 JP 2009027668 A JP2009027668 A JP 2009027668A JP 2009027668 A JP2009027668 A JP 2009027668A JP 5425486 B2 JP5425486 B2 JP 5425486B2
Authority
JP
Japan
Prior art keywords
zinc
temperature
iron
furnace
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009027668A
Other languages
Japanese (ja)
Other versions
JP2010180472A (en
Inventor
勉 木崎
忠季 北原
尚貴 棚橋
雅宏 田畑
高裕 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Toyota Motor Corp
Original Assignee
Chubu Electric Power Co Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Toyota Motor Corp filed Critical Chubu Electric Power Co Inc
Priority to JP2009027668A priority Critical patent/JP5425486B2/en
Publication of JP2010180472A publication Critical patent/JP2010180472A/en
Application granted granted Critical
Publication of JP5425486B2 publication Critical patent/JP5425486B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、例えば鉄鋼、鋳造分野におけるスクラップ鉄の鋳物原料としての再資源化のための亜鉛鋼材屑からの亜鉛分離方法に関するものである。さらに詳しくは、誘導加熱の特性や鉄の物性を応用し、亜鉛鋼材屑に含まれる亜鉛成分を高効率で揮発分離するもので、省エネルギー化、省資源化、低コスト化に資する亜鉛鋼材屑からの亜鉛分離方法に関するものである。   The present invention relates to a method for separating zinc from galvanized steel scrap for recycling as a casting raw material of scrap iron in the steel and casting field, for example. More specifically, it uses induction heating characteristics and iron properties to volatilize and separate zinc components contained in galvanized steel scraps from galvanized steel scraps that contribute to energy saving, resource saving and cost reduction. The present invention relates to a method for separating zinc.

亜鉛鋼材屑を電気炉(誘導加熱炉)で溶解させると、亜鉛蒸気が電気炉の炉壁(耐火物)を損傷させるとともに、鋳物製品の品質にも悪影響を及ぼす。このため、電気炉を用いて亜鉛鋼材屑を溶解処理する場合には亜鉛除去が必要になる。そこで、例えば高真空焼成炉にて900℃、0.0002気圧程度で亜鉛鋼材屑中の亜鉛を揮発除去する方法が知られている。また、誘導加熱の扁平炉にて亜鉛鋼材屑を溶解し、0.9気圧程度に減圧して亜鉛を揮発除去する方法も知られている。   When zinc steel scraps are melted in an electric furnace (induction heating furnace), the zinc vapor damages the furnace wall (refractory) of the electric furnace and adversely affects the quality of the cast product. For this reason, it is necessary to remove zinc when the zinc steel scrap is melted using an electric furnace. Therefore, for example, a method of volatilizing and removing zinc in galvanized steel scrap at 900 ° C. and about 0.0002 atm in a high vacuum firing furnace is known. There is also known a method in which zinc steel scraps are melted in an induction heating flat furnace, and the zinc is volatilized and removed by reducing the pressure to about 0.9 atm.

しかしながら、前者の方法では高真空であり、かつバッチ処理であることから操業効率が悪く、設備費が嵩むとともに、間接加熱であることから亜鉛除去処理に時間を要するという欠点があった。一方、後者の方法では、耐火物炉壁の寿命を少し長くすることはできるが、その効果は十分ではなく耐久性に欠けるという欠点があった。   However, the former method is disadvantageous in that high vacuum is used and batch processing is performed, so that operation efficiency is poor, equipment costs are increased, and indirect heating is required because of the indirect heating. On the other hand, in the latter method, although the life of the refractory furnace wall can be extended a little, the effect is not sufficient and there is a drawback that the durability is insufficient.

この種の脱亜鉛処理を含む製鋼ダストのリサイクルシステムに関し、次のような提案がなされている(例えば、特許文献1を参照)。すなわち、鉄鋼生成過程で生じる鉄及びその酸化物を主成分とするダストを、炭素を主成分とする粉体と混合して造粒する造粒過程、該混合造粒体に水を含浸させる水含浸過程、該混合造粒体を加圧成形して固形化する固形化過程及び該固形化過程に到るまでの間にダストの亜鉛を濃縮して脱亜鉛処理を行う脱亜鉛処理工程よりなっている。   The following proposal is made about the recycling system of the steelmaking dust containing this kind of dezincing process (for example, refer to patent documents 1). That is, a granulation process in which dust mainly composed of iron and its oxide generated in the steel production process is mixed with a powder mainly composed of carbon and granulated, and water in which the mixed granulated body is impregnated with water. An impregnation process, a solidification process in which the mixed granulated body is pressed and solidified, and a dezincification process in which the zinc of dust is concentrated to reach the solidification process. ing.

また、亜鉛を含むスクラップを非酸化性雰囲気において650℃以上に加熱保持し、亜鉛を揮発除去するスクラップの処理方法が提案されている(特許文献2を参照)。さらに、粗亜鉛を蒸発させる工程と、蒸発した亜鉛蒸気から鉄及び鉛を捕集する工程と、亜鉛蒸気から亜鉛を凝縮する工程と、カドミウムを凝縮する工程とからなる粗亜鉛の精製方法が開示されている(特許文献3を参照)。加えて、亜鉛めっき鋼板屑を大気圧にて400〜450℃で予熱した後、0.16Torr(mmHg)以下にて500〜900℃で加熱して亜鉛を蒸発分離し、さらに真空度を維持しつつ、蒸発亜鉛を400℃以下で冷却凝固させ金属亜鉛とする亜鉛除去方法が知られている(特許文献4を参照)。   Further, a scrap processing method has been proposed in which zinc-containing scrap is heated and held at 650 ° C. or higher in a non-oxidizing atmosphere to volatilize and remove zinc (see Patent Document 2). Further disclosed is a method for purifying crude zinc comprising a step of evaporating crude zinc, a step of collecting iron and lead from the evaporated zinc vapor, a step of condensing zinc from the zinc vapor, and a step of condensing cadmium. (See Patent Document 3). In addition, galvanized steel sheet scraps are preheated at 400 to 450 ° C. at atmospheric pressure and then heated at 500 to 900 ° C. at 0.16 Torr (mmHg) or less to evaporate and separate zinc, and further maintain the degree of vacuum. On the other hand, a zinc removal method is known in which evaporated zinc is cooled and solidified at 400 ° C. or lower to form metallic zinc (see Patent Document 4).

また、亜鉛めっき鋼板屑が減圧下の真空炉内で加熱することにより亜鉛めっき層を蒸発させ、蒸発した亜鉛を真空処理炉とは別室でしかも真空処理炉よりも高減圧、低温の亜鉛回収室へ導入し、この亜鉛回収室で蒸発亜鉛を固化付着させて回収する亜鉛除去方法が知られている(特許文献5を参照)。さらに、還元ガスで製鉄ダストを還元すると共に、亜鉛を還元揮発する製鉄ダストの処理方法が提案されている(特許文献6を参照)。その上、金属屑を収容した処理容器内を減圧排気した後、処理容器を加熱し、メタノールを導入する脱亜鉛方法が開示されている(特許文献7を参照)。   In addition, the galvanized steel sheet scraps are heated in a vacuum furnace under reduced pressure to evaporate the galvanized layer, and the evaporated zinc is separated from the vacuum processing furnace, and has a higher pressure and lower temperature than the vacuum processing furnace. There is known a zinc removing method in which evaporated zinc is solidified and collected in this zinc recovery chamber (see Patent Document 5). Furthermore, a method for treating iron-making dust that reduces and volatilizes zinc while reducing iron-making dust with a reducing gas has been proposed (see Patent Document 6). In addition, a dezincing method is disclosed in which after the inside of a processing container containing metal scrap is evacuated under reduced pressure, the processing container is heated and methanol is introduced (see Patent Document 7).

特開2007−270229号公報(第2頁、第3頁及び図1)JP 2007-270229 A (2nd page, 3rd page and FIG. 1) 特開平7−138664号公報(第2頁及び第3頁)JP-A-7-138664 (2nd and 3rd pages) 特開平6−108175号公報(第2頁及び第5頁)JP-A-6-108175 (pages 2 and 5) 特開平6−287657号公報(第2頁及び第3頁)JP-A-6-287657 (Pages 2 and 3) 特開平6−184657号公報(第2頁及び第3頁)JP-A-6-184657 (pages 2 and 3) 再公表特許WO97/32048号公報(第2頁、第3頁、第6頁及び第11頁)Re-published patent WO97 / 32048 (page 2, page 3, page 6 and page 11) 特開2006−37146号公報(第2頁、第3頁、第5頁及び第6頁)JP 2006-37146 A (page 2, page 3, page 5 and page 6)

しかしながら、特許文献1に記載されている脱亜鉛処理工程では、ダストの亜鉛を濃縮して脱亜鉛処理を行うことから脱亜鉛処理の効率を高めることはできるが、脱亜鉛処理方法自体は新たな方法について記載されていないため、脱亜鉛処理方法自体の改善は図られていない。   However, in the dezincing treatment step described in Patent Document 1, the efficiency of the dezincing treatment can be increased because the zinc of dust is concentrated and the dezincing treatment is performed, but the dezincing treatment method itself is a new one. Since the method is not described, the dezincification method itself is not improved.

特許文献2に記載のスクラップ処理方法においては、非酸化性雰囲気で加熱するだけであることから酸化亜鉛の還元反応が遅く、亜鉛の揮発除去効率が低いという問題があった。しかも、亜鉛を含有する鋼材屑から亜鉛を分離する場合には鉄の状態が関係し、その状態を考慮しなければ均一加熱と酸化亜鉛の速やかな還元反応により亜鉛を効率良く分離することはできないが、そのような考慮はなされていない。   In the scrap processing method described in Patent Document 2, there is a problem that the reduction reaction of zinc oxide is slow because the heating is only performed in a non-oxidizing atmosphere, and the volatilization removal efficiency of zinc is low. In addition, when separating zinc from steel scrap containing zinc, the state of iron is involved, and unless the state is taken into account, zinc cannot be separated efficiently by uniform heating and rapid reduction reaction of zinc oxide. However, no such consideration has been made.

特許文献3に記載の粗亜鉛の精製方法では、粗亜鉛の蒸発温度が具体的には580〜620℃であることから、亜鉛の蒸発が十分ではなく、亜鉛の除去効率が悪い。特許文献4に記載の亜鉛除去方法においては、亜鉛の除去を非常に高い真空度の条件下で行う必要があり、そのような条件設定は困難を伴い、亜鉛の除去効率が悪いという欠点があった。特許文献5に記載の亜鉛除去方法においても、真空処理炉内で減圧下に加熱処理した後、亜鉛回収室でさらに高減圧で亜鉛を回収する必要があり、条件設定が厳しく、亜鉛除去の効率が悪いという欠点があった。   In the crude zinc purification method described in Patent Document 3, since the evaporation temperature of the crude zinc is specifically 580 to 620 ° C., the evaporation of zinc is not sufficient and the removal efficiency of zinc is poor. In the zinc removal method described in Patent Document 4, it is necessary to remove zinc under conditions of a very high degree of vacuum. Such setting of conditions is difficult, and there is a drawback that the removal efficiency of zinc is poor. It was. Even in the zinc removal method described in Patent Document 5, it is necessary to recover zinc in a zinc recovery chamber after further heat treatment in a vacuum processing furnace, and in a zinc recovery chamber, the setting of conditions is strict and the efficiency of zinc removal There was a fault that it was bad.

特許文献6に記載の製鉄ダストの処理方法では、製鉄ダストと炭材とを混合した後、水素又は一酸化炭素を含む還元ガスを回転炉に供給して900℃又は950℃で還元処理が行われるが、鉄の状態が考慮されていない。そのため、回転炉内の熱伝導による加熱のため、加熱に時間とエネルギーを要し、非効率スペースが生じて、空間ロスがエネルギーロスに直結し、酸化亜鉛の還元反応の迅速な進行を得ることができず、効率良く亜鉛の分離を行うことができない。特許文献7に記載の脱亜鉛方法においては、具体的には処理容器内を減圧排気した後460℃まで加熱し、その後600℃に達したときメタノールを導入し、続いて950℃まで加熱し、その温度で60〜90分程度保持する。しかしながら、600℃では還元速度が遅く、亜鉛の分離効率が悪いという欠点があった。なおかつ、950℃ではα鉄からγ鉄への変態点を示す温度より高く、さらにその温度での保持時間が長いため、鉄の溶解や固着の問題を生ずるおそれがあった。   In the iron dust processing method described in Patent Document 6, after iron dust and carbon material are mixed, a reducing gas containing hydrogen or carbon monoxide is supplied to the rotary furnace, and reduction treatment is performed at 900 ° C. or 950 ° C. However, the iron state is not considered. For this reason, heating and heat conduction in the rotary furnace requires time and energy for heating, resulting in inefficient space, space loss being directly linked to energy loss, and rapid progress of the zinc oxide reduction reaction. Therefore, zinc cannot be separated efficiently. In the dezincification method described in Patent Document 7, specifically, the inside of the processing vessel is evacuated and heated to 460 ° C., then methanol is introduced when the temperature reaches 600 ° C., and then heated to 950 ° C., Hold at that temperature for about 60-90 minutes. However, at 600 ° C., the reduction rate is slow and the zinc separation efficiency is poor. Further, at 950 ° C., the temperature is higher than the temperature showing the transformation point from α iron to γ iron, and the holding time at that temperature is long.

そこで、誘導加熱により不定形の亜鉛鋼材屑を溶解しない温度で加熱制御して効率良く亜鉛除去を図ることが期待されている。
本発明はこのような従来技術に存在する問題点に着目してなされたものであり、その目的とするところは、鉄を溶解及び固着させることなく、亜鉛を効率良く除去することができる亜鉛鋼材屑からの亜鉛分離方法を提供することにある。
Therefore, it is expected to efficiently remove zinc by controlling the heating at a temperature at which the amorphous zinc steel scrap is not dissolved by induction heating.
The present invention has been made paying attention to such problems existing in the prior art, and the object thereof is a zinc steel material that can efficiently remove zinc without melting and fixing iron. The object is to provide a method for separating zinc from waste.

上記の目的を達成するために、請求項1に記載の亜鉛鋼材屑からの亜鉛分離方法は、亜鉛鋼材屑を加熱して亜鉛を分離する方法において、
脱亜鉛炉内で還元剤の存在下に、鉄の磁気変態点を示す温度よりα鉄からγ鉄への変態点を示す温度まで亜鉛鋼材屑を誘導加熱し、鉄を溶解及び固着させることなく亜鉛鋼材屑に含まれる酸化亜鉛を還元して金属亜鉛に変換し、該金属亜鉛を揮発分離することを特徴とする。
In order to achieve the above object, the method for separating zinc from zinc steel scraps according to claim 1 is a method of separating zinc by heating zinc steel scraps,
In the dezincification furnace, in the presence of a reducing agent, induction heating of zinc steel scrap from the temperature showing the iron magnetic transformation point to the temperature showing the transformation point from α iron to γ iron, without melting and fixing the iron It is characterized in that zinc oxide contained in zinc steel scrap is reduced and converted into metallic zinc, and the metallic zinc is volatilized and separated.

請求項2の亜鉛鋼材屑からの亜鉛分離方法は、請求項1に係る発明において、前記還元剤は炭素であることを特徴とする。
請求項3の亜鉛鋼材屑からの亜鉛分離方法は、請求項1又は請求項2に係る発明において、前記還元剤の添加量は、亜鉛鋼材屑に対して0.1〜10質量%であることを特徴とする。
According to a second aspect of the invention, there is provided a method for separating zinc from zinc steel scrap, wherein the reducing agent is carbon.
The method for separating zinc from zinc steel scraps according to claim 3 is the invention according to claim 1 or 2, wherein the amount of the reducing agent added is 0.1 to 10% by mass with respect to the zinc steel scraps. It is characterized by.

請求項4の亜鉛鋼材屑からの亜鉛分離方法は、請求項1から請求項3のいずれか1項に係る発明において、前記鉄の磁気変態点を示す温度では脱亜鉛炉内の亜鉛鋼材屑の温度が770±50℃に保持され、α鉄からγ鉄への変態点を示す温度では脱亜鉛炉内の亜鉛鋼材屑の温度が910±50℃に保持されることを特徴とする。   A method for separating zinc from zinc steel scraps according to claim 4 is the invention according to any one of claims 1 to 3, wherein the zinc steel scraps in the dezincification furnace are at a temperature indicating the magnetic transformation point of the iron. The temperature is maintained at 770 ± 50 ° C., and the temperature of the galvanized steel scrap in the dezincification furnace is maintained at 910 ± 50 ° C. at a temperature indicating a transformation point from α iron to γ iron.

請求項5の亜鉛鋼材屑からの亜鉛分離方法は、請求項1から請求項4のいずれか1項に係る発明において、前記脱亜鉛炉内で亜鉛を分離する全期間において減圧された圧力は、81.25〜101.15kPaの範囲内に設定されることを特徴とする。 The method for separating zinc from zinc steel scrap according to claim 5 is the invention according to any one of claims 1 to 4, wherein the pressure reduced in the entire period of separating zinc in the dezincification furnace is: It is set within a range of 81.25 to 101.15 kPa .

請求項6の亜鉛鋼材屑からの亜鉛分離方法は、請求項1から請求項5のいずれか1項に係る発明において、前記脱亜鉛炉内が還元雰囲気又は不活性ガス雰囲気に設定されることを特徴とする。   The method for separating zinc from zinc steel scrap according to claim 6 is the invention according to any one of claims 1 to 5, wherein the inside of the dezincification furnace is set to a reducing atmosphere or an inert gas atmosphere. Features.

請求項7の亜鉛鋼材屑からの亜鉛分離方法は、請求項1から請求項6のいずれか1項に係る発明において、前記亜鉛鋼材屑が鉄の磁気変態点を示す温度に達したとき又はα鉄からγ鉄への変態点を示す温度に達したときには、脱亜鉛炉内の各領域における亜鉛鋼材屑の最高温度と最低温度との温度差が50℃以内に保持されることを特徴とする。   The method for separating zinc from zinc steel scraps according to claim 7 is the invention according to any one of claims 1 to 6, wherein when the zinc steel scraps reach a temperature indicating a magnetic transformation point of iron or α The temperature difference between the maximum temperature and the minimum temperature of the galvanized steel scrap in each region in the dezincification furnace is maintained within 50 ° C. when the temperature indicating the transformation point from iron to γ iron is reached. .

本発明によれば、次のような効果を発揮することができる。
請求項1に記載の亜鉛鋼材屑からの亜鉛分離方法では、脱亜鉛炉内で還元剤の存在下に、鉄の磁気変態点を示す温度よりα鉄からγ鉄への変態点を示す温度まで亜鉛鋼材屑を誘導加熱し、鉄を溶解及び固着させることなく亜鉛鋼材屑に含まれる酸化亜鉛を還元して金属亜鉛に変換し、該金属亜鉛を揮発分離するものである。このため、亜鉛鋼材屑中の鉄は加熱され、磁性が消滅する磁気変態点(A2変態点)より、α鉄からγ鉄への変態点(A3変態点)まで変化し、それらの状態変化の過程で酸化亜鉛が還元剤の還元作用に基づいて揮発しやすい金属亜鉛に変化する。従って、鉄を溶解及び固着させることなく、亜鉛を効率良く除去することができる。
According to the present invention, the following effects can be exhibited.
In the method for separating zinc from galvanized steel scrap according to claim 1, in the presence of a reducing agent in a dezincification furnace, from a temperature indicating the magnetic transformation point of iron to a temperature indicating a transformation point from α iron to γ iron. Zinc steel scraps are induction-heated, zinc oxide contained in the zinc steel scraps is reduced and converted into metallic zinc without melting and fixing iron, and the metallic zinc is volatilized and separated. For this reason, iron in zinc steel scrap is heated and changes from the magnetic transformation point (A2 transformation point) where the magnetism disappears to the transformation point from α iron to γ iron (A3 transformation point). In the process, zinc oxide changes to metal zinc which is easily volatilized based on the reducing action of the reducing agent. Therefore, zinc can be efficiently removed without dissolving and fixing iron.

請求項2の亜鉛鋼材屑からの亜鉛分離方法では、還元剤は炭素であることから、請求項1に係る発明の効果に加えて、酸化亜鉛の還元作用を向上させることができ、亜鉛の除去率を高めることができる。さらに、還元剤が炭素で構成され、該炭素は誘導加熱において亜鉛鋼板屑より早く昇温される性質を有するため、酸化亜鉛の還元や還元雰囲気形成に用いられる以外にも、亜鉛鋼板屑の均熱化に寄与することができる。   In the method for separating zinc from zinc steel scrap according to claim 2, since the reducing agent is carbon, in addition to the effect of the invention according to claim 1, the reduction action of zinc oxide can be improved and the removal of zinc The rate can be increased. Furthermore, since the reducing agent is composed of carbon, and the carbon has a property of being heated faster than zinc steel plate scraps by induction heating, in addition to being used for reducing zinc oxide or forming a reducing atmosphere, the level of the zinc steel plate scraps is not limited. It can contribute to thermalization.

請求項3の亜鉛鋼材屑からの亜鉛分離方法では、還元剤の添加量が亜鉛鋼材屑に対して0.1〜10質量%である。従って、請求項1又は請求項2に係る発明の効果に加えて、酸化亜鉛の還元作用を十分に発揮させることができ、亜鉛の除去率を一層高めることができる。   In the method for separating zinc from the zinc steel material waste according to claim 3, the amount of the reducing agent added is 0.1 to 10% by mass with respect to the zinc steel material waste. Therefore, in addition to the effect of the invention according to claim 1 or claim 2, the reduction action of zinc oxide can be sufficiently exhibited, and the removal rate of zinc can be further increased.

請求項4の亜鉛鋼材屑からの亜鉛分離方法では、鉄の磁気変態点を示す温度では脱亜鉛炉内の亜鉛鋼材屑の温度が770±50℃にて一旦均一に加熱保持することにより、α鉄からγ鉄への変態点を示す温度まで加熱する際に、脱亜鉛炉内の亜鉛鋼材屑の温度を910±50℃に均一に加熱保持する制御が容易に行われる。このため、請求項1から請求項3のいずれかに係る発明の効果を向上させることができる。   In the method for separating zinc from galvanized steel scraps according to claim 4, the temperature of the galvanized steel scraps in the dezincification furnace is once uniformly heated and maintained at 770 ± 50 ° C. at a temperature indicating the magnetic transformation point of iron. When heating to a temperature indicating the transformation point from iron to γ iron, the temperature of the galvanized steel scrap in the dezincification furnace is easily controlled to be uniformly heated to 910 ± 50 ° C. For this reason, the effect of the invention according to any one of claims 1 to 3 can be improved.

請求項5の亜鉛鋼材屑からの亜鉛分離方法では、脱亜鉛炉内で亜鉛を分離する全期間において減圧された圧力は、81.25〜101.15kPaの範囲内に設定される。そのため、請求項1から請求項4のいずれかに係る発明の効果に加えて、亜鉛を減圧除去することができ、亜鉛の除去率をさらに高めることができる。 In the method for separating zinc from galvanized steel scraps according to claim 5 , the pressure reduced in the entire period of separating zinc in the dezincification furnace is set in the range of 81.25 to 101.15 kPa . Therefore, in addition to the effects of the invention according to any one of claims 1 to 4, zinc can be removed under reduced pressure, and the removal rate of zinc can be further increased.

請求項6の亜鉛鋼材屑からの亜鉛分離方法では、脱亜鉛炉内が還元雰囲気又は不活性ガス雰囲気に設定される。このため、請求項1から請求項5のいずれかに係る発明の効果に加えて、酸素による影響を回避することができ、酸化亜鉛の還元反応を円滑に進行させることができる。還元雰囲気は脱亜鉛炉内の空気流入を防ぎながら加熱することで、還元剤と空気ないしは亜鉛鋼板屑中の酸化亜鉛と反応してCOガスが発生することにより形成される。さらに、固体の還元剤を添加しなくても、脱亜鉛炉内にCOガスやCHガスなどの還元性ガスを吹き込むことにより、還元雰囲気を形成することができ、亜鉛の分離が可能となる。 In the method for separating zinc from galvanized steel scrap according to claim 6, the inside of the dezincification furnace is set to a reducing atmosphere or an inert gas atmosphere. For this reason, in addition to the effect of the invention according to any one of claims 1 to 5, the influence of oxygen can be avoided and the reduction reaction of zinc oxide can proceed smoothly. The reducing atmosphere is formed by heating while preventing air inflow in the dezincification furnace, and reacting with the reducing agent and air or zinc oxide in the galvanized steel plate scrap to generate CO gas. Furthermore, a reducing atmosphere can be formed by blowing a reducing gas such as CO gas or CH 4 gas into a dezincing furnace without adding a solid reducing agent, and zinc can be separated. .

請求項7の亜鉛鋼材屑からの亜鉛分離方法では、亜鉛鋼材屑が鉄の磁気変態点を示す温度に達したとき又はα鉄からγ鉄への変態点を示す温度に達したときには、脱亜鉛炉内の各領域における亜鉛鋼材屑の最高温度と最低温度との温度差が50℃以内に保持される。このため、請求項1から請求項6のいずれかに係る発明の効果に加えて、亜鉛鋼材屑の均熱化を一層向上させることができる。   In the method for separating zinc from galvanized steel scrap according to claim 7, when the galvanized steel scrap reaches a temperature indicating a magnetic transformation point of iron or a temperature indicating a transformation point from α iron to γ iron, dezincification is performed. The temperature difference between the maximum temperature and the minimum temperature of the galvanized steel scrap in each region in the furnace is maintained within 50 ° C. For this reason, in addition to the effect of the invention which concerns on any one of Claims 1-6, the soaking | uniform-heating of zinc-steel material waste can be improved further.

亜鉛鋼材屑から金属亜鉛を分離するための脱亜鉛炉を備えた装置を模式的に示す断面図。Sectional drawing which shows typically the apparatus provided with the dezincification furnace for isolate | separating metallic zinc from zinc steel material waste. 参考例1における加熱時間と脱亜鉛炉内温度との関係を示すグラフ。The graph which shows the relationship between the heating time in the reference example 1, and the temperature in a dezincification furnace. 参考例2における脱亜鉛炉内の圧力と全亜鉛揮発温度との関係を示すグラフ。The graph which shows the relationship between the pressure in the dezincification furnace in reference example 2, and total zinc volatilization temperature. 亜鉛鋼材屑から金属亜鉛を分離するための脱亜鉛炉を備えた別の装置を模式的に示す断面図。Sectional drawing which shows typically another apparatus provided with the dezincification furnace for isolate | separating metallic zinc from zinc steel material waste. 実施例1における加熱時間と脱亜鉛炉内温度との関係を示すグラフ。The graph which shows the relationship between the heating time in Example 1, and the temperature in a dezincification furnace. 実施例2における加熱時間と脱亜鉛炉内温度との関係を示すグラフ。The graph which shows the relationship between the heating time in Example 2, and the temperature in a dezincification furnace. 実施例3における加熱時間と脱亜鉛炉内温度との関係を示すグラフ。The graph which shows the relationship between the heating time in Example 3, and the temperature in a dezincification furnace. 実施例4における加熱時間と脱亜鉛炉内温度との関係を示すグラフ。The graph which shows the relationship between the heating time in Example 4, and the temperature in a dezincification furnace. 実施例5における加熱時間と脱亜鉛炉内温度との関係を示すグラフ。The graph which shows the relationship between the heating time in Example 5, and the temperature in a dezincification furnace.

以下、本発明の最良と思われる実施形態について詳細に説明する。
本実施形態における亜鉛鋼材屑からの亜鉛分離方法は、亜鉛鋼材屑を誘導加熱することにより亜鉛を分離する方法であって、鉄(融点1535℃)を溶解及び固着させることなく亜鉛(金属亜鉛、沸点907℃)の分離を行うものである。すなわち、脱亜鉛炉内で還元剤の存在下に、鉄の磁気変態点を示す温度よりα鉄からγ鉄への変態点を示す温度まで誘導加熱し、亜鉛鋼材屑に含まれる酸化亜鉛を還元して金属亜鉛に変換し、該金属亜鉛を揮発分離するものである。
In the following, embodiments that are considered to be the best of the present invention will be described in detail.
The method for separating zinc from zinc steel scraps in this embodiment is a method of separating zinc by induction heating of zinc steel scraps, and without melting and fixing iron (melting point: 1535 ° C.) (Boiling point 907 ° C.). That is, in the presence of a reducing agent in the dezincification furnace, induction heating is performed from the temperature showing the iron magnetic transformation point to the temperature showing the transformation point from α iron to γ iron, and the zinc oxide contained in the zinc steel scrap is reduced. Thus, it is converted into metallic zinc, and the metallic zinc is volatilized and separated.

亜鉛鋼材屑は、鋼材を利用した後のスクラップ鉄であり、酸化亜鉛を含有する。この亜鉛鋼材屑中に含まれる酸化亜鉛〔ZnO、沸点(昇華点)1725℃〕は、還元剤によって還元剤され、揮発分離が容易な金属亜鉛(Zn)となる。還元剤はこのような還元作用を発現できればその種類は制限されないが、炭素が好適に使用される。炭素としては、例えば98%粒状カーボン(加炭材)、コークス等が挙げられる。   Zinc steel scrap is scrap iron after using steel and contains zinc oxide. Zinc oxide [ZnO, boiling point (sublimation point) 1725 ° C.] contained in this zinc steel scrap is reduced by a reducing agent to become metallic zinc (Zn) that can be easily separated by volatilization. The type of the reducing agent is not limited as long as it can exhibit such a reducing action, but carbon is preferably used. Examples of carbon include 98% granular carbon (carburized material) and coke.

係る還元剤の添加量は、亜鉛鋼材屑に対して0.1〜10質量%であることが好ましく、0.2〜2質量%であることがより好ましい。還元剤の添加量が0.1質量%を下回る場合には、還元剤が不足して酸化亜鉛を十分に還元することができなくなる。その一方、10質量%を上回る場合には、還元剤が過剰となって酸化亜鉛の還元に用いられない還元剤が残存し、無駄となる。   The amount of the reducing agent added is preferably 0.1 to 10% by mass and more preferably 0.2 to 2% by mass with respect to the zinc steel scrap. When the addition amount of the reducing agent is less than 0.1% by mass, the reducing agent is insufficient and zinc oxide cannot be sufficiently reduced. On the other hand, when it exceeds 10% by mass, the reducing agent becomes excessive and the reducing agent that is not used for the reduction of zinc oxide remains and is wasted.

前記鉄の変態点(transformation point)は、原子配列や物理的性質が変化する温度のことを意味し、磁気変態点(A2変態点)は磁性を帯びていた状態から温度上昇によって磁性が消失する温度で、純鉄では770℃(1040K)である。この磁気変態点は、鉄中の炭素含有量にはほとんど影響されず、ほぼ一定である。一方、α鉄からγ鉄への変態点(A3変態点)は、純鉄では910℃(1183K)である。このα鉄からγ鉄への変態点は、体心立方晶から面心立方晶への鉄の結晶形態の変換であり、鉄中の炭素の含有量の増加と共にこの変態点は低下する。   The iron transformation point means the temperature at which the atomic arrangement and physical properties change, and the magnetic transformation point (A2 transformation point) disappears from the magnetized state as the temperature rises. The temperature is 770 ° C. (1040 K) for pure iron. This magnetic transformation point is almost unaffected by the carbon content in the iron and is almost constant. On the other hand, the transformation point (A3 transformation point) from α iron to γ iron is 910 ° C. (1183 K) in pure iron. The transformation point from α iron to γ iron is a transformation of the crystal form of iron from body-centered cubic to face-centered cubic, and this transformation point decreases with an increase in the carbon content in iron.

加熱温度としては、鉄の磁気変態点であるA2変態点を示す温度では脱亜鉛炉内の亜鉛鋼材屑の温度が全体的に770±50℃に均一に加熱保持され、α鉄からγ鉄への変態点であるA3変態点を示す温度では脱亜鉛炉11内の亜鉛鋼材屑の温度が全体的に910±50℃に均一に加熱保持されることが好ましい。このように、鉄の特性が変化する温度まで誘導加熱することにより、酸化亜鉛を還元して金属亜鉛を生成する還元反応を容易に行うことができる。このため、鉄が溶融しない状態で必要以上に熱エネルギーを投入する必要がなく、効率良く金属亜鉛を除去することが可能である。加熱温度が磁気変態点を下回る場合には、酸化亜鉛から金属亜鉛への還元反応を効率良く進行させることができなくなる。その一方、加熱温度がα鉄からγ鉄への変態点を50℃以上上回る場合には、過剰な熱エネルギーを必要とするほか、隣接する亜鉛鋼材屑間での放電現象等に伴う局所的な溶融や固着の懸念が増大し、ハンドリング性が低下する。   As for the heating temperature, at the temperature showing the A2 transformation point, which is the magnetic transformation point of iron, the temperature of the galvanized steel scrap in the dezincification furnace is uniformly heated and maintained at 770 ± 50 ° C., and from α iron to γ iron It is preferable that the temperature of the galvanized steel scrap in the dezincification furnace 11 is uniformly heated and maintained at 910 ± 50 ° C. as a whole at the temperature indicating the A3 transformation point, which is the transformation point. As described above, by induction heating to a temperature at which the characteristics of iron change, a reduction reaction for reducing zinc oxide to produce metallic zinc can be easily performed. For this reason, it is not necessary to input heat energy more than necessary in a state where iron does not melt, and it is possible to efficiently remove metallic zinc. When the heating temperature is lower than the magnetic transformation point, the reduction reaction from zinc oxide to metallic zinc cannot proceed efficiently. On the other hand, when the heating temperature exceeds the transformation point from α iron to γ iron by 50 ° C. or more, in addition to requiring excessive heat energy, it is locally accompanied by a discharge phenomenon between adjacent zinc steel scraps. Concerns about melting and sticking increase, and handling properties decrease.

また、鉄の磁気変態点又はα鉄からγ鉄への変態点に達したとき、その温度に一定時間保持することにより、脱亜鉛炉11内おける均熱化を図ることができる。一定温度に保持する時間は、磁気変態点に達した場合には例えば10〜60分、α鉄からγ鉄への変態点に達した場合には例えば5〜30分である。この時間は、脱亜鉛炉11内の温度分布等によって適宜設定することができる。このようにして脱亜鉛炉11内における均熱化を図ることにより、脱亜鉛炉11での局所的な過熱を抑制することができる。従って、脱亜鉛炉11内において、部分的な鉄の溶解を防止することができると共に、鉄同士の固着や炉壁への鉄の固着を防止することができる。   Further, when the magnetic transformation point of iron or the transformation point from α iron to γ iron is reached, the temperature can be maintained in that temperature for a certain period of time, so that the soaking in the dezincification furnace 11 can be achieved. The time for holding at a constant temperature is, for example, 10 to 60 minutes when the magnetic transformation point is reached, and for example, 5 to 30 minutes when the transformation point from α iron to γ iron is reached. This time can be appropriately set according to the temperature distribution in the dezincification furnace 11 or the like. Thus, local overheating in the dezincification furnace 11 can be suppressed by achieving temperature uniformity in the dezincification furnace 11. Accordingly, in the dezincification furnace 11, partial melting of iron can be prevented, and adhesion between irons and adhesion of iron to the furnace wall can be prevented.

亜鉛分離方法を実施する場合には、脱亜鉛炉内の圧力は、金属亜鉛の分離を促進するために101.15〜81.25kPaの減圧に設定されることが望ましい。すなわち、大気圧(101.25kPa)との差圧は−0.1〜−20kPaであることが望ましい。脱亜鉛炉内の圧力をこのように減圧に設定することにより、金属亜鉛を吸引して除去することができ、金属亜鉛の分離除去を効率良く行うことができる。脱亜鉛炉内の圧力が101.15kPaより高い場合、脱亜鉛炉内を減圧にする効果が低減し、金属亜鉛を吸引除去する効率が悪くなる。その一方、81.25kPaより低い場合、そのような高い減圧度まで減圧にするために過剰なエネルギーを必要とし、それに見合う金属亜鉛の分離効率は得られない。 When carrying out the zinc separation method, the pressure in the dezincification furnace is preferably set to a reduced pressure of 101.15 to 81.25 kPa in order to promote the separation of metallic zinc. That is, the differential pressure from the atmospheric pressure (101.25 kPa) is desirably −0.1 to −20 kPa. By setting the pressure in the dezincification furnace to a reduced pressure in this manner, metallic zinc can be sucked and removed, and separation and removal of metallic zinc can be performed efficiently. When the pressure in the dezincification furnace is higher than 101.15 kPa, the effect of reducing the pressure in the dezincification furnace is reduced, and the efficiency of sucking and removing metal zinc is deteriorated. On the other hand, if the pressure is lower than 81.25 kPa, excessive energy is required to reduce the pressure to such a high degree of pressure reduction, and the metal zinc separation efficiency corresponding to that is not obtained.

また、脱亜鉛炉内は還元雰囲気又は不活性ガス雰囲気に設定されることにより、酸化亜鉛の還元反応を促すことができる。粒状コークス(加炭材)等の固体還元剤と酸化亜鉛から金属亜鉛を生成する反応は下記の反応式(1)に示すように還元反応であることから、酸素が存在しない還元雰囲気又は不活性ガス雰囲気であることが好ましい。   Moreover, the reduction reaction of zinc oxide can be promoted by setting the inside of the dezincification furnace to a reducing atmosphere or an inert gas atmosphere. The reaction to produce metallic zinc from solid reducing agent such as granular coke (carburized material) and zinc oxide is a reduction reaction as shown in the following reaction formula (1). A gas atmosphere is preferred.

ZnO+C → Zn+CO ・・・(1)
これらの雰囲気のうち、還元反応を促すことができる点から還元雰囲気であることが最も好ましい。脱亜鉛炉内への空気流入を抑えることにより、加炭材と空気との下記反応式(2)の反応で生じた一酸化炭素(CO)ガスによって、下記反応式(3)に基づき、さらに酸化亜鉛の還元を促す。また、固体還元剤の代替として、COガスやメタン(CH)ガスなどの還元性ガスを脱亜鉛炉内に混入させて加熱することによっても亜鉛の分離処理を行うことができる。
ZnO + C → Zn + CO (1)
Of these atmospheres, a reducing atmosphere is most preferable because it can promote a reduction reaction. By suppressing the air inflow into the dezincification furnace, the carbon monoxide (CO) gas generated by the reaction of the following reaction formula (2) between the carburized material and air is further based on the following reaction formula (3), Promotes reduction of zinc oxide. Further, as an alternative to the solid reducing agent, the zinc separation process can also be performed by mixing and heating a reducing gas such as CO gas or methane (CH 4 ) gas in the dezincification furnace.

C+1/2O → CO ・・・(2)
ZnO+CO → Zn+CO ・・・(3)
なお、酸素が多量に存在する大気雰囲気では、大気に含まれる酸素が還元反応を阻害することから好ましくない。
C + 1 / 2O 2 → CO (2)
ZnO + CO → Zn + CO 2 (3)
Note that in an air atmosphere where a large amount of oxygen is present, oxygen contained in the air is not preferable because it inhibits the reduction reaction.

図1に模式的に示すように、亜鉛鋼材屑から亜鉛を分離するための装置は、有底筒状をなす耐火性の脱亜鉛炉(るつぼ)11の外周面に誘導加熱用のコイル12が巻回されて誘導加熱されるように構成されている。そして、亜鉛鋼材屑から亜鉛を分離する場合には、脱亜鉛炉11内に亜鉛鋼材屑及び還元剤を含む原料13を投入し、図示しない蓋をして機密を保持した状態で所定温度まで加熱することにより行われる。その結果、亜鉛鋼材屑に含まれる酸化亜鉛が還元されて金属亜鉛に変換され、変換された揮発性の高い金属亜鉛が揮発分離される。なお、脱亜鉛炉11内に亜鉛鋼材屑とともに戻し材14を投入して加熱してもよい。   As schematically shown in FIG. 1, an apparatus for separating zinc from galvanized steel scrap has an induction heating coil 12 on the outer peripheral surface of a bottomed cylindrical fire-resistant dezincification furnace (crucible) 11. It is configured to be wound and induction heated. And when separating zinc from galvanized steel scrap, the raw material 13 containing the galvanized steel scrap and reducing agent is put into the dezincification furnace 11 and heated to a predetermined temperature with a cover not shown in the figure kept confidential. Is done. As a result, the zinc oxide contained in the zinc steel scrap is reduced and converted to metallic zinc, and the converted highly volatile metallic zinc is volatilized and separated. In addition, the return material 14 may be put into the dezincification furnace 11 together with the zinc steel material waste and heated.

また、亜鉛鋼材屑から亜鉛を分離するための装置は例えば図4に示すように構成される。すなわち、脱亜鉛炉11は保温用の外容器15内に収容され、その外周には誘導加熱用のコイル12が巻回されて誘導加熱されるようになっている。脱亜鉛炉11の上端部には、脱亜鉛炉11内を密閉するためのフード16が被せられている。脱亜鉛炉11内には複数の熱電対17が挿入され、脱亜鉛炉11内各部の温度を測定できるようになっている。前記フード16には、大気圧との差圧を測定するための差圧計18が取付けられている。さらに、フード16には排気管19を通じて、空気流入バルブ20と集塵機(亜鉛回収器)21が接続され、脱亜鉛炉11内で変換された金属亜鉛が排気されるようになっている。空気流入のみでのCOガス低減が困難な場合には、空気流入バルブ20の代わりに小型熱風発生器を設置して、COガスを確実に燃焼させることもできる。   Moreover, the apparatus for isolate | separating zinc from zinc steel material waste is comprised as shown, for example in FIG. That is, the dezincification furnace 11 is accommodated in an outer container 15 for heat insulation, and an induction heating coil 12 is wound around the outer periphery of the dezincification furnace 11 for induction heating. A hood 16 for sealing the inside of the dezincification furnace 11 is put on the upper end portion of the dezincification furnace 11. A plurality of thermocouples 17 are inserted in the dezincification furnace 11 so that the temperature of each part in the dezincification furnace 11 can be measured. A differential pressure gauge 18 for measuring a differential pressure from the atmospheric pressure is attached to the hood 16. Further, an air inflow valve 20 and a dust collector (zinc collector) 21 are connected to the hood 16 through an exhaust pipe 19 so that metallic zinc converted in the dezincification furnace 11 is exhausted. When it is difficult to reduce the CO gas only by air inflow, a small hot air generator can be installed instead of the air inflow valve 20 to reliably burn the CO gas.

なお、この形態ではCOガスの燃焼と同時にガス状の金属亜鉛は酸化亜鉛の固体粉末に変化するため、集塵機21にて酸化亜鉛ダストとして回収する。必要に応じ、集塵機21の前に冷却器を設置する。また、金属亜鉛として回収する場合には、燃焼器を無くして、亜鉛回収器(多層冷却板)にて金属亜鉛を冷却板に凝縮付着させて回収し、亜鉛回収器の下流工程で、触媒を用いてCOガスを無害なCOとして放出する。あるいは、このCOガスを還元ガスや燃料として再利用する。 In this embodiment, the gaseous metallic zinc changes into a zinc oxide solid powder simultaneously with the combustion of the CO gas, so that it is recovered by the dust collector 21 as zinc oxide dust. If necessary, a cooler is installed in front of the dust collector 21. Also, when recovering as metallic zinc, the combustor is eliminated and the zinc recovery unit (multi-layer cooling plate) condenses and recovers the metallic zinc on the cooling plate and recovers the catalyst in the downstream process of the zinc recovery unit. release CO gas as harmless CO 2 using. Alternatively, this CO gas is reused as a reducing gas or fuel.

以上詳述した実施形態によって発揮される効果を以下にまとめて記載する。
・ 本実施形態における亜鉛鋼材屑からの亜鉛分離方法では、脱亜鉛炉11内で還元剤の存在下に、鉄の磁気変態点よりα鉄からγ鉄への変態点まで亜鉛鋼材屑を誘導加熱し、鉄を溶解及び固着させることなく亜鉛鋼材屑に含まれる酸化亜鉛を還元して金属亜鉛に変換し、該金属亜鉛を揮発分離するものである。このため、亜鉛鋼材屑中の鉄は加熱され、磁性が消滅する磁気変態点より、α鉄からγ鉄への変態点まで変化し、その状態で酸化亜鉛が還元剤の還元作用に基づいて揮発しやすい金属亜鉛に変化する。従って、鉄を溶解及び固着させることなく、亜鉛を効率良く除去することができる。例えば、亜鉛除去率77〜87%という高い除去率を得ることができる。よって、スクラップ鉄を鋳物等の原料として再資源化を図ることができ、省エネルギー化、省資源化及び省コスト化に資することができる。
The effects exhibited by the embodiment described in detail above will be collectively described below.
In the method for separating zinc from zinc steel scrap in this embodiment, in the dezincification furnace 11, in the presence of a reducing agent, zinc steel scrap is induction-heated from the iron magnetic transformation point to the transformation point from α iron to γ iron. Then, the zinc oxide contained in the zinc steel scrap is reduced and converted into metallic zinc without melting and fixing iron, and the metallic zinc is volatilized and separated. For this reason, the iron in zinc steel scrap is heated and changes from the magnetic transformation point at which magnetism disappears to the transformation point from α iron to γ iron, and in that state, zinc oxide volatilizes based on the reducing action of the reducing agent. It changes to metallic zinc which is easy to do. Therefore, zinc can be efficiently removed without dissolving and fixing iron. For example, a high removal rate of 77 to 87% can be obtained. Therefore, scrap iron can be used as a raw material such as castings, which can contribute to energy saving, resource saving, and cost saving.

・ 前記還元剤は炭素であることから、酸化亜鉛の還元作用を向上させることができ、亜鉛の除去率を高めることができる。
・ 還元剤の添加量が亜鉛鋼材屑に対して0.1〜10質量%であることにより、酸化亜鉛の還元作用を十分に発揮させることができ、亜鉛の除去率を一層高めることができる。
-Since the said reducing agent is carbon, the reduction effect | action of zinc oxide can be improved and the removal rate of zinc can be raised.
-By the addition amount of a reducing agent being 0.1-10 mass% with respect to zinc steel material waste, the reduction effect of zinc oxide can fully be exhibited and the removal rate of zinc can be raised further.

・ 鉄の磁気変態点を示す温度では脱亜鉛炉11内の亜鉛鋼材屑の温度が770±50℃に保持され、α鉄からγ鉄への変態点を示す温度では脱亜鉛炉11内の亜鉛鋼材屑の温度が910±50℃に保持される。この場合、前述の効果に加えて、脱亜鉛炉11内における均熱化を図ることができる。   The temperature of the zinc steel material scrap in the dezincification furnace 11 is maintained at 770 ± 50 ° C. at a temperature showing the iron magnetic transformation point, and the zinc in the dezincification furnace 11 is shown at a temperature showing the transformation point from α iron to γ iron. The temperature of the steel scrap is maintained at 910 ± 50 ° C. In this case, in addition to the above-described effects, the temperature can be equalized in the dezincification furnace 11.

・ 脱亜鉛炉11内で亜鉛を分離する全期間において減圧された圧力は、81.25〜101.15kPaの範囲内に設定されることにより、亜鉛を減圧除去することができ、亜鉛の除去率をさらに高めることができる。 -The pressure reduced in the entire period of separating zinc in the dezincification furnace 11 is set in the range of 81.25 to 101.15 kPa, so that zinc can be removed under reduced pressure, and the removal rate of zinc Can be further enhanced.

・ 脱亜鉛炉11内が還元雰囲気又は不活性ガス雰囲気に設定されることにより、酸素による影響を回避することができ、酸化亜鉛の還元反応を円滑に進行させることができる。   -By setting the inside of the dezincification furnace 11 to a reducing atmosphere or an inert gas atmosphere, the influence of oxygen can be avoided and the reduction reaction of zinc oxide can proceed smoothly.

・ 亜鉛鋼材屑が鉄の磁気変態点を示す温度に達したとき又はα鉄からγ鉄への変態点を示す温度に達したときには、脱亜鉛炉11内の外周領域、中心領域等の各領域における亜鉛鋼材屑の最高温度と最低温度との温度差を50℃以内という狭い温度範囲に保持することにより、亜鉛鋼材屑の均熱化を一層向上させることができる。   When the zinc steel scrap reaches a temperature indicating the magnetic transformation point of iron or when it reaches a temperature indicating the transformation point from α iron to γ iron, each region such as the outer peripheral region and the central region in the dezincification furnace 11 By maintaining the temperature difference between the maximum temperature and the minimum temperature of the zinc steel material scraps in a narrow temperature range of 50 ° C. or less, soaking of the zinc steel material scraps can be further improved.

以下、実施例を挙げて前記実施形態をさらに具体的に説明するが、本発明はそれら実施例の範囲に限定されるものではない。
(参考例1)
参考例1では、図1に示す脱亜鉛炉11内に亜鉛鋼材屑を投入し、大気雰囲気において鉄の磁気変態点まで加熱し、亜鉛鋼材屑に含まれる酸化亜鉛の還元を試みた。この場合、脱亜鉛炉11内の均熱化を図るべく、脱亜鉛炉11内の各部の温度を測定した。その結果、脱亜鉛炉11内の底部外周領域Aでは787℃、底部中心領域Eでは769℃、中間部外周領域Bでは809℃及び中間部中心領域Fでは770℃であった。それらの領域における温度差ΔTは40℃であった。また、亜鉛除去率は最大で68%であった。
Hereinafter, although the embodiment will be described more specifically with reference to examples, the present invention is not limited to the scope of these examples.
(Reference Example 1)
In Reference Example 1, zinc steel scrap was put into the dezincification furnace 11 shown in FIG. 1, heated to the magnetic transformation point of iron in the air atmosphere, and reduction of zinc oxide contained in the zinc steel scrap was attempted. In this case, the temperature of each part in the dezincification furnace 11 was measured in order to equalize the temperature in the dezincification furnace 11. As a result, the bottom outer peripheral region A in the dezincification furnace 11 was 787 ° C., the bottom central region E was 769 ° C., the intermediate peripheral region B was 809 ° C., and the intermediate central region F was 770 ° C. The temperature difference ΔT in these regions was 40 ° C. The maximum zinc removal rate was 68%.

また、上記の各領域における時間(h)と温度(℃)との関係を測定し、その結果を図2に示した。図2の結果より、底部中心領域Eでは若干不規則な温度上昇が見られたが、概ね順調な温度上昇であり、約1時間30分で磁気変態点(770℃)に達した。
(参考例2)
この参考例2では、還元雰囲気、不活性ガス雰囲気又は大気雰囲気において、脱亜鉛炉11内の圧力(kPa)と、全亜鉛揮発温度(℃)との関係を、平衡計算によって算出し、その結果を図3に示した。その結果、還元雰囲気及び不活性ガス雰囲気では、大気雰囲気に比べ、同一圧力では全亜鉛揮発温度は低い温度であった。なお、図3中実線は還元雰囲気、一点鎖線は不活性ガス雰囲気及び点線は大気雰囲気を表す。
(実施例1)
前記図4に示す脱亜鉛炉11内に亜鉛鋼材40.00kg、98%粒状カーボン(加炭材)0.60kg(亜鉛鋼材に対して1.5質量%)及び戻し材30.00kgを投入し、大気雰囲気中にて鉄のA3変態点まで加熱し、亜鉛鋼材に含まれる酸化亜鉛の還元を行った。また、脱亜鉛炉内の圧力を−0.15kPaの減圧とした。昇温方法は、常温から760℃まで30分、760℃で45分間保持して均熱化制御し、760〜910℃まで38分、及び910〜920℃まで7分間保持した。
Further, the relationship between time (h) and temperature (° C.) in each of the above regions was measured, and the result is shown in FIG. From the results of FIG. 2, although a slightly irregular temperature increase was observed in the bottom center region E, the temperature increase was generally smooth and reached the magnetic transformation point (770 ° C.) in about 1 hour 30 minutes.
(Reference Example 2)
In this Reference Example 2, the relationship between the pressure (kPa) in the dezincification furnace 11 and the total zinc volatilization temperature (° C.) in a reducing atmosphere, an inert gas atmosphere or an air atmosphere is calculated by equilibrium calculation, and the result Is shown in FIG. As a result, in the reducing atmosphere and the inert gas atmosphere, the total zinc volatilization temperature was lower at the same pressure than in the air atmosphere. In FIG. 3, a solid line represents a reducing atmosphere, a one-dot chain line represents an inert gas atmosphere, and a dotted line represents an air atmosphere.
Example 1
40.00 kg of zinc steel material, 0.60 kg of 98% granular carbon (carburized material) (1.5% by mass with respect to zinc steel material) and 30.00 kg of return material are put into the dezincification furnace 11 shown in FIG. Then, heating was performed up to the A3 transformation point of iron in an air atmosphere, and zinc oxide contained in the zinc steel material was reduced. The pressure in the dezincification furnace was reduced to -0.15 kPa. The temperature was raised from room temperature to 760 ° C. for 30 minutes, and maintained at 760 ° C. for 45 minutes to control soaking, and maintained from 760 to 910 ° C. for 38 minutes and from 910 to 920 ° C. for 7 minutes.

その結果、脱亜鉛炉11内の底部外周領域Aでは908.2℃、底部中心領域Eでは896.5℃、中間部外周領域Bでは908.2℃及び中間部中心領域Fでは907.7℃であった。それらの領域における亜鉛鋼材の最高温度と最低温度との温度差ΔTは11.7℃であるとともに、各領域における亜鉛鋼材の温度は910±50℃の範囲内であった。また、亜鉛除去率は89.9%であった。また、上記の各領域における時間(min)と温度(℃)との関係を測定し、その結果を図5に示した。図5に示した結果より、底部外周領域A及び中間部外周領域Bでは、底部中心領域E及び中間部中心領域Fに比べて温度上昇が若干遅れたが、概ね順調な温度上昇を示し、120分で試験を終了した。このグラフに見られるように、脱亜鉛炉11内で均熱化を十分に達成することができた。
(実施例2)
図4に示す脱亜鉛炉11内に亜鉛鋼材40.00kg、98%粒状カーボン(加炭材)0.32kg(亜鉛鋼材に対して0.78質量%)及び戻し材30.00kgを投入し、還元雰囲気中にて、炉内の亜鉛鋼材屑の最低温度がA3変態点の温度に達するまで加熱し、亜鉛鋼材に含まれる酸化亜鉛の還元を行った。また、脱亜鉛炉11内の圧力を−0.51kPaの減圧とした。昇温方法は、常温から760℃まで30分、760℃で33分間保持して均熱化制御し、760〜910℃まで17分、及び910℃で23分間保持して均熱化制御し、さらに910℃で17分間保持した。
As a result, the bottom outer peripheral region A in the dezincification furnace 11 is 908.2 ° C., the bottom central region E is 896.5 ° C., the intermediate peripheral region B is 908.2 ° C., and the intermediate central region F is 907.7 ° C. Met. The temperature difference ΔT between the highest temperature and the lowest temperature of the zinc steel material in these regions was 11.7 ° C., and the temperature of the zinc steel material in each region was within the range of 910 ± 50 ° C. The zinc removal rate was 89.9%. Further, the relationship between time (min) and temperature (° C.) in each of the above regions was measured, and the result is shown in FIG. From the results shown in FIG. 5, in the bottom outer peripheral area A and the middle outer peripheral area B, the temperature rise is slightly delayed as compared with the bottom central area E and the middle central area F, but the temperature rise is generally smooth. The test was completed in minutes. As can be seen from this graph, it was possible to sufficiently achieve soaking in the dezincification furnace 11.
(Example 2)
Into the dezincification furnace 11 shown in FIG. 4, 40.00 kg of zinc steel material, 0.32 kg of 98% granular carbon (carburized material) (0.78% by mass with respect to zinc steel material) and 30.00 kg of return material are charged, In a reducing atmosphere, heating was performed until the minimum temperature of the zinc steel material scrap in the furnace reached the temperature of the A3 transformation point, and the zinc oxide contained in the zinc steel material was reduced. The pressure in the dezincification furnace 11 was reduced to -0.51 kPa. The temperature raising method is 30 minutes from room temperature to 760 ° C., 33 minutes at 760 ° C., and temperature control is controlled, 17 minutes from 760 to 910 ° C. and 17 minutes at 910 ° C. and 23 minutes, temperature control is controlled. Furthermore, it hold | maintained at 910 degreeC for 17 minutes.

その結果、脱亜鉛炉11内の底部外周領域Aでは959.4℃、底部中心領域Eでは951.8℃、中間部外周領域Bでは919.3℃及び中間部中心領域Fでは923.2℃であった。それらの領域における温度差ΔTは40.1℃であるとともに、各領域における亜鉛鋼材の温度は910±50℃の範囲内であった。また、亜鉛除去率は94.0%であった。さらに、上記の各領域における時間(min)と温度(℃)との関係を測定し、その結果を図6に示した。図6に示した結果より、底部外周領域A及び底部中心領域Eが同様の温度変化を示し、中間部外周領域B及び中間部中心領域Fが同様の温度変化を示したが、概ね順調な温度上昇を示し、120分で試験を終了した。このグラフに見られるように、脱亜鉛炉11内で均熱化を図ることができた。
(実施例3)
図4に示す脱亜鉛炉11内に亜鉛鋼材40.00kg、98%カーボン粉末(加炭材)0.32kg(亜鉛鋼材に対して0.78質量%)及び戻し材30.00kgを投入し、還元雰囲気中にて亜鉛鋼材屑の最低温度が磁気変態点の温度に達するまで加熱し、亜鉛鋼材に含まれる酸化亜鉛の還元を行った。また、脱亜鉛炉11内の圧力を−0.45kPaの減圧とした。昇温方法は、常温から760℃まで30℃/分の昇温速度で24分、770℃で51分間保持して均熱化制御した。
As a result, the bottom outer peripheral region A in the dezincification furnace 11 is 959.4 ° C., the bottom central region E is 951.8 ° C., the intermediate peripheral region B is 919.3 ° C., and the intermediate central region F is 923.2 ° C. Met. The temperature difference ΔT in these regions was 40.1 ° C., and the temperature of the zinc steel material in each region was in the range of 910 ± 50 ° C. The zinc removal rate was 94.0%. Furthermore, the relationship between time (min) and temperature (° C.) in each of the above regions was measured, and the results are shown in FIG. From the results shown in FIG. 6, the bottom outer peripheral region A and the bottom central region E showed similar temperature changes, and the middle outer peripheral region B and the middle central region F showed similar temperature changes. An increase was noted and the test was terminated in 120 minutes. As can be seen from this graph, it was possible to achieve soaking in the dezincification furnace 11.
(Example 3)
Into the dezincification furnace 11 shown in FIG. 4, 40.00 kg of zinc steel material, 0.32 kg of 98% carbon powder (carburized material) (0.78 mass% with respect to zinc steel material) and 30.00 kg of return material are charged, The zinc oxide contained in the zinc steel material was reduced by heating until the minimum temperature of the zinc steel material scrap reached the temperature of the magnetic transformation point in a reducing atmosphere. Further, the pressure in the dezincification furnace 11 was reduced to -0.45 kPa. The temperature raising method was controlled from the normal temperature to 760 ° C. by maintaining the temperature at a rate of 30 ° C./min for 24 minutes and at 770 ° C. for 51 minutes.

その結果、脱亜鉛炉11内の底部外周領域Aでは789.3℃、底部中心領域Eでは789.6℃、中間部外周領域Bでは765.3℃及び中間部中心領域Fでは739.9℃であった。温度差ΔTは最小値49.7℃を示すとともに、各領域における亜鉛鋼材の温度は770±50℃の範囲内であった。また、亜鉛除去率は90.8%であった。さらに、上記の各領域における時間(min)と温度(℃)との関係を測定し、その結果を図7に示した。図7に示した結果より、底部外周領域Aの温度が最も高く、中間部中心領域Fの温度が最も低く、中間部外周領域B及び底部中心領域Eの温度がそれらの中間の温度を示し、概ね順調な温度上昇を示した。脱亜鉛炉11内の温度差ΔTは、25分後にピークを示し、その後ほぼ50℃以内で推移した。このグラフに見られるように、脱亜鉛炉11内で均熱化を図ることができた。
(実施例4)
図4に示す脱亜鉛炉11内に亜鉛鋼材40.00kg、98%カーボン粉末(加炭材)0.32kg(亜鉛鋼材に対して0.78質量%)及び戻し材30.00kgを投入し、還元雰囲気中にて亜鉛鋼材屑の最低温度がA3変態点の温度に達するまで加熱し、亜鉛鋼材に含まれる酸化亜鉛の還元を行った。また、脱亜鉛炉11内の圧力を−0.45kPaの減圧とした。昇温方法は、常温から760℃まで40℃/分の昇温速度で23分、760℃で12分間保持して均熱化制御し、760〜910℃まで15℃/分の昇温速度で6分昇温し、910℃で14分間保持して均熱化制御した。
As a result, the bottom outer peripheral region A in the dezincification furnace 11 is 789.3 ° C., the bottom central region E is 789.6 ° C., the intermediate peripheral region B is 765.3 ° C., and the intermediate central region F is 739.9 ° C. Met. The temperature difference ΔT showed a minimum value of 49.7 ° C., and the temperature of the zinc steel material in each region was in the range of 770 ± 50 ° C. The zinc removal rate was 90.8%. Furthermore, the relationship between time (min) and temperature (° C.) in each of the above regions was measured, and the results are shown in FIG. From the results shown in FIG. 7, the temperature of the bottom outer peripheral region A is the highest, the temperature of the intermediate central region F is the lowest, and the temperatures of the intermediate outer peripheral region B and the bottom central region E indicate intermediate temperatures thereof, The temperature rose substantially smoothly. The temperature difference ΔT in the dezincification furnace 11 showed a peak after 25 minutes, and then changed within about 50 ° C. As can be seen from this graph, it was possible to achieve soaking in the dezincification furnace 11.
Example 4
Into the dezincification furnace 11 shown in FIG. 4, 40.00 kg of zinc steel material, 0.32 kg of 98% carbon powder (carburized material) (0.78 mass% with respect to zinc steel material) and 30.00 kg of return material are charged, Heating was performed in a reducing atmosphere until the minimum temperature of the zinc steel material scrap reached the temperature of the A3 transformation point, and the zinc oxide contained in the zinc steel material was reduced. Further, the pressure in the dezincification furnace 11 was reduced to -0.45 kPa. The temperature rising method is from normal temperature to 760 ° C. at a rate of temperature increase of 40 ° C./min for 23 minutes and at 760 ° C. for 12 minutes to control soaking, and from 760 to 910 ° C. at a rate of temperature increase of 15 ° C./min. The temperature was raised for 6 minutes and maintained at 910 ° C. for 14 minutes to control soaking.

その結果、脱亜鉛炉11内の底部外周領域Aでは942.0℃、底部中心領域Eでは918.4℃、中間部外周領域Bでは912.5℃及び中間部中心領域Fでは911.4℃であった。それらの領域における温度差ΔTは30.6℃であるとともに、各領域における亜鉛鋼材の温度は910±50℃の範囲内であり、領域間における温度差を抑制することができ、良好な均熱化を図ることができた。さらに、上記の各領域における時間(min)と温度(℃)との関係を測定し、その結果を図8に示した。図8に示した結果より、各領域で類似する温度上昇を示し、55分で試験を終了した。脱亜鉛炉11内の温度差ΔTは、20分後にピークを示し、その後ほぼ30℃前後で推移した。このグラフに見られるように、脱亜鉛炉11内で短時間のうちにほぼ均熱化を達成することができた。
(実施例5)
図4に示す脱亜鉛炉11内に亜鉛鋼材40.00kg、コークス粉末0.32kg(亜鉛鋼材に対して0.78質量%)及び戻し材30.00kgを投入し、還元雰囲気中にて鉄のA3変態点まで加熱し、亜鉛鋼材に含まれる酸化亜鉛の還元を行った。また、脱亜鉛炉11内の圧力を−0.45kPaの減圧とした。昇温方法は、常温から760℃まで40℃/分の昇温速度で23分、760℃で12分間保持して均熱化制御し、760〜910℃まで15℃/分の昇温速度で25分昇温し、910℃で7分間保持して均熱化制御した。
As a result, the bottom outer peripheral region A in the dezincification furnace 11 is 942.0 ° C., the bottom central region E is 918.4 ° C., the intermediate peripheral region B is 912.5 ° C., and the intermediate central region F is 911.4 ° C. Met. The temperature difference ΔT in these regions is 30.6 ° C., and the temperature of the zinc steel material in each region is within the range of 910 ± 50 ° C., and the temperature difference between the regions can be suppressed, so We were able to plan. Furthermore, the relationship between time (min) and temperature (° C.) in each of the above regions was measured, and the results are shown in FIG. The results shown in FIG. 8 showed similar temperature increases in each region, and the test was completed in 55 minutes. The temperature difference ΔT in the dezincification furnace 11 showed a peak after 20 minutes, and then changed around 30 ° C. As can be seen from this graph, it was possible to achieve soaking in the dezincification furnace 11 in a short time.
(Example 5)
40.00 kg of zinc steel material, 0.32 kg of coke powder (0.78 mass% with respect to zinc steel material) and 30.00 kg of return material are charged into the dezincification furnace 11 shown in FIG. Heating was performed up to the A3 transformation point, and the zinc oxide contained in the zinc steel material was reduced. Further, the pressure in the dezincification furnace 11 was reduced to -0.45 kPa. The temperature rising method is from normal temperature to 760 ° C. at a rate of temperature increase of 40 ° C./min for 23 minutes and at 760 ° C. for 12 minutes to control soaking, and from 760 to 910 ° C. at a rate of temperature increase of 15 ° C./min. The temperature was raised for 25 minutes and maintained at 910 ° C. for 7 minutes to control soaking.

その結果、脱亜鉛炉11内の底部外周領域Aでは959.4℃、底部中心領域Eでは913.3℃、中間部外周領域Bでは954.8℃及び中間部中心領域Fでは925.2℃であった。それらの領域における温度差ΔTは46.1℃であるとともに、各領域における亜鉛鋼材の温度は910±50℃の範囲内であり、領域間における温度差を抑え、均熱化を図ることができた。さらに、上記の各領域における時間(min)と温度(℃)との関係を測定し、その結果を図9に示した。図9に示した結果より、底部外周領域Aの温度が最も高く、中間部中心領域Fの温度が最も低く、中間部外周領域B及び底部中心領域Eの温度がそれらの中間の温度を示し、概ね順調な温度上昇を示した。脱亜鉛炉11内の温度差ΔTは、20分後にピークを示し、その後ほぼ40℃前後で推移した。このグラフに見られるように、脱亜鉛炉11内で短時間のうちにほぼ均熱化を達成することができた。   As a result, the bottom outer peripheral region A in the dezincification furnace 11 is 959.4 ° C., the bottom central region E is 913.3 ° C., the intermediate peripheral region B is 954.8 ° C., and the intermediate central region F is 925.2 ° C. Met. The temperature difference ΔT in these regions is 46.1 ° C., and the temperature of the zinc steel material in each region is within the range of 910 ± 50 ° C., and the temperature difference between the regions can be suppressed and soaking can be achieved. It was. Furthermore, the relationship between time (min) and temperature (° C.) in each of the above regions was measured, and the results are shown in FIG. From the results shown in FIG. 9, the temperature of the bottom outer peripheral region A is the highest, the temperature of the intermediate central region F is the lowest, the temperatures of the intermediate outer peripheral region B and the bottom central region E indicate intermediate temperatures thereof, The temperature rose substantially smoothly. The temperature difference ΔT in the dezincification furnace 11 showed a peak after 20 minutes, and thereafter changed at about 40 ° C. As can be seen from this graph, it was possible to achieve soaking in the dezincification furnace 11 in a short time.

なお、前記実施形態を次のように変更して具体化することも可能である。
・ 亜鉛鋼材屑を予め微細化(粉砕化)し、それに粉末状の還元剤を混合しておくこともできる。
It should be noted that the embodiment described above can be modified and embodied as follows.
-Zinc steel scrap can be refined (pulverized) in advance, and a powdery reducing agent can be mixed therewith.

・ 脱亜鉛炉11として、底部や中心部に誘導加熱部を備えた構造のものを使用することも可能である。
・ 亜鉛鋼材屑からの金属亜鉛の分離に際し、磁気変態点まで加熱して金属亜鉛の揮発分離を行い、その後α鉄からγ鉄への変態点まで加熱して金属亜鉛の揮発分離を行うことができる。
-As a dezincification furnace 11, it is also possible to use the thing of the structure provided with the induction heating part in the bottom part or center part.
・ When separating metallic zinc from galvanized steel scrap, heating to the magnetic transformation point for volatile separation of metallic zinc, followed by heating to the transformation point from α iron to γ iron for volatile separation of metallic zinc it can.

・ 本発明で用いる還元剤を、例えば一酸化炭素やメタンなどの還元ガスに代替し、脱亜鉛炉内に還元ガスを流入させて亜鉛鋼材屑中の酸化亜鉛を還元することにより金属亜鉛の揮発分離を行うこともできる。   -The reducing agent used in the present invention is replaced with a reducing gas such as carbon monoxide or methane, and the zinc oxide in the galvanized steel scrap is reduced by flowing the reducing gas into the dezincification furnace to reduce the zinc oxide in the zinc steel scrap. Separation can also be performed.

・ 本発明で用いる脱亜鉛炉11を、亜鉛鋼材屑を溶融させて処理する従来の溶融炉の前処理炉として使用することも可能である。この場合、脱亜鉛炉11における熱エネルギーを溶融炉での溶融にも利用することができ、省エネルギーである。   -It is also possible to use the dezincification furnace 11 used by this invention as a pre-processing furnace of the conventional melting furnace which fuse | melts and processes a zinc steel material waste. In this case, the heat energy in the dezincification furnace 11 can be used for melting in the melting furnace, which is energy saving.

・ 金属亜鉛を揮発分離する際に、脱亜鉛炉11内の減圧度を上昇させて金属亜鉛の分離効率を高めるように構成することもできる。
次に、前記実施形態から把握できる技術的思想について以下に記載する。
-When carrying out volatile separation of metal zinc, it can also comprise so that the pressure reduction degree in the dezincification furnace 11 may be raised and the separation efficiency of metal zinc may be improved.
Next, the technical idea that can be grasped from the embodiment will be described below.

〇 前記鉄の磁気変態点を示す温度又はα鉄からγ鉄への変態点を示す温度に達したとき、その温度に一定時間保持することを特徴とする請求項1から請求項6のいずれか1項に記載の亜鉛鋼材屑からの亜鉛分離方法。このように構成した場合、請求項1から請求項6のいずれかに係る発明の効果に加えて、脱亜鉛炉内における均熱化を図ることができる。   The temperature is maintained for a certain period of time when reaching a temperature indicating the magnetic transformation point of iron or a temperature indicating a transformation point from alpha iron to gamma iron. The method for separating zinc from galvanized steel scraps according to item 1. When comprised in this way, in addition to the effect of the invention which concerns on any one of Claims 1-6, equalization in a dezincification furnace can be achieved.

〇 前記鉄の磁気変態点を示す温度に達したときには脱亜鉛炉内の全体がその温度以上であり、α鉄からγ鉄への変態点を示す温度に達したときには脱亜鉛炉内の少なくとも一部がその温度以上であることを特徴とする請求項1から請求項6のいずれか1項に記載の亜鉛鋼材屑からの亜鉛分離方法。このように構成した場合、請求項1から請求項6のいずれかに係る発明の効果に加えて、亜鉛鋼材屑からの亜鉛分離をより効率的に行うことができる。   When the temperature indicating the magnetic transformation point of iron is reached, the entire dezincification furnace is at or above that temperature, and when reaching the temperature indicating the transformation point from α iron to γ iron, at least one in the dezincification furnace The method for separating zinc from galvanized steel scrap according to any one of claims 1 to 6, wherein the portion is at or above the temperature. When comprised in this way, in addition to the effect of the invention which concerns on any one of Claims 1-6, the zinc isolation | separation from zinc steel material waste can be performed more efficiently.

11…脱亜鉛炉。   11: Dezincing furnace.

Claims (7)

亜鉛鋼材屑を加熱して亜鉛を分離する方法において、
脱亜鉛炉内で還元剤の存在下に、鉄の磁気変態点を示す温度よりα鉄からγ鉄への変態点を示す温度まで亜鉛鋼材屑を誘導加熱し、鉄を溶解及び固着させることなく亜鉛鋼材屑に含まれる酸化亜鉛を還元して金属亜鉛に変換し、該金属亜鉛を揮発分離することを特徴とする亜鉛鋼材屑からの亜鉛分離方法。
In a method for separating zinc by heating zinc steel scrap,
In the dezincification furnace, in the presence of a reducing agent, induction heating of zinc steel scrap from the temperature showing the iron magnetic transformation point to the temperature showing the transformation point from α iron to γ iron, without melting and fixing the iron A method for separating zinc from galvanized steel waste, characterized in that zinc oxide contained in the galvanized steel waste is reduced and converted to metallic zinc, and the metallic zinc is volatilized and separated.
前記還元剤は炭素であることを特徴とする請求項1に記載の亜鉛鋼材屑からの亜鉛分離方法。 The method for separating zinc from galvanized steel scrap according to claim 1, wherein the reducing agent is carbon. 前記還元剤の添加量は、亜鉛鋼材屑に対して0.1〜10質量%であることを特徴とする請求項1又は請求項2に記載の亜鉛鋼材屑からの亜鉛分離方法。 The method for separating zinc from zinc steel scraps according to claim 1 or 2, wherein the amount of the reducing agent added is 0.1 to 10% by mass with respect to the zinc steel scraps. 前記鉄の磁気変態点を示す温度では脱亜鉛炉内の亜鉛鋼材屑の温度が770±50℃に保持され、α鉄からγ鉄への変態点を示す温度では脱亜鉛炉内の亜鉛鋼材屑の温度が910±50℃に保持されることを特徴とする請求項1から請求項3のいずれか1項に記載の亜鉛鋼材屑からの亜鉛分離方法。 The temperature of the zinc steel scrap in the dezincification furnace is maintained at 770 ± 50 ° C. at the temperature indicating the iron magnetic transformation point, and the zinc steel scrap in the dezincification furnace at the temperature indicating the transformation point from α iron to γ iron. The method for separating zinc from galvanized steel scraps according to any one of claims 1 to 3, wherein the temperature of is maintained at 910 ± 50 ° C. 前記脱亜鉛炉内で亜鉛を分離する全期間において減圧された圧力は、81.25〜101.15kPaの範囲内に設定されることを特徴とする請求項1から請求項4のいずれか1項に記載の亜鉛鋼材屑からの亜鉛分離方法。 The pressure reduced in the entire period of separating zinc in the dezincification furnace is set in a range of 81.25 to 101.15 kPa. A method for separating zinc from galvanized steel scraps as described in 1. 前記脱亜鉛炉内が還元雰囲気又は不活性ガス雰囲気に設定されることを特徴とする請求項1から請求項5のいずれか1項に記載の亜鉛鋼材屑からの亜鉛分離方法。 The method for separating zinc from galvanized steel scrap according to any one of claims 1 to 5, wherein the inside of the dezincification furnace is set to a reducing atmosphere or an inert gas atmosphere. 前記亜鉛鋼材屑が鉄の磁気変態点を示す温度に達したとき又はα鉄からγ鉄への変態点を示す温度に達したときには、脱亜鉛炉内の各領域における亜鉛鋼材屑の最高温度と最低温度との温度差が50℃以内に保持されることを特徴とする請求項1から請求項6のいずれか1項に記載の亜鉛鋼材屑からの亜鉛分離方法。 When the zinc steel scrap reaches a temperature indicating the magnetic transformation point of iron or reaches a temperature indicating the transformation point from α iron to γ iron, the maximum temperature of the zinc steel scrap in each region in the dezincification furnace The method for separating zinc from galvanized steel scrap according to any one of claims 1 to 6, wherein a temperature difference from the minimum temperature is maintained within 50 ° C.
JP2009027668A 2009-02-09 2009-02-09 Zinc separation from zinc steel scrap Expired - Fee Related JP5425486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009027668A JP5425486B2 (en) 2009-02-09 2009-02-09 Zinc separation from zinc steel scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009027668A JP5425486B2 (en) 2009-02-09 2009-02-09 Zinc separation from zinc steel scrap

Publications (2)

Publication Number Publication Date
JP2010180472A JP2010180472A (en) 2010-08-19
JP5425486B2 true JP5425486B2 (en) 2014-02-26

Family

ID=42762206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009027668A Expired - Fee Related JP5425486B2 (en) 2009-02-09 2009-02-09 Zinc separation from zinc steel scrap

Country Status (1)

Country Link
JP (1) JP5425486B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468960B (en) * 2013-08-23 2015-05-06 佛山市诺傲再生资源科技有限公司 Process equipment for dedusted zinc ash and process method thereof
JP5873137B2 (en) * 2014-06-23 2016-03-01 株式会社ナニワ炉機研究所 Material supply system for electric furnace
JP5918309B2 (en) * 2014-06-23 2016-05-18 株式会社ナニワ炉機研究所 Material preheating equipment for electric furnace
CN111910044A (en) * 2020-09-10 2020-11-10 山东众亿赫贸易有限公司 Pretreatment method of light scrap steel and device used by same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108175A (en) * 1992-09-30 1994-04-19 Aichi Steel Works Ltd Refining method for crude zinc and its device
JP3050720B2 (en) * 1993-03-31 2000-06-12 川崎重工業株式会社 How to remove zinc from galvanized steel scrap
JP3093067B2 (en) * 1992-12-16 2000-10-03 川崎重工業株式会社 Method and apparatus for removing zinc from galvanized steel sheet waste
JPH07138664A (en) * 1993-11-10 1995-05-30 Nippon Steel Corp Treatment of scrap
JPH0971826A (en) * 1995-08-31 1997-03-18 Mishima Kosan Co Ltd Device for recovering nonferrous metal in steel scrap
JP4459746B2 (en) * 2004-07-26 2010-04-28 アイシン高丘株式会社 Dezincing method from metal scrap
JP5090655B2 (en) * 2006-03-31 2012-12-05 Ntn株式会社 Steelmaking dust recycling method

Also Published As

Publication number Publication date
JP2010180472A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP4410847B2 (en) Medium purity metallic silicon and its smelting method
JP5425486B2 (en) Zinc separation from zinc steel scrap
JP2009115441A (en) Article for use with highly reactive alloy
CN101507354A (en) Melting method using graphite melting vessel
JPH10245216A (en) Production of silicon for solar cell
CN101628719B (en) Method for removing phosphorus impurities in silicon by vacuum induction melting
JP4638002B2 (en) Method and apparatus for manufacturing silicon for solar cell
JP4788925B2 (en) Method for purifying metallic silicon
CN101850975A (en) Method for purifying silicon by removing phosphorus and metal impurities
JP5992244B2 (en) Method for producing high purity magnesium and high purity magnesium
CN104310405A (en) Microwave-plasma-assisted polysilicon purification method
JP2002029727A5 (en)
JP4672559B2 (en) Silicon purification apparatus and silicon purification method
KR100764259B1 (en) METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni
JP5410673B2 (en) Reaction container for producing refractory metal and its processing method
JP2009256741A (en) Method of recovering valuable metal from waste battery
JP3705498B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
JP4485987B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
CA1169663A (en) Recovery of heavy metals from spent alumina
CN102452651A (en) Process for removing boron impurity out of silicon by utilizing wet argon plasma
CN110371983A (en) With the method for vacuum medium frequency induction furnace smelting high-purity industrial silicon
JP5814500B2 (en) Method for producing stainless steel ingot having carbon [C] of 10 ppm or less in ingot
US5232486A (en) One step process for the treatment of Parkes desilvering crust to recover zinc and produce a suitable feed for cupellation
CN103833037B (en) A kind of polysilicon dephosphorization apparatus and method
CN113774241A (en) Purification method of lanthanum-cerium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5425486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees