JP5424824B2 - Carbon fiber precursor acrylic fiber and method for producing the same - Google Patents

Carbon fiber precursor acrylic fiber and method for producing the same Download PDF

Info

Publication number
JP5424824B2
JP5424824B2 JP2009257994A JP2009257994A JP5424824B2 JP 5424824 B2 JP5424824 B2 JP 5424824B2 JP 2009257994 A JP2009257994 A JP 2009257994A JP 2009257994 A JP2009257994 A JP 2009257994A JP 5424824 B2 JP5424824 B2 JP 5424824B2
Authority
JP
Japan
Prior art keywords
iron
oil
fiber
carbon fiber
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009257994A
Other languages
Japanese (ja)
Other versions
JP2011102454A (en
JP2011102454A5 (en
Inventor
直正 松山
健 二井
憲史 廣田
宏子 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009257994A priority Critical patent/JP5424824B2/en
Publication of JP2011102454A publication Critical patent/JP2011102454A/en
Publication of JP2011102454A5 publication Critical patent/JP2011102454A5/ja
Application granted granted Critical
Publication of JP5424824B2 publication Critical patent/JP5424824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Description

本発明は、炭素繊維、炭素繊維前駆体アクリル繊維及びその製造方法に関する。   The present invention relates to a carbon fiber, a carbon fiber precursor acrylic fiber, and a method for producing the same.

炭素繊維は、他の繊維に比べて高い比強度及び比弾性率を有することが知られている。このため、複合材料用補強繊維として、従来からのスポーツ用途及び航空・宇宙用途に加え、自動車や土木、建築、圧力容器、風車ブレード等の一般産業用途にも幅広く展開されつつある。さらに、従来利用されてきたスポーツ用途、航空・宇宙用途においても、より高強度化や高弾性率化の要請が高い。   It is known that carbon fibers have a high specific strength and specific elastic modulus compared to other fibers. For this reason, in addition to conventional sports and aerospace applications, composite fibers are being widely deployed in general industrial applications such as automobiles, civil engineering, architecture, pressure vessels, and windmill blades. Furthermore, there is a high demand for higher strength and higher elastic modulus in sports and aerospace applications that have been used in the past.

炭素繊維の中で、ポリアクリロニトリル系炭素繊維は最も広く利用されているものである。ポリアクリロニトリル系炭素繊維は、例えば、油剤組成物を付着させたアクリル繊維を炭素繊維前駆体とし、該炭素繊維前駆体を200〜400℃の酸素存在雰囲気下で加熱処理することにより耐炎化繊維に転換し、引き続いて1000℃以上の不活性雰囲気下で炭素化して得られるものである。この方法で得られた炭素繊維は、優れた機械的物性により、特に複合材料用の強化繊維として工業的に広く利用されている。   Among the carbon fibers, polyacrylonitrile-based carbon fibers are the most widely used. Polyacrylonitrile-based carbon fiber is, for example, an acrylic fiber to which an oil agent composition is attached as a carbon fiber precursor, and the carbon fiber precursor is heated to 200 to 400 ° C. in an oxygen-existing atmosphere to form a flame-resistant fiber. It is obtained by conversion and subsequent carbonization in an inert atmosphere at 1000 ° C. or higher. The carbon fiber obtained by this method is widely used industrially as a reinforcing fiber for composite materials because of its excellent mechanical properties.

炭素繊維の高強度化、高弾性率化における有力な方法として、炭素繊維前駆体アクリル繊維に含有、付着する異物を低減させる方法がある。この方法によれば、焼成過程において、表面の傷、ボイド発生を低減させ、炭素繊維の強度低下を抑制できる。
例えば、重合原料を多段濾過することで、アクリル系重合体中の異物量を低減する方法が提案されている(例えば、特許文献1)。特許文献1では、重合原料を最小開孔径0.6μmから0.2μmのフィルターにて多段濾過しアクリロニトリル重合体とし、このアクリロニトリル重合体を1.5μmから0.5μmのフィルターにて多段濾過した凝固浴、延伸浴、洗浄水で処理することで、異物量の低減を図っている。
また、例えば、アクリロニトリル系重合体と有機溶剤とからなるドープ溶液をイオン交換体で処理し、処理したドープ溶液を紡糸する炭素繊維製造用前駆体の製造方法が提案されている(例えば、特許文献2)。特許文献2では、ドープ溶液をイオン交換体で処理することで、金属イオンの含有量の低減を図っている。
As a promising method for increasing the strength and elastic modulus of carbon fibers, there is a method for reducing foreign substances contained in and adhered to the carbon fiber precursor acrylic fibers. According to this method, the generation of scratches and voids on the surface can be reduced in the firing process, and the strength reduction of the carbon fiber can be suppressed.
For example, a method for reducing the amount of foreign matter in an acrylic polymer by multi-stage filtration of a polymerization raw material has been proposed (for example, Patent Document 1). In Patent Document 1, a polymerization raw material is subjected to multistage filtration with a filter having a minimum pore size of 0.6 μm to 0.2 μm to obtain an acrylonitrile polymer, and this acrylonitrile polymer is subjected to multistage filtration with a filter of 1.5 μm to 0.5 μm. The amount of foreign matter is reduced by treating with a bath, stretching bath, and washing water.
In addition, for example, a method for producing a precursor for carbon fiber production in which a dope solution composed of an acrylonitrile-based polymer and an organic solvent is treated with an ion exchanger and the treated dope solution is spun has been proposed (for example, Patent Documents). 2). In Patent Document 2, the content of metal ions is reduced by treating the dope solution with an ion exchanger.

特開平1−271401号公報JP-A-1-271401 特開平5−156523号公報JP-A-5-156523

しかしながら、特許文献1では、重合から延伸までの原料、凝固溶液及び洗浄水を精密濾過しているものの、付着させる油剤組成物の清浄化が考慮されていない。加えて、特許文献1では、多くの濾過フィルター設備が必要となるため、重合ラインや紡糸装置等の周辺に設置スペースが必要になる上、設備コストも増大する。特許文献2では、付着させる油剤組成物の清浄化が考慮されていない。そして、炭素繊維にはさらなる強度、弾性率の向上が求められている。
そこで、本発明は、高強度、高弾性率である炭素繊維、炭素繊維前駆体アクリル繊維及びその製造方法を目的とする。
However, in patent document 1, although the raw material from superposition | polymerization to extending | stretching, coagulating solution, and washing water are microfiltered, the cleaning of the oil agent composition to adhere is not considered. In addition, in Patent Document 1, since many filtration filter facilities are required, an installation space is required around the polymerization line, the spinning device, and the like, and the facility cost increases. In patent document 2, cleaning of the oil agent composition to which it adheres is not considered. Further, the carbon fiber is required to be further improved in strength and elastic modulus.
Then, this invention aims at the carbon fiber and carbon fiber precursor acrylic fiber which are high intensity | strength and high elasticity modulus, and its manufacturing method.

ここで、特許文献2においては、炭素繊維の強度及び弾性率は、鉄元素の含有量にかかわらず、アルミニウムの含有量に影響を受けており、炭素繊維の鉄元素の含有量と、炭素繊維の強度及び弾性率との間には相関関係が見られない。しかしながら、本発明者らは、あえて炭素繊維前駆体アクリル繊維に含まれる鉄元素の含有量に着目して鋭意検討した結果、次のような知見を得た。炭素繊維の強度、弾性率には、炭素繊維前駆体アクリル繊維の全体に含まれる鉄元素量のみならず、その表面の鉄付着量が影響していた。このため、炭素繊維前駆体アクリル繊維に内在する鉄元素量(鉄内在量)と、表面に付着した鉄元素量(鉄付着量)とを低減することで、炭素繊維のさらなる高強度化、高弾性率化が図れることを見い出し、以下の発明に至った。   Here, in Patent Document 2, the strength and elastic modulus of the carbon fiber are influenced by the aluminum content regardless of the iron element content, and the carbon fiber iron element content and the carbon fiber There is no correlation between the strength and the elastic modulus. However, as a result of diligent study focusing on the content of iron element contained in the carbon fiber precursor acrylic fiber, the present inventors have obtained the following knowledge. The strength and elastic modulus of the carbon fiber were influenced not only by the amount of iron element contained in the entire carbon fiber precursor acrylic fiber but also by the amount of iron adhered on the surface. For this reason, by reducing the amount of iron element (iron content) in the carbon fiber precursor acrylic fiber and the amount of iron element adhering to the surface (iron adhesion amount), the carbon fiber is further strengthened and increased in strength. It has been found that the elastic modulus can be increased, and has led to the following inventions.

即ち、本発明の炭素繊維前駆体アクリル繊維は、鉄内在量が0.3×10−6g/g以下、かつ鉄付着量が0.1×10−6g/g以下であることを特徴とする。 That is, the carbon fiber precursor acrylic fiber of the present invention is characterized in that the iron abundance is 0.3 × 10 −6 g / g or less and the iron adhesion amount is 0.1 × 10 −6 g / g or less. And

本発明の炭素繊維前駆体アクリル繊維の製造方法は、鉄イオンとイオン交換能を有する物質にアクリロニトリル重合体溶液を接触させる原料浄化工程と、前記原料浄化工程で処理したアクリロニトリル重合体溶液を紡糸する紡糸工程と、鉄イオンとイオン交換能を有する物質に油剤組成物及び/又は水を接触させる油剤原料浄化工程と、前記油剤組成物及び前記水を混合し油剤分散液を調製する分散液調製工程と、前記紡糸工程で得られた繊維に、前記油剤分散液を含浸させ前記油剤組成物を付着させる工程とを有することを特徴とする。前記油剤分散液の鉄元素量が、0.5×10−6g/g以下であることが好ましく、前記分散液調製工程は、転相温度法により乳化して油剤分散液を調製することが好ましい。 The method for producing a carbon fiber precursor acrylic fiber of the present invention spins a raw material purification step in which an acrylonitrile polymer solution is brought into contact with a substance having ion exchange ability with iron ions, and an acrylonitrile polymer solution treated in the raw material purification step. Spinning step, oil agent raw material purification step for bringing oil agent composition and / or water into contact with substance having ion exchange ability with iron ion, and dispersion preparation step for preparing oil agent dispersion by mixing oil agent composition and water And a step of impregnating the fiber obtained in the spinning step with the oil dispersion and adhering the oil composition. The amount of iron element in the oil dispersion is preferably 0.5 × 10 −6 g / g or less, and in the dispersion preparation step, the oil dispersion is prepared by emulsifying by a phase inversion temperature method. preferable.

本発明の炭素繊維は、本発明の前記炭素繊維前駆体アクリル繊維を焼成してなることを特徴とする。   The carbon fiber of the present invention is obtained by firing the carbon fiber precursor acrylic fiber of the present invention.

本発明によれば、炭素繊維の高強度化、高弾性率化が図れる。   According to the present invention, it is possible to increase the strength and elastic modulus of carbon fibers.

(炭素繊維前駆体アクリル繊維)
本発明の炭素繊維前駆体アクリル繊維(以下、前駆体繊維という)は、鉄内在量が2.0×10−6g/g以下、かつ鉄付着量が1.0×10−6g/g以下のものである。
(Carbon fiber precursor acrylic fiber)
The carbon fiber precursor acrylic fiber (hereinafter referred to as precursor fiber) of the present invention has an iron abundance of 2.0 × 10 −6 g / g or less and an iron adhesion amount of 1.0 × 10 −6 g / g. It is as follows.

前駆体繊維に内在又は付着する鉄元素は、鉄イオン、鉄化合物等あらゆる形態で含有又は付着している鉄元素である。
前駆体繊維の鉄内在量は、2.0×10−6g/g以下であり、0.5×10−6g/g以下がより好ましい。前駆体繊維の鉄内在量を上記範囲とすることで、得られる炭素繊維の高強度化、高弾性率化が図れる。なお、前駆体繊維の鉄内在量とは、前駆体繊維に含有される鉄総量の内、前駆体繊維の表面に付着した鉄付着量を除いた量である。
The iron element that is inherent to or adheres to the precursor fiber is an iron element that is contained or adhered in any form such as iron ions and iron compounds.
The iron abundance of the precursor fiber is 2.0 × 10 −6 g / g or less, and more preferably 0.5 × 10 −6 g / g or less. By making the iron abundance of the precursor fiber within the above range, it is possible to increase the strength and elasticity of the obtained carbon fiber. In addition, the iron abundance of the precursor fiber is an amount obtained by removing the amount of iron attached to the surface of the precursor fiber from the total amount of iron contained in the precursor fiber.

前駆体繊維の鉄付着量は、1.0×10−6g/g以下であり、0.1×10−6g/g以下がより好ましい。前駆体繊維の鉄付着量を上記範囲とすることで、得られる炭素繊維の高強度化、高弾性率化が図れる。なお、前駆体繊維の鉄付着量とは、前駆体繊維が単繊維である場合には、その単繊維の表面の付着量である。前駆体繊維が2以上の単繊維の束(以下、繊維束)である場合には、繊維束を構成する個々の単繊維の表面の付着量をいう。 The iron adhesion amount of the precursor fiber is 1.0 × 10 −6 g / g or less, and more preferably 0.1 × 10 −6 g / g or less. By making the iron adhesion amount of the precursor fiber within the above range, the obtained carbon fiber can be increased in strength and elastic modulus. In addition, when the precursor fiber is a single fiber, the iron adhesion amount of the precursor fiber is the adhesion amount on the surface of the single fiber. When the precursor fiber is a bundle of two or more single fibers (hereinafter referred to as fiber bundle), it refers to the amount of adhesion of the surface of each single fiber constituting the fiber bundle.

前駆体繊維は、アクリロニトリル重合体を紡糸して得られる繊維である。
本発明で用いられるアクリロニトリル重合体は、アクリロニトリルを主な単量体とし、これを重合して得られる重合体である。アクリロニトリル重合体は、アクリロニトリルのみから得られるホモポリマーだけでなく、主成分であるアクリロニトリルに加えて他の単量体を用いたアクリロニトリル重合体であってもよい。
The precursor fiber is a fiber obtained by spinning an acrylonitrile polymer.
The acrylonitrile polymer used in the present invention is a polymer obtained by polymerizing acrylonitrile as a main monomer. The acrylonitrile polymer is not limited to a homopolymer obtained only from acrylonitrile, but may be an acrylonitrile polymer using other monomers in addition to the main component acrylonitrile.

アクリロニトリル重合体中のアクリロニトリルの配合量は、得られる炭素繊維に求める品質等を勘案して決定でき、例えば、96〜98.8質量%が好ましい。アクリロニトリルの配合量が96質量%以上であれば、前駆体繊維を炭素繊維に転換するための焼成工程で、繊維同士の融着を招くことなく、炭素繊維の優れた品質及び性能を維持できる。加えて、アクリロニトリル重合体の耐熱性が低下せず、前駆体繊維を紡糸する際に乾燥を抑制できる。さらに、加熱ローラーや加圧水蒸気による延伸等の処理において、単繊維間の接着を回避できる。アクリロニトリルの配合量が98.5質量%以下であれば、溶剤への溶解性が低下せず、アクリロニトリル重合体の析出・凝固を防止し、紡糸原液の安定を維持できるため、前駆体繊維を安定して製造できる。   The blending amount of acrylonitrile in the acrylonitrile polymer can be determined in consideration of the quality required for the obtained carbon fiber, and is preferably 96 to 98.8% by mass, for example. If the blending amount of acrylonitrile is 96% by mass or more, the excellent quality and performance of the carbon fiber can be maintained without causing the fusion of the fibers in the firing step for converting the precursor fiber into the carbon fiber. In addition, the heat resistance of the acrylonitrile polymer is not lowered, and drying can be suppressed when the precursor fiber is spun. Furthermore, adhesion between single fibers can be avoided in processing such as stretching with a heating roller or pressurized steam. If the amount of acrylonitrile is 98.5% by mass or less, the solubility in the solvent does not decrease, the precipitation / coagulation of the acrylonitrile polymer can be prevented, and the stability of the spinning dope can be maintained. Can be manufactured.

アクリロニトリル重合体には、アクリロニトリル以外の単量体を配合することができる。アクリロニトリル以外の単量体としては、アクリロニトリルと共重合可能なビニル系単量体から適宣選択することができ、アクリロニトリル重合体の親水性を向上するビニル系単量体、耐炎化促進効果を有するビニル系単量体が好ましい。   Monomers other than acrylonitrile can be blended in the acrylonitrile polymer. As a monomer other than acrylonitrile, a vinyl monomer that can be copolymerized with acrylonitrile can be appropriately selected, and a vinyl monomer that improves the hydrophilicity of the acrylonitrile polymer, has a flame resistance promoting effect. Vinyl monomers are preferred.

アクリロニトリル重合体の親水性を向上する単量体としては、例えば、カルボキシル基、スルホ基、アミノ基、アミド基等の親水性の官能基を有するビニル化合物がある。カルボキシル基を有する単量体としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸、メサコン酸等が挙げられ、中でもアクリル酸、メタクリル酸、イタコン酸が好ましい。スルホ基を有する単量体としては、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、ビニルスルホン酸、スルホプロピルメタクリレート等が挙げられ、中でも、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸が好ましい。アミノ基を有する単量体としては、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、ターシャリーブチルアミノエチルメタクリレート、アリルアミン、o−アミノスチレン、p−アミノスチレン等が挙げられ、中でもジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレートが好ましい。アミド基を有する単量体としては、アクリルアミド、メタクリルアミド、ジメチルアクリルアミド、クロトンアミドが好ましい。このような単量体を配合することで、アクリロニトリル重合体は親水性が向上する。親水性が向上すると、得られる前駆体繊維の緻密性が向上し、表層部のミクロボイド発生を抑制することができる。上述の単量体は、1種単独で又は2種以上を適宜組み合わせて用いることができる。
このようなアクリロニトリル重合体の親水性を向上する単量体の配合量は、アクリロニトリル重合体中0.5〜2質量%が好ましい。
Examples of the monomer that improves the hydrophilicity of the acrylonitrile polymer include vinyl compounds having a hydrophilic functional group such as a carboxyl group, a sulfo group, an amino group, and an amide group. Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid, mesaconic acid and the like, among which acrylic acid, methacrylic acid, and itaconic acid are preferable. Examples of the monomer having a sulfo group include allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, vinyl sulfonic acid, and sulfopropyl methacrylate. Acid, methallylsulfonic acid, styrenesulfonic acid, and 2-acrylamido-2-methylpropanesulfonic acid are preferred. Examples of the monomer having an amino group include dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, tertiary butylaminoethyl methacrylate, allylamine, o-aminostyrene, and p-aminostyrene. Of these, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoethyl acrylate, and diethylaminoethyl acrylate are preferable. As the monomer having an amide group, acrylamide, methacrylamide, dimethylacrylamide, and crotonamide are preferable. By blending such a monomer, the hydrophilicity of the acrylonitrile polymer is improved. When the hydrophilicity is improved, the density of the obtained precursor fiber is improved, and generation of microvoids in the surface layer portion can be suppressed. The above-mentioned monomers can be used alone or in combination of two or more.
As for the compounding quantity of the monomer which improves the hydrophilicity of such an acrylonitrile polymer, 0.5-2 mass% is preferable in an acrylonitrile polymer.

耐炎化促進効果を有する単量体としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸、メサコン酸又はこれらのアルカリ金属塩もしくはアンモニウム塩、アクリルアミド、メタクリルアミド等が挙げられる。中でも、少量の配合量でより高い耐炎化促進効果を得る観点から、カルボキシル基を有する単量体が好ましく、特にアクリル酸、メタクリル酸、イタコン酸等のカルボキシル基含有ビニル系単量体がより好ましい。このような単量体を配合することで、後述する耐炎化工程の時間を短縮でき、製造コストを低減できる。上述の単量体は、1種単独で又は2種以上を適宜組み合わせて用いることができる。
このような耐炎化促進効果を有する単量体の配合量は、アクリロニトリル重合体中0.5〜2質量%が好ましい。
Examples of the monomer having an effect of promoting flame resistance include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid, mesaconic acid, or alkali metal salts or ammonium salts thereof, acrylamide, methacrylamide, etc. Is mentioned. Among them, a monomer having a carboxyl group is preferable from the viewpoint of obtaining a higher flame resistance-promoting effect with a small amount of blending, and a carboxyl group-containing vinyl monomer such as acrylic acid, methacrylic acid, and itaconic acid is more preferable. . By mix | blending such a monomer, the time of the flame-proofing process mentioned later can be shortened, and manufacturing cost can be reduced. The above-mentioned monomers can be used alone or in combination of two or more.
As for the compounding quantity of the monomer which has such a flame-resistant acceleration | stimulation effect, 0.5-2 mass% is preferable in an acrylonitrile polymer.

前駆体繊維は、油剤組成物を付着させたものである。
油剤組成物は、前駆体繊維に求める機能等を勘案して決定でき、例えば、シリコーン系油剤組成物が好ましい。シリコーン系油剤組成物としては、例えば、アミノ変性シリコーン、エポキシ変性シリコーン等のシリコーンオイルが挙げられ、中でもアミノ変性シリコーンが好ましい。アミノ変性シリコーンとしては、側鎖1級アミノ変性シリコーン、側鎖1,2級アミノ変性シリコーン、あるいは両末端アミノ変性シリコーンが挙げられる。このようなシリコーン系油剤組成物を用いることで、紡糸工程での繊維の集束性が増し、高い製造効率で生産でき、機械的物性に優れた炭素繊維を得ることができる。
Precursor fibers are those to which an oil composition is attached.
The oil agent composition can be determined in consideration of the function required for the precursor fiber, and for example, a silicone oil agent composition is preferable. Examples of the silicone-based oil composition include silicone oils such as amino-modified silicone and epoxy-modified silicone. Of these, amino-modified silicone is preferable. Examples of the amino-modified silicone include side-chain primary amino-modified silicone, side-chain primary and secondary amino-modified silicone, and both-end amino-modified silicone. By using such a silicone-based oil composition, it is possible to obtain carbon fibers that can be produced with high production efficiency and have excellent mechanical properties by increasing the fiber converging property in the spinning process.

前駆体繊維における油剤組成物の付着量は、前駆体繊維の乾燥質量に対して0.1〜2質量%であることが好ましく、0.5〜1.5質量%であることがさらに好ましい。油剤組成物の付着量が0.1質量%未満であると、油剤組成物の機能を十分に発現させることが困難になる場合がある。油剤組成物の付着量が2質量%を超えると、余分に付着した油剤組成物が、焼成工程において高分子化して単繊維間の接着の誘因となる場合がある。   The adhesion amount of the oil agent composition on the precursor fiber is preferably 0.1 to 2% by mass, and more preferably 0.5 to 1.5% by mass with respect to the dry mass of the precursor fiber. When the adhesion amount of the oil composition is less than 0.1% by mass, it may be difficult to sufficiently develop the function of the oil composition. When the adhesion amount of the oil agent composition exceeds 2% by mass, the excessively adhered oil agent composition may be polymerized in the firing step to cause adhesion between single fibers.

(製造方法)
本発明の前駆体繊維の製造方法は、鉄イオンとイオン交換能を有する物質(以下、鉄イオン交換体)にアクリロニトリル重合体溶液を接触させる原料浄化工程と、前記原料浄化工程で処理したアクリロニトリル重合体溶液を紡糸する紡糸工程と、鉄イオンとイオン交換能を有する物質に油剤組成物及び/又は水を接触させる油剤原料浄化工程と、前記油剤組成物及び前記水を混合し油剤分散液を調製する分散液調製工程と、前記紡糸工程で得られた繊維に前記油剤分散液を含浸する工程(油剤組成物付着工程)とを有するものである。
(Production method)
The precursor fiber manufacturing method of the present invention includes a raw material purification step in which an acrylonitrile polymer solution is brought into contact with a substance having an ion exchange ability with iron ions (hereinafter referred to as an iron ion exchanger), and an acrylonitrile weight treated in the raw material purification step. A spinning process for spinning a coalesced solution, an oil agent raw material purification process in which an oil agent composition and / or water is brought into contact with a substance having an ion exchange ability with iron ions, and the oil agent composition and the water are mixed to prepare an oil agent dispersion. And a step of impregnating the fiber obtained in the spinning step with the oil dispersion (oil agent composition attaching step).

[原料浄化工程]
原料浄化工程は、鉄イオン交換体に、アクリロニトリル重合体溶液を接触させて、アクリロニトリル重合体溶液中の鉄イオンを除去して鉄元素の含有量を低減する工程である。
[Raw material purification process]
The raw material purification step is a step of bringing the acrylonitrile polymer solution into contact with the iron ion exchanger to remove iron ions in the acrylonitrile polymer solution and reducing the content of iron element.

アクリロニトリル重合体溶液は、アクリロニトリル重合体を溶剤に溶解した紡糸原液である。
溶剤は、アクリロニトリル重合体の種類等を勘案して決定でき、例えば、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤、塩化亜鉛、チオシアン酸ナトリウム等の無機化合物の水溶液が挙げられ、中でもジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミドが緻密な前駆体繊維が得られる点で好ましい。
The acrylonitrile polymer solution is a spinning dope obtained by dissolving an acrylonitrile polymer in a solvent.
The solvent can be determined in consideration of the type of acrylonitrile polymer, and examples thereof include organic solvents such as dimethylacetamide, dimethylsulfoxide, and dimethylformamide, and aqueous solutions of inorganic compounds such as zinc chloride and sodium thiocyanate. , Dimethyl sulfoxide, and dimethylformamide are preferable in that a dense precursor fiber is obtained.

アクリロニトリル重合体溶液のアクリロニトリル重合体の濃度は、特に限定されないが、例えば、17〜25質量%が好ましく、19〜25質量%がより好ましい。17質量%以上であれば、緻密な凝固糸を得ることができ、25質量%以下であれば紡糸原液として適度な粘度と流動性が得られるためである。   Although the density | concentration of the acrylonitrile polymer of an acrylonitrile polymer solution is not specifically limited, For example, 17-25 mass% is preferable and 19-25 mass% is more preferable. If the content is 17% by mass or more, a dense coagulated yarn can be obtained, and if it is 25% by mass or less, an appropriate viscosity and fluidity can be obtained as a spinning dope.

鉄イオン交換体は、アクリロニトリル重合体溶液の溶剤に溶解しないものであり、例えば、架橋型イオン交換樹脂、架橋型イオン交換繊維等が挙げられる。中でも、ビニルベンゼン−スチレンからなる架橋型イオン交換樹脂が、汎用性があり好ましい。鉄イオン交換体は、アクリロニトリル重合体溶液中の鉄イオンを除去するために溶剤との親和性が必要であると共に、該溶剤により溶解しないことが必要なためである。   The iron ion exchanger is not dissolved in the solvent of the acrylonitrile polymer solution, and examples thereof include a crosslinked ion exchange resin and a crosslinked ion exchange fiber. Of these, a cross-linked ion exchange resin made of vinylbenzene-styrene is preferred because of its versatility. This is because the iron ion exchanger needs to have an affinity with a solvent in order to remove iron ions in the acrylonitrile polymer solution and must not be dissolved by the solvent.

鉄イオン交換体としては、例えば、スルホン酸基を官能基とする強酸性陽イオン交換樹脂、メタクリル酸、アクリル酸等のカルボン酸基を官能基とする弱酸性陽イオン交換樹脂、イミノジ酢酸型、ポリアミン型等のキレート樹脂等が挙げられる。中でも、鉄イオンの除去制度を向上させる観点から、強酸性陽イオン交換樹脂が好ましい。鉄イオン交換体としては、1種単独で又は2種以上を適宜組み合わせて用いることができる。   Examples of the iron ion exchanger include strong acid cation exchange resins having sulfonic acid groups as functional groups, weak acid cation exchange resins having carboxylic acid groups such as methacrylic acid and acrylic acid, iminodiacetic acid type, Examples include polyamine type chelating resins. Among these, strong acid cation exchange resins are preferred from the viewpoint of improving the iron ion removal system. As an iron ion exchanger, it can use individually by 1 type or in combination of 2 or more types as appropriate.

原料浄化工程では、鉄イオン交換体と共に、第4級アミノ基を官能基とする強塩基性陰イオン交換体、第1、第2又は第3級アミンを官能基とする弱塩基性陰イオン交換体を併用することができる。これらの陰イオン交換体を併用することにより、塩素イオンやシリカ等の陰イオンを除去し、アクリロニトリル重合体溶液中の不純物濃度を低下させ、炭素繊維の強度及び弾性率の向上が図れる。上述の理由により、原料浄化工程では、強酸性陽イオン交換樹脂の単独使用、又は強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との併用が好ましい。   In the raw material purification process, together with an iron ion exchanger, a strongly basic anion exchanger having a quaternary amino group as a functional group, and a weakly basic anion exchange having a primary, secondary or tertiary amine as a functional group The body can be used together. By using these anion exchangers together, anions such as chlorine ions and silica can be removed, the impurity concentration in the acrylonitrile polymer solution can be reduced, and the strength and elastic modulus of the carbon fiber can be improved. For the reasons described above, in the raw material purification step, it is preferable to use a strong acid cation exchange resin alone or a combination of a strong acid cation exchange resin and a strongly basic anion exchange resin.

原料浄化工程は、アクリロニトリル重合体溶液を鉄イオン交換体に接触できればよく、例えば、槽型反応器を用いアクリロニトリル重合体溶液中に鉄イオン交換体を添加し、任意の時間攪拌した後、鉄イオン交換体を除去する方法(回分法)が挙げられる。また、例えば、管型反応器を用い、鉄イオン交換体を管型反応器内に充填してイオン交換層を形成し、該イオン交換層にアクリロニトリル重合体溶液を流通させる方法(連続法)が挙げられる。中でも、製造効率等の観点から、管型反応器を用いた連続法が好ましい。   The raw material purification step only needs to be able to contact the acrylonitrile polymer solution with the iron ion exchanger. For example, after adding the iron ion exchanger to the acrylonitrile polymer solution using a tank reactor and stirring for an arbitrary time, the iron ion exchanger A method for removing the exchanger (batch method) can be mentioned. Further, for example, there is a method (continuous method) in which a tubular reactor is used, an iron ion exchanger is filled in the tubular reactor to form an ion exchange layer, and the acrylonitrile polymer solution is circulated through the ion exchange layer. Can be mentioned. Among these, from the viewpoint of production efficiency and the like, a continuous method using a tubular reactor is preferable.

回分法におけるアクリロニトリル重合体溶液に対する鉄イオン交換体の添加量は、例えば、アクリロニトリル重合体溶液に対して、0.01〜100質量%とすることが好ましい。0.01質量%未満であると、鉄イオンの除去が不十分となる場合があり、100質量%を超えると鉄イオン交換体の回収が煩雑となると共に、ランニングコストが増大する傾向にある。
連続法における管型反応器への鉄イオン交換体の充填量は、アクリロニトリル重合体溶液の処理量等を勘案して決定できる。
The addition amount of the iron ion exchanger to the acrylonitrile polymer solution in the batch method is preferably 0.01 to 100% by mass with respect to the acrylonitrile polymer solution, for example. If the amount is less than 0.01% by mass, the removal of iron ions may be insufficient. If the amount exceeds 100% by mass, the recovery of the iron ion exchanger becomes complicated and the running cost tends to increase.
The amount of iron ion exchanger charged in the tubular reactor in the continuous process can be determined in consideration of the amount of acrylonitrile polymer solution treated.

原料浄化工程は、例えば、15〜135℃の温度範囲で、アクリロニトリル重合体溶液と鉄イオン交換体とを接触することが好ましい。15℃未満では、アクリロニトリル重合体溶液の粘度が高くなり流動性が低下して鉄イオン交換体との接触が困難になると共に、イオン交換反応が進行しにくくなる。135℃を超えると、鉄イオン交換体は、熱安定性が不十分となり、長期間の使用ができなくなる。   In the raw material purification step, for example, it is preferable to contact the acrylonitrile polymer solution and the iron ion exchanger in a temperature range of 15 to 135 ° C. If it is less than 15 degreeC, the viscosity of an acrylonitrile polymer solution will become high, fluidity | liquidity will fall, it will become difficult to contact with an iron ion exchanger, and an ion exchange reaction will not advance easily. If it exceeds 135 ° C., the iron ion exchanger has insufficient thermal stability and cannot be used for a long period of time.

原料浄化工程におけるアクリロニトリル重合体溶液と鉄イオン交換体との接触時間(処理時間)は、アクリロニトリル重合体溶液に含まれる鉄イオンの量、鉄イオン交換体の種類や量に応じて決定することができる。   The contact time (treatment time) between the acrylonitrile polymer solution and the iron ion exchanger in the raw material purification step may be determined according to the amount of iron ions contained in the acrylonitrile polymer solution and the type and amount of the iron ion exchanger. it can.

原料浄化工程では、アクリロニトリル重合体溶液中の鉄元素量をできるだけ低減することが好ましく、例えば、対アクリロニトリル重合体換算(以下、対重合体換算)で、2.0×10−6g/g以下とすることが好ましく、0.5×10−6g/g以下とすることがより好ましい。上記範囲内とすることで、得られる前駆体繊維の鉄内在量を2.0×10−6g/g以下とし、炭素繊維の高強度化及び高弾性率化が図れる。 In the raw material purification step, it is preferable to reduce the amount of iron element in the acrylonitrile polymer solution as much as possible, for example, 2.0 × 10 −6 g / g or less in terms of acrylonitrile polymer (hereinafter referred to as polymer). It is preferable to be 0.5 × 10 −6 g / g or less. By setting it within the above range, the iron content of the obtained precursor fiber is set to 2.0 × 10 −6 g / g or less, and the strength and elasticity of the carbon fiber can be increased.

[紡糸工程]
紡糸工程は、原料浄化工程で処理したアクリロニトリル重合体溶液を紡出し、繊維(凝固糸)を得る工程である。紡糸方法としては、例えば、直接凝固浴中に紡出して凝固させる湿式紡糸法、空気中で凝固させる乾式紡糸法、一旦、空気中に紡出した後、凝固浴中で凝固させる乾湿式紡糸法等、公知の紡糸方法が挙げられる。中でも、炭素繊維の強度及び弾性率をより向上させる観点から、湿式紡糸法又は乾湿式紡糸法が好ましい。
[Spinning process]
The spinning step is a step of spinning the acrylonitrile polymer solution treated in the raw material purification step to obtain fibers (coagulated yarn). As the spinning method, for example, a wet spinning method in which spinning is directly performed in a coagulation bath, a dry spinning method in which coagulation is performed in air, and a dry wet spinning method in which spinning is performed once in air and then coagulated in a coagulation bath. For example, a known spinning method can be used. Among these, from the viewpoint of further improving the strength and elastic modulus of the carbon fiber, the wet spinning method or the dry wet spinning method is preferable.

湿式紡糸法又は乾湿式紡糸法による紡糸賦形は、上記のアクリロニトリル重合体溶液を略円形断面の孔を有するノズルより凝固浴中に紡出する方法が挙げられる。   Examples of the spinning shaping by the wet spinning method or the dry-wet spinning method include a method in which the acrylonitrile polymer solution is spun into a coagulation bath from a nozzle having a hole having a substantially circular cross section.

凝固浴としては、アクリロニトリル重合体溶液に用いられる溶剤を含む水溶液を用いることが好ましい。このような凝固浴が、溶剤回収の容易さの観点から好ましい。
なお、凝固浴は、鉄イオン交換体と接触させ、鉄イオンを除去したものが好ましい。かかる凝固浴を用いることで、前駆体繊維の鉄付着量を低減できる。
As the coagulation bath, it is preferable to use an aqueous solution containing a solvent used for the acrylonitrile polymer solution. Such a coagulation bath is preferred from the viewpoint of easy solvent recovery.
In addition, the coagulation bath is preferably one in which iron ions are removed by contact with an iron ion exchanger. By using such a coagulation bath, the iron adhesion amount of the precursor fiber can be reduced.

凝固浴として溶剤を含む水溶液を用いる場合、該水溶液中の溶剤濃度は、50〜85質量%が好ましい。上記範囲内であれば、前駆体繊維をボイド発生のない緻密な構造とし、高強度、高弾性率の炭素繊維を得られる。加えて、延伸性が確保でき生産性に優れるためである。   When using the aqueous solution containing a solvent as a coagulation bath, the solvent concentration in the aqueous solution is preferably 50 to 85% by mass. If it is in the said range, a precursor fiber will be made into the precise | minute structure without a void generation | occurrence | production, and a carbon fiber with high strength and a high elastic modulus can be obtained. In addition, stretchability can be secured and productivity is excellent.

凝固浴の温度は、特に限定されないが、10〜60℃が好ましい。上記範囲内であれば、前駆体繊維をボイド発生のない緻密な構造とし、高強度、高弾性率の炭素繊維を得られる。加えて、延伸性が確保でき生産性に優れるためである。   Although the temperature of a coagulation bath is not specifically limited, 10-60 degreeC is preferable. If it is in the said range, a precursor fiber will be made into the precise | minute structure without a void generation | occurrence | production, and a carbon fiber with high strength and a high elastic modulus can be obtained. In addition, stretchability can be secured and productivity is excellent.

紡糸工程では、凝固糸を凝固浴中又は延伸浴中で延伸することができる。あるいは、凝固糸を空中で延伸した後、再度、浴中で延伸することができる。また、あるいは、延伸の前後又は延伸中に水洗し、凝固糸を水膨潤状態とすることができる。   In the spinning process, the coagulated yarn can be drawn in a coagulation bath or a drawing bath. Alternatively, the coagulated yarn can be drawn in the air and then drawn again in the bath. Alternatively, the coagulated yarn can be made into a water-swollen state by washing with water before or after stretching or during stretching.

延伸浴は、例えば、水又はアクリロニトリル重合体溶液に用いられる溶剤を含む水溶液等が挙げられる。
なお、延伸浴は、鉄イオン交換体と接触させ、鉄イオンを除去したものが好ましい。かかる延伸浴を用いることで、前駆体繊維の鉄付着量を低減できる。
Examples of the stretching bath include water and an aqueous solution containing a solvent used for the acrylonitrile polymer solution.
The stretching bath is preferably one in which the iron ions are removed by contacting with the iron ion exchanger. By using such a drawing bath, the iron adhesion amount of the precursor fiber can be reduced.

延伸は、50〜98℃の凝固浴又は延伸浴に凝固糸を入れ、凝固糸に張力を掛けることで行われる。延伸は、例えば、1回で所望の倍率としてもよいし、2回以上に分けて多段に延伸することで所望の倍率としてもよい。例えば、空中での延伸と延伸浴中での延伸を組み合わせ、合計で5〜15倍に延伸することが好ましい。このように延伸することで、炭素繊維の高強度化、高弾性率が図れる。   Drawing is performed by putting the coagulated yarn in a coagulation bath of 50 to 98 ° C. or a drawing bath and applying tension to the coagulated yarn. For example, the stretching may be performed at a desired ratio once, or may be performed at a desired ratio by stretching in two or more stages. For example, it is preferable that stretching in the air and stretching in the stretching bath are combined and stretched 5 to 15 times in total. By stretching in this way, the carbon fiber can be increased in strength and elastic modulus.

[油剤原料浄化工程]
油剤原料浄化工程は、後述する分散液調製工程で調製する油剤分散液の原料である油剤組成物及び/又は水を鉄イオン交換体と接触させ、鉄イオンを除去するものである。本工程では、油剤組成物、水の他、油剤分散液に配合する乳化剤等の添加物を鉄イオン交換体と接触させてもよい。
油剤原料浄化工程は、油剤組成物、水及び添加物等の構成原料をそれぞれ鉄イオン交換体と接触させてもよいし、構成原料を混合した混合液を鉄イオン交換体と接触させてもよい。
[Oil agent raw material purification process]
In the oil agent raw material purification step, the oil agent composition and / or water, which is the raw material of the oil agent dispersion prepared in the dispersion preparation step described later, is brought into contact with the iron ion exchanger to remove iron ions. In this step, in addition to the oil composition and water, additives such as an emulsifier blended in the oil dispersion may be brought into contact with the iron ion exchanger.
In the oil agent raw material purification step, the constituent materials such as the oil agent composition, water, and additives may be brought into contact with the iron ion exchanger, respectively, or the mixed liquid in which the constituent materials are mixed may be brought into contact with the iron ion exchanger. .

油剤原料浄化工程は、原料浄化工程と同様に、回分法、連続法のいずれの方法を用いてもよい。   In the oil agent raw material purification step, either a batch method or a continuous method may be used as in the raw material purification step.

油剤原料浄化工程に用いる鉄イオン交換体は、原料浄化工程に用いる鉄イオン交換体と同様である。また、鉄イオン交換体と陰イオン交換体とを併用してもよい。
油剤原料浄化工程では、油剤分散液の原料の鉄元素の含有量をできるだけ低減することが好ましい。
The iron ion exchanger used in the oil material purification process is the same as the iron ion exchanger used in the raw material purification process. Moreover, you may use together an iron ion exchanger and an anion exchanger.
In the oil agent raw material purification step, it is preferable to reduce as much as possible the content of iron element in the raw material of the oil agent dispersion.

[分散液調製工程]
分散液調製工程は、油剤原料浄化工程で得られた油剤分散液の原料を用い、油剤分散液を調製する工程である。油剤分散液は、油剤組成物を水に分散したものであり、例えば、乳化剤を用いて油剤組成物を水に分散したものが挙げられる。
油剤分散液中の油剤組成物、水、乳化剤の配合量は、前駆体繊維に求める機能等を勘案して決定できる。
[Dispersion preparation process]
The dispersion liquid preparation step is a step of preparing an oil agent dispersion using the raw material of the oil agent dispersion obtained in the oil agent raw material purification step. The oil agent dispersion is obtained by dispersing an oil agent composition in water, and examples thereof include an oil agent composition dispersed in water using an emulsifier.
The blending amounts of the oil composition, water, and emulsifier in the oil dispersion can be determined in consideration of the function required for the precursor fiber.

油剤分散液には、必要に応じて、さらに酸化防止剤、帯電防止剤、消泡剤、防腐剤、抗菌剤、浸透剤等の添加物を配合することができる。このような添加物は、前駆体繊維の製造設備、使用環境を勘案し、油剤分散液の安定性、付着特性を向上させるために1種単独又は適宜組み合わせて用いることができる。   If necessary, additives such as an antioxidant, an antistatic agent, an antifoaming agent, an antiseptic, an antibacterial agent, and a penetrating agent can be added to the oil dispersion. Such additives can be used singly or in appropriate combination in order to improve the stability and adhesion characteristics of the oil dispersion in consideration of the production equipment and use environment of the precursor fiber.

酸化防止剤は公知の物質を用いることができ、好ましくはフェノール系、硫黄系の酸化防止剤である。フェノール系酸化防止剤としては、2,6−ジ−t−ブチル−p−クレゾール、4,4’−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)、2,2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス−(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−ブチル−4−エチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコールビス[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート等が挙げられる。また、硫黄系の酸化防止剤としては、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジトリデシルチオジプロピオネート等が挙げられる。このような酸化防止剤は、1種単独又は2種以上を適宜組み合わせて用いることができる。
油剤組成物中の酸化防止剤の配合量は、特に限定されないが、1〜5質量%が好ましい。
As the antioxidant, a known substance can be used, and preferably a phenol-based or sulfur-based antioxidant. Examples of phenolic antioxidants include 2,6-di-t-butyl-p-cresol, 4,4′-butylidenebis- (6-t-butyl-3-methylphenol), 2,2′-methylenebis- ( 4-methyl-6-tert-butylphenol), 2,2′-methylenebis- (4-ethyl-6-tert-butylphenol), 2,6-di-tert-butyl-4-ethylphenol, 1,1,3 -Tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, triethylene glycol bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) Propionate], tris (3,5-di -t- butyl-4-hydroxybenzyl) isocyanurate. Examples of sulfur-based antioxidants include dilauryl thiodipropionate, distearyl thiodipropionate, dimyristyl thiodipropionate, and ditridecyl thiodipropionate. Such antioxidant can be used individually by 1 type or in combination of 2 or more types.
Although the compounding quantity of the antioxidant in an oil agent composition is not specifically limited, 1-5 mass% is preferable.

帯電防止剤は、公知の物質を用いることができる。帯電防止剤はイオン型と非イオン型に大別され、イオン型としてはアニオン系、カチオン系及び両性系があり、非イオン型ではポリエチレングリコール型、多価アルコール型がある。帯電防止の観点からイオン型が好ましく、中でも脂肪族スルホン酸塩、高級アルコール硫酸エステル塩、高級アルコールエチレンオキシド付加物硫酸エステル塩、高級アルコールリン酸エステル塩、高級アルコールエチレンオキシド付加物硫酸リン酸エステル塩、第4級アンモニウム塩型カチオン界面活性剤、ベタイン型両性界面活性剤、高級アルコールエチレンオキシド付加物ポリエチレングリコール脂肪酸エステル、多価アルコール脂肪酸エステル等がより好ましい。このような帯電防止剤は、1種単独又は2種以上を適宜組み合わせて用いることができる。   A known substance can be used as the antistatic agent. Antistatic agents are roughly classified into ionic types and nonionic types, and ionic types include anionic, cationic and amphoteric, and nonionic types include polyethylene glycol type and polyhydric alcohol type. From the viewpoint of antistatic, ionic type is preferable, among them aliphatic sulfonate, higher alcohol sulfate ester salt, higher alcohol ethylene oxide adduct sulfate ester, higher alcohol phosphate ester salt, higher alcohol ethylene oxide adduct sulfate phosphate ester salt, More preferred are quaternary ammonium salt type cationic surfactants, betaine type amphoteric surfactants, higher alcohol ethylene oxide adducts polyethylene glycol fatty acid esters, polyhydric alcohol fatty acid esters and the like. Such antistatic agents can be used singly or in appropriate combination of two or more.

分散液調製工程では、一旦、加温しながらホモミキサー等で油中水滴型のエマルジョンを形成した後、温度を下げて転相させ、水中油滴型のエマルジョンとする転相温度法により油剤分散液を調製するのが好ましい。転相温度法は、ポリテトラフルオロエチレン(PTFE)製の容器等で転相できるため、油剤分散液への鉄の混入を低減できる。加えて、油剤組成物を小さな滴径で水に分散させ、安定したエマルジョンが得られる。例えば、油剤組成物、水、乳化剤等をゴーリンタイプのホモジナイザー(ゴーリンミキサー)に投入し乳化する強制乳化法では、油剤分散液の原料が、直接金属部材に接触した状態で乳化されるため、ホモジナイザーから油剤分散液に鉄が混入するおそれがある。   In the dispersion preparation process, once a water-in-oil emulsion is formed with a homomixer while warming, the oil is dispersed by the phase inversion temperature method to lower the temperature and invert the phase to make an oil-in-water emulsion. It is preferable to prepare a liquid. Since the phase inversion temperature method can perform phase inversion using a polytetrafluoroethylene (PTFE) container or the like, it is possible to reduce the mixing of iron into the oil dispersion. In addition, the oil composition is dispersed in water with a small droplet size, and a stable emulsion is obtained. For example, in the forced emulsification method in which an oil agent composition, water, an emulsifier, etc. are charged into a gorin type homogenizer (gorin mixer) and emulsified, the raw material of the oil agent dispersion is emulsified directly in contact with the metal member, so the homogenizer Therefore, there is a possibility that iron is mixed into the oil dispersion.

こうして得られた油剤分散液の鉄元素量は、0.5×10−6g/g以下が好ましく、0.1×10−6g/g以下がより好ましい。上記範囲内とすることで、前駆体繊維の鉄付着量を1.0×10−6g/g以下として、炭素繊維の高強度化及び高弾性率化が図れる。 The amount of iron element in the oil dispersion thus obtained is preferably 0.5 × 10 −6 g / g or less, and more preferably 0.1 × 10 −6 g / g or less. By setting it within the above range, the strength of the carbon fiber can be increased and the elastic modulus can be increased by setting the iron adhesion amount of the precursor fiber to 1.0 × 10 −6 g / g or less.

[油剤組成物付着工程]
油剤組成物付着工程は、紡糸工程で得られた繊維に、分散液調製工程で得られた油剤分散液を含浸させ、油剤組成物を付着させる工程である。
油剤組成物を付着させる繊維は、凝固糸であり、例えば、前述の浴中延伸後、浴中延伸又は洗浄を行った後に得られる水膨潤状態にある凝固糸であることが好ましい。
[Oil agent composition adhesion process]
The oil agent composition attaching step is a step in which the fiber obtained in the spinning step is impregnated with the oil agent dispersion obtained in the dispersion preparing step, and the oil agent composition is attached.
The fiber to which the oil composition is adhered is a coagulated yarn, and is preferably a coagulated yarn in a water-swelled state obtained after, for example, stretching in the bath and then stretching or washing in the bath.

油剤分散液を凝固糸に含浸する方法としては、ローラー法、ガイド法、スプレー法、ディップ法等、公知の方法を用いることができる。ローラー法は、ローラーをその軸方向が水平となる様に設置し、該ローラーの下方を油剤分散液に浸漬させ、該ローラーの上方に凝固糸を接触させながら進行させる方法である。ガイド法は、ポンプで一定量の油剤分散液をガイドから吐出し、該ガイド表面に凝固糸を接触させるものである。スプレー法は、ノズルから一定量の油剤分散液を凝固糸に噴射するものである。ディップ法は、油剤分散液の中に凝固糸を浸漬した後にローラー等で絞って余分な油剤分散液を除去するものである。
均一付着の観点から、凝固糸に十分に油剤分散液を含浸させ、余分な油剤分散液を除去するディップ法が好ましい。
As a method for impregnating the coagulated yarn with the oil dispersion, known methods such as a roller method, a guide method, a spray method, a dip method, and the like can be used. The roller method is a method in which a roller is placed so that its axial direction is horizontal, the lower part of the roller is immersed in an oil dispersion, and the coagulated yarn is brought into contact with the upper part of the roller. In the guide method, a fixed amount of oil dispersion is discharged from a guide by a pump, and the coagulated yarn is brought into contact with the surface of the guide. In the spray method, a certain amount of oil dispersion is sprayed from a nozzle onto a coagulated yarn. In the dip method, the coagulated yarn is immersed in the oil dispersion and then squeezed with a roller or the like to remove excess oil dispersion.
From the viewpoint of uniform adhesion, a dip method is preferred in which the coagulated yarn is sufficiently impregnated with the oil dispersion and the excess oil dispersion is removed.

油剤組成物付着工程は、上述の方法により、油剤分散液の含浸を1回としてもよく、上述の方法を2回以上繰り返す多段処理としてもよい。より均一に凝固糸に油剤組成物を付着させる観点から、多段処理とすることが好ましい。
こうして、凝固糸に油剤組成物が付着された前駆体繊維を製造することができる。
The oil composition adhering step may be impregnated once with the oil dispersion by the above-described method, or may be a multi-stage treatment in which the above-described method is repeated twice or more. From the viewpoint of more uniformly attaching the oil agent composition to the coagulated yarn, it is preferable to use a multistage treatment.
Thus, a precursor fiber in which the oil agent composition is attached to the coagulated yarn can be produced.

[乾燥工程]
本発明の前駆体繊維は、油剤組成物付着工程で得られたものをそのまま炭素繊維の製造に供してもよいし、油剤組成物付着工程の後段に乾燥工程を設け、前駆体繊維を乾燥緻密化してもよい。
乾燥工程は、従来公知の方法で前駆体繊維を乾燥でき、例えば、加熱ローラーによる乾燥が好ましい乾燥方法として挙げられる。なお、加熱ローラーの数量は1個であっても2個以上であってもよい。
乾燥工程における乾燥温度は、前駆体繊維のガラス転移温度を超えた温度とすることが好ましい。このような乾燥温度で処理することで、前駆体繊維の乾燥と緻密化が達成できる。乾燥温度は前駆体繊維の含水量の変動により異なるが、例えば、100〜200℃の範囲で決定することが好ましい。
[Drying process]
The precursor fiber of the present invention may be subjected to the production of carbon fiber as it is obtained in the oil agent composition attaching step, or a drying step is provided after the oil agent attaching step to dry and dense the precursor fiber. May be used.
A drying process can dry precursor fiber by a conventionally well-known method, for example, drying with a heating roller is mentioned as a preferable drying method. Note that the number of heating rollers may be one or two or more.
The drying temperature in the drying step is preferably a temperature exceeding the glass transition temperature of the precursor fiber. By treating at such a drying temperature, drying and densification of the precursor fiber can be achieved. Although drying temperature changes with fluctuation | variation of the moisture content of a precursor fiber, it is preferable to determine in the range of 100-200 degreeC, for example.

乾燥工程では、前駆体繊維を乾燥した後、さらに加圧水蒸気延伸することができる。加圧水蒸気延伸することで、前駆体繊維の緻密性や配向度をさらに高め、炭素繊維のさらなる高強度化、高弾性率化が図れる。加圧水蒸気延伸とは、加圧水蒸気雰囲気中で延伸を行う方法である。加圧水蒸気延伸によれば、高倍率の延伸が可能であり、より高速で安定な紡糸が行えると同時に、得られる繊維の緻密性や配向度向上にも寄与する。   In the drying step, the precursor fiber can be dried and then subjected to pressurized steam stretching. By performing the steam stretching under pressure, the denseness and orientation degree of the precursor fiber can be further increased, and the carbon fiber can be further increased in strength and elastic modulus. Pressurized steam stretching is a method of stretching in a pressurized steam atmosphere. According to pressurized steam drawing, drawing at a high magnification is possible, stable spinning can be performed at a higher speed, and at the same time, it contributes to improving the denseness and orientation degree of the obtained fiber.

加圧水蒸気延伸は、例えば、前駆体繊維を加熱ローラーで予備加熱した後、加圧水蒸気の存在下で前駆体繊維に張力を加える方法が挙げられる。このような加圧水蒸気延伸において、加圧水蒸気延伸装置の直前の加熱ローラーの温度を120〜190℃とし、前駆体繊維を予熱することが好ましい。加熱ローラーの温度が120℃未満では前駆体繊維の温度が十分に上がらず延伸性が低下する。
また、加圧水蒸気延伸における水蒸気圧力の変動率を0.5%以下に制御することが好ましい。
このように、加熱ローラーの温度と水蒸気圧力の変動率を制御することで、前駆体繊維になされる延伸倍率の変動及び該変動により発生するトウ繊度の変動を抑制することができる。
The pressurized steam stretching includes, for example, a method in which the precursor fiber is preheated with a heating roller and then tension is applied to the precursor fiber in the presence of pressurized steam. In such pressurized steam stretching, it is preferable to preheat the precursor fiber by setting the temperature of the heating roller immediately before the pressurized steam stretching apparatus to 120 to 190 ° C. When the temperature of the heating roller is less than 120 ° C., the temperature of the precursor fiber does not rise sufficiently and the drawability is lowered.
Moreover, it is preferable to control the fluctuation rate of the water vapor pressure in the pressurized water vapor stretching to 0.5% or less.
Thus, by controlling the fluctuation rate of the temperature of the heating roller and the water vapor pressure, it is possible to suppress the fluctuation of the draw ratio made to the precursor fiber and the fluctuation of the tow fineness caused by the fluctuation.

加圧水蒸気延伸における水蒸気の圧力は、加熱ローラーによる延伸の抑制や加圧水蒸気延伸法の特徴が明確に現れるようにするため、200kPa/g以上が好ましい。この水蒸気圧は、処理時間を勘案して適宜調節することが好ましく、高圧にすると水蒸気の漏れが増大したりする場合があるので、工業的には600kPa/g程度以下が好ましい。   The pressure of water vapor in the pressurized water vapor stretching is preferably 200 kPa / g or more so that the stretching of the heated roller and the characteristics of the pressurized water vapor stretching method appear clearly. The water vapor pressure is preferably adjusted as appropriate in consideration of the treatment time. If the pressure is high, leakage of water vapor may increase. Therefore, it is preferably about 600 kPa / g or less industrially.

乾燥工程の後、前駆体繊維は、室温のロール等を通すことにより、常温の状態まで冷却する。冷却した前駆体繊維は、ワインダーでボビンに巻き取られ、あるいはケンスに振込まれて収納され、炭素繊維の製造に供される。   After the drying step, the precursor fiber is cooled to a normal temperature state by passing it through a room temperature roll or the like. The cooled precursor fiber is wound around a bobbin by a winder, or transferred into a can and stored, and used for the production of carbon fiber.

[焼成工程]
焼成工程は、前駆体繊維を焼成し、炭素繊維を得るものである。焼成工程は、耐炎化処理と炭化処理とからなり、必要に応じて黒鉛化処理が設けられる。焼成工程における各処理の条件は特に限定されないが、繊維内部にボイド等の構造的欠陥が発生しにくい条件を設定するのが好ましい。
[Baking process]
In the firing step, the precursor fibers are fired to obtain carbon fibers. A baking process consists of a flame-proofing process and a carbonization process, and a graphitization process is provided as needed. The conditions for each treatment in the firing step are not particularly limited, but it is preferable to set conditions under which structural defects such as voids are unlikely to occur inside the fiber.

<耐炎化処理>
耐炎化処理は、前駆体繊維を酸化性雰囲気中で緊張あるいは延伸条件下で、任意の時間加熱し、耐炎化繊維とするものである。耐炎化処理の方法は、例えば、熱風循環方式、多孔板表面を有する固定熱板方式等が挙げられる。
耐炎化処理の加熱温度は、例えば200〜300℃とされる。
耐炎化処理では、耐炎化繊維の密度が1.30g/cm〜1.50g/cmになるまで処理することが好ましい。
<Flame resistance treatment>
In the flameproofing treatment, the precursor fiber is heated for an arbitrary time under tension or stretching conditions in an oxidizing atmosphere to form a flameproof fiber. Examples of the flameproofing method include a hot air circulation method and a fixed hot plate method having a porous plate surface.
The heating temperature of the flameproofing treatment is, for example, 200 to 300 ° C.
In flame-resistant treatment is preferably the density of the oxidized fiber is processed until the 1.30g / cm 3 ~1.50g / cm 3 .

<炭化処理>
炭化処理は、耐炎化処理で得られた耐炎化繊維を不活性ガス雰囲気下で加熱することで、炭素繊維を得るものである。炭化処理は、前炭素化操作と炭素化操作とからなる。
前炭素化操作は、最高温度550〜800℃の不活性ガス雰囲気中、緊張下で、300〜500℃の温度領域においては、500℃/分以下、好ましくは300℃/分以下の昇温速度で、耐炎化繊維を加熱し前炭素化繊維とする。この前炭素化操作により、炭素繊維の機械的特性を向上できる。
不活性ガスは、窒素、アルゴン、ヘリウム等、公知の不活性ガスを採用できるが、経済性の面から窒素が望ましい。
炭素化操作は、1200〜3000℃の不活性雰囲気中、1000〜1200℃の温度領域において、500℃/分以下、好ましくは300℃/分以下の昇温速度で、前炭素化繊維を加熱し炭素繊維とする。この炭素化操作により、炭素繊維の機械的特性を向上できる。
雰囲気ガスは、前炭素化操作の雰囲気ガスと同様である。
<Carbonization treatment>
In the carbonization treatment, the carbon fiber is obtained by heating the flame resistant fiber obtained by the flame resistance treatment in an inert gas atmosphere. Carbonization treatment consists of a pre-carbonization operation and a carbonization operation.
The pre-carbonization operation is performed under a tension in an inert gas atmosphere having a maximum temperature of 550 to 800 ° C., and in a temperature range of 300 to 500 ° C., the heating rate is 500 ° C./min or less, preferably 300 ° C./min or less. Then, the flame-resistant fiber is heated to form a pre-carbonized fiber. This pre-carbonization operation can improve the mechanical properties of the carbon fiber.
As the inert gas, a known inert gas such as nitrogen, argon, helium or the like can be adopted, but nitrogen is desirable in terms of economy.
The carbonization operation is performed by heating the pre-carbonized fiber at a temperature increase rate of 500 ° C./min or less, preferably 300 ° C./min or less in a temperature range of 1000 to 1200 ° C. in an inert atmosphere of 1200 to 3000 ° C. Carbon fiber. This carbonization operation can improve the mechanical properties of the carbon fiber.
The atmospheric gas is the same as that of the pre-carbonization operation.

<表面処理>
得られた炭素繊維は、さらに、表面処理されることにより、複合材料のマトリックスとの接着性の改善が図られる。表面処理方法としては、気相、液相処理を用いることができ、生産性、バラつき防止等の観点から電解処理が好ましい。電解処理に用いられる電解液としては、硫酸、硝酸、塩酸等の酸水溶液、水酸化ナトリウム、水酸化カリウム、テトラエチルアンモニウムヒドロキシド等のアルカリ水溶液あるいはこれらの塩の水溶液が挙げられる。中でも、アンモニウムイオンを含む水溶液が好ましく、例えば、硝酸アンモニウム、硫酸アンモニウム、過硫酸アンモニウム、塩化アンモニウム、臭化アンモニウムあるいはこれらの混合物の水溶液が挙げられる。
電解処理の電気量は、炭素繊維に応じて決定でき、例えば、炭化度の高い炭素繊維ほど、高い通電電気量とする。
<Surface treatment>
The obtained carbon fiber is further subjected to a surface treatment to improve the adhesion to the matrix of the composite material. As the surface treatment method, vapor phase or liquid phase treatment can be used, and electrolytic treatment is preferable from the viewpoints of productivity and prevention of variation. Examples of the electrolytic solution used for the electrolytic treatment include an aqueous acid solution such as sulfuric acid, nitric acid, and hydrochloric acid, an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, and tetraethylammonium hydroxide, or an aqueous solution of these salts. Among them, an aqueous solution containing ammonium ions is preferable, and examples thereof include an aqueous solution of ammonium nitrate, ammonium sulfate, ammonium persulfate, ammonium chloride, ammonium bromide, or a mixture thereof.
The amount of electricity in the electrolytic treatment can be determined according to the carbon fiber. For example, the higher the degree of carbonization, the higher the amount of electricity supplied.

得られた炭素繊維は、必要に応じて、さらにサイジング処理がなされる。サイジング処理に用いるサイジング剤は、マトリックスの種類に応じて決定でき、マトリックスとの相溶性のよいものが好ましい。
炭素繊維は、これらの表面処理を施すことにより、炭素繊維とマトリックスとの接着が適正なレベルとなり、縦方向及び横方向にバランスのとれた機械特性が発現する。
The obtained carbon fiber is further subjected to sizing treatment as necessary. The sizing agent used for the sizing treatment can be determined according to the type of the matrix, and those having good compatibility with the matrix are preferable.
By applying these surface treatments to the carbon fiber, the adhesion between the carbon fiber and the matrix becomes an appropriate level, and mechanical properties balanced in the vertical and horizontal directions are exhibited.

上述したように、本発明の前駆体繊維は、アクリロニトリル重合体溶液を鉄イオン交換体で処理することで、前駆体繊維の鉄内在量を2.0×10−6g/g以下にできる。加えて、油剤分散液の原料を鉄イオン交換体で処理することで、前駆体繊維の鉄付着量を1.0×10−6g/g以下にできる。油剤分散液を転相温度法により調製することで、前駆体繊維の鉄付着量をさらに高い精度で低減できる。このように、本発明の前駆体繊維は、その鉄内在量と、その鉄付着量とが一定の数値以下に制御されている。このため、本発明の前駆体繊維を炭化処理して得られた炭素繊維は、高い強度と高い弾性率を発現できる。 As described above, the precursor fiber of the present invention can reduce the iron content of the precursor fiber to 2.0 × 10 −6 g / g or less by treating the acrylonitrile polymer solution with an iron ion exchanger. In addition, by treating the raw material of the oil dispersion with an iron ion exchanger, the iron adhesion amount of the precursor fiber can be reduced to 1.0 × 10 −6 g / g or less. By preparing the oil dispersion by the phase inversion temperature method, the iron adhesion amount of the precursor fiber can be reduced with higher accuracy. Thus, as for the precursor fiber of this invention, the iron abundance and the iron adhesion amount are controlled below a fixed numerical value. For this reason, the carbon fiber obtained by carbonizing the precursor fiber of the present invention can exhibit high strength and high elastic modulus.

前駆体繊維の鉄付着量を低減することで、炭素繊維の強度、弾性率が向上する理由は明らかではないが、以下のように推測できる。耐炎化処理は、200〜300℃で前駆体繊維を加熱するが、この際、鉄元素は酸素存在雰囲気下で200〜300℃に加熱されることで、耐炎化反応を阻害するものと考えられる。そして、耐炎化反応が阻害された結果、炭素繊維の強度、弾性率を低下させることとなる。このことから、前駆体繊維の鉄付着量を低減することで、炭素繊維の強度と弾性率を向上できると推測する。   The reason why the strength and elastic modulus of the carbon fiber are improved by reducing the iron adhesion amount of the precursor fiber is not clear, but can be estimated as follows. In the flameproofing treatment, the precursor fiber is heated at 200 to 300 ° C. At this time, the iron element is considered to inhibit the flameproofing reaction by being heated to 200 to 300 ° C. in an oxygen-existing atmosphere. . And as a result of inhibiting flameproofing reaction, the intensity | strength and elastic modulus of carbon fiber will be reduced. From this, it is estimated that the strength and elastic modulus of the carbon fiber can be improved by reducing the iron adhesion amount of the precursor fiber.

上述の実施形態では、油剤原料浄化工程で得られた油剤分散液の原料を用いて油剤分散液を調製しているが、例えば、油剤分散液を調製した後に該油剤分散液を鉄イオン交換体で処理してもよい。   In the above-described embodiment, the oil agent dispersion is prepared using the oil agent dispersion raw material obtained in the oil agent raw material purification step. For example, after preparing the oil agent dispersion, the oil agent dispersion is converted into an iron ion exchanger. May be processed.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
(測定方法)
前駆体繊維の鉄総量、前駆体繊維の鉄付着量、前駆体繊維の鉄内在量、アクリロニトリル重合体溶液(紡糸原液)中の鉄元素量、油剤分散液及びその原料中に含まれる鉄元素量、炭素繊維のストランド強度、弾性率の評価は以下の方法により測定した。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
(Measuring method)
Total amount of iron in precursor fiber, amount of iron adhering to precursor fiber, amount of iron in precursor fiber, amount of iron element in acrylonitrile polymer solution (spinning stock solution), amount of iron element contained in oil dispersion and its raw material The strand strength and elastic modulus of the carbon fiber were evaluated by the following methods.

[鉄総量]
前駆体繊維100gを白金製ルツボに秤量し、該白金製ルツボをホットプレートに載置し加熱した。加熱は、煙の発生がなくなるまで行った(予備加熱処理)。次いで、白金製ルツボをマッフル炉に入れ、600℃で前駆体繊維を灰化した(灰化処理)。灰化後、白金製ルツボをホットプレートに載置し加熱した。加熱しながら、白金製ルツボに濃塩酸:純水(質量比)=1:1の塩酸水溶液2mLを加えて灰化物を溶解し、さらに加熱して灰化物の溶解液を乾固寸前まで濃縮した(溶解・濃縮処理)。この濃縮物を0.1mol/L塩酸水溶液で溶解し、10mLにメスアップしたものを測定用試料とした(試料化処理)。この測定用試料を用い、ICP発光分析法により鉄総量を測定した。ICP発光分析は、ICP発光分析装置(サーモエレクトロン社製、IRIS−AP advantage)を用い測定した。
[Total amount of iron]
100 g of the precursor fiber was weighed in a platinum crucible, and the platinum crucible was placed on a hot plate and heated. Heating was performed until no smoke was generated (preliminary heat treatment). Subsequently, the platinum crucible was put into a muffle furnace, and the precursor fiber was incinerated at 600 ° C. (incineration treatment). After ashing, a platinum crucible was placed on a hot plate and heated. While heating, 2 mL of a hydrochloric acid aqueous solution of concentrated hydrochloric acid: pure water (mass ratio) = 1: 1 was added to the platinum crucible to dissolve the ash, and further heated to concentrate the solution of the ash to a dry solid size. (Dissolution / concentration treatment). This concentrate was dissolved in a 0.1 mol / L hydrochloric acid aqueous solution and made up to 10 mL, and used as a measurement sample (sample treatment). Using this measurement sample, the total amount of iron was measured by ICP emission spectrometry. The ICP emission analysis was measured using an ICP emission analyzer (manufactured by Thermo Electron, IRIS-AP advantage).

[鉄付着量]
前駆体繊維100gを105℃で1時間乾燥させた後、90℃のメチルエチルケトン(MEK)に8時間浸漬して、付着している油剤組成物をMEK溶媒に抽出した。MEK抽出物をエバポレーターで濃縮した。この濃縮物を白金製ルツボに移した後、鉄総量と同様に、予備加熱処理、灰化処理、溶解・濃縮処理、試料化処理を行い、測定用試料を得た。得られた測定用試料を鉄総量と同様に、ICP発光分析法により鉄元素量を測定した。
続いて油剤組成物抽出後の前駆体繊維を濃塩酸:純水(質量比)=1:1の塩酸水溶液中に入れ、80℃で一晩加熱攪拌した後、試料を濾過して濾液を得た。この濾液を白金製ルツボに入れた後、鉄総量と同様に、予備加熱処理、灰化処理、溶解・濃縮処理、試料化処理を行い、測定用試料を得た。得られた測定用試料を鉄総量と同様に、ICP発光分析により鉄元素量を測定した。
それぞれの鉄元素量の測定値の和を鉄付着量とした。
[Iron adhesion amount]
After drying 100 g of the precursor fiber at 105 ° C. for 1 hour, it was immersed in methyl ethyl ketone (MEK) at 90 ° C. for 8 hours, and the attached oil agent composition was extracted into the MEK solvent. The MEK extract was concentrated with an evaporator. After the concentrate was transferred to a platinum crucible, a preheating treatment, an ashing treatment, a dissolution / concentration treatment, and a sample treatment were performed in the same manner as the total amount of iron to obtain a measurement sample. The amount of iron element of the obtained measurement sample was measured by ICP emission spectrometry in the same manner as the total amount of iron.
Subsequently, the precursor fiber after extraction of the oil agent composition was placed in a hydrochloric acid aqueous solution of concentrated hydrochloric acid: pure water (mass ratio) = 1: 1, heated and stirred overnight at 80 ° C., and then the sample was filtered to obtain a filtrate. It was. After the filtrate was put in a platinum crucible, a preheating treatment, an ashing treatment, a dissolution / concentration treatment, and a sample treatment were performed in the same manner as the total amount of iron to obtain a measurement sample. The amount of iron element of the obtained measurement sample was measured by ICP emission analysis in the same manner as the total amount of iron.
The sum of the measured values of each iron element amount was defined as the iron adhesion amount.

[鉄内在量]
鉄総量から鉄付着量を減じた値を鉄内在量とした。
[Abundance in iron]
The value obtained by subtracting the iron adhesion amount from the total iron amount was defined as the iron abundance.

[紡糸原液中の鉄元素量]
紡糸原液100gを白金製ルツボに入れた後、鉄総量と同様に、予備加熱処理、灰化処理、溶解・濃縮処理、試料化処理を行い、測定用試料を得た。得られた測定用試料を鉄総量と同様に、ICP発光分析法により、鉄元素量を測定した。なお、表中、紡糸原液中の鉄元素量は、対重合体換算(アクリロニトリル重合体1gあたり)として記載した。
[Amount of iron element in spinning dope]
After putting 100 g of the spinning dope into a platinum crucible, a preheating treatment, an ashing treatment, a dissolution / concentration treatment, and a sample treatment were performed in the same manner as the total amount of iron to obtain a measurement sample. The amount of iron element of the obtained sample for measurement was measured by ICP emission spectrometry in the same manner as the total amount of iron. In the table, the amount of iron element in the spinning dope is described as a polymer conversion (per gram of acrylonitrile polymer).

[油剤分散液及びその原料中に含まれる鉄元素量]
試料100gを白金製ルツボに入れた後、鉄総量と同様に、予備加熱処理、灰化処理、溶解・濃縮処理、試料化処理を行い、測定用試料を得た。得られた測定用試料を鉄総量と同様に、ICP発光分析法により、鉄元素量を測定した。
[Amount of iron element contained in oil dispersion and its raw materials]
After putting 100 g of a sample into a platinum crucible, a preheating treatment, an ashing treatment, a dissolution / concentration treatment, and a sampling treatment were performed in the same manner as the total amount of iron to obtain a measurement sample. The amount of iron element of the obtained sample for measurement was measured by ICP emission spectrometry in the same manner as the total amount of iron.

[炭素繊維ストランド強度、弾性率]
炭素繊維ストランド強度及び弾性率は、JIS−R−7601に準じたエポキシ樹脂含浸炭素繊維ストランド法に準じて測定した。なお、測定回数は10回とし、その平均値を評価の対象とした。
[Carbon fiber strand strength, elastic modulus]
The carbon fiber strand strength and elastic modulus were measured according to an epoxy resin-impregnated carbon fiber strand method according to JIS-R-7601. The number of measurements was 10 times, and the average value was used as an evaluation target.

(実施例1)
[アクリロニトリル重合体の製造]
アクリロニトリル重合体は、オーバーフロー式の重合容器に以下のように各原料を供給すると共に重合容器内の温度を50℃に維持しながら攪拌し、オーバーフローした重合スラリーを洗浄、乾燥して製造した。重合容器内には、常に脱イオン水74.75質量%、モノマー25質量%(組成比・・・アクリロニトリル(AN):アクリルアミド(AAm):メタクリル酸(MAA)(質量比)=96:3:1)、過硫酸アンモニウム0.1質量%、亜硫酸水素アンモニウム0.15質量%、硫酸第一鉄7水和物2質量ppmとなるように各原料を連続して供給すると共に、pH3.0となるように硫酸を適量添加した。得られたアクリロニトリル重合体の組成は、AN:AAm:MAA(質量比)=96.5:2.7:0.8であった。
Example 1
[Production of acrylonitrile polymer]
The acrylonitrile polymer was produced by supplying each raw material to an overflow type polymerization vessel as follows and stirring while maintaining the temperature in the polymerization vessel at 50 ° C., washing and drying the overflowed polymerization slurry. In the polymerization vessel, 74.75% by mass of deionized water and 25% by mass of monomer (composition ratio: acrylonitrile (AN): acrylamide (AAm): methacrylic acid (MAA) (mass ratio)) = 96: 3: 1) Each raw material is continuously supplied so as to be 0.1 mass% ammonium persulfate, 0.15 mass% ammonium bisulfite, and 2 mass ppm ferrous sulfate heptahydrate, and the pH is 3.0. Thus, an appropriate amount of sulfuric acid was added. The composition of the obtained acrylonitrile polymer was AN: AAm: MAA (mass ratio) = 96.5: 2.7: 0.8.

[アクリロニトリル重合体溶液(紡糸原液)の製造]
上記で得たアクリロニトリル重合体21.2質量%、ジメチルホルムアミド78.8質量%を混合し、加熱溶解して溶解液を得た。得られた溶解液に、アクリロニトリル重合体100質量部に対して強酸性陽イオン交換樹脂(三菱化学株式会社製、製品名:PK218H型、官能基:スルホン酸基)10質量部を添加し、80℃、30分間、PTFEコーティングした容器内で攪拌した。攪拌後、目開き5μmのPTFE製フィルターで濾過してイオン交換樹脂を取り除き、紡糸原液を得た。紡糸原液に含まれる鉄元素量を表1に示す。
[Production of acrylonitrile polymer solution (spinning solution)]
21.2% by mass of the acrylonitrile polymer obtained above and 78.8% by mass of dimethylformamide were mixed and dissolved by heating to obtain a solution. 10 parts by mass of strongly acidic cation exchange resin (product name: PK218H type, functional group: sulfonic acid group, manufactured by Mitsubishi Chemical Corporation) is added to 100 parts by mass of the acrylonitrile polymer to the obtained solution. The mixture was stirred in a PTFE-coated container at 30 ° C. for 30 minutes. After stirring, the mixture was filtered through a PTFE filter having an opening of 5 μm to remove the ion exchange resin, and a spinning dope was obtained. Table 1 shows the amount of iron element contained in the spinning dope.

[油剤分散液の製造]
PTFE製容器内にてアミノ変性シリコーン(信越化学工業株式会社製、製品名:KF−8002)100質量部に、乳化剤(花王株式会社製、製品名:エマルゲン108)40質量部を混合した後、水25質量部を添加しながらPTFEコーティングしたホモミキサーで攪拌しゲルを得た。このゲルをホモミキサーで攪拌しながらアミノ変性シリコーンを乳化剤に対して9当量になるように添加した。次いで、水:アミノ変性シリコーン:乳化剤(質量比)=98.65:1.2:0.15になるようにホモミキサーで攪拌しながら水を加え、油剤分散液を得た。また、アミノ変性シリコーン、乳化剤、水は、使用前に、各原料100質量部に対し強酸性陽イオン交換樹脂(三菱化学株式会社製、製品名:PK218H型、官能基:スルホン酸基)10質量部を添加し、60℃、30分間、PTFEコーティングした容器内で攪拌した。攪拌後、目開き5μmのPTFE製フィルターで濾過してイオン交換樹脂を除いたものを用いた。油剤分散液及びその原料の鉄元素量を表1に示す。
[Production of oil dispersion]
After mixing 40 parts by mass of an emulsifier (manufactured by Kao Corporation, product name: Emulgen 108) with 100 parts by mass of amino-modified silicone (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KF-8002) in a PTFE container, The mixture was stirred with a PTFE-coated homomixer while adding 25 parts by mass of water to obtain a gel. While stirring this gel with a homomixer, amino-modified silicone was added so as to be 9 equivalents to the emulsifier. Subsequently, water was added while stirring with a homomixer so that water: amino-modified silicone: emulsifier (mass ratio) = 98.65: 1.2: 0.15 to obtain an oil dispersion. Amino-modified silicone, emulsifier, and water are 10 parts by mass of strongly acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, product name: PK218H type, functional group: sulfonic acid group) with respect to 100 parts by mass of each raw material before use. The mixture was added and stirred in a PTFE-coated container at 60 ° C. for 30 minutes. After stirring, the product was filtered through a PTFE filter having an opening of 5 μm to remove the ion exchange resin. Table 1 shows the amount of iron element in the oil dispersion and its raw material.

[前駆体繊維の製造]
上記紡糸原液を濃度67質量%、温度38℃のジメチルアセトアミド水溶液からなる凝固浴中に、孔径75μm、孔数6000の紡糸ノズルより吐出し凝固糸を得た。得られた凝固糸を空気中で1.1倍に延伸し、続いて熱水中で3.0倍に延伸しながら洗浄、脱溶剤した。脱溶剤した凝固糸を上記油剤分散液中に浸漬し、140℃の加熱ローラーで緻密乾燥化した。次いで、圧力0.22MPaの蒸気中で3.0倍に延伸し、捲取速度100m/分にて単繊度1.2dtexの円形断面を有する前駆体繊維を製造した。製造した前駆体繊維の鉄総量、鉄内在量、鉄付着量を表1に示す。
[Precursor fiber production]
The spinning solution was discharged into a coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 67% by mass and a temperature of 38 ° C. from a spinning nozzle having a pore diameter of 75 μm and a hole number of 6000 to obtain a coagulated yarn. The obtained coagulated yarn was stretched 1.1 times in air, then washed and desolvated while being stretched 3.0 times in hot water. The solvent-removed coagulated yarn was immersed in the oil dispersion and densely dried with a 140 ° C. heating roller. Next, a precursor fiber having a circular cross section with a single fineness of 1.2 dtex was produced at a drawing speed of 100 m / min by stretching 3.0 times in steam at a pressure of 0.22 MPa. Table 1 shows the total amount of iron, the amount of iron present, and the amount of iron adhesion of the produced precursor fiber.

[炭素繊維の製造]
前駆体繊維を、220〜260℃の温度勾配を有する耐炎化炉に通し(耐炎化処理)、窒素雰囲気中で400〜1300℃の温度勾配を有する炭素化炉で焼成した(炭素化処理)。その後、電解酸化処理、サイジング処理を施し、炭素繊維とした。得られた炭素繊維の炭素繊維ストランド強度、弾性率の評価結果を表1に示す。
得られた炭素繊維のストランド強度は5.9GPa、弾性率は290GPaとなった。
[Manufacture of carbon fiber]
The precursor fiber was passed through a flameproofing furnace having a temperature gradient of 220 to 260 ° C. (flameproofing treatment) and fired in a carbonization furnace having a temperature gradient of 400 to 1300 ° C. in a nitrogen atmosphere (carbonization treatment). Thereafter, electrolytic oxidation treatment and sizing treatment were performed to obtain carbon fibers. Table 1 shows the evaluation results of carbon fiber strand strength and elastic modulus of the obtained carbon fiber.
The obtained carbon fiber had a strand strength of 5.9 GPa and an elastic modulus of 290 GPa.

(実施例2)
紡糸原液製造時にイオン交換樹脂で処理しなかった以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は5.8GPa、弾性率は270GPaとなった。
(Example 2)
Carbon fibers were obtained in the same manner as in Example 1 except that no treatment was performed with an ion exchange resin during the production of the spinning dope. Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 5.8 GPa and an elastic modulus of 270 GPa.

(実施例3)
紡糸直前の紡糸原液中の鉄元素量が0.35×10−6g/g(対重合体換算)となるように硝酸鉄(III)5.0質量%のジメチルアセトアミド溶液を添加した以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は5.8GPa、弾性率は280GPaとなった。
(Example 3)
Except for adding a dimethylacetamide solution of 5.0% by mass of iron (III) nitrate so that the amount of iron element in the spinning dope immediately before spinning is 0.35 × 10 −6 g / g (vs. polymer). In the same manner as in Example 1, carbon fibers were obtained. Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 5.8 GPa and an elastic modulus of 280 GPa.

(実施例4)
紡糸直前の紡糸原液中の鉄元素量が2.0×10−6g/g(対重合体換算)となるように硝酸鉄(III)5.0質量%のジメチルアセトアミド溶液を添加した以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は5.7MPa、弾性率は280GPaとなった。
Example 4
Except for adding a dimethylacetamide solution containing 5.0% by mass of iron (III) nitrate so that the amount of iron element in the spinning dope immediately before spinning is 2.0 × 10 −6 g / g (in terms of polymer). In the same manner as in Example 1, carbon fibers were obtained. Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 5.7 MPa and an elastic modulus of 280 GPa.

(実施例5)
油剤分散液中の鉄元素量が0.5×10−6g/gとなるように硝酸鉄(III)を油剤分散液に添加した以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は5.7GPa、弾性率は270GPaとなった。
(Example 5)
Carbon fibers were obtained in the same manner as in Example 1 except that iron (III) nitrate was added to the oil dispersion so that the amount of iron element in the oil dispersion was 0.5 × 10 −6 g / g. . Table 1 shows the measurement results.
The carbon fiber obtained had a strand strength of 5.7 GPa and an elastic modulus of 270 GPa.

(比較例1)
紡糸原液及び油剤分散液を下記条件で製造した以外は、実施例1と同様にして炭素繊維を得た。紡糸原液は、イオン交換樹脂で処理せずに製造した。油剤分散液は、アミノ変性シリコーン(信越化学工業株式会社製、製品名:KF−8002)90質量部に対し、乳化剤(花王株式会社製、製品名:エマルゲン108)を10質量部混合したものをゴーリンミキサー(エスエムテー株式会社製、製品名:圧力式ホモジナイザーゴーリンタイプ)で乳化した後、水を加えて製造した。得られた油剤分散液の組成は、水:アミノ変性シリコーン:乳化剤(質量比)=98.65:1.2:0.15であった。なお、油剤分散液の製造にあたっては、アミノ変性シリコーン、乳化剤、水のいずれもイオン交換樹脂で処理しなかった。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は5.3MPa、弾性率は250GPaとなった。
実施例1と比較すると前駆体繊維の鉄付着量が多いため、炭素繊維のストランド強度は0.6GPa、弾性率は40GPa低下した。
(Comparative Example 1)
Carbon fibers were obtained in the same manner as in Example 1 except that the spinning dope and the oil dispersion were produced under the following conditions. The spinning dope was prepared without treatment with an ion exchange resin. The oil dispersion is obtained by mixing 10 parts by mass of an emulsifier (manufactured by Kao Corporation, product name: Emulgen 108) with 90 parts by mass of amino-modified silicone (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KF-8002). After emulsification with a gorin mixer (product name: pressure homogenizer gorin type, manufactured by SMT Co., Ltd.), water was added to produce. The composition of the obtained oil dispersion was water: amino-modified silicone: emulsifier (mass ratio) = 98.65: 1.2: 0.15. In producing the oil dispersion, none of the amino-modified silicone, the emulsifier, and water was treated with the ion exchange resin. Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 5.3 MPa and an elastic modulus of 250 GPa.
Compared with Example 1, since the amount of iron adhering to the precursor fiber was larger, the strand strength of the carbon fiber was reduced by 0.6 GPa and the elastic modulus was lowered by 40 GPa.

(比較例2)
紡糸原液製造時にイオン交換樹脂で処理せず、油剤分散液中の鉄元素量が2.0×10−6g/gになるように硝酸鉄(III)を油剤分散液に添加した以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は4.9GPa、弾性率は230GPaとなった。
実施例1と比較すると前駆体繊維の鉄付着量が多いため、炭素繊維のストランド強度は1.0GPa、弾性率は60GPa低下した。
(Comparative Example 2)
Except that it was not treated with an ion exchange resin during the production of the spinning dope and iron (III) nitrate was added to the oil dispersion so that the amount of iron element in the oil dispersion was 2.0 × 10 −6 g / g. Carbon fibers were obtained in the same manner as in Example 1. Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 4.9 GPa and an elastic modulus of 230 GPa.
Compared with Example 1, since the amount of iron adhering to the precursor fiber was large, the strand strength of the carbon fiber was reduced by 1.0 GPa and the elastic modulus was reduced by 60 GPa.

(比較例3)
油剤分散液を比較例1と同様にして製造した以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は4.8GPa、弾性率は230GPaとなった。
実施例1と比較すると前駆体繊維の鉄付着量が多いため、炭素繊維のストランド強度は1.1GPa、弾性率は60GPa低下した。
(Comparative Example 3)
Carbon fibers were obtained in the same manner as in Example 1 except that the oil dispersion was produced in the same manner as in Comparative Example 1. Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 4.8 GPa and an elastic modulus of 230 GPa.
Compared to Example 1, the amount of iron adhering to the precursor fiber was large, so the strand strength of the carbon fiber was reduced by 1.1 GPa and the elastic modulus was reduced by 60 GPa.

(比較例4)
油剤分散液中の鉄元素量が2.0×10−6g/gとなるように硝酸鉄(III)を油剤分散液に添加した以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は5.0GPa、弾性率は240GPaとなった。
実施例1と比較すると前駆体繊維の鉄付着量が多いため、炭素繊維のストランド強度は0.9GPa、弾性率は50GPa低下した。
(Comparative Example 4)
Carbon fibers were obtained in the same manner as in Example 1, except that iron nitrate (III) was added to the oil dispersion so that the amount of iron element in the oil dispersion was 2.0 × 10 −6 g / g. . Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 5.0 GPa and an elastic modulus of 240 GPa.
Compared with Example 1, since the amount of iron adhering to the precursor fiber was large, the strand strength of the carbon fiber was reduced by 0.9 GPa and the elastic modulus was reduced by 50 GPa.

(比較例5)
紡糸直前の紡糸原液中の鉄元素量が0.35×10−6g/g(対重合体換算)となるように硝酸鉄(III)5.0質量%のジメチルアセトアミド溶液を紡糸原液に添加し、油剤分散液中の鉄元素量が2.0×10−6g/gとなるように硝酸鉄(III)を油剤分散液に添加した以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は5.0GPa、弾性率は240GPaとなった。
実施例1と比較すると前駆体繊維の鉄付着量が多いため、炭素繊維のストランド強度は0.9GPa、弾性率は50GPa低下した。
(Comparative Example 5)
A dimethylacetamide solution containing 5.0% by mass of iron (III) nitrate was added to the spinning dope so that the amount of iron element in the spinning dope immediately before spinning was 0.35 × 10 −6 g / g (vs. polymer). In the same manner as in Example 1, except that iron (III) nitrate was added to the oil dispersion so that the amount of iron element in the oil dispersion was 2.0 × 10 −6 g / g. Obtained. Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 5.0 GPa and an elastic modulus of 240 GPa.
Compared with Example 1, since the amount of iron adhering to the precursor fiber was large, the strand strength of the carbon fiber was reduced by 0.9 GPa and the elastic modulus was reduced by 50 GPa.

(比較例6)
紡糸直前の紡糸原液中の鉄元素量が0.35×10−6g/g(対重合体換算)となるように硝酸鉄(III)5.0質量%のジメチルアセトアミド溶液を添加し、油剤分散液を比較例1と同様にして製造した以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は4.9GPa、弾性率は250GPaとなった。
実施例1と比較すると前駆体繊維の鉄付着量が多いため、炭素繊維のストランド強度は1.0GPa、弾性率は40GPa低下した。
(Comparative Example 6)
A dimethylacetamide solution of 5.0% by mass of iron (III) nitrate was added so that the amount of iron element in the spinning dope immediately before spinning was 0.35 × 10 −6 g / g (vs. polymer), Carbon fibers were obtained in the same manner as in Example 1 except that the dispersion was produced in the same manner as in Comparative Example 1. Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 4.9 GPa and an elastic modulus of 250 GPa.
Compared to Example 1, the amount of iron adhering to the precursor fiber was large, so the strand strength of the carbon fiber was reduced by 1.0 GPa and the elastic modulus was reduced by 40 GPa.

(比較例7)
紡糸直前の紡糸原液中の鉄元素量が5.0×10−6g/g(対重合体換算)となるように硝酸鉄(III)5.0質量%のジメチルアセトアミド溶液を添加した以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は5.2GPa、弾性率は240GPaとなった。
実施例1と比較すると前駆体繊維の鉄内在量が多いため、炭素繊維のストランド強度は0.7GPa、弾性率は50GPa低下した。
(Comparative Example 7)
Except for adding a dimethylacetamide solution of 5.0% by mass of iron (III) nitrate so that the amount of iron element in the spinning dope immediately before spinning is 5.0 × 10 −6 g / g (vs. polymer conversion). In the same manner as in Example 1, carbon fibers were obtained. Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 5.2 GPa and an elastic modulus of 240 GPa.
Compared to Example 1, the amount of precursor fibers contained in iron was large, so that the strand strength of the carbon fibers was reduced by 0.7 GPa and the elastic modulus was reduced by 50 GPa.

(比較例8)
油剤分散液中の鉄元素量が1.0×10−6g/gとなるように硝酸鉄(III)を油剤分散液に添加した以外は、実施例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は5.1GPa、弾性率は230GPaとなった。
実施例1と比較すると前駆体繊維の鉄付着量が多いため、炭素繊維のストランド強度は0.8GPa、弾性率は60GPa低下した。
(Comparative Example 8)
Carbon fibers were obtained in the same manner as in Example 1 except that iron (III) nitrate was added to the oil dispersion so that the amount of iron element in the oil dispersion was 1.0 × 10 −6 g / g. . Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 5.1 GPa and an elastic modulus of 230 GPa.
Compared with Example 1, since the amount of iron adhering to the precursor fiber was large, the strand strength of the carbon fiber was reduced by 0.8 GPa and the elastic modulus was reduced by 60 GPa.

(比較例9)
紡糸原液の製造及び油剤分散液の製造にあたって、紡糸原液、アミノ変性シリコーン、乳化剤、水を実施例1と同様にイオン交換樹脂で処理した以外は、比較例1と同様にして炭素繊維を得た。各測定結果を表1に示す。
得られた炭素繊維のストランド強度は5.0GPa、弾性率は250GPaとなった。
実施例1と比較すると前駆体繊維の鉄付着量が多いため、炭素繊維のストランド強度は0.9GPa、弾性率は40GPa低下した。
(Comparative Example 9)
A carbon fiber was obtained in the same manner as in Comparative Example 1 except that the spinning stock solution, amino-modified silicone, emulsifier, and water were treated with an ion exchange resin in the same manner as in Example 1 in the production of the spinning stock solution and the oil dispersion. . Table 1 shows the measurement results.
The obtained carbon fiber had a strand strength of 5.0 GPa and an elastic modulus of 250 GPa.
Compared with Example 1, since the amount of iron adhering to the precursor fiber was large, the strand strength of the carbon fiber was reduced by 0.9 GPa and the elastic modulus was lowered by 40 GPa.

Figure 0005424824
Figure 0005424824

表1から明らかなように、前駆体繊維の鉄内在量を2.0×10−6g/g以下、鉄付着量を1.0×10−6g/g以下とした実施例1〜5は、ストランド強度、弾性率共に、比較例1〜9に比べて向上していた。特に、前駆体繊維の鉄付着量を少なくすることで、ストランド強度、弾性率を向上できることが判った。このことは、実施例4の前駆体繊維(鉄総量2.1×10−6g/g、鉄付着量0.2×10−6g/g)と比較例8の前駆体繊維(鉄総量2.6×10−6g/g、鉄付着量2.5×10−6g/g)とが近似した鉄総量であるにもかかわらず、鉄付着量の少ない実施例4の方が炭素繊維のストランド強度、弾性率が高くなっていることから、明らかである。 As is clear from Table 1, Examples 1 to 5 in which the iron internal amount of the precursor fiber was 2.0 × 10 −6 g / g or less and the iron adhesion amount was 1.0 × 10 −6 g / g or less. Both strand strength and elastic modulus were improved as compared with Comparative Examples 1-9. In particular, it has been found that the strand strength and the elastic modulus can be improved by reducing the iron adhesion amount of the precursor fiber. This means that the precursor fiber of Example 4 (total iron amount 2.1 × 10 −6 g / g, iron adhesion amount 0.2 × 10 −6 g / g) and the precursor fiber of Comparative Example 8 (total iron amount) 2.6 × 10 −6 g / g, iron adhesion amount 2.5 × 10 −6 g / g), although the total iron amount is approximate, Example 4 with less iron adhesion amount is carbon. It is clear from the fact that the strand strength and elastic modulus of the fiber are high.

Claims (4)

鉄内在量が0.3×10−6g/g以下、かつ鉄付着量が0.1×10−6g/g以下である、炭素繊維前駆体アクリル繊維。 Carbon fiber precursor acrylic fibers having an iron abundance of 0.3 × 10 −6 g / g or less and an iron adhesion amount of 0.1 × 10 −6 g / g or less. 鉄イオンとイオン交換能を有する物質にアクリロニトリル重合体溶液を接触させる原料浄化工程と、
前記原料浄化工程で処理したアクリロニトリル重合体溶液を紡糸する紡糸工程と、
鉄イオンとイオン交換能を有する物質に油剤組成物及び水を接触させる油剤原料浄化工程と、
前記油剤組成物及び前記水を混合し、鉄元素量が0.5×10 −6 g/g以下である油剤分散液を調製する分散液調製工程と、
前記紡糸工程で得られた繊維に、前記の鉄元素量が0.5×10 −6 g/g以下である油剤分散液を含浸させ前記油剤組成物を付着させる工程とを有する、炭素繊維前駆体アクリル繊維の製造方法。
A raw material purification step in which an acrylonitrile polymer solution is brought into contact with a substance having an ion exchange capacity with iron ions;
A spinning step of spinning the acrylonitrile polymer solution treated in the raw material purification step;
An oil agent raw material purification step in which an oil agent composition and water are brought into contact with a substance having ion exchange ability with iron ions;
A dispersion preparation step of mixing the oil composition and the water to prepare an oil dispersion having an iron element amount of 0.5 × 10 −6 g / g or less ;
A carbon fiber precursor having a step of impregnating the fiber obtained in the spinning step with an oil dispersion having an iron element amount of 0.5 × 10 −6 g / g or less and adhering the oil composition. Method for producing body acrylic fiber.
鉄イオンとイオン交換能を有する物質にアクリロニトリル重合体溶液を接触させる原料浄化工程と、A raw material purification step in which an acrylonitrile polymer solution is brought into contact with a substance having an ion exchange capacity with iron ions;
前記原料浄化工程で処理したアクリロニトリル重合体溶液を紡糸する紡糸工程と、A spinning step of spinning the acrylonitrile polymer solution treated in the raw material purification step;
油剤組成物及び水を混合し、油剤分散液を調製する分散液調製工程と、A dispersion preparation step of mixing an oil composition and water to prepare an oil dispersion;
鉄イオンとイオン交換能を有する物質に前記油剤分散液を接触させ、前記油剤分散液中の鉄元素量を0.5×10The oil dispersion is brought into contact with a substance having an ion exchange capacity with iron ions, and the amount of iron element in the oil dispersion is 0.5 × 10 5. −6-6 g/g以下にする油剤原料浄化工程と、an oil raw material purification step of g / g or less;
前記紡糸工程で得られた繊維に、前記の鉄元素量が0.5×10The fiber obtained in the spinning process has an iron element amount of 0.5 × 10 −6-6 g/g以下である油剤分散液を含浸させ前記油剤組成物を付着させる工程とを有する、炭素繊維前駆体アクリル繊維の製造方法。a method for producing a carbon fiber precursor acrylic fiber, the method comprising impregnating an oil agent dispersion liquid of g / g or less and adhering the oil agent composition.
前記分散液調製工程は、転相温度法により乳化して油剤分散液を調製する、請求項2又は3に記載の炭素繊維前駆体アクリル繊維の製造方法。   The said dispersion liquid preparation process is a manufacturing method of the carbon fiber precursor acrylic fiber of Claim 2 or 3 which emulsifies with a phase inversion temperature method and prepares an oil agent dispersion liquid.
JP2009257994A 2009-11-11 2009-11-11 Carbon fiber precursor acrylic fiber and method for producing the same Active JP5424824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009257994A JP5424824B2 (en) 2009-11-11 2009-11-11 Carbon fiber precursor acrylic fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009257994A JP5424824B2 (en) 2009-11-11 2009-11-11 Carbon fiber precursor acrylic fiber and method for producing the same

Publications (3)

Publication Number Publication Date
JP2011102454A JP2011102454A (en) 2011-05-26
JP2011102454A5 JP2011102454A5 (en) 2012-12-27
JP5424824B2 true JP5424824B2 (en) 2014-02-26

Family

ID=44192897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009257994A Active JP5424824B2 (en) 2009-11-11 2009-11-11 Carbon fiber precursor acrylic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP5424824B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302534B1 (en) * 2016-12-07 2018-03-28 三菱重工航空エンジン株式会社 Method for producing ceramic matrix composite material
JP6774863B2 (en) * 2016-12-08 2020-10-28 三菱重工航空エンジン株式会社 Manufacturing method of ceramic-based composite material
JP2020153051A (en) * 2019-03-15 2020-09-24 東レ株式会社 Carbon fiber bundle and production method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125911A (en) * 1982-12-25 1984-07-20 Toho Rayon Co Ltd Production of fire-resistant acrylonitrile yarn
JPH01271401A (en) * 1988-04-21 1989-10-30 Toray Ind Inc Manufacture of acrylic polymer
JP3073580B2 (en) * 1991-12-09 2000-08-07 三菱レイヨン株式会社 Acrylonitrile-based carbon fiber and method for producing the same
JP3041655B2 (en) * 1991-11-22 2000-05-15 三菱レイヨン株式会社 Acrylonitrile fiber and method for producing the same
JP3033923B2 (en) * 1992-04-10 2000-04-17 三菱レイヨン株式会社 Acrylonitrile-based carbon fiber and method for producing the same
JPH11241230A (en) * 1997-12-11 1999-09-07 Toray Ind Inc Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP4543931B2 (en) * 2005-01-07 2010-09-15 東レ株式会社 Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame resistant fiber, carbon fiber and method for producing the same

Also Published As

Publication number Publication date
JP2011102454A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5484906B2 (en) Method for producing polyacrylonitrile-based precursor fiber for carbon fiber
KR100364655B1 (en) Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
US11313053B2 (en) Optimized process for the preparation of a spinning solution for the production of acrylic fibers precursors of carbon fibers and the relative carbon fibers
KR20100105617A (en) Dispersion containing flame-resistant polymer, flame-resistant fiber, and carbon fiber
JP2008127697A (en) Spinning dope for carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP5424824B2 (en) Carbon fiber precursor acrylic fiber and method for producing the same
WO2015005469A1 (en) Flame resistant polymer, polymer solution, flame resistant fiber, carbon fiber, and methods for producing same
CN105714411B (en) A kind of preparation method of poly- pyrrole throat/polyether sulfone/carbon nanometer pipe ternary composite material
JP6145960B2 (en) Method for producing acrylonitrile polymer solution and method for producing carbon fiber precursor acrylonitrile fiber
KR101021881B1 (en) Apparatus and method for preparing carbon fiber precursor using vertical spinning
JP6217342B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP2021139062A (en) Production method of carbon fiber bundle
KR20100073760A (en) Method for preparing carbon fiber precursor
CN114059198B (en) Method for producing carbon fiber
JP2012211814A (en) Method for controlling quality of carbon fiber precursor acrylic fiber
KR20120077628A (en) Carbon fiber precursor and manufacturing method
JPH10102380A (en) Silicone oil agent, precursor for carbon fiber and its production
KR20120048895A (en) Manufacturing method of carbon fiber
JP2022098766A (en) Polyacrylonitrile fiber and method of producing the same
JP2012211410A (en) Quality control method of carbon fiber precursor acrylic fiber
JP2015071844A (en) Production method of carbon fiber precursor acrylonitrile-based fiber
KR101626223B1 (en) A polymer mixture for a precursor fiber of carbon-fiber and carbon-fiber manufactured by using the same
JP2023015006A (en) Manufacturing method of carbon fiber
JPH09176923A (en) Precursor for carbon fiber, its production and production of carbon fiber
JPH1136143A (en) Precursor for carbon fiber and production of carbon fiber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R151 Written notification of patent or utility model registration

Ref document number: 5424824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250